1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "Target.h" 57 58 #include "lld/Common/DWARF.h" 59 #include "lld/Common/ErrorHandler.h" 60 #include "lld/Common/Memory.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/Path.h" 68 #include "llvm/Support/TarWriter.h" 69 #include "llvm/TextAPI/Architecture.h" 70 #include "llvm/TextAPI/InterfaceFile.h" 71 72 using namespace llvm; 73 using namespace llvm::MachO; 74 using namespace llvm::support::endian; 75 using namespace llvm::sys; 76 using namespace lld; 77 using namespace lld::macho; 78 79 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 80 std::string lld::toString(const InputFile *f) { 81 if (!f) 82 return "<internal>"; 83 84 // Multiple dylibs can be defined in one .tbd file. 85 if (auto dylibFile = dyn_cast<DylibFile>(f)) 86 if (f->getName().endswith(".tbd")) 87 return (f->getName() + "(" + dylibFile->dylibName + ")").str(); 88 89 if (f->archiveName.empty()) 90 return std::string(f->getName()); 91 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 92 } 93 94 SetVector<InputFile *> macho::inputFiles; 95 std::unique_ptr<TarWriter> macho::tar; 96 int InputFile::idCount = 0; 97 98 // Open a given file path and return it as a memory-mapped file. 99 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 100 // Open a file. 101 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 102 if (std::error_code ec = mbOrErr.getError()) { 103 error("cannot open " + path + ": " + ec.message()); 104 return None; 105 } 106 107 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 108 MemoryBufferRef mbref = mb->getMemBufferRef(); 109 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 110 111 // If this is a regular non-fat file, return it. 112 const char *buf = mbref.getBufferStart(); 113 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 114 if (mbref.getBufferSize() < sizeof(uint32_t) || 115 read32be(&hdr->magic) != FAT_MAGIC) { 116 if (tar) 117 tar->append(relativeToRoot(path), mbref.getBuffer()); 118 return mbref; 119 } 120 121 // Object files and archive files may be fat files, which contains 122 // multiple real files for different CPU ISAs. Here, we search for a 123 // file that matches with the current link target and returns it as 124 // a MemoryBufferRef. 125 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 126 127 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 128 if (reinterpret_cast<const char *>(arch + i + 1) > 129 buf + mbref.getBufferSize()) { 130 error(path + ": fat_arch struct extends beyond end of file"); 131 return None; 132 } 133 134 if (read32be(&arch[i].cputype) != target->cpuType || 135 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 136 continue; 137 138 uint32_t offset = read32be(&arch[i].offset); 139 uint32_t size = read32be(&arch[i].size); 140 if (offset + size > mbref.getBufferSize()) 141 error(path + ": slice extends beyond end of file"); 142 if (tar) 143 tar->append(relativeToRoot(path), mbref.getBuffer()); 144 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 145 } 146 147 error("unable to find matching architecture in " + path); 148 return None; 149 } 150 151 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 152 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 153 154 template <class Section> 155 void ObjFile::parseSections(ArrayRef<Section> sections) { 156 subsections.reserve(sections.size()); 157 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 158 159 for (const Section &sec : sections) { 160 InputSection *isec = make<InputSection>(); 161 isec->file = this; 162 isec->name = 163 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 164 isec->segname = 165 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 166 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 167 static_cast<size_t>(sec.size)}; 168 if (sec.align >= 32) 169 error("alignment " + std::to_string(sec.align) + " of section " + 170 isec->name + " is too large"); 171 else 172 isec->align = 1 << sec.align; 173 isec->flags = sec.flags; 174 175 if (!(isDebugSection(isec->flags) && 176 isec->segname == segment_names::dwarf)) { 177 subsections.push_back({{0, isec}}); 178 } else { 179 // Instead of emitting DWARF sections, we emit STABS symbols to the 180 // object files that contain them. We filter them out early to avoid 181 // parsing their relocations unnecessarily. But we must still push an 182 // empty map to ensure the indices line up for the remaining sections. 