1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "EhFrame.h" 49 #include "ExportTrie.h" 50 #include "InputSection.h" 51 #include "MachOStructs.h" 52 #include "ObjC.h" 53 #include "OutputSection.h" 54 #include "OutputSegment.h" 55 #include "SymbolTable.h" 56 #include "Symbols.h" 57 #include "SyntheticSections.h" 58 #include "Target.h" 59 60 #include "lld/Common/CommonLinkerContext.h" 61 #include "lld/Common/DWARF.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/BinaryStreamReader.h" 67 #include "llvm/Support/Endian.h" 68 #include "llvm/Support/MemoryBuffer.h" 69 #include "llvm/Support/Path.h" 70 #include "llvm/Support/TarWriter.h" 71 #include "llvm/Support/TimeProfiler.h" 72 #include "llvm/TextAPI/Architecture.h" 73 #include "llvm/TextAPI/InterfaceFile.h" 74 75 #include <type_traits> 76 77 using namespace llvm; 78 using namespace llvm::MachO; 79 using namespace llvm::support::endian; 80 using namespace llvm::sys; 81 using namespace lld; 82 using namespace lld::macho; 83 84 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 85 std::string lld::toString(const InputFile *f) { 86 if (!f) 87 return "<internal>"; 88 89 // Multiple dylibs can be defined in one .tbd file. 90 if (auto dylibFile = dyn_cast<DylibFile>(f)) 91 if (f->getName().endswith(".tbd")) 92 return (f->getName() + "(" + dylibFile->installName + ")").str(); 93 94 if (f->archiveName.empty()) 95 return std::string(f->getName()); 96 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 97 } 98 99 std::string lld::toString(const Section &sec) { 100 return (toString(sec.file) + ":(" + sec.name + ")").str(); 101 } 102 103 SetVector<InputFile *> macho::inputFiles; 104 std::unique_ptr<TarWriter> macho::tar; 105 int InputFile::idCount = 0; 106 107 static VersionTuple decodeVersion(uint32_t version) { 108 unsigned major = version >> 16; 109 unsigned minor = (version >> 8) & 0xffu; 110 unsigned subMinor = version & 0xffu; 111 return VersionTuple(major, minor, subMinor); 112 } 113 114 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 115 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 116 return {}; 117 118 const char *hdr = input->mb.getBufferStart(); 119 120 // "Zippered" object files can have multiple LC_BUILD_VERSION load commands. 121 std::vector<PlatformInfo> platformInfos; 122 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 123 PlatformInfo info; 124 info.target.Platform = static_cast<PlatformType>(cmd->platform); 125 info.minimum = decodeVersion(cmd->minos); 126 platformInfos.emplace_back(std::move(info)); 127 } 128 for (auto *cmd : findCommands<version_min_command>( 129 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 130 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 131 PlatformInfo info; 132 switch (cmd->cmd) { 133 case LC_VERSION_MIN_MACOSX: 134 info.target.Platform = PLATFORM_MACOS; 135 break; 136 case LC_VERSION_MIN_IPHONEOS: 137 info.target.Platform = PLATFORM_IOS; 138 break; 139 case LC_VERSION_MIN_TVOS: 140 info.target.Platform = PLATFORM_TVOS; 141 break; 142 case LC_VERSION_MIN_WATCHOS: 143 info.target.Platform = PLATFORM_WATCHOS; 144 break; 145 } 146 info.minimum = decodeVersion(cmd->version); 147 platformInfos.emplace_back(std::move(info)); 148 } 149 150 return platformInfos; 151 } 152 153 static bool checkCompatibility(const InputFile *input) { 154 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 155 if (platformInfos.empty()) 156 return true; 157 158 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 159 return removeSimulator(info.target.Platform) == 160 removeSimulator(config->platform()); 161 }); 162 if (it == platformInfos.end()) { 163 std::string platformNames; 164 raw_string_ostream os(platformNames); 165 interleave( 166 platformInfos, os, 167 [&](const PlatformInfo &info) { 168 os << getPlatformName(info.target.Platform); 169 }, 170 "/"); 171 error(toString(input) + " has platform " + platformNames + 172 Twine(", which is different from target platform ") + 173 getPlatformName(config->platform())); 174 return false; 175 } 176 177 if (it->minimum > config->platformInfo.minimum) 178 warn(toString(input) + " has version " + it->minimum.getAsString() + 179 ", which is newer than target minimum of " + 180 config->platformInfo.minimum.getAsString()); 181 182 return true; 183 } 184 185 // This cache mostly exists to store system libraries (and .tbds) as they're 186 // loaded, rather than the input archives, which are already cached at a higher 187 // level, and other files like the filelist that are only read once. 188 // Theoretically this caching could be more efficient by hoisting it, but that 189 // would require altering many callers to track the state. 190 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 191 // Open a given file path and return it as a memory-mapped file. 192 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 193 CachedHashStringRef key(path); 194 auto entry = cachedReads.find(key); 195 if (entry != cachedReads.end()) 196 return entry->second; 197 198 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 199 if (std::error_code ec = mbOrErr.getError()) { 200 error("cannot open " + path + ": " + ec.message()); 201 return None; 202 } 203 204 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 205 MemoryBufferRef mbref = mb->getMemBufferRef(); 206 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 207 208 // If this is a regular non-fat file, return it. 209 const char *buf = mbref.getBufferStart(); 210 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 211 if (mbref.getBufferSize() < sizeof(uint32_t) || 212 read32be(&hdr->magic) != FAT_MAGIC) { 213 if (tar) 214 tar->append(relativeToRoot(path), mbref.getBuffer()); 215 return cachedReads[key] = mbref; 216 } 217 218 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); 219 220 // Object files and archive files may be fat files, which contain multiple 221 // real files for different CPU ISAs. Here, we search for a file that matches 222 // with the current link target and returns it as a MemoryBufferRef. 223 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 224 225 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 226 if (reinterpret_cast<const char *>(arch + i + 1) > 227 buf + mbref.getBufferSize()) { 228 error(path + ": fat_arch struct extends beyond end of file"); 229 return None; 230 } 231 232 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 233 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 234 continue; 235 236 uint32_t offset = read32be(&arch[i].offset); 237 uint32_t size = read32be(&arch[i].size); 238 if (offset + size > mbref.getBufferSize()) 239 error(path + ": slice extends beyond end of file"); 240 if (tar) 241 tar->append(relativeToRoot(path), mbref.getBuffer()); 242 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 243 path.copy(bAlloc)); 244 } 245 246 error("unable to find matching architecture in " + path); 247 return None; 248 } 249 250 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 251 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} 252 253 // Some sections comprise of fixed-size records, so instead of splitting them at 254 // symbol boundaries, we split them based on size. Records are distinct from 255 // literals in that they may contain references to other sections, instead of 256 // being leaf nodes in the InputSection graph. 257 // 258 // Note that "record" is a term I came up with. In contrast, "literal" is a term 259 // used by the Mach-O format. 260 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 261 if (name == section_names::compactUnwind) { 262 if (segname == segment_names::ld) 263 return target->wordSize == 8 ? 32 : 20; 264 } 265 if (config->icfLevel == ICFLevel::none) 266 return {}; 267 268 if (name == section_names::cfString && segname == segment_names::data) 269 return target->wordSize == 8 ? 32 : 16; 270 if (name == section_names::objcClassRefs && segname == segment_names::data) 271 return target->wordSize; 272 return {}; 273 } 274 275 static Error parseCallGraph(ArrayRef<uint8_t> data, 276 std::vector<CallGraphEntry> &callGraph) { 277 TimeTraceScope timeScope("Parsing call graph section"); 278 BinaryStreamReader reader(data, support::little); 279 while (!reader.empty()) { 280 uint32_t fromIndex, toIndex; 281 uint64_t count; 282 if (Error err = reader.readInteger(fromIndex)) 283 return err; 284 if (Error err = reader.readInteger(toIndex)) 285 return err; 286 if (Error err = reader.readInteger(count)) 287 return err; 288 callGraph.emplace_back(fromIndex, toIndex, count); 289 } 290 return Error::success(); 291 } 292 293 // Parse the sequence of sections within a single LC_SEGMENT(_64). 294 // Split each section into subsections. 