1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "Target.h" 57 58 #include "lld/Common/DWARF.h" 59 #include "lld/Common/ErrorHandler.h" 60 #include "lld/Common/Memory.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/Path.h" 68 #include "llvm/Support/TarWriter.h" 69 #include "llvm/TextAPI/MachO/Architecture.h" 70 71 using namespace llvm; 72 using namespace llvm::MachO; 73 using namespace llvm::support::endian; 74 using namespace llvm::sys; 75 using namespace lld; 76 using namespace lld::macho; 77 78 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 79 std::string lld::toString(const InputFile *f) { 80 if (!f) 81 return "<internal>"; 82 if (f->archiveName.empty()) 83 return std::string(f->getName()); 84 return (path::filename(f->archiveName) + "(" + path::filename(f->getName()) + 85 ")") 86 .str(); 87 } 88 89 SetVector<InputFile *> macho::inputFiles; 90 std::unique_ptr<TarWriter> macho::tar; 91 int InputFile::idCount = 0; 92 93 // Open a given file path and return it as a memory-mapped file. 94 // Perform no sanity checks--just open, map & return. 95 Optional<MemoryBufferRef> macho::readRawFile(StringRef path) { 96 // Open a file. 97 auto mbOrErr = MemoryBuffer::getFile(path); 98 if (auto ec = mbOrErr.getError()) { 99 error("cannot open " + path + ": " + ec.message()); 100 return None; 101 } 102 103 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 104 MemoryBufferRef mbref = mb->getMemBufferRef(); 105 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 106 return mbref; 107 } 108 109 // Open a given file path and return it as a memory-mapped file. 110 // Assume the file has one of a variety of linkable formats and 111 // perform some basic sanity checks, notably minimum length. 112 Optional<MemoryBufferRef> macho::readLinkableFile(StringRef path) { 113 Optional<MemoryBufferRef> maybeMbref = readRawFile(path); 114 if (!maybeMbref) { 115 return None; 116 } 117 MemoryBufferRef mbref = *maybeMbref; 118 119 // LD64 hard-codes 20 as minimum header size, which is presumably 120 // the smallest header among the the various linkable input formats 121 // LLD are less demanding. We insist on having only enough data for 122 // a magic number. 123 if (mbref.getBufferSize() < sizeof(uint32_t)) { 124 error("file is too small to contain a magic number: " + path); 125 return None; 126 } 127 128 // If this is a regular non-fat file, return it. 129 const char *buf = mbref.getBufferStart(); 130 auto *hdr = reinterpret_cast<const MachO::fat_header *>(buf); 131 if (read32be(&hdr->magic) != MachO::FAT_MAGIC) { 132 if (tar) 133 tar->append(relativeToRoot(path), mbref.getBuffer()); 134 return mbref; 135 } 136 137 // Object files and archive files may be fat files, which contains 138 // multiple real files for different CPU ISAs. Here, we search for a 139 // file that matches with the current link target and returns it as 140 // a MemoryBufferRef. 141 auto *arch = reinterpret_cast<const MachO::fat_arch *>(buf + sizeof(*hdr)); 142 143 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 144 if (reinterpret_cast<const char *>(arch + i + 1) > 145 buf + mbref.getBufferSize()) { 146 error(path + ": fat_arch struct extends beyond end of file"); 147 return None; 148 } 149 150 if (read32be(&arch[i].cputype) != target->cpuType || 151 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 152 continue; 153 154 uint32_t offset = read32be(&arch[i].offset); 155 uint32_t size = read32be(&arch[i].size); 156 if (offset + size > mbref.getBufferSize()) 157 error(path + ": slice extends beyond end of file"); 158 if (tar) 159 tar->append(relativeToRoot(path), mbref.getBuffer()); 160 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 161 } 162 163 error("unable to find matching architecture in " + path); 164 return None; 165 } 166 167 const load_command *macho::findCommand(const mach_header_64 *hdr, 168 uint32_t type) { 169 const uint8_t *p = 170 reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); 171 172 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 173 auto *cmd = reinterpret_cast<const load_command *>(p); 174 if (cmd->cmd == type) 175 return cmd; 176 p += cmd->cmdsize; 177 } 178 return nullptr; 179 } 180 181 void ObjFile::parseSections(ArrayRef<section_64> sections) { 182 subsections.reserve(sections.size()); 