183 subsections.push_back({}); 184 debugSections.push_back(isec); 185 } 186 } 187 } 188 189 // Find the subsection corresponding to the greatest section offset that is <= 190 // that of the given offset. 191 // 192 // offset: an offset relative to the start of the original InputSection (before 193 // any subsection splitting has occurred). It will be updated to represent the 194 // same location as an offset relative to the start of the containing 195 // subsection. 196 static InputSection *findContainingSubsection(SubsectionMap &map, 197 uint64_t *offset) { 198 auto it = std::prev(llvm::upper_bound( 199 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 200 return value < subsecEntry.offset; 201 })); 202 *offset -= it->offset; 203 return it->isec; 204 } 205 206 template <class Section> 207 static bool validateRelocationInfo(InputFile *file, const Section &sec, 208 relocation_info rel) { 209 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 210 bool valid = true; 211 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 212 valid = false; 213 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 214 std::to_string(rel.r_address) + " of " + sec.segname + "," + 215 sec.sectname + " in " + toString(file)) 216 .str(); 217 }; 218 219 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 220 error(message("must be extern")); 221 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 222 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 223 "be PC-relative")); 224 if (isThreadLocalVariables(sec.flags) && 225 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 226 error(message("not allowed in thread-local section, must be UNSIGNED")); 227 if (rel.r_length < 2 || rel.r_length > 3 || 228 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 229 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 230 error(message("has width " + std::to_string(1 << rel.r_length) + 231 " bytes, but must be " + 232 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 233 " bytes")); 234 } 235 return valid; 236 } 237 238 template <class Section> 239 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 240 const Section &sec, SubsectionMap &subsecMap) { 241 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 242 ArrayRef<relocation_info> relInfos( 243 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 244 245 for (size_t i = 0; i < relInfos.size(); i++) { 246 // Paired relocations serve as Mach-O's method for attaching a 247 // supplemental datum to a primary relocation record. ELF does not 248 // need them because the *_RELOC_RELA records contain the extra 249 // addend field, vs. *_RELOC_REL which omit the addend. 250 // 251 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 252 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 253 // datum for each is a symbolic address. The result is the offset 254 // between two addresses. 255 // 256 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 257 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 258 // base symbolic address. 259 // 260 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 261 // addend into the instruction stream. On X86, a relocatable address 262 // field always occupies an entire contiguous sequence of byte(s), 263 // so there is no need to merge opcode bits with address 264 // bits. Therefore, it's easy and convenient to store addends in the 265 // instruction-stream bytes that would otherwise contain zeroes. By 266 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 267 // address bits so that bitwise arithmetic is necessary to extract 268 // and insert them. Storing addends in the instruction stream is 269 // possible, but inconvenient and more costly at link time. 270 271 int64_t pairedAddend = 0; 272 relocation_info relInfo = relInfos[i]; 273 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 274 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 275 relInfo = relInfos[++i]; 276 } 277 assert(i < relInfos.size()); 278 if (!validateRelocationInfo(this, sec, relInfo)) 279 continue; 280 if (relInfo.r_address & R_SCATTERED) 281 fatal("TODO: Scattered relocations not supported"); 282 283 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 284 assert(!