1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/BinaryStreamReader.h" 67 #include "llvm/Support/Endian.h" 68 #include "llvm/Support/MemoryBuffer.h" 69 #include "llvm/Support/Path.h" 70 #include "llvm/Support/TarWriter.h" 71 #include "llvm/Support/TimeProfiler.h" 72 #include "llvm/TextAPI/Architecture.h" 73 #include "llvm/TextAPI/InterfaceFile.h" 74 75 #include <type_traits> 76 77 using namespace llvm; 78 using namespace llvm::MachO; 79 using namespace llvm::support::endian; 80 using namespace llvm::sys; 81 using namespace lld; 82 using namespace lld::macho; 83 84 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 85 std::string lld::toString(const InputFile *f) { 86 if (!f) 87 return "<internal>"; 88 89 // Multiple dylibs can be defined in one .tbd file. 90 if (auto dylibFile = dyn_cast<DylibFile>(f)) 91 if (f->getName().endswith(".tbd")) 92 return (f->getName() + "(" + dylibFile->installName + ")").str(); 93 94 if (f->archiveName.empty()) 95 return std::string(f->getName()); 96 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 97 } 98 99 SetVector<InputFile *> macho::inputFiles; 100 std::unique_ptr<TarWriter> macho::tar; 101 int InputFile::idCount = 0; 102 103 static VersionTuple decodeVersion(uint32_t version) { 104 unsigned major = version >> 16; 105 unsigned minor = (version >> 8) & 0xffu; 106 unsigned subMinor = version & 0xffu; 107 return VersionTuple(major, minor, subMinor); 108 } 109 110 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 111 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 112 return {}; 113 114 const char *hdr = input->mb.getBufferStart(); 115 116 std::vector<PlatformInfo> platformInfos; 117 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 118 PlatformInfo info; 119 info.target.Platform = static_cast<PlatformType>(cmd->platform); 120 info.minimum = decodeVersion(cmd->minos); 121 platformInfos.emplace_back(std::move(info)); 122 } 123 for (auto *cmd : findCommands<version_min_command>( 124 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 125 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 126 PlatformInfo info; 127 switch (cmd->cmd) { 128 case LC_VERSION_MIN_MACOSX: 129 info.target.Platform = PLATFORM_MACOS; 130 break; 131 case LC_VERSION_MIN_IPHONEOS: 132 info.target.Platform = PLATFORM_IOS; 133 break; 134 case LC_VERSION_MIN_TVOS: 135 info.target.Platform = PLATFORM_TVOS; 136 break; 137 case LC_VERSION_MIN_WATCHOS: 138 info.target.Platform = PLATFORM_WATCHOS; 139 break; 140 } 141 info.minimum = decodeVersion(cmd->version); 142 platformInfos.emplace_back(std::move(info)); 143 } 144 145 return platformInfos; 146 } 147 148 static bool checkCompatibility(const InputFile *input) { 149 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 150 if (platformInfos.empty()) 151 return true; 152 153 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 154 return removeSimulator(info.target.Platform) == 155 removeSimulator(config->platform()); 156 }); 157 if (it == platformInfos.end()) { 158 std::string platformNames; 159 raw_string_ostream os(platformNames); 160 interleave( 161 platformInfos, os, 162 [&](const PlatformInfo &info) { 163 os << getPlatformName(info.target.Platform); 164 }, 165 "/"); 166 error(toString(input) + " has platform " + platformNames + 167 Twine(", which is different from target platform ") + 168 getPlatformName(config->platform())); 169 return false; 170 } 171 172 if (it->minimum > config->platformInfo.minimum) 173 warn(toString(input) + " has version " + it->minimum.getAsString() + 174 ", which is newer than target minimum of " + 175 config->platformInfo.minimum.getAsString()); 176 177 return true; 178 } 179 180 // This cache mostly exists to store system libraries (and .tbds) as they're 181 // loaded, rather than the input archives, which are already cached at a higher 182 // level, and other files like the filelist that are only read once. 183 // Theoretically this caching could be more efficient by hoisting it, but that 184 // would require altering many callers to track the state. 185 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 186 // Open a given file path and return it as a memory-mapped file. 187 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 188 CachedHashStringRef key(path); 189 auto entry = cachedReads.find(key); 190 if (entry != cachedReads.end()) 191 return entry->second; 192 193 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 194 if (std::error_code ec = mbOrErr.getError()) { 195 error("cannot open " + path + ": " + ec.message()); 196 return None; 197 } 198 199 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 200 MemoryBufferRef mbref = mb->getMemBufferRef(); 201 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 202 203 // If this is a regular non-fat file, return it. 204 const char *buf = mbref.getBufferStart(); 205 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 206 if (mbref.getBufferSize() < sizeof(uint32_t) || 207 read32be(&hdr->magic) != FAT_MAGIC) { 208 if (tar) 209 tar->append(relativeToRoot(path), mbref.getBuffer()); 210 return cachedReads[key] = mbref; 211 } 212 213 // Object files and archive files may be fat files, which contain multiple 214 // real files for different CPU ISAs. Here, we search for a file that matches 215 // with the current link target and returns it as a MemoryBufferRef. 216 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 217 218 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 219 if (reinterpret_cast<const char *>(arch + i + 1) > 220 buf + mbref.getBufferSize()) { 221 error(path + ": fat_arch struct extends beyond end of file"); 222 return None; 223 } 224 225 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 226 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 227 continue; 228 229 uint32_t offset = read32be(&arch[i].offset); 230 uint32_t size = read32be(&arch[i].size); 231 if (offset + size > mbref.getBufferSize()) 232 error(path + ": slice extends beyond end of file"); 233 if (tar) 234 tar->append(relativeToRoot(path), mbref.getBuffer()); 235 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 236 path.copy(bAlloc)); 237 } 238 239 error("unable to find matching architecture in " + path); 240 return None; 241 } 242 243 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 244 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 245 246 // Some sections comprise of fixed-size records, so instead of splitting them at 247 // symbol boundaries, we split them based on size. Records are distinct from 248 // literals in that they may contain references to other sections, instead of 249 // being leaf nodes in the InputSection graph. 250 // 251 // Note that "record" is a term I came up with. In contrast, "literal" is a term 252 // used by the Mach-O format. 253 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 254 if (name == section_names::cfString) { 255 if (config->icfLevel != ICFLevel::none && segname == segment_names::data) 256 return target->wordSize == 8 ? 32 : 16; 257 } else if (name == section_names::compactUnwind) { 258 if (segname == segment_names::ld) 259 return target->wordSize == 8 ? 32 : 20; 260 } 261 return {}; 262 } 263 264 // Parse the sequence of sections within a single LC_SEGMENT(_64). 265 // Split each section into subsections. 