295 template <class SectionHeader> 296 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 297 sections.reserve(sectionHeaders.size()); 298 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 299 300 for (const SectionHeader &sec : sectionHeaders) { 301 StringRef name = 302 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 303 StringRef segname = 304 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 305 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr)); 306 if (sec.align >= 32) { 307 error("alignment " + std::to_string(sec.align) + " of section " + name + 308 " is too large"); 309 continue; 310 } 311 Section §ion = *sections.back(); 312 uint32_t align = 1 << sec.align; 313 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 314 : buf + sec.offset, 315 static_cast<size_t>(sec.size)}; 316 317 auto splitRecords = [&](int recordSize) -> void { 318 if (data.empty()) 319 return; 320 Subsections &subsections = section.subsections; 321 subsections.reserve(data.size() / recordSize); 322 for (uint64_t off = 0; off < data.size(); off += recordSize) { 323 auto *isec = make<ConcatInputSection>( 324 section, data.slice(off, recordSize), align); 325 subsections.push_back({off, isec}); 326 } 327 section.doneSplitting = true; 328 }; 329 330 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 331 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 332 if (sec.nreloc && config->dedupLiterals) 333 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 334 sec.sectname + 335 ", so LLD cannot deduplicate literals. Try re-running without " 336 "--deduplicate-literals."); 337 338 InputSection *isec; 339 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 340 isec = make<CStringInputSection>(section, data, align); 341 // FIXME: parallelize this? 342 cast<CStringInputSection>(isec)->splitIntoPieces(); 343 } else { 344 isec = make<WordLiteralInputSection>(section, data, align); 345 } 346 section.subsections.push_back({0, isec}); 347 } else if (auto recordSize = getRecordSize(segname, name)) { 348 splitRecords(*recordSize); 349 } else if (config->parseEhFrames && name == section_names::ehFrame && 350 segname == segment_names::text) { 351 splitEhFrames(data, *sections.back()); 352 } else if (segname == segment_names::llvm) { 353 if (config->callGraphProfileSort && name == section_names::cgProfile) 354 checkError(parseCallGraph(data, callGraph)); 355 // ld64 does not appear to emit contents from sections within the __LLVM 356 // segment. Symbols within those sections point to bitcode metadata 357 // instead of actual symbols. Global symbols within those sections could 358 // have the same name without causing duplicate symbol errors. To avoid 359 // spurious duplicate symbol errors, we do not parse these sections. 360 // TODO: Evaluate whether the bitcode metadata is needed. 361 } else { 362 if (name == section_names::addrSig) 363 addrSigSection = sections.back(); 364 365 auto *isec = make<ConcatInputSection>(section, data, align); 366 if (isDebugSection(isec->getFlags()) && 367 isec->getSegName() == segment_names::dwarf) { 368 // Instead of emitting DWARF sections, we emit STABS symbols to the 369 // object files that contain them. We filter them out early to avoid 370 // parsing their relocations unnecessarily. 371 debugSections.push_back(isec); 372 } else { 373 section.subsections.push_back({0, isec}); 374 } 375 } 376 } 377 } 378 379 void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) { 380 EhReader reader(this, data, /*dataOff=*/0, target->wordSize); 381 size_t off = 0; 382 while (off < reader.size()) { 383 uint64_t frameOff = off; 384 uint64_t length = reader.readLength(&off); 385 if (length == 0) 386 break; 387 uint64_t fullLength = length + (off - frameOff); 388 off += length; 389 // We hard-code an alignment of 1 here because we don't actually want our 390 // EH frames to be aligned to the section alignment. EH frame decoders don't 391 // expect this alignment. Moreover, each EH frame must start where the 392 // previous one ends, and where it ends is indicated by the length field. 393 // Unless we update the length field (troublesome), we should keep the 394 // alignment to 1. 395 // Note that we still want to preserve the alignment of the overall section, 396 // just not of the individual EH frames. 397 ehFrameSection.subsections.push_back( 398 {frameOff, make<ConcatInputSection>(ehFrameSection, 399 data.slice(frameOff, fullLength), 400 /*align=*/1)}); 401 } 402 ehFrameSection.doneSplitting = true; 403 } 404 405 template <class T> 406 static Section *findContainingSection(const std::vector<Section *> §ions, 407 T *offset) { 408 static_assert(std::is_same<uint64_t, T>::value || 409 std::is_same<uint32_t, T>::value, 410 "unexpected type for offset"); 411 auto it = std::prev(llvm::upper_bound( 412 sections, *offset, 413 [](uint64_t value, const Section *sec) { return value < sec->addr; })); 414 *offset -= (*it)->addr; 415 return *it; 416 } 417 418 // Find the subsection corresponding to the greatest section offset that is <= 419 // that of the given offset. 420 // 421 // offset: an offset relative to the start of the original InputSection (before 422 // any subsection splitting has occurred). It will be updated to represent the 423 // same location as an offset relative to the start of the containing 424 // subsection. 425 template <class T> 426 static InputSection *findContainingSubsection(const Section §ion, 427 T *offset) { 428 static_assert(std::is_same<uint64_t, T>::value || 429 std::is_same<uint32_t, T>::value, 430 "unexpected type for offset"); 431 auto it = std::prev(llvm::upper_bound( 432 section.subsections, *offset, 433 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 434 *offset -= it->offset; 435 return it->isec; 436 } 437 438 // Find a symbol at offset `off` within `isec`. 439 static Defined *findSymbolAtOffset(const ConcatInputSection *isec, 440 uint64_t off) { 441 auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) { 442 return d->value < off; 443 }); 444 // The offset should point at the exact address of a symbol (with no addend.) 445 if (it == isec->symbols.end() || (*it)->value != off) { 446 assert(isec->wasCoalesced); 447 return nullptr; 448 } 449 return *it; 450 } 451 452 template <class SectionHeader> 453 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 454 relocation_info rel) { 455 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 456 bool valid = true; 457 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 458 valid = false; 459 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 460 std::to_string(rel.r_address) + " of " + sec.segname + "," + 461 sec.sectname + " in " + toString(file)) 462 .str(); 463 }; 464 465 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 466 error(message("must be extern")); 467 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 468 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 469 "be PC-relative")); 470 if (isThreadLocalVariables(sec.flags) && 471 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 472 error(message("not allowed in thread-local section, must be UNSIGNED")); 473 if (rel.r_length < 2 || rel.r_length > 3 || 474 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 475 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 476 error(message("has width " + std::to_string(1 << rel.r_length) + 477 " bytes, but must be " + 478 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 479 " bytes")); 480 } 481 return valid; 482 } 483 484 template <class SectionHeader> 485 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 486 const SectionHeader &sec, Section §ion) { 487 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 488 ArrayRef<relocation_info> relInfos( 489 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 490 491 Subsections &subsections = section.subsections; 492 auto subsecIt = subsections.rbegin(); 493 for (size_t i = 0; i < relInfos.size(); i++) { 494 // Paired relocations serve as Mach-O's method for attaching a 495 // supplemental datum to a primary relocation record. ELF does not 496 // need them because the *_RELOC_RELA records contain the extra 497 // addend field, vs. *_RELOC_REL which omit the addend. 498 // 499 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 500 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 501 // datum for each is a symbolic address. The result is the offset 502 // between two addresses. 503 // 504 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 505 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 506 // base symbolic address. 507 // 508 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 509 // addend into the instruction stream. On X86, a relocatable address 510 // field always occupies an entire contiguous sequence of byte(s), 511 // so there is no need to merge opcode bits with address 512 // bits. Therefore, it's easy and convenient to store addends in the 513 // instruction-stream bytes that would otherwise contain zeroes. By 514 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 515 // address bits so that bitwise arithmetic is necessary to extract 516 // and insert them. Storing addends in the instruction stream is 517 // possible, but inconvenient and more costly at link time. 518 519 relocation_info relInfo = relInfos[i]; 520 bool isSubtrahend = 521 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 522 int64_t pairedAddend = 0; 523 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 524 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 525 relInfo = relInfos[++i]; 526 } 527 assert(i < relInfos.size()); 528 if (!validateRelocationInfo(this, sec, relInfo)) 529 continue; 530 if (relInfo.r_address & R_SCATTERED) 531 fatal("TODO: Scattered relocations not supported"); 532 533 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 534 assert(!(embeddedAddend && pairedAddend)); 535 int64_t totalAddend = pairedAddend + embeddedAddend; 536 Reloc r; 537 r.type = relInfo.r_type; 538 r.pcrel = relInfo.r_pcrel; 539 r.length = relInfo.r_length; 540 r.offset = relInfo.r_address; 541 if (relInfo.r_extern) { 542 r.referent = symbols[relInfo.r_symbolnum]; 543 r.addend = isSubtrahend ? 