183 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 184 185 for (const section_64 &sec : sections) { 186 InputSection *isec = make<InputSection>(); 187 isec->file = this; 188 isec->name = 189 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 190 isec->segname = 191 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 192 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 193 static_cast<size_t>(sec.size)}; 194 if (sec.align >= 32) 195 error("alignment " + std::to_string(sec.align) + " of section " + 196 isec->name + " is too large"); 197 else 198 isec->align = 1 << sec.align; 199 isec->flags = sec.flags; 200 201 if (!(isDebugSection(isec->flags) && 202 isec->segname == segment_names::dwarf)) { 203 subsections.push_back({{0, isec}}); 204 } else { 205 // Instead of emitting DWARF sections, we emit STABS symbols to the 206 // object files that contain them. We filter them out early to avoid 207 // parsing their relocations unnecessarily. But we must still push an 208 // empty map to ensure the indices line up for the remaining sections. 209 subsections.push_back({}); 210 debugSections.push_back(isec); 211 } 212 } 213 } 214 215 // Find the subsection corresponding to the greatest section offset that is <= 216 // that of the given offset. 217 // 218 // offset: an offset relative to the start of the original InputSection (before 219 // any subsection splitting has occurred). It will be updated to represent the 220 // same location as an offset relative to the start of the containing 221 // subsection. 222 static InputSection *findContainingSubsection(SubsectionMap &map, 223 uint32_t *offset) { 224 auto it = std::prev(map.upper_bound(*offset)); 225 *offset -= it->first; 226 return it->second; 227 } 228 229 static bool validateRelocationInfo(InputFile *file, const section_64 &sec, 230 relocation_info rel) { 231 const TargetInfo::RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 232 bool valid = true; 233 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 234 valid = false; 235 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 236 std::to_string(rel.r_address) + " of " + sec.segname + "," + 237 sec.sectname + " in " + toString(file)) 238 .str(); 239 }; 240 241 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 242 error(message("must be extern")); 243 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 244 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 245 "be PC-relative")); 246 if (isThreadLocalVariables(sec.flags) && 247 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 248 error(message("not allowed in thread-local section, must be UNSIGNED")); 249 if (rel.r_length < 2 || rel.r_length > 3 || 250 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 251 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 252 error(message("has width " + std::to_string(1 << rel.r_length) + 253 " bytes, but must be " + 254 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 255 " bytes")); 256 } 257 return valid; 258 } 259 260 void ObjFile::parseRelocations(const section_64 &sec, 261 SubsectionMap &subsecMap) { 262 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 263 ArrayRef<relocation_info> relInfos( 264 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 265 266 for (size_t i = 0; i < relInfos.size(); i++) { 267 // Paired relocations serve as Mach-O's method for attaching a 268 // supplemental datum to a primary relocation record. ELF does not 269 // need them because the *_RELOC_RELA records contain the extra 270 // addend field, vs. *_RELOC_REL which omit the addend. 271 // 272 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 273 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 274 // datum for each is a symbolic address. The result is the offset 275 // between two addresses. 276 // 277 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 278 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 279 // base symbolic address. 