266 template <class SectionHeader> 267 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 268 sections.reserve(sectionHeaders.size()); 269 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 270 271 for (const SectionHeader &sec : sectionHeaders) { 272 StringRef name = 273 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 274 StringRef segname = 275 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 276 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 277 : buf + sec.offset, 278 static_cast<size_t>(sec.size)}; 279 if (sec.align >= 32) { 280 error("alignment " + std::to_string(sec.align) + " of section " + name + 281 " is too large"); 282 sections.push_back(sec.addr); 283 continue; 284 } 285 uint32_t align = 1 << sec.align; 286 uint32_t flags = sec.flags; 287 288 auto splitRecords = [&](int recordSize) -> void { 289 sections.push_back(sec.addr); 290 if (data.empty()) 291 return; 292 Subsections &subsections = sections.back().subsections; 293 subsections.reserve(data.size() / recordSize); 294 auto *isec = make<ConcatInputSection>( 295 segname, name, this, data.slice(0, recordSize), align, flags); 296 subsections.push_back({0, isec}); 297 for (uint64_t off = recordSize; off < data.size(); off += recordSize) { 298 // Copying requires less memory than constructing a fresh InputSection. 299 auto *copy = make<ConcatInputSection>(*isec); 300 copy->data = data.slice(off, recordSize); 301 subsections.push_back({off, copy}); 302 } 303 }; 304 305 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 306 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 307 if (sec.nreloc && config->dedupLiterals) 308 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 309 sec.sectname + 310 ", so LLD cannot deduplicate literals. Try re-running without " 311 "--deduplicate-literals."); 312 313 InputSection *isec; 314 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 315 isec = 316 make<CStringInputSection>(segname, name, this, data, align, flags); 317 // FIXME: parallelize this? 318 cast<CStringInputSection>(isec)->splitIntoPieces(); 319 } else { 320 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 321 flags); 322 } 323 sections.push_back(sec.addr); 324 sections.back().subsections.push_back({0, isec}); 325 } else if (auto recordSize = getRecordSize(segname, name)) { 326 splitRecords(*recordSize); 327 if (name == section_names::compactUnwind) 328 compactUnwindSection = §ions.back(); 329 } else if (segname == segment_names::llvm) { 330 if (name == "__cg_profile" && config->callGraphProfileSort) { 331 TimeTraceScope timeScope("Parsing call graph section"); 332 BinaryStreamReader reader(data, support::little); 333 while (!reader.empty()) { 334 uint32_t fromIndex, toIndex; 335 uint64_t count; 336 if (Error err = reader.readInteger(fromIndex)) 337 fatal(toString(this) + ": Expected 32-bit integer"); 338 if (Error err = reader.readInteger(toIndex)) 339 fatal(toString(this) + ": Expected 32-bit integer"); 340 if (Error err = reader.readInteger(count)) 341 fatal(toString(this) + ": Expected 64-bit integer"); 342 callGraph.emplace_back(); 343 CallGraphEntry &entry = callGraph.back(); 344 entry.fromIndex = fromIndex; 345 entry.toIndex = toIndex; 346 entry.count = count; 347 } 348 } 349 // ld64 does not appear to emit contents from sections within the __LLVM 350 // segment. Symbols within those sections point to bitcode metadata 351 // instead of actual symbols. Global symbols within those sections could 352 // have the same name without causing duplicate symbol errors. Push an 353 // empty entry to ensure indices line up for the remaining sections. 354 // TODO: Evaluate whether the bitcode metadata is needed. 355 sections.push_back(sec.addr); 356 } else { 357 auto *isec = 358 make<ConcatInputSection>(segname, name, this, data, align, flags); 359 if (isDebugSection(isec->getFlags()) && 360 isec->getSegName() == segment_names::dwarf) { 361 // Instead of emitting DWARF sections, we emit STABS symbols to the 362 // object files that contain them. We filter them out early to avoid 363 // parsing their relocations unnecessarily. But we must still push an 364 // empty entry to ensure the indices line up for the remaining sections. 365 sections.push_back(sec.addr); 366 debugSections.push_back(isec); 367 } else { 368 sections.push_back(sec.addr); 369 sections.back().subsections.push_back({0, isec}); 370 } 371 } 372 } 373 } 374 375 // Find the subsection corresponding to the greatest section offset that is <= 376 // that of the given offset. 377 // 378 // offset: an offset relative to the start of the original InputSection (before 379 // any subsection splitting has occurred). It will be updated to represent the 380 // same location as an offset relative to the start of the containing 381 // subsection. 382 template <class T> 383 static InputSection *findContainingSubsection(const Subsections &subsections, 384 T *offset) { 385 static_assert(std::is_same<uint64_t, T>::value || 386 std::is_same<uint32_t, T>::value, 387 "unexpected type for offset"); 388 auto it = std::prev(llvm::upper_bound( 389 subsections, *offset, 390 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 391 *offset -= it->offset; 392 return it->isec; 393 } 394 395 template <class SectionHeader> 396 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 397 relocation_info rel) { 398 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 399 bool valid = true; 400 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 401 valid = false; 402 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 403 std::to_string(rel.r_address) + " of " + sec.segname + "," + 404 sec.sectname + " in " + toString(file)) 405 .str(); 406 }; 407 408 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 409 error(message("must be extern")); 410 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 411 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 412 "be PC-relative")); 413 if (isThreadLocalVariables(sec.flags) && 414 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 415 error(message("not allowed in thread-local section, must be UNSIGNED")); 416 if (rel.r_length < 2 || rel.r_length > 3 || 417 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 418 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 419 error(message("has width " + std::to_string(1 << rel.r_length) + 420 " bytes, but must be " + 421 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 422 " bytes")); 423 } 424 return valid; 425 } 426 427 template <class SectionHeader> 428 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 429 const SectionHeader &sec, 430 Subsections &subsections) { 431 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 432 ArrayRef<relocation_info> relInfos( 433 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 434 435 auto subsecIt = subsections.rbegin(); 436 for (size_t i = 0; i < relInfos.size(); i++) { 437 // Paired relocations serve as Mach-O's method for attaching a 438 // supplemental datum to a primary relocation record. ELF does not 439 // need them because the *_RELOC_RELA records contain the extra 440 // addend field, vs. *_RELOC_REL which omit the addend. 441 // 442 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 443 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 444 // datum for each is a symbolic address. The result is the offset 445 // between two addresses. 446 // 447 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 448 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 449 // base symbolic address. 