0 : totalAddend; 544 } else { 545 assert(!isSubtrahend); 546 const SectionHeader &referentSecHead = 547 sectionHeaders[relInfo.r_symbolnum - 1]; 548 uint64_t referentOffset; 549 if (relInfo.r_pcrel) { 550 // The implicit addend for pcrel section relocations is the pcrel offset 551 // in terms of the addresses in the input file. Here we adjust it so 552 // that it describes the offset from the start of the referent section. 553 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 554 // have pcrel section relocations. We may want to factor this out into 555 // the arch-specific .cpp file. 556 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 557 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 558 referentSecHead.addr; 559 } else { 560 // The addend for a non-pcrel relocation is its absolute address. 561 referentOffset = totalAddend - referentSecHead.addr; 562 } 563 r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1], 564 &referentOffset); 565 r.addend = referentOffset; 566 } 567 568 // Find the subsection that this relocation belongs to. 569 // Though not required by the Mach-O format, clang and gcc seem to emit 570 // relocations in order, so let's take advantage of it. However, ld64 emits 571 // unsorted relocations (in `-r` mode), so we have a fallback for that 572 // uncommon case. 573 InputSection *subsec; 574 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 575 ++subsecIt; 576 if (subsecIt == subsections.rend() || 577 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 578 subsec = findContainingSubsection(section, &r.offset); 579 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 580 // for the other relocations. 581 subsecIt = subsections.rend(); 582 } else { 583 subsec = subsecIt->isec; 584 r.offset -= subsecIt->offset; 585 } 586 subsec->relocs.push_back(r); 587 588 if (isSubtrahend) { 589 relocation_info minuendInfo = relInfos[++i]; 590 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 591 // attached to the same address. 592 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 593 relInfo.r_address == minuendInfo.r_address); 594 Reloc p; 595 p.type = minuendInfo.r_type; 596 if (minuendInfo.r_extern) { 597 p.referent = symbols[minuendInfo.r_symbolnum]; 598 p.addend = totalAddend; 599 } else { 600 uint64_t referentOffset = 601 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 602 p.referent = findContainingSubsection( 603 *sections[minuendInfo.r_symbolnum - 1], &referentOffset); 604 p.addend = referentOffset; 605 } 606 subsec->relocs.push_back(p); 607 } 608 } 609 } 610 611 template <class NList> 612 static macho::Symbol *createDefined(const NList &sym, StringRef name, 613 InputSection *isec, uint64_t value, 614 uint64_t size) { 615 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 616 // N_EXT: Global symbols. These go in the symbol table during the link, 617 // and also in the export table of the output so that the dynamic 618 // linker sees them. 619 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 620 // symbol table during the link so that duplicates are 621 // either reported (for non-weak symbols) or merged 622 // (for weak symbols), but they do not go in the export 623 // table of the output. 624 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 625 // object files) may produce them. LLD does not yet support -r. 626 // These are translation-unit scoped, identical to the `0` case. 627 // 0: Translation-unit scoped. These are not in the symbol table during 628 // link, and not in the export table of the output either. 629 bool isWeakDefCanBeHidden = 630 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 631 632 if (sym.n_type & N_EXT) { 633 bool isPrivateExtern = sym.n_type & N_PEXT; 634 // lld's behavior for merging symbols is slightly different from ld64: 635 // ld64 picks the winning symbol based on several criteria (see 636 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 637 // just merges metadata and keeps the contents of the first symbol 638 // with that name (see SymbolTable::addDefined). For: 639 // * inline function F in a TU built with -fvisibility-inlines-hidden 640 // * and inline function F in another TU built without that flag 641 // ld64 will pick the one from the file built without 642 // -fvisibility-inlines-hidden. 643 // lld will instead pick the one listed first on the link command line and 644 // give it visibility as if the function was built without 645 // -fvisibility-inlines-hidden. 646 // If both functions have the same contents, this will have the same 647 // behavior. If not, it won't, but the input had an ODR violation in 648 // that case. 649 // 650 // Similarly, merging a symbol 651 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 652 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 653 // should produce one 654 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 655 // with ld64's semantics, because it means the non-private-extern 656 // definition will continue to take priority if more private extern 657 // definitions are encountered. With lld's semantics there's no observable 658 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 659 // that's privateExtern -- neither makes it into the dynamic symbol table, 660 // unless the autohide symbol is explicitly exported. 661 // But if a symbol is both privateExtern and autohide then it can't 662 // be exported. 663 // So we nullify the autohide flag when privateExtern is present 664 // and promote the symbol to privateExtern when it is not already. 665 if (isWeakDefCanBeHidden && isPrivateExtern) 666 isWeakDefCanBeHidden = false; 667 else if (isWeakDefCanBeHidden) 668 isPrivateExtern = true; 669 return symtab->addDefined( 670 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 671 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 672 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 673 isWeakDefCanBeHidden); 674 } 675 assert(!isWeakDefCanBeHidden && 676 "weak_def_can_be_hidden on already-hidden symbol?"); 677 bool includeInSymtab = 678 !name.startswith("l") && !name.startswith("L") && !isEhFrameSection(isec); 679 return make<Defined>( 680 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 681 /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab, 682 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 683 sym.n_desc & N_NO_DEAD_STRIP); 684 } 685 686 // Absolute symbols are defined symbols that do not have an associated 687 // InputSection. They cannot be weak. 688 template <class NList> 689 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 690 StringRef name) { 691 if (sym.n_type & N_EXT) { 692 return symtab->addDefined( 693 name, file, nullptr, sym.n_value, /*size=*/0, 694 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 695 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 696 /*isWeakDefCanBeHidden=*/false); 697 } 698 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 699 /*isWeakDef=*/false, 700 /*isExternal=*/false, /*isPrivateExtern=*/false, 701 /*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF, 702 /*isReferencedDynamically=*/false, 703 sym.n_desc & N_NO_DEAD_STRIP); 704 } 705 706 template <class NList> 707 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 708 StringRef name) { 709 uint8_t type = sym.n_type & N_TYPE; 710 switch (type) { 711 case N_UNDF: 712 return sym.n_value == 0 713 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 714 : symtab->addCommon(name, this, sym.n_value, 715 1 << GET_COMM_ALIGN(sym.n_desc), 716 sym.n_type & N_PEXT); 717 case N_ABS: 718 return createAbsolute(sym, this, name); 719 case N_PBUD: 720 case N_INDR: 721 error("TODO: support symbols of type " + std::to_string(type)); 722 return nullptr; 723 case N_SECT: 724 llvm_unreachable( 725 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 726 default: 727 llvm_unreachable("invalid symbol type"); 728 } 729 } 730 731 template <class NList> static bool isUndef(const NList &sym) { 732 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 733 } 734 735 template <class LP> 736 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 737 ArrayRef<typename LP::nlist> nList, 738 const char *strtab, bool subsectionsViaSymbols) { 739 using NList = typename LP::nlist; 740 741 // Groups indices of the symbols by the sections that contain them. 742 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 743 symbols.resize(nList.size()); 744 SmallVector<unsigned, 32> undefineds; 745 for (uint32_t i = 0; i < nList.size(); ++i) { 746 const NList &sym = nList[i]; 747 748 // Ignore debug symbols for now. 749 // FIXME: may need special handling. 750 if (sym.n_type & N_STAB) 751 continue; 752 753 StringRef name = strtab + sym.n_strx; 754 if ((sym.n_type & N_TYPE) == N_SECT) { 755 Subsections &subsections = sections[sym.n_sect - 1]->subsections; 756 // parseSections() may have chosen not to parse this section. 