(embeddedAddend && pairedAddend)); 285 int64_t totalAddend = pairedAddend + embeddedAddend; 286 Reloc r; 287 r.type = relInfo.r_type; 288 r.pcrel = relInfo.r_pcrel; 289 r.length = relInfo.r_length; 290 r.offset = relInfo.r_address; 291 if (relInfo.r_extern) { 292 r.referent = symbols[relInfo.r_symbolnum]; 293 r.addend = totalAddend; 294 } else { 295 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 296 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 297 uint64_t referentOffset; 298 if (relInfo.r_pcrel) { 299 // The implicit addend for pcrel section relocations is the pcrel offset 300 // in terms of the addresses in the input file. Here we adjust it so 301 // that it describes the offset from the start of the referent section. 302 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 303 // have pcrel section relocations. We may want to factor this out into 304 // the arch-specific .cpp file. 305 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 306 referentOffset = 307 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 308 } else { 309 // The addend for a non-pcrel relocation is its absolute address. 310 referentOffset = totalAddend - referentSec.addr; 311 } 312 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 313 r.addend = referentOffset; 314 } 315 316 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 317 subsec->relocs.push_back(r); 318 319 if (target->hasAttr(r.type, RelocAttrBits::SUBTRAHEND)) { 320 relInfo = relInfos[++i]; 321 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 322 // indicating the minuend symbol. 323 assert(target->hasAttr(relInfo.r_type, RelocAttrBits::UNSIGNED) && 324 relInfo.r_extern); 325 Reloc p; 326 p.type = relInfo.r_type; 327 p.referent = symbols[relInfo.r_symbolnum]; 328 subsec->relocs.push_back(p); 329 } 330 } 331 } 332 333 template <class NList> 334 static macho::Symbol *createDefined(const NList &sym, StringRef name, 335 InputSection *isec, uint64_t value, 336 uint64_t size) { 337 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 338 // N_EXT: Global symbols 339 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped 340 // N_PEXT: Does not occur in input files in practice, 341 // a private extern must be external. 342 // 0: Translation-unit scoped. These are not in the symbol table. 343 344 if (sym.n_type & (N_EXT | N_PEXT)) { 345 assert((sym.n_type & N_EXT) && "invalid input"); 346 return symtab->addDefined(name, isec->file, isec, value, size, 347 sym.n_desc & N_WEAK_DEF, sym.n_type & N_PEXT); 348 } 349 return make<Defined>(name, isec->file, isec, value, size, 350 sym.n_desc & N_WEAK_DEF, 351 /*isExternal=*/false, /*isPrivateExtern=*/false); 352 } 353 354 // Checks if the version specified in `cmd` is compatible with target 355 // version. IOW, check if cmd's version >= config's version. 356 static bool hasCompatVersion(const InputFile *input, 357 const build_version_command *cmd) { 358 359 if (config->target.Platform != static_cast<PlatformKind>(cmd->platform)) { 360 error(toString(input) + " has platform " + 361 getPlatformName(static_cast<PlatformKind>(cmd->platform)) + 362 Twine(", which is different from target platform ") + 363 getPlatformName(config->target.Platform)); 364 return false; 365 } 366 367 unsigned major = cmd->minos >> 16; 368 unsigned minor = (cmd->minos >> 8) & 0xffu; 369 unsigned subMinor = cmd->minos & 0xffu; 370 VersionTuple version(major, minor, subMinor); 371 if (version >= config->platformInfo.minimum) 372 return true; 373 374 error(toString(input) + " has version " + version.getAsString() + 375 ", which is incompatible with target version of " + 376 config->platformInfo.minimum.getAsString()); 377 return false; 378 } 379 380 // Absolute symbols are defined symbols that do not have an associated 381 // InputSection. They cannot be weak. 382 template <class NList> 383 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 384 StringRef name) { 385 if (sym.n_type & (N_EXT | N_PEXT)) { 386 assert((sym.n_type & N_EXT) && "invalid input"); 387 return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0, 388 /*isWeakDef=*/false, sym.n_type & N_PEXT); 389 } 390 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 391 /*isWeakDef=*/false, 392 /*isExternal=*/false, /*isPrivateExtern=*/false); 393 } 394 395 template <class NList> 396 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 397 StringRef name) { 398 uint8_t type = sym.n_type & N_TYPE; 399 switch (type) { 400 case N_UNDF: 401 return sym.n_value == 0 402 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 403 : symtab->addCommon(name, this, sym.n_value, 404 1 << GET_COMM_ALIGN(sym.n_desc), 405 sym.n_type & N_PEXT); 406 case N_ABS: 407 return createAbsolute(sym, this, name); 408 case N_PBUD: 