280 // 281 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 282 // addend into the instruction stream. On X86, a relocatable address 283 // field always occupies an entire contiguous sequence of byte(s), 284 // so there is no need to merge opcode bits with address 285 // bits. Therefore, it's easy and convenient to store addends in the 286 // instruction-stream bytes that would otherwise contain zeroes. By 287 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 288 // address bits so that bitwise arithmetic is necessary to extract 289 // and insert them. Storing addends in the instruction stream is 290 // possible, but inconvenient and more costly at link time. 291 292 uint64_t pairedAddend = 0; 293 relocation_info relInfo = relInfos[i]; 294 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 295 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 296 relInfo = relInfos[++i]; 297 } 298 assert(i < relInfos.size()); 299 if (!validateRelocationInfo(this, sec, relInfo)) 300 continue; 301 if (relInfo.r_address & R_SCATTERED) 302 fatal("TODO: Scattered relocations not supported"); 303 304 Reloc p; 305 if (target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND)) { 306 p.type = relInfo.r_type; 307 p.referent = symbols[relInfo.r_symbolnum]; 308 relInfo = relInfos[++i]; 309 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 310 // indicating the minuend symbol. 311 assert(target->hasAttr(relInfo.r_type, RelocAttrBits::UNSIGNED) && 312 relInfo.r_extern); 313 } 314 uint64_t embeddedAddend = target->getEmbeddedAddend(mb, sec, relInfo); 315 assert(!(embeddedAddend && pairedAddend)); 316 uint64_t totalAddend = pairedAddend + embeddedAddend; 317 Reloc r; 318 r.type = relInfo.r_type; 319 r.pcrel = relInfo.r_pcrel; 320 r.length = relInfo.r_length; 321 r.offset = relInfo.r_address; 322 if (relInfo.r_extern) { 323 r.referent = symbols[relInfo.r_symbolnum]; 324 r.addend = totalAddend; 325 } else { 326 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 327 const section_64 &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 328 uint32_t referentOffset; 329 if (relInfo.r_pcrel) { 330 // The implicit addend for pcrel section relocations is the pcrel offset 331 // in terms of the addresses in the input file. Here we adjust it so 332 // that it describes the offset from the start of the referent section. 333 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 334 referentOffset = 335 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 336 } else { 337 // The addend for a non-pcrel relocation is its absolute address. 338 referentOffset = totalAddend - referentSec.addr; 339 } 340 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 341 r.addend = referentOffset; 342 } 343 344 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 345 if (p.type != GENERIC_RELOC_INVALID) 346 subsec->relocs.push_back(p); 347 subsec->relocs.push_back(r); 348 } 349 } 350 351 static macho::Symbol *createDefined(const structs::nlist_64 &sym, 352 StringRef name, InputSection *isec, 353 uint32_t value) { 354 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 355 // N_EXT: Global symbols 356 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped 357 // N_PEXT: Does not occur in input files in practice, 358 // a private extern must be external. 359 // 0: Translation-unit scoped. These are not in the symbol table. 360 361 if (sym.n_type & (N_EXT | N_PEXT)) { 362 assert((sym.n_type & N_EXT) && "invalid input"); 363 return symtab->addDefined(name, isec->file, isec, value, 364 sym.n_desc & N_WEAK_DEF, sym.n_type & N_PEXT); 365 } 366 return make<Defined>(name, isec->file, isec, value, sym.n_desc & N_WEAK_DEF, 367 /*isExternal=*/false, /*isPrivateExtern=*/false); 368 } 369 370 // Absolute symbols are defined symbols that do not have an associated 371 // InputSection. They cannot be weak. 372 static macho::Symbol *createAbsolute(const structs::nlist_64 &sym, 373 InputFile *file, StringRef name) { 374 if (sym.n_type & (N_EXT | N_PEXT)) { 375 assert((sym.n_type & N_EXT) && "invalid input"); 376 return symtab->addDefined(name, file, nullptr, sym.n_value, 377 /*isWeakDef=*/false, sym.n_type & N_PEXT); 378 } 379 return make<Defined>(name, file, nullptr, sym.n_value, /*isWeakDef=*/false, 380 /*isExternal=*/false, /*isPrivateExtern=*/false); 381 } 382 383 macho::Symbol *ObjFile::parseNonSectionSymbol(const structs::nlist_64 &sym, 384 StringRef name) { 385 uint8_t type = sym.n_type & N_TYPE; 386 switch (type) { 387 case N_UNDF: 388 return sym.n_value == 0 389 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 390 : symtab->addCommon(name, this, sym.n_value, 391 1 << GET_COMM_ALIGN(sym.n_desc), 392 sym.n_type & N_PEXT); 393 case N_ABS: 394 return createAbsolute(sym, this, name); 395 case N_PBUD: 396 case N_INDR: 397 error("TODO: support symbols of type " + std::to_string(type)); 398 return nullptr; 399 case N_SECT: 400 llvm_unreachable( 401 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 402 default: 403 llvm_unreachable("invalid symbol type"); 404 } 405 } 406 407 void ObjFile::parseSymbols(ArrayRef<structs::nlist_64> nList, 408 const char *strtab, bool subsectionsViaSymbols) { 409 // resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols 410 // out-of-sequence. 411 symbols.resize(nList.size()); 412 std::vector<size_t> altEntrySymIdxs; 413 414 for (size_t i = 0, n = nList.size(); i < n; ++i) { 415 const structs::nlist_64 &sym = nList[i]; 416 StringRef name = strtab + sym.n_strx; 417 418 if ((sym.n_type & N_TYPE) != N_SECT) { 419 symbols[i] = parseNonSectionSymbol(sym, name); 420 continue; 421 } 422 423 const section_64 &sec = sectionHeaders[sym.n_sect - 1]; 424 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 425 assert(!subsecMap.empty()); 426 uint64_t offset = sym.n_value - sec.addr; 427 428 // If the input file does not use subsections-via-symbols, all symbols can 429 // use the same subsection. Otherwise, we must split the sections along 430 // symbol boundaries. 431 if (!subsectionsViaSymbols) { 432 symbols[i] = createDefined(sym, name, subsecMap[0], offset); 433 continue; 434 } 435 436 // nList entries aren't necessarily arranged in address order. Therefore, 437 // we can't create alt-entry symbols at this point because a later symbol 438 // may split its section, which may affect which subsection the alt-entry 439 // symbol is assigned to. So we need to handle them in a second pass below. 440 if (sym.n_desc & N_ALT_ENTRY) { 441 altEntrySymIdxs.push_back(i); 442 continue; 443 } 444 445 // Find the subsection corresponding to the greatest section offset that is 446 // <= that of the current symbol. The subsection that we find either needs 447 // to be used directly or split in two. 448 uint32_t firstSize = offset; 449 InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize); 450 451 if (firstSize == 0) { 452 // Alias of an existing symbol, or the first symbol in the section. These 453 // are handled by reusing the existing section. 454 symbols[i] = createDefined(sym, name, firstIsec, 0); 455 continue; 456 } 457 458 // We saw a symbol definition at a new offset. Split the section into two 459 // subsections. The new symbol uses the second subsection. 460 auto *secondIsec = make<InputSection>(*firstIsec); 461 secondIsec->data = firstIsec->data.slice(firstSize); 462 firstIsec->data = firstIsec->data.slice(0, firstSize); 463 // TODO: ld64 appears to preserve the original alignment as well as each 464 // subsection's offset from the last aligned address. We should consider 465 // emulating that behavior. 466 secondIsec->align = MinAlign(firstIsec->align, offset); 467 468 subsecMap[offset] = secondIsec; 469 // By construction, the symbol will be at offset zero in the new section. 470 symbols[i] = createDefined(sym, name, secondIsec, 0); 471 } 472 473 for (size_t idx : altEntrySymIdxs) { 474 const structs::nlist_64 &sym = nList[idx]; 475 StringRef name = strtab + sym.n_strx; 476 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 477 uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr; 478 InputSection *subsec = findContainingSubsection(subsecMap, &off); 479 symbols[idx] = createDefined(sym, name, subsec, off); 480 } 481 } 482 483 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 484 StringRef sectName) 485 : InputFile(OpaqueKind, mb) { 486 InputSection *isec = make<InputSection>(); 487 isec->file = this; 488 isec->name = sectName.take_front(16); 489 isec->segname = segName.take_front(16); 490 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 491 isec->data = {buf, mb.getBufferSize()}; 492 subsections.push_back({{0, isec}}); 493 } 494 495 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 496 : InputFile(ObjKind, mb), modTime(modTime) { 497 this->archiveName = std::string(archiveName); 498 499 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 500 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 