757 if (subsections.empty()) 758 continue; 759 symbolsBySection[sym.n_sect - 1].push_back(i); 760 } else if (isUndef(sym)) { 761 undefineds.push_back(i); 762 } else { 763 symbols[i] = parseNonSectionSymbol(sym, name); 764 } 765 } 766 767 for (size_t i = 0; i < sections.size(); ++i) { 768 Subsections &subsections = sections[i]->subsections; 769 if (subsections.empty()) 770 continue; 771 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 772 uint64_t sectionAddr = sectionHeaders[i].addr; 773 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 774 775 // Some sections have already been split into subsections during 776 // parseSections(), so we simply need to match Symbols to the corresponding 777 // subsection here. 778 if (sections[i]->doneSplitting) { 779 for (size_t j = 0; j < symbolIndices.size(); ++j) { 780 uint32_t symIndex = symbolIndices[j]; 781 const NList &sym = nList[symIndex]; 782 StringRef name = strtab + sym.n_strx; 783 uint64_t symbolOffset = sym.n_value - sectionAddr; 784 InputSection *isec = 785 findContainingSubsection(*sections[i], &symbolOffset); 786 if (symbolOffset != 0) { 787 error(toString(*sections[i]) + ": symbol " + name + 788 " at misaligned offset"); 789 continue; 790 } 791 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 792 } 793 continue; 794 } 795 sections[i]->doneSplitting = true; 796 797 // Calculate symbol sizes and create subsections by splitting the sections 798 // along symbol boundaries. 799 // We populate subsections by repeatedly splitting the last (highest 800 // address) subsection. 801 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 802 return nList[lhs].n_value < nList[rhs].n_value; 803 }); 804 for (size_t j = 0; j < symbolIndices.size(); ++j) { 805 uint32_t symIndex = symbolIndices[j]; 806 const NList &sym = nList[symIndex]; 807 StringRef name = strtab + sym.n_strx; 808 Subsection &subsec = subsections.back(); 809 InputSection *isec = subsec.isec; 810 811 uint64_t subsecAddr = sectionAddr + subsec.offset; 812 size_t symbolOffset = sym.n_value - subsecAddr; 813 uint64_t symbolSize = 814 j + 1 < symbolIndices.size() 815 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 816 : isec->data.size() - symbolOffset; 817 // There are 4 cases where we do not need to create a new subsection: 818 // 1. If the input file does not use subsections-via-symbols. 819 // 2. Multiple symbols at the same address only induce one subsection. 820 // (The symbolOffset == 0 check covers both this case as well as 821 // the first loop iteration.) 822 // 3. Alternative entry points do not induce new subsections. 823 // 4. If we have a literal section (e.g. __cstring and __literal4). 824 if (!subsectionsViaSymbols || symbolOffset == 0 || 825 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 826 symbols[symIndex] = 827 createDefined(sym, name, isec, symbolOffset, symbolSize); 828 continue; 829 } 830 auto *concatIsec = cast<ConcatInputSection>(isec); 831 832 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 833 nextIsec->wasCoalesced = false; 834 if (isZeroFill(isec->getFlags())) { 835 // Zero-fill sections have NULL data.data() non-zero data.size() 836 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 837 isec->data = {nullptr, symbolOffset}; 838 } else { 839 nextIsec->data = isec->data.slice(symbolOffset); 840 isec->data = isec->data.slice(0, symbolOffset); 841 } 842 843 // By construction, the symbol will be at offset zero in the new 844 // subsection. 845 symbols[symIndex] = 846 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 847 // TODO: ld64 appears to preserve the original alignment as well as each 848 // subsection's offset from the last aligned address. We should consider 849 // emulating that behavior. 850 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 851 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 852 } 853 } 854 855 // Undefined symbols can trigger recursive fetch from Archives due to 856 // LazySymbols. Process defined symbols first so that the relative order 857 // between a defined symbol and an undefined symbol does not change the 858 // symbol resolution behavior. In addition, a set of interconnected symbols 859 // will all be resolved to the same file, instead of being resolved to 860 // different files. 861 for (unsigned i : undefineds) { 862 const NList &sym = nList[i]; 863 StringRef name = strtab + sym.n_strx; 864 symbols[i] = parseNonSectionSymbol(sym, name); 865 } 866 } 867 868 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 869 StringRef sectName) 870 : InputFile(OpaqueKind, mb) { 871 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 872 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 873 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16), 874 sectName.take_front(16), 875 /*flags=*/0, /*addr=*/0)); 876 Section §ion = *sections.back(); 877 ConcatInputSection *isec = make<ConcatInputSection>(section, data); 878 isec->live = true; 879 section.subsections.push_back({0, isec}); 880 } 881 882 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 883 bool lazy) 884 : InputFile(ObjKind, mb, lazy), modTime(modTime) { 885 this->archiveName = std::string(archiveName); 886 if (lazy) { 887 if (target->wordSize == 8) 888 parseLazy<LP64>(); 889 else 890 parseLazy<ILP32>(); 891 } else { 892 if (target->wordSize == 8) 893 parse<LP64>(); 894 else 895 parse<ILP32>(); 896 } 897 } 898 899 template <class LP> void ObjFile::parse() { 900 using Header = typename LP::mach_header; 901 using SegmentCommand = typename LP::segment_command; 902 using SectionHeader = typename LP::section; 903 using NList = typename LP::nlist; 904 905 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 906 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 907 908 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 909 if (arch != config->arch()) { 910 auto msg = config->errorForArchMismatch 911 ? static_cast<void (*)(const Twine &)>(error) 912 : warn; 913 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 914 " which is incompatible with target architecture " + 915 getArchitectureName(config->arch())); 916 return; 917 } 918 919 if (!checkCompatibility(this)) 920 return; 921 922 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 923 StringRef data{reinterpret_cast<const char *>(cmd + 1), 924 cmd->cmdsize - sizeof(linker_option_command)}; 925 parseLCLinkerOption(this, cmd->count, data); 926 } 927 928 ArrayRef<SectionHeader> sectionHeaders; 929 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 930 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 931 sectionHeaders = ArrayRef<SectionHeader>{ 932 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 933 parseSections(sectionHeaders); 934 } 935 936 // TODO: Error on missing LC_SYMTAB? 937 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 938 auto *c = reinterpret_cast<const symtab_command *>(cmd); 939 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 940 c->nsyms); 941 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 942 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 943 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 944 } 945 946 // The relocations may refer to the symbols, so we parse them after we have 947 // parsed all the symbols. 948 for (size_t i = 0, n = sections.size(); i < n; ++i) 949 if (!sections[i]->subsections.empty()) 950 parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]); 951 952 parseDebugInfo(); 953 954 Section *ehFrameSection = nullptr; 955 Section *compactUnwindSection = nullptr; 956 for (Section *sec : sections) { 957 Section **s = StringSwitch<Section **>(sec->name) 958 .Case(section_names::compactUnwind, &compactUnwindSection) 959 .Case(section_names::ehFrame, &ehFrameSection) 960 .Default(nullptr); 961 if (s) 962 *s = sec; 963 } 964 if (compactUnwindSection) 965 registerCompactUnwind(*compactUnwindSection); 966 if (config->parseEhFrames && ehFrameSection) 967 registerEhFrames(*ehFrameSection); 968 } 969 970 template <class LP> void ObjFile::parseLazy() { 971 using Header = typename LP::mach_header; 972 using NList = typename LP::nlist; 973 974 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 975 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 976 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 977 if (!cmd) 978 return; 979 auto *c = reinterpret_cast<const symtab_command *>(cmd); 980 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 981 c->nsyms); 982 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 983 symbols.resize(nList.size()); 984 for (auto it : llvm::enumerate(nList)) { 985 const NList &sym = it.value(); 986 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 987 // TODO: Bound checking 988 StringRef name = strtab + sym.n_strx; 989 symbols[it.index()] = symtab->addLazyObject(name, *this); 990 if (!lazy) 991 break; 992 } 993 } 994 } 995 996 void ObjFile::parseDebugInfo() { 997 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 998 if (!dObj) 999 return; 1000 1001 // We do not re-use the context from getDwarf() here as that function 1002 // constructs an expensive DWARFCache object. 1003 auto *ctx = make<DWARFContext>( 1004 std::move(dObj), "", 1005 [&](Error err) { 1006 warn(toString(this) + ": " + toString(std::move(err))); 1007 }, 1008 [&](Error warning) { 1009 warn(toString(this) + ": " + toString(std::move(warning))); 1010 }); 1011 1012 // TODO: Since object files can contain a lot of DWARF info, we should verify 1013 // that we are parsing just the info we need 1014 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 1015 // FIXME: There can be more than one compile unit per object file. See 1016 // PR48637. 1017 auto it = units.begin(); 1018 compileUnit = it != units.end() ? it->get() : nullptr; 1019 } 1020 1021 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 1022 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1023 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 1024 if (!cmd) 1025 return {}; 1026 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 1027 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 1028 c->datasize / sizeof(data_in_code_entry)}; 1029 } 1030 1031 // Create pointers from symbols to their associated compact unwind entries. 