409 case N_INDR: 410 error("TODO: support symbols of type " + std::to_string(type)); 411 return nullptr; 412 case N_SECT: 413 llvm_unreachable( 414 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 415 default: 416 llvm_unreachable("invalid symbol type"); 417 } 418 } 419 420 template <class LP> 421 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 422 ArrayRef<typename LP::nlist> nList, 423 const char *strtab, bool subsectionsViaSymbols) { 424 using NList = typename LP::nlist; 425 426 // Groups indices of the symbols by the sections that contain them. 427 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 428 symbols.resize(nList.size()); 429 for (uint32_t i = 0; i < nList.size(); ++i) { 430 const NList &sym = nList[i]; 431 StringRef name = strtab + sym.n_strx; 432 if ((sym.n_type & N_TYPE) == N_SECT) { 433 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 434 // parseSections() may have chosen not to parse this section. 435 if (subsecMap.empty()) 436 continue; 437 symbolsBySection[sym.n_sect - 1].push_back(i); 438 } else { 439 symbols[i] = parseNonSectionSymbol(sym, name); 440 } 441 } 442 443 // Calculate symbol sizes and create subsections by splitting the sections 444 // along symbol boundaries. 445 for (size_t i = 0; i < subsections.size(); ++i) { 446 SubsectionMap &subsecMap = subsections[i]; 447 if (subsecMap.empty()) 448 continue; 449 450 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 451 llvm::sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 452 return nList[lhs].n_value < nList[rhs].n_value; 453 }); 454 uint64_t sectionAddr = sectionHeaders[i].addr; 455 456 // We populate subsecMap by repeatedly splitting the last (highest address) 457 // subsection. 458 SubsectionEntry subsecEntry = subsecMap.back(); 459 for (size_t j = 0; j < symbolIndices.size(); ++j) { 460 uint32_t symIndex = symbolIndices[j]; 461 const NList &sym = nList[symIndex]; 462 StringRef name = strtab + sym.n_strx; 463 InputSection *isec = subsecEntry.isec; 464 465 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 466 uint64_t symbolOffset = sym.n_value - subsecAddr; 467 uint64_t symbolSize = 468 j + 1 < symbolIndices.size() 469 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 470 : isec->data.size() - symbolOffset; 471 // There are 3 cases where we do not need to create a new subsection: 472 // 1. If the input file does not use subsections-via-symbols. 473 // 2. Multiple symbols at the same address only induce one subsection. 474 // 3. Alternative entry points do not induce new subsections. 475 if (!subsectionsViaSymbols || symbolOffset == 0 || 476 sym.n_desc & N_ALT_ENTRY) { 477 symbols[symIndex] = 478 createDefined(sym, name, isec, symbolOffset, symbolSize); 479 continue; 480 } 481 482 auto *nextIsec = make<InputSection>(*isec); 483 nextIsec->data = isec->data.slice(symbolOffset); 484 isec->data = isec->data.slice(0, symbolOffset); 485 486 // By construction, the symbol will be at offset zero in the new 487 // subsection. 488 symbols[symIndex] = 489 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 490 // TODO: ld64 appears to preserve the original alignment as well as each 491 // subsection's offset from the last aligned address. We should consider 492 // emulating that behavior. 493 nextIsec->align = MinAlign(isec->align, sym.n_value); 494 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 495 subsecEntry = subsecMap.back(); 496 } 497 } 498 } 499 500 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 501 StringRef sectName) 502 : InputFile(OpaqueKind, mb) { 503 InputSection *isec = make<InputSection>(); 504 isec->file = this; 505 isec->name = sectName.take_front(16); 506 isec->segname = segName.take_front(16); 507 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 508 isec->data = {buf, mb.getBufferSize()}; 509 subsections.push_back({{0, isec}}); 510 } 511 512 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 513 : InputFile(ObjKind, mb), modTime(modTime) { 514 this->archiveName = std::string(archiveName); 515 if (target->wordSize == 8) 516 parse<LP64>(); 517 else 518 parse<ILP32>(); 519 } 520 521 template <class LP> void ObjFile::parse() { 522 using Header = typename LP::mach_header; 523 using SegmentCommand = typename LP::segment_command; 524 using Section = typename LP::section; 525 using NList = typename LP::nlist; 526 527 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 528 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 529 530 