501 502 MachO::Architecture arch = 503 MachO::getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 504 if (arch != config->arch) { 505 error(toString(this) + " has architecture " + getArchitectureName(arch) + 506 " which is incompatible with target architecture " + 507 getArchitectureName(config->arch)); 508 return; 509 } 510 511 if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { 512 auto *c = reinterpret_cast<const linker_option_command *>(cmd); 513 StringRef data{reinterpret_cast<const char *>(c + 1), 514 c->cmdsize - sizeof(linker_option_command)}; 515 parseLCLinkerOption(this, c->count, data); 516 } 517 518 if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) { 519 auto *c = reinterpret_cast<const segment_command_64 *>(cmd); 520 sectionHeaders = ArrayRef<section_64>{ 521 reinterpret_cast<const section_64 *>(c + 1), c->nsects}; 522 parseSections(sectionHeaders); 523 } 524 525 // TODO: Error on missing LC_SYMTAB? 526 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 527 auto *c = reinterpret_cast<const symtab_command *>(cmd); 528 ArrayRef<structs::nlist_64> nList( 529 reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms); 530 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 531 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 532 parseSymbols(nList, strtab, subsectionsViaSymbols); 533 } 534 535 // The relocations may refer to the symbols, so we parse them after we have 536 // parsed all the symbols. 537 for (size_t i = 0, n = subsections.size(); i < n; ++i) 538 if (!subsections[i].empty()) 539 parseRelocations(sectionHeaders[i], subsections[i]); 540 541 parseDebugInfo(); 542 } 543 544 void ObjFile::parseDebugInfo() { 545 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 546 if (!dObj) 547 return; 548 549 auto *ctx = make<DWARFContext>( 550 std::move(dObj), "", 551 [&](Error err) { 552 warn(toString(this) + ": " + toString(std::move(err))); 553 }, 554 [&](Error warning) { 555 warn(toString(this) + ": " + toString(std::move(warning))); 556 }); 557 558 // TODO: Since object files can contain a lot of DWARF info, we should verify 559 // that we are parsing just the info we need 560 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 561 auto it = units.begin(); 562 compileUnit = it->get(); 563 assert(std::next(it) == units.end()); 564 } 565 566 // The path can point to either a dylib or a .tbd file. 567 static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) { 568 Optional<MemoryBufferRef> mbref = readLinkableFile(path); 569 if (!mbref) { 570 error("could not read dylib file at " + path); 571 return {}; 572 } 573 return loadDylib(*mbref, umbrella); 574 } 575 576 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 577 // the first document storing child pointers to the rest of them. When we are 578 // processing a given TBD file, we store that top-level document here. When 579 // processing re-exports, we search its children for potentially matching 580 // documents in the same TBD file. Note that the children themselves don't 581 // point to further documents, i.e. this is a two-level tree. 582 // 583 // ld64 allows a TAPI re-export to reference documents nested within other TBD 584 // files, but that seems like a strange design, so this is an intentional 585 // deviation. 586 const InterfaceFile *currentTopLevelTapi = nullptr; 587 588 // Re-exports can either refer to on-disk files, or to documents within .tbd 589 // files. 590 static Optional<DylibFile *> findDylib(StringRef path, DylibFile *umbrella) { 591 if (path::is_absolute(path, path::Style::posix)) 592 for (StringRef root : config->systemLibraryRoots) 593 if (Optional<std::string> dylibPath = 594 resolveDylibPath((root + path).str())) 595 return loadDylib(*dylibPath, umbrella); 596 597 // TODO: Expand @loader_path, @executable_path, @rpath etc, handle -dylib_path 598 599 if (currentTopLevelTapi) { 600 for (InterfaceFile &child : 601 make_pointee_range(currentTopLevelTapi->documents())) { 602 if (path == child.getInstallName()) 603 return make<DylibFile>(child, umbrella); 604 assert(child.documents().empty()); 605 } 606 } 607 608 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 609 return loadDylib(*dylibPath, umbrella); 610 611 return {}; 612 } 613 614 // If a re-exported dylib is public (lives in /usr/lib or 615 // /System/Library/Frameworks), then it is considered implicitly linked: we 616 // should bind to its symbols directly instead of via the re-exporting umbrella 617 // library. 