1032 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) { 1033 for (const Subsection &subsection : compactUnwindSection.subsections) { 1034 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 1035 // Hack!! Since each CUE contains a different function address, if ICF 1036 // operated naively and compared the entire contents of each CUE, entries 1037 // with identical unwind info but belonging to different functions would 1038 // never be considered equivalent. To work around this problem, we slice 1039 // away the function address here. (Note that we do not adjust the offsets 1040 // of the corresponding relocations.) We rely on `relocateCompactUnwind()` 1041 // to correctly handle these truncated input sections. 1042 isec->data = isec->data.slice(target->wordSize); 1043 uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t)); 1044 // llvm-mc omits CU entries for functions that need DWARF encoding, but 1045 // `ld -r` doesn't. We can ignore them because we will re-synthesize these 1046 // CU entries from the DWARF info during the output phase. 1047 if ((encoding & target->modeDwarfEncoding) == target->modeDwarfEncoding) 1048 continue; 1049 1050 ConcatInputSection *referentIsec; 1051 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 1052 Reloc &r = *it; 1053 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 1054 if (r.offset != 0) { 1055 ++it; 1056 continue; 1057 } 1058 uint64_t add = r.addend; 1059 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 1060 // Check whether the symbol defined in this file is the prevailing one. 1061 // Skip if it is e.g. a weak def that didn't prevail. 1062 if (sym->getFile() != this) { 1063 ++it; 1064 continue; 1065 } 1066 add += sym->value; 1067 referentIsec = cast<ConcatInputSection>(sym->isec); 1068 } else { 1069 referentIsec = 1070 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 1071 } 1072 // Unwind info lives in __DATA, and finalization of __TEXT will occur 1073 // before finalization of __DATA. Moreover, the finalization of unwind 1074 // info depends on the exact addresses that it references. So it is safe 1075 // for compact unwind to reference addresses in __TEXT, but not addresses 1076 // in any other segment. 1077 if (referentIsec->getSegName() != segment_names::text) 1078 error(isec->getLocation(r.offset) + " references section " + 1079 referentIsec->getName() + " which is not in segment __TEXT"); 1080 // The functionAddress relocations are typically section relocations. 1081 // However, unwind info operates on a per-symbol basis, so we search for 1082 // the function symbol here. 1083 Defined *d = findSymbolAtOffset(referentIsec, add); 1084 if (!d) { 1085 ++it; 1086 continue; 1087 } 1088 d->unwindEntry = isec; 1089 // Since we've sliced away the functionAddress, we should remove the 1090 // corresponding relocation too. Given that clang emits relocations in 1091 // reverse order of address, this relocation should be at the end of the 1092 // vector for most of our input object files, so this is typically an O(1) 1093 // operation. 1094 it = isec->relocs.erase(it); 1095 } 1096 } 1097 } 1098 1099 struct CIE { 1100 macho::Symbol *personalitySymbol = nullptr; 1101 bool fdesHaveLsda = false; 1102 bool fdesHaveAug = false; 1103 }; 1104 1105 static CIE parseCIE(const InputSection *isec, const EhReader &reader, 1106 size_t off) { 1107 // Handling the full generality of possible DWARF encodings would be a major 1108 // pain. We instead take advantage of our knowledge of how llvm-mc encodes 1109 // DWARF and handle just that. 1110 constexpr uint8_t expectedPersonalityEnc = 1111 dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4; 1112 constexpr uint8_t expectedPointerEnc = 1113 dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_absptr; 1114 1115 CIE cie; 1116 uint8_t version = reader.readByte(&off); 1117 if (version != 1 && version != 3) 1118 fatal("Expected CIE version of 1 or 3, got " + Twine(version)); 1119 StringRef aug = reader.readString(&off); 1120 reader.skipLeb128(&off); // skip code alignment 1121 reader.skipLeb128(&off); // skip data alignment 1122 reader.skipLeb128(&off); // skip return address register 1123 reader.skipLeb128(&off); // skip aug data length 1124 uint64_t personalityAddrOff = 0; 1125 for (char c : aug) { 1126 switch (c) { 1127 case 'z': 1128 cie.fdesHaveAug = true; 1129 break; 1130 case 'P': { 1131 uint8_t personalityEnc = reader.readByte(&off); 1132 if (personalityEnc != expectedPersonalityEnc) 1133 reader.failOn(off, "unexpected personality encoding 0x" + 1134 Twine::utohexstr(personalityEnc)); 1135 personalityAddrOff = off; 1136 off += 4; 1137 break; 1138 } 1139 case 'L': { 1140 cie.fdesHaveLsda = true; 1141 uint8_t lsdaEnc = reader.readByte(&off); 1142 if (lsdaEnc != expectedPointerEnc) 1143 reader.failOn(off, "unexpected LSDA encoding 0x" + 1144 Twine::utohexstr(lsdaEnc)); 1145 break; 1146 } 1147 case 'R': { 1148 uint8_t pointerEnc = reader.readByte(&off); 1149 if (pointerEnc != expectedPointerEnc) 1150 reader.failOn(off, "unexpected pointer encoding 0x" + 1151 Twine::utohexstr(pointerEnc)); 1152 break; 1153 } 1154 default: 1155 break; 1156 } 1157 } 1158 if (personalityAddrOff != 0) { 1159 auto personalityRelocIt = 1160 llvm::find_if(isec->relocs, [=](const macho::Reloc &r) { 1161 return r.offset == personalityAddrOff; 1162 }); 1163 if (personalityRelocIt == isec->relocs.end()) 1164 reader.failOn(off, "Failed to locate relocation for personality symbol"); 1165 cie.personalitySymbol = personalityRelocIt->referent.get<macho::Symbol *>(); 1166 } 1167 return cie; 1168 } 1169 1170 // EH frame target addresses may be encoded as pcrel offsets. However, instead 1171 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead. 1172 // This function recovers the target address from the subtractors, essentially 1173 // performing the inverse operation of EhRelocator. 1174 // 1175 // Concretely, we expect our relocations to write the value of `PC - 1176 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that 1177 // points to a symbol plus an addend. 1178 // 1179 // It is important that the minuend relocation point to a symbol within the 1180 // same section as the fixup value, since sections may get moved around. 1181 // 1182 // For example, for arm64, llvm-mc emits relocations for the target function 1183 // address like so: 1184 // 1185 // ltmp: 1186 // <CIE start> 1187 // ... 1188 // <CIE end> 1189 // ... multiple FDEs ... 1190 // <FDE start> 1191 // <target function address - (ltmp + pcrel offset)> 1192 // ... 1193 // 1194 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start` 1195 // will move to an earlier address, and `ltmp + pcrel offset` will no longer 1196 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize" 1197 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating 1198 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`. 1199 // 1200 // If `Invert` is set, then we instead expect `target_addr - PC` to be written 1201 // to `PC`. 1202 template <bool Invert = false> 1203 Defined * 1204 targetSymFromCanonicalSubtractor(const InputSection *isec, 1205 std::vector<macho::Reloc>::iterator relocIt) { 1206 macho::Reloc &subtrahend = *relocIt; 1207 macho::Reloc &minuend = *std::next(relocIt); 1208 assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND)); 1209 assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED)); 1210 // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero 1211 // addend. 1212 auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>()); 1213 Defined *target = 1214 cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>()); 1215 if (!pcSym) { 1216 auto *targetIsec = 1217 cast<ConcatInputSection>(minuend.referent.get<InputSection *>()); 1218 target = findSymbolAtOffset(targetIsec, minuend.addend); 1219 } 1220 if (Invert) 1221 std::swap(pcSym, target); 1222 if (pcSym->isec == isec) { 1223 if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset) 1224 fatal("invalid FDE relocation in __eh_frame"); 1225 } else { 1226 // Ensure the pcReloc points to a symbol within the current EH frame. 1227 // HACK: we should really verify that the original relocation's semantics 1228 // are preserved. In particular, we should have 1229 // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't 1230 // have an easy way to access the offsets from this point in the code; some 1231 // refactoring is needed for that. 1232 macho::Reloc &pcReloc = Invert ? minuend : subtrahend; 1233 pcReloc.referent = isec->symbols[0]; 1234 assert(isec->symbols[0]->value == 0); 1235 minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL); 1236 } 1237 return target; 1238 } 1239 1240 Defined *findSymbolAtAddress(const std::vector<Section *> §ions, 1241 uint64_t addr) { 1242 Section *sec = findContainingSection(sections, &addr); 1243 auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr)); 1244 return findSymbolAtOffset(isec, addr); 1245 } 1246 1247 // For symbols that don't have compact unwind info, associate them with the more 1248 // general-purpose (and verbose) DWARF unwind info found in __eh_frame. 1249 // 1250 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a 1251 // description of its format. 