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 531 if (arch != config->target.Arch) { 532 error(toString(this) + " has architecture " + getArchitectureName(arch) + 533 " which is incompatible with target architecture " + 534 getArchitectureName(config->target.Arch)); 535 return; 536 } 537 538 if (const auto *cmd = 539 findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) { 540 if (!hasCompatVersion(this, cmd)) 541 return; 542 } 543 544 if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { 545 auto *c = reinterpret_cast<const linker_option_command *>(cmd); 546 StringRef data{reinterpret_cast<const char *>(c + 1), 547 c->cmdsize - sizeof(linker_option_command)}; 548 parseLCLinkerOption(this, c->count, data); 549 } 550 551 ArrayRef<Section> sectionHeaders; 552 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 553 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 554 sectionHeaders = 555 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 556 parseSections(sectionHeaders); 557 } 558 559 // TODO: Error on missing LC_SYMTAB? 560 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 561 auto *c = reinterpret_cast<const symtab_command *>(cmd); 562 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 563 c->nsyms); 564 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 565 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 566 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 567 } 568 569 // The relocations may refer to the symbols, so we parse them after we have 570 // parsed all the symbols. 571 for (size_t i = 0, n = subsections.size(); i < n; ++i) 572 if (!subsections[i].empty()) 573 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 574 575 parseDebugInfo(); 576 } 577 578 void ObjFile::parseDebugInfo() { 579 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 580 if (!dObj) 581 return; 582 583 auto *ctx = make<DWARFContext>( 584 std::move(dObj), "", 585 [&](Error err) { 586 warn(toString(this) + ": " + toString(std::move(err))); 587 }, 588 [&](Error warning) { 589 warn(toString(this) + ": " + toString(std::move(warning))); 590 }); 591 592 // TODO: Since object files can contain a lot of DWARF info, we should verify 593 // that we are parsing just the info we need 594 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 595 // FIXME: There can be more than one compile unit per object file. See 596 // PR48637. 597 auto it = units.begin(); 598 compileUnit = it->get(); 599 } 600 601 // The path can point to either a dylib or a .tbd file. 602 static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) { 603 Optional<MemoryBufferRef> mbref = readFile(path); 604 if (!mbref) { 605 error("could not read dylib file at " + path); 606 return {}; 607 } 608 return loadDylib(*mbref, umbrella); 609 } 610 611 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 612 // the first document storing child pointers to the rest of them. When we are 613 // processing a given TBD file, we store that top-level document in 614 // currentTopLevelTapi. When processing re-exports, we search its children for 615 // potentially matching documents in the same TBD file. Note that the children 616 // themselves don't point to further documents, i.e. this is a two-level tree. 617 // 618 // Re-exports can either refer to on-disk files, or to documents within .tbd 619 // files. 620 static Optional<DylibFile *> 621 findDylib(StringRef path, DylibFile *umbrella, 622 const InterfaceFile *currentTopLevelTapi) { 623 if (path::is_absolute(path, path::Style::posix)) 624 for (StringRef root : config->systemLibraryRoots) 625 if (Optional<std::string> dylibPath = 626 resolveDylibPath((root + path).str())) 627 return loadDylib(*dylibPath, umbrella); 628 629 // TODO: Expand @loader_path, @executable_path, @rpath etc, handle -dylib_path 630 631 if (currentTopLevelTapi) { 632 for (InterfaceFile &child : 633 make_pointee_range(currentTopLevelTapi->documents())) { 634 assert(child.documents().empty()); 635 if (path == child.getInstallName()) 636 return make<DylibFile>(child, umbrella); 637 } 638 } 639 640 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 641 return loadDylib(*dylibPath, umbrella); 642 643 return {}; 644 } 645 646 // If a re-exported dylib is public (lives in /usr/lib or 647 // /System/Library/Frameworks), then it is considered implicitly linked: we 648 // should bind to its symbols directly instead of via the re-exporting umbrella 649 // library. 