450 // 451 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 452 // addend into the instruction stream. On X86, a relocatable address 453 // field always occupies an entire contiguous sequence of byte(s), 454 // so there is no need to merge opcode bits with address 455 // bits. Therefore, it's easy and convenient to store addends in the 456 // instruction-stream bytes that would otherwise contain zeroes. By 457 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 458 // address bits so that bitwise arithmetic is necessary to extract 459 // and insert them. Storing addends in the instruction stream is 460 // possible, but inconvenient and more costly at link time. 461 462 relocation_info relInfo = relInfos[i]; 463 bool isSubtrahend = 464 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 465 if (isSubtrahend && StringRef(sec.sectname) == section_names::ehFrame) { 466 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 467 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 468 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 469 ++i; 470 continue; 471 } 472 int64_t pairedAddend = 0; 473 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 474 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 475 relInfo = relInfos[++i]; 476 } 477 assert(i < relInfos.size()); 478 if (!validateRelocationInfo(this, sec, relInfo)) 479 continue; 480 if (relInfo.r_address & R_SCATTERED) 481 fatal("TODO: Scattered relocations not supported"); 482 483 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 484 assert(!(embeddedAddend && pairedAddend)); 485 int64_t totalAddend = pairedAddend + embeddedAddend; 486 Reloc r; 487 r.type = relInfo.r_type; 488 r.pcrel = relInfo.r_pcrel; 489 r.length = relInfo.r_length; 490 r.offset = relInfo.r_address; 491 if (relInfo.r_extern) { 492 r.referent = symbols[relInfo.r_symbolnum]; 493 r.addend = isSubtrahend ? 0 : totalAddend; 494 } else { 495 assert(!isSubtrahend); 496 const SectionHeader &referentSecHead = 497 sectionHeaders[relInfo.r_symbolnum - 1]; 498 uint64_t referentOffset; 499 if (relInfo.r_pcrel) { 500 // The implicit addend for pcrel section relocations is the pcrel offset 501 // in terms of the addresses in the input file. Here we adjust it so 502 // that it describes the offset from the start of the referent section. 503 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 504 // have pcrel section relocations. We may want to factor this out into 505 // the arch-specific .cpp file. 506 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 507 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 508 referentSecHead.addr; 509 } else { 510 // The addend for a non-pcrel relocation is its absolute address. 511 referentOffset = totalAddend - referentSecHead.addr; 512 } 513 Subsections &referentSubsections = 514 sections[relInfo.r_symbolnum - 1].subsections; 515 r.referent = 516 findContainingSubsection(referentSubsections, &referentOffset); 517 r.addend = referentOffset; 518 } 519 520 // Find the subsection that this relocation belongs to. 521 // Though not required by the Mach-O format, clang and gcc seem to emit 522 // relocations in order, so let's take advantage of it. However, ld64 emits 523 // unsorted relocations (in `-r` mode), so we have a fallback for that 524 // uncommon case. 525 InputSection *subsec; 526 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 527 ++subsecIt; 528 if (subsecIt == subsections.rend() || 529 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 530 subsec = findContainingSubsection(subsections, &r.offset); 531 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 532 // for the other relocations. 533 subsecIt = subsections.rend(); 534 } else { 535 subsec = subsecIt->isec; 536 r.offset -= subsecIt->offset; 537 } 538 subsec->relocs.push_back(r); 539 540 if (isSubtrahend) { 541 relocation_info minuendInfo = relInfos[++i]; 542 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 543 // attached to the same address. 544 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 545 relInfo.r_address == minuendInfo.r_address); 546 Reloc p; 547 p.type = minuendInfo.r_type; 548 if (minuendInfo.r_extern) { 549 p.referent = symbols[minuendInfo.r_symbolnum]; 550 p.addend = totalAddend; 551 } else { 552 uint64_t referentOffset = 553 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 554 Subsections &referentSubsectVec = 555 sections[minuendInfo.r_symbolnum - 1].subsections; 556 p.referent = 557 findContainingSubsection(referentSubsectVec, &referentOffset); 558 p.addend = referentOffset; 559 } 560 subsec->relocs.push_back(p); 561 } 562 } 563 } 564 565 template <class NList> 566 static macho::Symbol *createDefined(const NList &sym, StringRef name, 567 InputSection *isec, uint64_t value, 568 uint64_t size) { 569 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 570 // N_EXT: Global symbols. These go in the symbol table during the link, 571 // and also in the export table of the output so that the dynamic 572 // linker sees them. 573 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 574 // symbol table during the link so that duplicates are 575 // either reported (for non-weak symbols) or merged 576 // (for weak symbols), but they do not go in the export 577 // table of the output. 578 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 579 // object files) may produce them. LLD does not yet support -r. 580 // These are translation-unit scoped, identical to the `0` case. 581 // 0: Translation-unit scoped. These are not in the symbol table during 582 // link, and not in the export table of the output either. 583 bool isWeakDefCanBeHidden = 584 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 585 586 if (sym.n_type & N_EXT) { 587 bool isPrivateExtern = sym.n_type & N_PEXT; 588 // lld's behavior for merging symbols is slightly different from ld64: 589 // ld64 picks the winning symbol based on several criteria (see 590 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 591 // just merges metadata and keeps the contents of the first symbol 592 // with that name (see SymbolTable::addDefined). For: 593 // * inline function F in a TU built with -fvisibility-inlines-hidden 594 // * and inline function F in another TU built without that flag 595 // ld64 will pick the one from the file built without 596 // -fvisibility-inlines-hidden. 597 // lld will instead pick the one listed first on the link command line and 598 // give it visibility as if the function was built without 599 // -fvisibility-inlines-hidden. 600 // If both functions have the same contents, this will have the same 601 // behavior. If not, it won't, but the input had an ODR violation in 602 // that case. 603 // 604 // Similarly, merging a symbol 605 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 606 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 607 // should produce one 608 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 609 // with ld64's semantics, because it means the non-private-extern 610 // definition will continue to take priority if more private extern 611 // definitions are encountered. With lld's semantics there's no observable 612 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 613 // that's privateExtern -- neither makes it into the dynamic symbol table, 614 // unless the autohide symbol is explicitly exported. 615 // But if a symbol is both privateExtern and autohide then it can't 616 // be exported. 