618 static bool isImplicitlyLinked(StringRef path) { 619 if (!config->implicitDylibs) 620 return false; 621 622 if (path::parent_path(path) == "/usr/lib") 623 return true; 624 625 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 626 if (path.consume_front("/System/Library/Frameworks/")) { 627 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 628 return path::filename(path) == frameworkName; 629 } 630 631 return false; 632 } 633 634 void loadReexport(StringRef path, DylibFile *umbrella) { 635 Optional<DylibFile *> reexport = findDylib(path, umbrella); 636 if (!reexport) 637 error("unable to locate re-export with install name " + path); 638 else if (isImplicitlyLinked(path)) 639 inputFiles.insert(*reexport); 640 } 641 642 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 643 bool isBundleLoader) 644 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 645 isBundleLoader(isBundleLoader) { 646 assert(!isBundleLoader || !umbrella); 647 if (umbrella == nullptr) 648 umbrella = this; 649 650 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 651 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 652 653 // Initialize dylibName. 654 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 655 auto *c = reinterpret_cast<const dylib_command *>(cmd); 656 currentVersion = read32le(&c->dylib.current_version); 657 compatibilityVersion = read32le(&c->dylib.compatibility_version); 658 dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 659 } else if (!isBundleLoader) { 660 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 661 // so it's OK. 662 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 663 return; 664 } 665 666 // Initialize symbols. 667 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 668 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 669 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 670 parseTrie(buf + c->export_off, c->export_size, 671 [&](const Twine &name, uint64_t flags) { 672 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 673 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 674 symbols.push_back(symtab->addDylib( 675 saver.save(name), exportingFile, isWeakDef, isTlv)); 676 }); 677 } else { 678 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 679 return; 680 } 681 682 const uint8_t *p = 683 reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); 684 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 685 auto *cmd = reinterpret_cast<const load_command *>(p); 686 p += cmd->cmdsize; 687 688 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 689 cmd->cmd == LC_REEXPORT_DYLIB) { 690 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 691 StringRef reexportPath = 692 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 693 loadReexport(reexportPath, umbrella); 694 } 695 696 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 697 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 698 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 699 if (config->namespaceKind == NamespaceKind::flat && 700 cmd->cmd == LC_LOAD_DYLIB) { 701 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 702 StringRef dylibPath = 703 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 704 Optional<DylibFile *> dylib = findDylib(dylibPath, umbrella); 705 if (!dylib) 706 error(Twine("unable to locate library '") + dylibPath + 707 "' loaded from '" + toString(this) + "' for -flat_namespace"); 708 } 709 } 710 } 711 712 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 713 bool isBundleLoader) 714 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 715 isBundleLoader(isBundleLoader) { 716 // FIXME: Add test for the missing TBD code path. 717 718 if (umbrella == nullptr) 719 umbrella = this; 720 721 if (!interface.getArchitectures().has(config->arch)) { 722 error(toString(this) + " is incompatible with " + 723 getArchitectureName(config->arch)); 724 return; 725 } 726 727 dylibName = saver.save(interface.getInstallName()); 728 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 729 currentVersion = interface.getCurrentVersion().rawValue(); 730 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 731 auto addSymbol = [&](const Twine &name) -> void { 732 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 733 /*isWeakDef=*/false, 734 /*isTlv=*/false)); 735 }; 736 // TODO(compnerd) filter out symbols based on the target platform 737 // TODO: handle weak defs, thread locals 738 for (const auto symbol : interface.symbols()) { 739 if (!symbol->getArchitectures().has(config->arch)) 740 continue; 741 742 switch (symbol->getKind()) { 743 case SymbolKind::GlobalSymbol: 744 addSymbol(symbol->getName()); 745 break; 746 case SymbolKind::ObjectiveCClass: 747 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 748 // want to emulate that. 749 addSymbol(objc::klass + symbol->getName()); 750 addSymbol(objc::metaclass + symbol->getName()); 751 break; 752 case SymbolKind::ObjectiveCClassEHType: 753 addSymbol(objc::ehtype + symbol->getName()); 754 break; 755 case SymbolKind::ObjectiveCInstanceVariable: 756 addSymbol(objc::ivar + symbol->getName()); 757 break; 758 } 759 } 760 761 bool isTopLevelTapi = false; 762 if (currentTopLevelTapi == nullptr) { 763 currentTopLevelTapi = &interface; 764 isTopLevelTapi = true; 765 } 766 767 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) 768 loadReexport(intfRef.getInstallName(), umbrella); 769 770 if (isTopLevelTapi) 771 currentTopLevelTapi = nullptr; 772 } 773 774 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 775 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 776 for (const object::Archive::Symbol &sym : file->symbols()) 777 symtab->addLazy(sym.getName(), this, sym); 778 } 779 780 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 781 object::Archive::Child c = 782 CHECK(sym.getMember(), toString(this) + 783 ": could not get the member for symbol " + 784 toMachOString(sym)); 785 786 if (!seen.insert(c.getChildOffset()).second) 787 return; 788 789 MemoryBufferRef mb = 790 CHECK(c.getMemoryBufferRef(), 791 toString(this) + 792 ": could not get the buffer for the member defining symbol " + 793 toMachOString(sym)); 794 795 if (tar && c.getParent()->isThin()) 796 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 797 798 uint32_t modTime = toTimeT( 799 CHECK(c.getLastModified(), toString(this) + 800 ": could not get the modification time " 801 "for the member defining symbol " + 802 toMachOString(sym))); 803 804 // `sym` is owned by a LazySym, which will be replace<>() by make<ObjFile> 805 // and become invalid after that call. Copy it to the stack so we can refer 806 // to it later. 807 const object::Archive::Symbol sym_copy = sym; 808 809 if (Optional<InputFile *> file = 810 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 811 inputFiles.insert(*file); 812 // ld64 doesn't demangle sym here even with -demangle. Match that, so 813 // intentionally no call to toMachOString() here. 814 printArchiveMemberLoad(sym_copy.getName(), *file); 815 } 816 } 817 818 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 819 BitcodeFile &file) { 820 StringRef name = saver.save(objSym.getName()); 821 822 // TODO: support weak references 823 if (objSym.isUndefined()) 824 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 825 826 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 827 828 // TODO: Write a test demonstrating why computing isPrivateExtern before 829 // LTO compilation is important. 830 bool isPrivateExtern = false; 831 switch (objSym.getVisibility()) { 832 case GlobalValue::HiddenVisibility: 833 isPrivateExtern = true; 834 break; 835 case GlobalValue::ProtectedVisibility: 836 error(name + " has protected visibility, which is not supported by Mach-O"); 837 break; 838 case GlobalValue::DefaultVisibility: 839 break; 840 } 841 842 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 843 objSym.isWeak(), isPrivateExtern); 844 } 845 846 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 847 : InputFile(BitcodeKind, mbref) { 848 obj = check(lto::InputFile::create(mbref)); 849 850 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 851 // "winning" symbol will then be marked as Prevailing at LTO compilation 852 // time. 853 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 854 symbols.push_back(createBitcodeSymbol(objSym, *this)); 855 } 856