650 static bool isImplicitlyLinked(StringRef path) { 651 if (!config->implicitDylibs) 652 return false; 653 654 if (path::parent_path(path) == "/usr/lib") 655 return true; 656 657 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 658 if (path.consume_front("/System/Library/Frameworks/")) { 659 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 660 return path::filename(path) == frameworkName; 661 } 662 663 return false; 664 } 665 666 void loadReexport(StringRef path, DylibFile *umbrella, 667 const InterfaceFile *currentTopLevelTapi) { 668 Optional<DylibFile *> reexport = 669 findDylib(path, umbrella, currentTopLevelTapi); 670 if (!reexport) 671 error("unable to locate re-export with install name " + path); 672 else if (isImplicitlyLinked(path)) 673 inputFiles.insert(*reexport); 674 } 675 676 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 677 bool isBundleLoader) 678 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 679 isBundleLoader(isBundleLoader) { 680 assert(!isBundleLoader || !umbrella); 681 if (umbrella == nullptr) 682 umbrella = this; 683 684 if (target->wordSize == 8) 685 parse<LP64>(umbrella); 686 else 687 parse<ILP32>(umbrella); 688 } 689 690 template <class LP> void DylibFile::parse(DylibFile *umbrella) { 691 using Header = typename LP::mach_header; 692 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 693 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 694 695 // Initialize dylibName. 696 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 697 auto *c = reinterpret_cast<const dylib_command *>(cmd); 698 currentVersion = read32le(&c->dylib.current_version); 699 compatibilityVersion = read32le(&c->dylib.compatibility_version); 700 dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 701 } else if (!isBundleLoader) { 702 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 703 // so it's OK. 704 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 705 return; 706 } 707 708 if (const build_version_command *cmd = 709 findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) { 710 if (!hasCompatVersion(this, cmd)) 711 return; 712 } 713 714 // Initialize symbols. 715 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 716 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 717 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 718 parseTrie(buf + c->export_off, c->export_size, 719 [&](const Twine &name, uint64_t flags) { 720 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 721 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 722 symbols.push_back(symtab->addDylib( 723 saver.save(name), exportingFile, isWeakDef, isTlv)); 724 }); 725 } else { 726 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 727 return; 728 } 729 730 const uint8_t *p = reinterpret_cast<const uint8_t *>(hdr) + sizeof(Header); 731 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 732 auto *cmd = reinterpret_cast<const load_command *>(p); 733 p += cmd->cmdsize; 734 735 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 736 cmd->cmd == LC_REEXPORT_DYLIB) { 737 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 738 StringRef reexportPath = 739 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 740 loadReexport(reexportPath, exportingFile, nullptr); 741 } 742 743 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 744 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 745 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 746 if (config->namespaceKind == NamespaceKind::flat && 747 cmd->cmd == LC_LOAD_DYLIB) { 748 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 749 StringRef dylibPath = 750 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 751 Optional<DylibFile *> dylib = findDylib(dylibPath, umbrella, nullptr); 752 if (!dylib) 753 error(Twine("unable to locate library '") + dylibPath + 754 "' loaded from '" + toString(this) + "' for -flat_namespace"); 755 } 756 } 757 } 758 759 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 760 bool isBundleLoader) 761 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 762 isBundleLoader(isBundleLoader) { 763 // FIXME: Add test for the missing TBD code path. 764 765 if (umbrella == nullptr) 766 umbrella = this; 767 768 dylibName = saver.save(interface.getInstallName()); 769 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 770 currentVersion = interface.getCurrentVersion().rawValue(); 771 772 if (!is_contained(interface.targets(), config->target)) { 773 error(toString(this) + " is incompatible