617 // So we nullify the autohide flag when privateExtern is present 618 // and promote the symbol to privateExtern when it is not already. 619 if (isWeakDefCanBeHidden && isPrivateExtern) 620 isWeakDefCanBeHidden = false; 621 else if (isWeakDefCanBeHidden) 622 isPrivateExtern = true; 623 return symtab->addDefined( 624 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 625 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 626 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 627 isWeakDefCanBeHidden); 628 } 629 assert(!isWeakDefCanBeHidden && 630 "weak_def_can_be_hidden on already-hidden symbol?"); 631 return make<Defined>( 632 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 633 /*isExternal=*/false, /*isPrivateExtern=*/false, 634 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 635 sym.n_desc & N_NO_DEAD_STRIP); 636 } 637 638 // Absolute symbols are defined symbols that do not have an associated 639 // InputSection. They cannot be weak. 640 template <class NList> 641 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 642 StringRef name) { 643 if (sym.n_type & N_EXT) { 644 return symtab->addDefined( 645 name, file, nullptr, sym.n_value, /*size=*/0, 646 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 647 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 648 /*isWeakDefCanBeHidden=*/false); 649 } 650 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 651 /*isWeakDef=*/false, 652 /*isExternal=*/false, /*isPrivateExtern=*/false, 653 sym.n_desc & N_ARM_THUMB_DEF, 654 /*isReferencedDynamically=*/false, 655 sym.n_desc & N_NO_DEAD_STRIP); 656 } 657 658 template <class NList> 659 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 660 StringRef name) { 661 uint8_t type = sym.n_type & N_TYPE; 662 switch (type) { 663 case N_UNDF: 664 return sym.n_value == 0 665 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 666 : symtab->addCommon(name, this, sym.n_value, 667 1 << GET_COMM_ALIGN(sym.n_desc), 668 sym.n_type & N_PEXT); 669 case N_ABS: 670 return createAbsolute(sym, this, name); 671 case N_PBUD: 672 case N_INDR: 673 error("TODO: support symbols of type " + std::to_string(type)); 674 return nullptr; 675 case N_SECT: 676 llvm_unreachable( 677 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 678 default: 679 llvm_unreachable("invalid symbol type"); 680 } 681 } 682 683 template <class NList> static bool isUndef(const NList &sym) { 684 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 685 } 686 687 template <class LP> 688 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 689 ArrayRef<typename LP::nlist> nList, 690 const char *strtab, bool subsectionsViaSymbols) { 691 using NList = typename LP::nlist; 692 693 // Groups indices of the symbols by the sections that contain them. 694 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 695 symbols.resize(nList.size()); 696 SmallVector<unsigned, 32> undefineds; 697 for (uint32_t i = 0; i < nList.size(); ++i) { 698 const NList &sym = nList[i]; 699 700 // Ignore debug symbols for now. 701 // FIXME: may need special handling. 702 if (sym.n_type & N_STAB) 703 continue; 704 705 StringRef name = strtab + sym.n_strx; 706 if ((sym.n_type & N_TYPE) == N_SECT) { 707 Subsections &subsections = sections[sym.n_sect - 1].subsections; 708 // parseSections() may have chosen not to parse this section. 709 if (subsections.empty()) 710 continue; 711 symbolsBySection[sym.n_sect - 1].push_back(i); 712 } else if (isUndef(sym)) { 713 undefineds.push_back(i); 714 } else { 715 symbols[i] = parseNonSectionSymbol(sym, name); 716 } 717 } 718 719 for (size_t i = 0; i < sections.size(); ++i) { 720 Subsections &subsections = sections[i].subsections; 721 if (subsections.empty()) 722 continue; 723 InputSection *lastIsec = subsections.back().isec; 724 if (lastIsec->getName() == section_names::ehFrame) { 725 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 726 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 727 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 728 continue; 729 } 730 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 731 uint64_t sectionAddr = sectionHeaders[i].addr; 732 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 733 734 // Record-based sections have already been split into subsections during 735 // parseSections(), so we simply need to match Symbols to the corresponding 736 // subsection here. 737 if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) { 738 for (size_t j = 0; j < symbolIndices.size(); ++j) { 739 uint32_t symIndex = symbolIndices[j]; 740 const NList &sym = nList[symIndex]; 741 StringRef name = strtab + sym.n_strx; 742 uint64_t symbolOffset = sym.n_value - sectionAddr; 743 InputSection *isec = 744 findContainingSubsection(subsections, &symbolOffset); 745 if (symbolOffset != 0) { 746 error(toString(lastIsec) + ": symbol " + name + 747 " at misaligned offset"); 748 continue; 749 } 750 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 751 } 752 continue; 753 } 754 755 // Calculate symbol sizes and create subsections by splitting the sections 756 // along symbol boundaries. 757 // We populate subsections by repeatedly splitting the last (highest 758 // address) subsection. 759 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 760 return nList[lhs].n_value < nList[rhs].n_value; 761 }); 762 for (size_t j = 0; j < symbolIndices.size(); ++j) { 763 uint32_t symIndex = symbolIndices[j]; 764 const NList &sym = nList[symIndex]; 765 StringRef name = strtab + sym.n_strx; 766 Subsection &subsec = subsections.back(); 767 InputSection *isec = subsec.isec; 768 769 uint64_t subsecAddr = sectionAddr + subsec.offset; 770 size_t symbolOffset = sym.n_value - subsecAddr; 771 uint64_t symbolSize = 772 j + 1 < symbolIndices.size() 773 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 774 : isec->data.size() - symbolOffset; 775 // There are 4 cases where we do not need to create a new subsection: 776 // 1. If the input file does not use subsections-via-symbols. 777 // 2. Multiple symbols at the same address only induce one subsection. 778 // (The symbolOffset == 0 check covers both this case as well as 779 // the first loop iteration.) 780 // 3. Alternative entry points do not induce new subsections. 781 // 4. If we have a literal section (e.g. __cstring and __literal4). 782 if (!subsectionsViaSymbols || symbolOffset == 0 || 783 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 784 symbols[symIndex] = 785 createDefined(sym, name, isec, symbolOffset, symbolSize); 786 continue; 787 } 788 auto *concatIsec = cast<ConcatInputSection>(isec); 789 790 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 791 nextIsec->wasCoalesced = false; 792 if (isZeroFill(isec->getFlags())) { 793 // Zero-fill sections have NULL data.data() non-zero data.size() 794 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 795 isec->data = {nullptr, symbolOffset}; 796 } else { 797 nextIsec->data = isec->data.slice(symbolOffset); 798 isec->data = isec->data.slice(0, symbolOffset); 799 } 800 801 // By construction, the symbol will be at offset zero in the new 802 // subsection. 803 symbols[symIndex] = 804 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 805 // TODO: ld64 appears to preserve the original alignment as well as each 806 // subsection's offset from the last aligned address. We should consider 807 // emulating that behavior. 