1252 // 1253 // While parsing, we also look for what MC calls "abs-ified" relocations -- they 1254 // are relocations which are implicitly encoded as offsets in the section data. 1255 // We convert them into explicit Reloc structs so that the EH frames can be 1256 // handled just like a regular ConcatInputSection later in our output phase. 1257 // 1258 // We also need to handle the case where our input object file has explicit 1259 // relocations. This is the case when e.g. it's the output of `ld -r`. We only 1260 // look for the "abs-ified" relocation if an explicit relocation is absent. 1261 void ObjFile::registerEhFrames(Section &ehFrameSection) { 1262 DenseMap<const InputSection *, CIE> cieMap; 1263 for (const Subsection &subsec : ehFrameSection.subsections) { 1264 auto *isec = cast<ConcatInputSection>(subsec.isec); 1265 uint64_t isecOff = subsec.offset; 1266 1267 // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure 1268 // that all EH frames have an associated symbol so that we can generate 1269 // subtractor relocs that reference them. 1270 if (isec->symbols.size() == 0) 1271 isec->symbols.push_back(make<Defined>( 1272 "EH_Frame", isec->getFile(), isec, /*value=*/0, /*size=*/0, 1273 /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false, 1274 /*includeInSymtab=*/false, /*isThumb=*/false, 1275 /*isReferencedDynamically=*/false, /*noDeadStrip=*/false)); 1276 else if (isec->symbols[0]->value != 0) 1277 fatal("found symbol at unexpected offset in __eh_frame"); 1278 1279 EhReader reader(this, isec->data, subsec.offset, target->wordSize); 1280 size_t dataOff = 0; // Offset from the start of the EH frame. 1281 reader.skipValidLength(&dataOff); // readLength() already validated this. 1282 // cieOffOff is the offset from the start of the EH frame to the cieOff 1283 // value, which is itself an offset from the current PC to a CIE. 1284 const size_t cieOffOff = dataOff; 1285 1286 EhRelocator ehRelocator(isec); 1287 auto cieOffRelocIt = llvm::find_if( 1288 isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; }); 1289 InputSection *cieIsec = nullptr; 1290 if (cieOffRelocIt != isec->relocs.end()) { 1291 // We already have an explicit relocation for the CIE offset. 1292 cieIsec = 1293 targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt) 1294 ->isec; 1295 dataOff += sizeof(uint32_t); 1296 } else { 1297 // If we haven't found a relocation, then the CIE offset is most likely 1298 // embedded in the section data (AKA an "abs-ified" reloc.). Parse that 1299 // and generate a Reloc struct. 1300 uint32_t cieMinuend = reader.readU32(&dataOff); 1301 if (cieMinuend == 0) 1302 cieIsec = isec; 1303 else { 1304 uint32_t cieOff = isecOff + dataOff - cieMinuend; 1305 cieIsec = findContainingSubsection(ehFrameSection, &cieOff); 1306 if (cieIsec == nullptr) 1307 fatal("failed to find CIE"); 1308 } 1309 if (cieIsec != isec) 1310 ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0], 1311 /*length=*/2); 1312 } 1313 if (cieIsec == isec) { 1314 cieMap[cieIsec] = parseCIE(isec, reader, dataOff); 1315 continue; 1316 } 1317 1318 // Offset of the function address within the EH frame. 1319 const size_t funcAddrOff = dataOff; 1320 uint64_t funcAddr = reader.readPointer(&dataOff) + ehFrameSection.addr + 1321 isecOff + funcAddrOff; 1322 uint32_t funcLength = reader.readPointer(&dataOff); 1323 size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame. 1324 assert(cieMap.count(cieIsec)); 1325 const CIE &cie = cieMap[cieIsec]; 1326 Optional<uint64_t> lsdaAddrOpt; 1327 if (cie.fdesHaveAug) { 1328 reader.skipLeb128(&dataOff); 1329 lsdaAddrOff = dataOff; 1330 if (cie.fdesHaveLsda) { 1331 uint64_t lsdaOff = reader.readPointer(&dataOff); 1332 if (lsdaOff != 0) // FIXME possible to test this? 1333 lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff; 1334 } 1335 } 1336 1337 auto funcAddrRelocIt = isec->relocs.end(); 1338 auto lsdaAddrRelocIt = isec->relocs.end(); 1339 for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) { 1340 if (it->offset == funcAddrOff) 1341 funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc 1342 else if (lsdaAddrOpt && it->offset == lsdaAddrOff) 1343 lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc 1344 } 1345 1346 Defined *funcSym; 1347 if (funcAddrRelocIt != isec->relocs.end()) { 1348 funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt); 1349 } else { 1350 funcSym = findSymbolAtAddress(sections, funcAddr); 1351 ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize); 1352 } 1353 // The symbol has been coalesced, or already has a compact unwind entry. 1354 if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) { 1355 // We must prune unused FDEs for correctness, so we cannot rely on 1356 // -dead_strip being enabled. 1357 isec->live = false; 1358 continue; 1359 } 1360 1361 InputSection *lsdaIsec = nullptr; 1362 if (lsdaAddrRelocIt != isec->relocs.end()) { 1363 lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec; 1364 } else if (lsdaAddrOpt) { 1365 uint64_t lsdaAddr = *lsdaAddrOpt; 1366 Section *sec = findContainingSection(sections, &lsdaAddr); 1367 lsdaIsec = 1368 cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr)); 1369 ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize); 1370 } 1371 1372 fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec}; 1373 funcSym->unwindEntry = isec; 1374 ehRelocator.commit(); 1375 } 1376 } 1377 1378 std::string ObjFile::sourceFile() const { 1379 SmallString<261> dir(compileUnit->getCompilationDir()); 1380 StringRef sep = sys::path::get_separator(); 1381 // We don't use `path::append` here because we want an empty `dir` to result 1382 // in an absolute path. `append` would give us a relative path for that case. 1383 if (!dir.endswith(sep)) 1384 dir += sep; 1385 return (dir + compileUnit->getUnitDIE().getShortName()).str(); 1386 } 1387 1388 lld::DWARFCache *ObjFile::getDwarf() { 1389 llvm::call_once(initDwarf, [this]() { 1390 auto dwObj = DwarfObject::create(this); 1391 if (!dwObj) 1392 return; 1393 dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 1394 std::move(dwObj), "", 1395 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 1396 [&](Error warning) { 1397 warn(getName() + ": " + toString(std::move(warning))); 1398 })); 1399 }); 1400 1401 return dwarfCache.get(); 1402 } 1403 // The path can point to either a dylib or a .tbd file. 1404 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1405 Optional<MemoryBufferRef> mbref = readFile(path); 1406 if (!mbref) { 1407 error("could not read dylib file at " + path); 1408 return nullptr; 1409 } 1410 return loadDylib(*mbref, umbrella); 1411 } 1412 1413 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1414 // the first document storing child pointers to the rest of them. When we are 1415 // processing a given TBD file, we store that top-level document in 1416 // currentTopLevelTapi. When processing re-exports, we search its children for 1417 // potentially matching documents in the same TBD file. Note that the children 1418 // themselves don't point to further documents, i.e. this is a two-level tree. 1419 // 1420 // Re-exports can either refer to on-disk files, or to documents within .tbd 1421 // files. 1422 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1423 const InterfaceFile *currentTopLevelTapi) { 1424 // Search order: 1425 // 1. Install name basename in -F / -L directories. 1426 { 1427 StringRef stem = path::stem(path); 1428 SmallString<128> frameworkName; 1429 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1430 bool isFramework = path.endswith(frameworkName); 1431 if (isFramework) { 1432 for (StringRef dir : config->frameworkSearchPaths) { 1433 SmallString<128> candidate = dir; 1434 path::append(candidate, frameworkName); 1435 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1436 return loadDylib(*dylibPath, umbrella); 1437 } 1438 } else if (Optional<StringRef> dylibPath = findPathCombination( 1439 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1440 return loadDylib(*dylibPath, umbrella); 1441 } 1442 1443 // 2. As absolute path. 1444 if (path::is_absolute(path, path::Style::posix)) 1445 for (StringRef root : config->systemLibraryRoots) 1446 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1447 return loadDylib(*dylibPath, umbrella); 1448 1449 // 3. As relative path. 1450 1451 // TODO: Handle -dylib_file 1452 1453 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1454 SmallString<128> newPath; 1455 if (config->outputType == MH_EXECUTE && 1456 path.consume_front("@executable_path/")) { 1457 // ld64 allows overriding this with the undocumented flag -executable_path. 1458 // lld doesn't currently implement that flag. 1459 // FIXME: Consider using finalOutput instead of outputFile. 1460 path::append(newPath, path::parent_path(config->outputFile), path); 1461 path = newPath; 1462 } else if (path.consume_front("@loader_path/")) { 1463 fs::real_path(umbrella->getName(), newPath); 1464 path::remove_filename(newPath); 1465 path::append(newPath, path); 1466 path = newPath; 1467 } else if (path.startswith("@rpath/")) { 1468 for (StringRef rpath : umbrella->rpaths) { 1469 newPath.clear(); 1470 if (rpath.consume_front("@loader_path/")) { 1471 fs::real_path(umbrella->getName(), newPath); 1472 path::remove_filename(newPath); 1473 } 1474 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1475 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1476 return loadDylib(*dylibPath, umbrella); 1477 } 1478 } 1479 1480 // FIXME: Should this be further up? 1481 if (currentTopLevelTapi) { 1482 for (InterfaceFile &child : 1483 make_pointee_range(currentTopLevelTapi->documents())) { 1484 assert(child.documents().empty()); 1485 if (path == child.getInstallName()) { 1486 auto file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false, 1487 /*explicitlyLinked=*/false); 1488 file->parseReexports(child); 1489 return file; 1490 } 1491 } 1492 } 1493 1494 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1495 return loadDylib(*dylibPath, umbrella); 1496 1497 return nullptr; 1498 } 1499 1500 // If a re-exported dylib is public (lives in /usr/lib or 1501 // /System/Library/Frameworks), then it is considered implicitly linked: we 1502 // should bind to its symbols directly instead of via the re-exporting umbrella 1503 // library. 