with " + 774 std::string(config->target)); 775 return; 776 } 777 778 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 779 auto addSymbol = [&](const Twine &name) -> void { 780 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 781 /*isWeakDef=*/false, 782 /*isTlv=*/false)); 783 }; 784 // TODO(compnerd) filter out symbols based on the target platform 785 // TODO: handle weak defs, thread locals 786 for (const auto *symbol : interface.symbols()) { 787 if (!symbol->getArchitectures().has(config->target.Arch)) 788 continue; 789 790 switch (symbol->getKind()) { 791 case SymbolKind::GlobalSymbol: 792 addSymbol(symbol->getName()); 793 break; 794 case SymbolKind::ObjectiveCClass: 795 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 796 // want to emulate that. 797 addSymbol(objc::klass + symbol->getName()); 798 addSymbol(objc::metaclass + symbol->getName()); 799 break; 800 case SymbolKind::ObjectiveCClassEHType: 801 addSymbol(objc::ehtype + symbol->getName()); 802 break; 803 case SymbolKind::ObjectiveCInstanceVariable: 804 addSymbol(objc::ivar + symbol->getName()); 805 break; 806 } 807 } 808 809 const InterfaceFile *topLevel = 810 interface.getParent() == nullptr ? &interface : interface.getParent(); 811 812 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 813 InterfaceFile::const_target_range targets = intfRef.targets(); 814 if (is_contained(targets, config->target)) 815 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 816 } 817 } 818 819 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 820 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 821 for (const object::Archive::Symbol &sym : file->symbols()) 822 symtab->addLazy(sym.getName(), this, sym); 823 } 824 825 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 826 object::Archive::Child c = 827 CHECK(sym.getMember(), toString(this) + 828 ": could not get the member for symbol " + 829 toMachOString(sym)); 830 831 if (!seen.insert(c.getChildOffset()).second) 832 return; 833 834 MemoryBufferRef mb = 835 CHECK(c.getMemoryBufferRef(), 836 toString(this) + 837 ": could not get the buffer for the member defining symbol " + 838 toMachOString(sym)); 839 840 if (tar && c.getParent()->isThin()) 841 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 842 843 uint32_t modTime = toTimeT( 844 CHECK(c.getLastModified(), toString(this) + 845 ": could not get the modification time " 846 "for the member defining symbol " + 847 toMachOString(sym))); 848 849 // `sym` is owned by a LazySym, which will be replace<>() by make<ObjFile> 850 // and become invalid after that call. Copy it to the stack so we can refer 851 // to it later. 852 const object::Archive::Symbol sym_copy = sym; 853 854 if (Optional<InputFile *> file = 855 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 856 inputFiles.insert(*file); 857 // ld64 doesn't demangle sym here even with -demangle. Match that, so 858 // intentionally no call to toMachOString() here. 859 printArchiveMemberLoad(sym_copy.getName(), *file); 860 } 861 } 862 863 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 864 BitcodeFile &file) { 865 StringRef name = saver.save(objSym.getName()); 866 867 // TODO: support weak references 868 if (objSym.isUndefined()) 869 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 870 871 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 872 873 // TODO: Write a test demonstrating why computing isPrivateExtern before 874 // LTO compilation is important. 875 bool isPrivateExtern = false; 876 switch (objSym.getVisibility()) { 877 case GlobalValue::HiddenVisibility: 878 isPrivateExtern = true; 879 break; 880 case GlobalValue::ProtectedVisibility: 881 error(name + " has protected visibility, which is not supported by Mach-O"); 882 break; 883 case GlobalValue::DefaultVisibility: 884 break; 885 } 886 887 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 888 /*size=*/0, objSym.isWeak(), isPrivateExtern); 889 } 890 891 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 892 : InputFile(BitcodeKind, mbref) { 893 obj = check(lto::InputFile::create(mbref)); 894 895 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 896 // "winning" symbol will then be marked as Prevailing at LTO compilation 897 // time. 898 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 899 symbols.push_back(createBitcodeSymbol(objSym, *this)); 900 } 901 902 template void ObjFile::parse<LP64>(); 903 template void DylibFile::parse<LP64>(DylibFile *umbrella); 904