808 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 809 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 810 } 811 } 812 813 // Undefined symbols can trigger recursive fetch from Archives due to 814 // LazySymbols. Process defined symbols first so that the relative order 815 // between a defined symbol and an undefined symbol does not change the 816 // symbol resolution behavior. In addition, a set of interconnected symbols 817 // will all be resolved to the same file, instead of being resolved to 818 // different files. 819 for (unsigned i : undefineds) { 820 const NList &sym = nList[i]; 821 StringRef name = strtab + sym.n_strx; 822 symbols[i] = parseNonSectionSymbol(sym, name); 823 } 824 } 825 826 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 827 StringRef sectName) 828 : InputFile(OpaqueKind, mb) { 829 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 830 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 831 ConcatInputSection *isec = 832 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16), 833 /*file=*/this, data); 834 isec->live = true; 835 sections.push_back(0); 836 sections.back().subsections.push_back({0, isec}); 837 } 838 839 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 840 bool lazy) 841 : InputFile(ObjKind, mb, lazy), modTime(modTime) { 842 this->archiveName = std::string(archiveName); 843 if (lazy) { 844 if (target->wordSize == 8) 845 parseLazy<LP64>(); 846 else 847 parseLazy<ILP32>(); 848 } else { 849 if (target->wordSize == 8) 850 parse<LP64>(); 851 else 852 parse<ILP32>(); 853 } 854 } 855 856 template <class LP> void ObjFile::parse() { 857 using Header = typename LP::mach_header; 858 using SegmentCommand = typename LP::segment_command; 859 using SectionHeader = typename LP::section; 860 using NList = typename LP::nlist; 861 862 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 863 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 864 865 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 866 if (arch != config->arch()) { 867 auto msg = config->errorForArchMismatch 868 ? static_cast<void (*)(const Twine &)>(error) 869 : warn; 870 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 871 " which is incompatible with target architecture " + 872 getArchitectureName(config->arch())); 873 return; 874 } 875 876 if (!checkCompatibility(this)) 877 return; 878 879 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 880 StringRef data{reinterpret_cast<const char *>(cmd + 1), 881 cmd->cmdsize - sizeof(linker_option_command)}; 882 parseLCLinkerOption(this, cmd->count, data); 883 } 884 885 ArrayRef<SectionHeader> sectionHeaders; 886 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 887 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 888 sectionHeaders = ArrayRef<SectionHeader>{ 889 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 890 parseSections(sectionHeaders); 891 } 892 893 // TODO: Error on missing LC_SYMTAB? 894 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 895 auto *c = reinterpret_cast<const symtab_command *>(cmd); 896 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 897 c->nsyms); 898 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 899 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 900 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 901 } 902 903 // The relocations may refer to the symbols, so we parse them after we have 904 // parsed all the symbols. 905 for (size_t i = 0, n = sections.size(); i < n; ++i) 906 if (!sections[i].subsections.empty()) 907 parseRelocations(sectionHeaders, sectionHeaders[i], 908 sections[i].subsections); 909 910 parseDebugInfo(); 911 if (compactUnwindSection) 912 registerCompactUnwind(); 913 } 914 915 template <class LP> void ObjFile::parseLazy() { 916 using Header = typename LP::mach_header; 917 using NList = typename LP::nlist; 918 919 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 920 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 921 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 922 if (!cmd) 923 return; 924 auto *c = reinterpret_cast<const symtab_command *>(cmd); 925 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 926 c->nsyms); 927 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 928 symbols.resize(nList.size()); 929 for (auto it : llvm::enumerate(nList)) { 930 const NList &sym = it.value(); 931 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 932 // TODO: Bound checking 933 StringRef name = strtab + sym.n_strx; 934 symbols[it.index()] = symtab->addLazyObject(name, *this); 935 if (!lazy) 936 break; 937 } 938 } 939 } 940 941 void ObjFile::parseDebugInfo() { 942 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 943 if (!dObj) 944 return; 945 946 auto *ctx = make<DWARFContext>( 947 std::move(dObj), "", 948 [&](Error err) { 949 warn(toString(this) + ": " + toString(std::move(err))); 950 }, 951 [&](Error warning) { 952 warn(toString(this) + ": " + toString(std::move(warning))); 953 }); 954 955 // TODO: Since object files can contain a lot of DWARF info, we should verify 956 // that we are parsing just the info we need 957 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 958 // FIXME: There can be more than one compile unit per object file. See 959 // PR48637. 960 auto it = units.begin(); 961 compileUnit = it->get(); 962 } 963 964 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 965 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 966 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 967 if (!cmd) 968 return {}; 969 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 970 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 971 c->datasize / sizeof(data_in_code_entry)}; 972 } 973 974 // Create pointers from symbols to their associated compact unwind entries. 975 void ObjFile::registerCompactUnwind() { 976 for (const Subsection &subsection : compactUnwindSection->subsections) { 977 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 978 // Hack!! Since each CUE contains a different function address, if ICF 979 // operated naively and compared the entire contents of each CUE, entries 980 // with identical unwind info but belonging to different functions would 981 // never be considered equivalent. To work around this problem, we slice 982 // away the function address here. (Note that we do not adjust the offsets 983 // of the corresponding relocations.) We rely on `relocateCompactUnwind()` 984 // to correctly handle these truncated input sections. 985 isec->data = isec->data.slice(target->wordSize); 986 987 ConcatInputSection *referentIsec; 988 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 989 Reloc &r = *it; 990 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 991 if (r.offset != 0) { 992 ++it; 993 continue; 994 } 995 uint64_t add = r.addend; 996 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 997 // Check whether the symbol defined in this file is the prevailing one. 998 // Skip if it is e.g. a weak def that didn't prevail. 999 if (sym->getFile() != this) { 1000 ++it; 1001 continue; 1002 } 1003 add += sym->value; 1004 referentIsec = cast<ConcatInputSection>(sym->isec); 1005 } else { 1006 referentIsec = 1007 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 1008 } 1009 if (referentIsec->getSegName() != segment_names::text) 1010 error("compact unwind references address in " + toString(referentIsec) + 1011 " which is not in segment __TEXT"); 1012 // The functionAddress relocations are typically section relocations. 