1504 static bool isImplicitlyLinked(StringRef path) { 1505 if (!config->implicitDylibs) 1506 return false; 1507 1508 if (path::parent_path(path) == "/usr/lib") 1509 return true; 1510 1511 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1512 if (path.consume_front("/System/Library/Frameworks/")) { 1513 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1514 return path::filename(path) == frameworkName; 1515 } 1516 1517 return false; 1518 } 1519 1520 static void loadReexport(StringRef path, DylibFile *umbrella, 1521 const InterfaceFile *currentTopLevelTapi) { 1522 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1523 if (!reexport) 1524 error("unable to locate re-export with install name " + path); 1525 } 1526 1527 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1528 bool isBundleLoader, bool explicitlyLinked) 1529 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1530 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1531 assert(!isBundleLoader || !umbrella); 1532 if (umbrella == nullptr) 1533 umbrella = this; 1534 this->umbrella = umbrella; 1535 1536 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1537 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1538 1539 // Initialize installName. 1540 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1541 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1542 currentVersion = read32le(&c->dylib.current_version); 1543 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1544 installName = 1545 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1546 } else if (!isBundleLoader) { 1547 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1548 // so it's OK. 1549 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1550 return; 1551 } 1552 1553 if (config->printEachFile) 1554 message(toString(this)); 1555 inputFiles.insert(this); 1556 1557 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1558 1559 if (!checkCompatibility(this)) 1560 return; 1561 1562 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1563 1564 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1565 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1566 rpaths.push_back(rpath); 1567 } 1568 1569 // Initialize symbols. 1570 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1571 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1572 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1573 struct TrieEntry { 1574 StringRef name; 1575 uint64_t flags; 1576 }; 1577 1578 std::vector<TrieEntry> entries; 1579 // Find all the $ld$* symbols to process first. 1580 parseTrie(buf + c->export_off, c->export_size, 1581 [&](const Twine &name, uint64_t flags) { 1582 StringRef savedName = saver().save(name); 1583 if (handleLDSymbol(savedName)) 1584 return; 1585 entries.push_back({savedName, flags}); 1586 }); 1587 1588 // Process the "normal" symbols. 1589 for (TrieEntry &entry : entries) { 1590 if (exportingFile->hiddenSymbols.contains( 1591 CachedHashStringRef(entry.name))) 1592 continue; 1593 1594 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1595 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1596 1597 symbols.push_back( 1598 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1599 } 1600 1601 } else { 1602 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1603 return; 1604 } 1605 } 1606 1607 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1608 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1609 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1610 target->headerSize; 1611 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1612 auto *cmd = reinterpret_cast<const load_command *>(p); 1613 p += cmd->cmdsize; 1614 1615 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1616 cmd->cmd == LC_REEXPORT_DYLIB) { 1617 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1618 StringRef reexportPath = 1619 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1620 loadReexport(reexportPath, exportingFile, nullptr); 1621 } 1622 1623 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1624 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1625 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1626 if (config->namespaceKind == NamespaceKind::flat && 1627 cmd->cmd == LC_LOAD_DYLIB) { 1628 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1629 StringRef dylibPath = 1630 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1631 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1632 if (!dylib) 1633 error(Twine("unable to locate library '") + dylibPath + 1634 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1635 } 1636 } 1637 } 1638 1639 // Some versions of Xcode ship with .tbd files that don't have the right 1640 // platform settings. 1641 constexpr std::array<StringRef, 3> skipPlatformChecks{ 1642 "/usr/lib/system/libsystem_kernel.dylib", 1643 "/usr/lib/system/libsystem_platform.dylib", 1644 "/usr/lib/system/libsystem_pthread.dylib"}; 1645 1646 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface, 1647 bool explicitlyLinked) { 1648 // Catalyst outputs can link against implicitly linked macOS-only libraries. 1649 if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked) 1650 return false; 1651 return is_contained(interface.targets(), 1652 MachO::Target(config->arch(), PLATFORM_MACOS)); 1653 } 1654 1655 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1656 bool isBundleLoader, bool explicitlyLinked) 1657 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1658 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1659 // FIXME: Add test for the missing TBD code path. 1660 1661 if (umbrella == nullptr) 1662 umbrella = this; 1663 this->umbrella = umbrella; 1664 1665 installName = saver().save(interface.getInstallName()); 1666 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1667 currentVersion = interface.getCurrentVersion().rawValue(); 1668 1669 if (config->printEachFile) 1670 message(toString(this)); 1671 inputFiles.insert(this); 1672 1673 if (!is_contained(skipPlatformChecks, installName) && 1674 !is_contained(interface.targets(), config->platformInfo.target) && 1675 !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) { 1676 error(toString(this) + " is incompatible with " + 1677 std::string(config->platformInfo.target)); 1678 return; 1679 } 1680 1681 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1682 1683 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1684 auto addSymbol = [&](const Twine &name) -> void { 1685 StringRef savedName = saver().save(name); 1686 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1687 return; 1688 1689 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1690 /*isWeakDef=*/false, 1691 /*isTlv=*/false)); 1692 }; 1693 1694 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1695 normalSymbols.reserve(interface.symbolsCount()); 1696 for (const auto *symbol : interface.symbols()) { 1697 if (!symbol->getArchitectures().has(config->arch())) 1698 continue; 1699 if (handleLDSymbol(symbol->getName())) 1700 continue; 1701 1702 switch (symbol->getKind()) { 1703 case SymbolKind::GlobalSymbol: // Fallthrough 1704 case SymbolKind::ObjectiveCClass: // Fallthrough 1705 case SymbolKind::ObjectiveCClassEHType: // Fallthrough 1706 case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough 1707 normalSymbols.push_back(symbol); 1708 } 1709 } 1710 1711 // TODO(compnerd) filter out symbols based on the target platform 1712 // TODO: handle weak defs, thread locals 1713 for (const auto *symbol : normalSymbols) { 1714 switch (symbol->getKind()) { 1715 case SymbolKind::GlobalSymbol: 1716 addSymbol(symbol->getName()); 1717 break; 1718 case SymbolKind::ObjectiveCClass: 1719 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1720 // want to emulate that. 1721 addSymbol(objc::klass + symbol->getName()); 1722 addSymbol(objc::metaclass + symbol->getName()); 1723 break; 1724 case SymbolKind::ObjectiveCClassEHType: 1725 addSymbol(objc::ehtype + symbol->getName()); 1726 break; 1727 case SymbolKind::ObjectiveCInstanceVariable: 1728 addSymbol(objc::ivar + symbol->getName()); 1729 break; 1730 } 1731 } 1732 } 1733 1734 void DylibFile::parseReexports(const InterfaceFile &interface) { 1735 const InterfaceFile *topLevel = 1736 interface.getParent() == nullptr ? &interface : interface.getParent(); 1737 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1738 InterfaceFile::const_target_range targets = intfRef.targets(); 1739 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1740 is_contained(targets, config->platformInfo.target)) 1741 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1742 } 1743 } 1744 1745 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1746 // name, compatibility version or hide/add symbols) for specific target 1747 // versions. 