1013 // However, unwind info operates on a per-symbol basis, so we search for 1014 // the function symbol here. 1015 auto symIt = llvm::lower_bound( 1016 referentIsec->symbols, add, 1017 [](Defined *d, uint64_t add) { return d->value < add; }); 1018 // The relocation should point at the exact address of a symbol (with no 1019 // addend). 1020 if (symIt == referentIsec->symbols.end() || (*symIt)->value != add) { 1021 assert(referentIsec->wasCoalesced); 1022 ++it; 1023 continue; 1024 } 1025 (*symIt)->unwindEntry = isec; 1026 // Since we've sliced away the functionAddress, we should remove the 1027 // corresponding relocation too. Given that clang emits relocations in 1028 // reverse order of address, this relocation should be at the end of the 1029 // vector for most of our input object files, so this is typically an O(1) 1030 // operation. 1031 it = isec->relocs.erase(it); 1032 } 1033 } 1034 } 1035 1036 // The path can point to either a dylib or a .tbd file. 1037 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1038 Optional<MemoryBufferRef> mbref = readFile(path); 1039 if (!mbref) { 1040 error("could not read dylib file at " + path); 1041 return nullptr; 1042 } 1043 return loadDylib(*mbref, umbrella); 1044 } 1045 1046 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1047 // the first document storing child pointers to the rest of them. When we are 1048 // processing a given TBD file, we store that top-level document in 1049 // currentTopLevelTapi. When processing re-exports, we search its children for 1050 // potentially matching documents in the same TBD file. Note that the children 1051 // themselves don't point to further documents, i.e. this is a two-level tree. 1052 // 1053 // Re-exports can either refer to on-disk files, or to documents within .tbd 1054 // files. 1055 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1056 const InterfaceFile *currentTopLevelTapi) { 1057 // Search order: 1058 // 1. Install name basename in -F / -L directories. 1059 { 1060 StringRef stem = path::stem(path); 1061 SmallString<128> frameworkName; 1062 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1063 bool isFramework = path.endswith(frameworkName); 1064 if (isFramework) { 1065 for (StringRef dir : config->frameworkSearchPaths) { 1066 SmallString<128> candidate = dir; 1067 path::append(candidate, frameworkName); 1068 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1069 return loadDylib(*dylibPath, umbrella); 1070 } 1071 } else if (Optional<StringRef> dylibPath = findPathCombination( 1072 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1073 return loadDylib(*dylibPath, umbrella); 1074 } 1075 1076 // 2. As absolute path. 1077 if (path::is_absolute(path, path::Style::posix)) 1078 for (StringRef root : config->systemLibraryRoots) 1079 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1080 return loadDylib(*dylibPath, umbrella); 1081 1082 // 3. As relative path. 1083 1084 // TODO: Handle -dylib_file 1085 1086 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1087 SmallString<128> newPath; 1088 if (config->outputType == MH_EXECUTE && 1089 path.consume_front("@executable_path/")) { 1090 // ld64 allows overriding this with the undocumented flag -executable_path. 1091 // lld doesn't currently implement that flag. 1092 // FIXME: Consider using finalOutput instead of outputFile. 1093 path::append(newPath, path::parent_path(config->outputFile), path); 1094 path = newPath; 1095 } else if (path.consume_front("@loader_path/")) { 1096 fs::real_path(umbrella->getName(), newPath); 1097 path::remove_filename(newPath); 1098 path::append(newPath, path); 1099 path = newPath; 1100 } else if (path.startswith("@rpath/")) { 1101 for (StringRef rpath : umbrella->rpaths) { 1102 newPath.clear(); 1103 if (rpath.consume_front("@loader_path/")) { 1104 fs::real_path(umbrella->getName(), newPath); 1105 path::remove_filename(newPath); 1106 } 1107 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1108 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1109 return loadDylib(*dylibPath, umbrella); 1110 } 1111 } 1112 1113 // FIXME: Should this be further up? 1114 if (currentTopLevelTapi) { 1115 for (InterfaceFile &child : 1116 make_pointee_range(currentTopLevelTapi->documents())) { 1117 assert(child.documents().empty()); 1118 if (path == child.getInstallName()) { 1119 auto file = make<DylibFile>(child, umbrella); 1120 file->parseReexports(child); 1121 return file; 1122 } 1123 } 1124 } 1125 1126 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1127 return loadDylib(*dylibPath, umbrella); 1128 1129 return nullptr; 1130 } 1131 1132 // If a re-exported dylib is public (lives in /usr/lib or 1133 // /System/Library/Frameworks), then it is considered implicitly linked: we 1134 // should bind to its symbols directly instead of via the re-exporting umbrella 1135 // library. 1136 static bool isImplicitlyLinked(StringRef path) { 1137 if (!config->implicitDylibs) 1138 return false; 1139 1140 if (path::parent_path(path) == "/usr/lib") 1141 return true; 1142 1143 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1144 if (path.consume_front("/System/Library/Frameworks/")) { 1145 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1146 return path::filename(path) == frameworkName; 1147 } 1148 1149 return false; 1150 } 1151 1152 static void loadReexport(StringRef path, DylibFile *umbrella, 1153 const InterfaceFile *currentTopLevelTapi) { 1154 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1155 if (!reexport) 1156 error("unable to locate re-export with install name " + path); 1157 } 1158 1159 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1160 bool isBundleLoader) 1161 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1162 isBundleLoader(isBundleLoader) { 1163 assert(!isBundleLoader || !umbrella); 1164 if (umbrella == nullptr) 1165 umbrella = this; 1166 this->umbrella = umbrella; 1167 1168 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1169 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1170 1171 // Initialize installName. 1172 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1173 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1174 currentVersion = read32le(&c->dylib.current_version); 1175 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1176 installName = 1177 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1178 } else if (!isBundleLoader) { 1179 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1180 // so it's OK. 1181 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1182 return; 1183 } 1184 1185 if (config->printEachFile) 1186 message(toString(this)); 1187 inputFiles.insert(this); 1188 1189 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1190 1191 if (!checkCompatibility(this)) 1192 return; 1193 1194 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1195 1196 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1197 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1198 rpaths.push_back(rpath); 1199 } 1200 1201 // Initialize symbols. 1202 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1203 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1204 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1205 struct TrieEntry { 1206 StringRef name; 1207 uint64_t flags; 1208 }; 1209 1210 std::vector<TrieEntry> entries; 1211 // Find all the $ld$* symbols to process first. 1212 parseTrie(buf + c->export_off, c->export_size, 1213 [&](const Twine &name, uint64_t flags) { 1214 StringRef savedName = saver.save(name); 1215 if (handleLDSymbol(savedName)) 1216 return; 1217 entries.push_back({savedName, flags}); 1218 }); 1219 1220 // Process the "normal" symbols. 1221 for (TrieEntry &entry : entries) { 1222 if (exportingFile->hiddenSymbols.contains( 1223 CachedHashStringRef(entry.name))) 1224 continue; 1225 1226 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1227 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1228 1229 symbols.push_back( 1230 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1231 } 1232 1233 } else { 1234 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1235 return; 1236 } 1237 } 1238 1239 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1240 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1241 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1242 target->headerSize; 1243 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1244 auto *cmd = reinterpret_cast<const load_command *>(p); 1245 p += cmd->cmdsize; 1246 1247 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1248 cmd->cmd == LC_REEXPORT_DYLIB) { 1249 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1250 StringRef reexportPath = 1251 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1252 loadReexport(reexportPath, exportingFile, nullptr); 1253 } 1254 1255 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1256 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1257 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1258 if (config->namespaceKind == NamespaceKind::flat && 1259 cmd->cmd == LC_LOAD_DYLIB) { 1260 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1261 StringRef dylibPath = 1262 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1263 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1264 if (!dylib) 1265 error(Twine("unable to locate library '") + dylibPath + 1266 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1267 } 1268 } 1269 } 1270 1271 // Some versions of XCode ship with .tbd files that don't have the right 1272 // platform settings. 1273 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 1274 "/usr/lib/system/libsystem_kernel.dylib", 1275 "/usr/lib/system/libsystem_platform.dylib", 1276 "/usr/lib/system/libsystem_pthread.dylib"}; 1277 1278 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1279 bool isBundleLoader) 1280 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1281 isBundleLoader(isBundleLoader) { 1282 // FIXME: Add test for the missing TBD code path. 1283 1284 if (umbrella == nullptr) 1285 umbrella = this; 1286 this->umbrella = umbrella; 1287 1288 installName = saver.save(interface.getInstallName()); 1289 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1290 currentVersion = interface.getCurrentVersion().rawValue(); 1291 1292 if (config->printEachFile) 1293 message(toString(this)); 1294 inputFiles.insert(this); 1295 1296 if (!is_contained(skipPlatformChecks, installName) && 1297 !is_contained(interface.targets(), config->platformInfo.target)) { 1298 error(toString(this) + " is incompatible with " + 1299 std::string(config->platformInfo.target)); 1300 return; 1301 } 1302 1303 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1304 1305 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1306 auto addSymbol = [&](const Twine &name) -> void { 1307 StringRef savedName = saver.save(name); 1308 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1309 return; 1310 1311 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1312 /*isWeakDef=*/false, 1313 /*isTlv=*/false)); 1314 }; 1315 1316 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1317 normalSymbols.reserve(interface.symbolsCount()); 1318 for (const auto *symbol : interface.symbols()) { 1319 if (!symbol->getArchitectures().has(config->arch())) 1320 continue; 1321 if (handleLDSymbol(symbol->getName())) 1322 continue; 1323 1324 switch (symbol->getKind()) { 1325 case SymbolKind::GlobalSymbol: // Fallthrough 1326 case SymbolKind::ObjectiveCClass: // Fallthrough 1327 case SymbolKind::ObjectiveCClassEHType: // Fallthrough 1328 case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough 1329 normalSymbols.push_back(symbol); 1330 } 1331 } 1332 1333 // TODO(compnerd) filter out symbols based on the target platform 1334 // TODO: handle weak defs, thread locals 1335 for (const auto *symbol : normalSymbols) { 1336 switch (symbol->getKind()) { 1337 case SymbolKind::GlobalSymbol: 1338 addSymbol(symbol->getName()); 1339 break; 1340 case SymbolKind::ObjectiveCClass: 1341 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1342 // want to emulate that. 1343 addSymbol(objc::klass + symbol->getName()); 1344 addSymbol(objc::metaclass + symbol->getName()); 1345 break; 1346 case SymbolKind::ObjectiveCClassEHType: 1347 addSymbol(objc::ehtype + symbol->getName()); 1348 break; 1349 case SymbolKind::ObjectiveCInstanceVariable: 1350 addSymbol(objc::ivar + symbol->getName()); 1351 break; 1352 } 1353 } 1354 } 1355 1356 void DylibFile::parseReexports(const InterfaceFile &interface) { 1357 const InterfaceFile *topLevel = 1358 interface.getParent() == nullptr ? &interface : interface.getParent(); 1359 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1360 InterfaceFile::const_target_range targets = intfRef.targets(); 1361 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1362 is_contained(targets, config->platformInfo.target)) 1363 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1364 } 1365 } 1366 1367 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1368 // name, compatibility version or hide/add symbols) for specific target 1369 // versions. 1370 bool DylibFile::handleLDSymbol(StringRef originalName) { 1371 if (!originalName.startswith("$ld$")) 1372 return false; 1373 1374 StringRef action; 1375 StringRef name; 1376 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1377 if (action == "previous") 1378 handleLDPreviousSymbol(name, originalName); 1379 else if (action == "install_name") 1380 handleLDInstallNameSymbol(name, originalName); 1381 else if (action == "hide") 1382 handleLDHideSymbol(name, originalName); 1383 return true; 1384 } 1385 1386 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1387 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1388 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1389 StringRef installName; 1390 StringRef compatVersion; 1391 StringRef platformStr; 1392 StringRef startVersion; 1393 StringRef endVersion; 1394 StringRef symbolName; 1395 StringRef rest; 1396 1397 std::tie(installName, name) = name.split('$'); 1398 std::tie(compatVersion, name) = name.split('$'); 1399 std::tie(platformStr, name) = name.split('$'); 1400 std::tie(startVersion, name) = name.split('$'); 1401 std::tie(endVersion, name) = name.split('$'); 1402 std::tie(symbolName, rest) = name.split('$'); 1403 // TODO: ld64 contains some logic for non-empty symbolName as well. 1404 if (!symbolName.empty()) 1405 return; 1406 unsigned platform; 1407 if (platformStr.getAsInteger(10, platform) || 1408 platform != static_cast<unsigned>(config->platform())) 1409 return; 1410 1411 VersionTuple start; 1412 if (start.tryParse(startVersion)) { 1413 warn("failed to parse start version, symbol '" + originalName + 1414 "' ignored"); 1415 return; 1416 } 1417 VersionTuple end; 1418 if (end.tryParse(endVersion)) { 1419 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1420 return; 1421 } 1422 if (config->platformInfo.minimum < start || 1423 config->platformInfo.minimum >= end) 1424 return; 1425 1426 this->installName = saver.save(installName); 1427 1428 if (!compatVersion.empty()) { 1429 VersionTuple cVersion; 1430 if (cVersion.tryParse(compatVersion)) { 1431 warn("failed to parse compatibility version, symbol '" + originalName + 1432 "' ignored"); 1433 return; 1434 } 1435 compatibilityVersion = encodeVersion(cVersion); 1436 } 1437 } 1438 1439 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1440 StringRef originalName) { 1441 // originalName: $ld$ install_name $ os<version> $ install_name 1442 StringRef condition, installName; 1443 std::tie(condition, installName) = name.split('$'); 1444 VersionTuple version; 1445 if (!condition.consume_front("os") || version.tryParse(condition)) 1446 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1447 else if (version == config->platformInfo.minimum) 1448 this->installName = saver.save(installName); 1449 } 1450 1451 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 1452 StringRef symbolName; 1453 bool shouldHide = true; 1454 if (name.startswith("os")) { 1455 // If it's hidden based on versions. 