1748 bool DylibFile::handleLDSymbol(StringRef originalName) { 1749 if (!originalName.startswith("$ld$")) 1750 return false; 1751 1752 StringRef action; 1753 StringRef name; 1754 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1755 if (action == "previous") 1756 handleLDPreviousSymbol(name, originalName); 1757 else if (action == "install_name") 1758 handleLDInstallNameSymbol(name, originalName); 1759 else if (action == "hide") 1760 handleLDHideSymbol(name, originalName); 1761 return true; 1762 } 1763 1764 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1765 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1766 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1767 StringRef installName; 1768 StringRef compatVersion; 1769 StringRef platformStr; 1770 StringRef startVersion; 1771 StringRef endVersion; 1772 StringRef symbolName; 1773 StringRef rest; 1774 1775 std::tie(installName, name) = name.split('$'); 1776 std::tie(compatVersion, name) = name.split('$'); 1777 std::tie(platformStr, name) = name.split('$'); 1778 std::tie(startVersion, name) = name.split('$'); 1779 std::tie(endVersion, name) = name.split('$'); 1780 std::tie(symbolName, rest) = name.split('$'); 1781 // TODO: ld64 contains some logic for non-empty symbolName as well. 1782 if (!symbolName.empty()) 1783 return; 1784 unsigned platform; 1785 if (platformStr.getAsInteger(10, platform) || 1786 platform != static_cast<unsigned>(config->platform())) 1787 return; 1788 1789 VersionTuple start; 1790 if (start.tryParse(startVersion)) { 1791 warn("failed to parse start version, symbol '" + originalName + 1792 "' ignored"); 1793 return; 1794 } 1795 VersionTuple end; 1796 if (end.tryParse(endVersion)) { 1797 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1798 return; 1799 } 1800 if (config->platformInfo.minimum < start || 1801 config->platformInfo.minimum >= end) 1802 return; 1803 1804 this->installName = saver().save(installName); 1805 1806 if (!compatVersion.empty()) { 1807 VersionTuple cVersion; 1808 if (cVersion.tryParse(compatVersion)) { 1809 warn("failed to parse compatibility version, symbol '" + originalName + 1810 "' ignored"); 1811 return; 1812 } 1813 compatibilityVersion = encodeVersion(cVersion); 1814 } 1815 } 1816 1817 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1818 StringRef originalName) { 1819 // originalName: $ld$ install_name $ os<version> $ install_name 1820 StringRef condition, installName; 1821 std::tie(condition, installName) = name.split('$'); 1822 VersionTuple version; 1823 if (!condition.consume_front("os") || version.tryParse(condition)) 1824 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1825 else if (version == config->platformInfo.minimum) 1826 this->installName = saver().save(installName); 1827 } 1828 1829 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 1830 StringRef symbolName; 1831 bool shouldHide = true; 1832 if (name.startswith("os")) { 1833 // If it's hidden based on versions. 1834 name = name.drop_front(2); 1835 StringRef minVersion; 1836 std::tie(minVersion, symbolName) = name.split('$'); 1837 VersionTuple versionTup; 1838 if (versionTup.tryParse(minVersion)) { 1839 warn("Failed to parse hidden version, symbol `" + originalName + 1840 "` ignored."); 1841 return; 1842 } 1843 shouldHide = versionTup == config->platformInfo.minimum; 1844 } else { 1845 symbolName = name; 1846 } 1847 1848 if (shouldHide) 1849 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 1850 } 1851 1852 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1853 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1854 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1855 } 1856 1857 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1858 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1859 1860 void ArchiveFile::addLazySymbols() { 1861 for (const object::Archive::Symbol &sym : file->symbols()) 1862 symtab->addLazyArchive(sym.getName(), this, sym); 1863 } 1864 1865 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1866 uint32_t modTime, 1867 StringRef archiveName, 1868 uint64_t offsetInArchive) { 1869 if (config->zeroModTime) 1870 modTime = 0; 1871 1872 switch (identify_magic(mb.getBuffer())) { 1873 case file_magic::macho_object: 1874 return make<ObjFile>(mb, modTime, archiveName); 1875 case file_magic::bitcode: 1876 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1877 default: 1878 return createStringError(inconvertibleErrorCode(), 1879 mb.getBufferIdentifier() + 1880 " has unhandled file type"); 1881 } 1882 } 1883 1884 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1885 if (!seen.insert(c.getChildOffset()).second) 1886 return Error::success(); 1887 1888 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1889 if (!mb) 1890 return mb.takeError(); 1891 1892 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1893 if (tar && c.getParent()->isThin()) 1894 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1895 1896 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1897 if (!modTime) 1898 return modTime.takeError(); 1899 1900 Expected<InputFile *> file = 1901 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1902 1903 if (!file) 1904 return file.takeError(); 1905 1906 inputFiles.insert(*file); 1907 printArchiveMemberLoad(reason, *file); 1908 return Error::success(); 1909 } 1910 1911 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1912 object::Archive::Child c = 1913 CHECK(sym.getMember(), toString(this) + 1914 ": could not get the member defining symbol " + 1915 toMachOString(sym)); 1916 1917 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1918 // and become invalid after that call. Copy it to the stack so we can refer 1919 // to it later. 1920 const object::Archive::Symbol symCopy = sym; 1921 1922 // ld64 doesn't demangle sym here even with -demangle. 1923 // Match that: intentionally don't call toMachOString(). 1924 if (Error e = fetch(c, symCopy.getName())) 1925 error(toString(this) + ": could not get the member defining symbol " + 1926 toMachOString(symCopy) + ": " + toString(std::move(e))); 1927 } 1928 1929 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1930 BitcodeFile &file) { 1931 StringRef name = saver().save(objSym.getName()); 1932 1933 if (objSym.isUndefined()) 1934 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 1935 1936 // TODO: Write a test demonstrating why computing isPrivateExtern before 1937 // LTO compilation is important. 1938 bool isPrivateExtern = false; 1939 switch (objSym.getVisibility()) { 1940 case GlobalValue::HiddenVisibility: 1941 isPrivateExtern = true; 1942 break; 1943 case GlobalValue::ProtectedVisibility: 1944 error(name + " has protected visibility, which is not supported by Mach-O"); 1945 break; 1946 case GlobalValue::DefaultVisibility: 1947 break; 1948 } 1949 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable(); 1950 1951 if (objSym.isCommon()) 1952 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1953 objSym.getCommonAlignment(), isPrivateExtern); 1954 1955 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1956 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1957 /*isThumb=*/false, 1958 /*isReferencedDynamically=*/false, 1959 /*noDeadStrip=*/false, 1960 /*isWeakDefCanBeHidden=*/false); 1961 } 1962 1963 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1964 uint64_t offsetInArchive, bool lazy) 1965 : InputFile(BitcodeKind, mb, lazy) { 1966 this->archiveName = std::string(archiveName); 1967 std::string path = mb.getBufferIdentifier().str(); 1968 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1969 // name. If two members with the same name are provided, this causes a 1970 // collision and ThinLTO can't proceed. 1971 // So, we append the archive name to disambiguate two members with the same 1972 // name from multiple different archives, and offset within the archive to 1973 // disambiguate two members of the same name from a single archive. 1974 MemoryBufferRef mbref(mb.getBuffer(), 1975 saver().save(archiveName.empty() 1976 ? path 1977 : archiveName + 1978 sys::path::filename(path) + 1979 utostr(offsetInArchive))); 1980 1981 obj = check(lto::InputFile::create(mbref)); 1982 if (lazy) 1983 parseLazy(); 1984 else 1985 parse(); 1986 } 1987 1988 void BitcodeFile::parse() { 1989 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1990 // "winning" symbol will then be marked as Prevailing at LTO compilation 1991 // time. 1992 symbols.clear(); 1993 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1994 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1995 } 1996 1997 void BitcodeFile::parseLazy() { 1998 symbols.resize(obj->symbols().size()); 1999 for (auto it : llvm::enumerate(obj->symbols())) { 2000 const lto::InputFile::Symbol &objSym = it.value(); 2001 if (!objSym.isUndefined()) { 2002 symbols[it.index()] = 2003 symtab->addLazyObject(saver().save(objSym.getName()), *this); 2004 if (!lazy) 2005 break; 2006 } 2007 } 2008 } 2009 2010 void macho::extract(InputFile &file, StringRef reason) { 2011 assert(file.lazy); 2012 file.lazy = false; 2013 printArchiveMemberLoad(reason, &file); 2014 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 2015 bitcode->parse(); 2016 } else { 2017 auto &f = cast<ObjFile>(file); 2018 if (target->wordSize == 8) 2019 f.parse<LP64>(); 2020 else 2021 f.parse<ILP32>(); 2022 } 2023 } 2024 2025 template void ObjFile::parse<LP64>(); 2026