1456 name = name.drop_front(2); 1457 StringRef minVersion; 1458 std::tie(minVersion, symbolName) = name.split('$'); 1459 VersionTuple versionTup; 1460 if (versionTup.tryParse(minVersion)) { 1461 warn("Failed to parse hidden version, symbol `" + originalName + 1462 "` ignored."); 1463 return; 1464 } 1465 shouldHide = versionTup == config->platformInfo.minimum; 1466 } else { 1467 symbolName = name; 1468 } 1469 1470 if (shouldHide) 1471 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 1472 } 1473 1474 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1475 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1476 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1477 } 1478 1479 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1480 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1481 1482 void ArchiveFile::addLazySymbols() { 1483 for (const object::Archive::Symbol &sym : file->symbols()) 1484 symtab->addLazyArchive(sym.getName(), this, sym); 1485 } 1486 1487 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1488 uint32_t modTime, 1489 StringRef archiveName, 1490 uint64_t offsetInArchive) { 1491 if (config->zeroModTime) 1492 modTime = 0; 1493 1494 switch (identify_magic(mb.getBuffer())) { 1495 case file_magic::macho_object: 1496 return make<ObjFile>(mb, modTime, archiveName); 1497 case file_magic::bitcode: 1498 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1499 default: 1500 return createStringError(inconvertibleErrorCode(), 1501 mb.getBufferIdentifier() + 1502 " has unhandled file type"); 1503 } 1504 } 1505 1506 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1507 if (!seen.insert(c.getChildOffset()).second) 1508 return Error::success(); 1509 1510 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1511 if (!mb) 1512 return mb.takeError(); 1513 1514 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1515 if (tar && c.getParent()->isThin()) 1516 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1517 1518 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1519 if (!modTime) 1520 return modTime.takeError(); 1521 1522 Expected<InputFile *> file = 1523 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1524 1525 if (!file) 1526 return file.takeError(); 1527 1528 inputFiles.insert(*file); 1529 printArchiveMemberLoad(reason, *file); 1530 return Error::success(); 1531 } 1532 1533 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1534 object::Archive::Child c = 1535 CHECK(sym.getMember(), toString(this) + 1536 ": could not get the member defining symbol " + 1537 toMachOString(sym)); 1538 1539 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1540 // and become invalid after that call. Copy it to the stack so we can refer 1541 // to it later. 1542 const object::Archive::Symbol symCopy = sym; 1543 1544 // ld64 doesn't demangle sym here even with -demangle. 1545 // Match that: intentionally don't call toMachOString(). 1546 if (Error e = fetch(c, symCopy.getName())) 1547 error(toString(this) + ": could not get the member defining symbol " + 1548 toMachOString(symCopy) + ": " + toString(std::move(e))); 1549 } 1550 1551 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1552 BitcodeFile &file) { 1553 StringRef name = saver.save(objSym.getName()); 1554 1555 if (objSym.isUndefined()) 1556 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 1557 1558 // TODO: Write a test demonstrating why computing isPrivateExtern before 1559 // LTO compilation is important. 1560 bool isPrivateExtern = false; 1561 switch (objSym.getVisibility()) { 1562 case GlobalValue::HiddenVisibility: 1563 isPrivateExtern = true; 1564 break; 1565 case GlobalValue::ProtectedVisibility: 1566 error(name + " has protected visibility, which is not supported by Mach-O"); 1567 break; 1568 case GlobalValue::DefaultVisibility: 1569 break; 1570 } 1571 1572 if (objSym.isCommon()) 1573 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1574 objSym.getCommonAlignment(), isPrivateExtern); 1575 1576 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1577 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1578 /*isThumb=*/false, 1579 /*isReferencedDynamically=*/false, 1580 /*noDeadStrip=*/false, 1581 /*isWeakDefCanBeHidden=*/false); 1582 } 1583 1584 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1585 uint64_t offsetInArchive, bool lazy) 1586 : InputFile(BitcodeKind, mb, lazy) { 1587 this->archiveName = std::string(archiveName); 1588 std::string path = mb.getBufferIdentifier().str(); 1589 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1590 // name. If two members with the same name are provided, this causes a 1591 // collision and ThinLTO can't proceed. 1592 // So, we append the archive name to disambiguate two members with the same 1593 // name from multiple different archives, and offset within the archive to 1594 // disambiguate two members of the same name from a single archive. 1595 MemoryBufferRef mbref( 1596 mb.getBuffer(), 1597 saver.save(archiveName.empty() ? path 1598 : archiveName + sys::path::filename(path) + 1599 utostr(offsetInArchive))); 1600 1601 obj = check(lto::InputFile::create(mbref)); 1602 if (lazy) 1603 parseLazy(); 1604 else 1605 parse(); 1606 } 1607 1608 void BitcodeFile::parse() { 1609 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1610 // "winning" symbol will then be marked as Prevailing at LTO compilation 1611 // time. 1612 symbols.clear(); 1613 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1614 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1615 } 1616 1617 void BitcodeFile::parseLazy() { 1618 symbols.resize(obj->symbols().size()); 1619 for (auto it : llvm::enumerate(obj->symbols())) { 1620 const lto::InputFile::Symbol &objSym = it.value(); 1621 if (!objSym.isUndefined()) { 1622 symbols[it.index()] = 1623 symtab->addLazyObject(saver.save(objSym.getName()), *this); 1624 if (!lazy) 1625 break; 1626 } 1627 } 1628 } 1629 1630 void macho::extract(InputFile &file, StringRef reason) { 1631 assert(file.lazy); 1632 file.lazy = false; 1633 printArchiveMemberLoad(reason, &file); 1634 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 1635 bitcode->parse(); 1636 } else { 1637 auto &f = cast<ObjFile>(file); 1638 if (target->wordSize == 8) 1639 f.parse<LP64>(); 1640 else 1641 f.parse<ILP32>(); 1642 } 1643 } 1644 1645 template void ObjFile::parse<LP64>(); 1646