1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/TextAPI/Architecture.h" 71 #include "llvm/TextAPI/InterfaceFile.h" 72 73 #include <type_traits> 74 75 using namespace llvm; 76 using namespace llvm::MachO; 77 using namespace llvm::support::endian; 78 using namespace llvm::sys; 79 using namespace lld; 80 using namespace lld::macho; 81 82 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 83 std::string lld::toString(const InputFile *f) { 84 if (!f) 85 return "<internal>"; 86 87 // Multiple dylibs can be defined in one .tbd file. 88 if (auto dylibFile = dyn_cast<DylibFile>(f)) 89 if (f->getName().endswith(".tbd")) 90 return (f->getName() + "(" + dylibFile->installName + ")").str(); 91 92 if (f->archiveName.empty()) 93 return std::string(f->getName()); 94 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 95 } 96 97 SetVector<InputFile *> macho::inputFiles; 98 std::unique_ptr<TarWriter> macho::tar; 99 int InputFile::idCount = 0; 100 101 static VersionTuple decodeVersion(uint32_t version) { 102 unsigned major = version >> 16; 103 unsigned minor = (version >> 8) & 0xffu; 104 unsigned subMinor = version & 0xffu; 105 return VersionTuple(major, minor, subMinor); 106 } 107 108 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 109 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 110 return {}; 111 112 const char *hdr = input->mb.getBufferStart(); 113 114 std::vector<PlatformInfo> platformInfos; 115 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 116 PlatformInfo info; 117 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 118 info.minimum = decodeVersion(cmd->minos); 119 platformInfos.emplace_back(std::move(info)); 120 } 121 for (auto *cmd : findCommands<version_min_command>( 122 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 123 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 124 PlatformInfo info; 125 switch (cmd->cmd) { 126 case LC_VERSION_MIN_MACOSX: 127 info.target.Platform = PlatformKind::macOS; 128 break; 129 case LC_VERSION_MIN_IPHONEOS: 130 info.target.Platform = PlatformKind::iOS; 131 break; 132 case LC_VERSION_MIN_TVOS: 133 info.target.Platform = PlatformKind::tvOS; 134 break; 135 case LC_VERSION_MIN_WATCHOS: 136 info.target.Platform = PlatformKind::watchOS; 137 break; 138 } 139 info.minimum = decodeVersion(cmd->version); 140 platformInfos.emplace_back(std::move(info)); 141 } 142 143 return platformInfos; 144 } 145 146 static bool checkCompatibility(const InputFile *input) { 147 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 148 if (platformInfos.empty()) 149 return true; 150 151 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 152 return removeSimulator(info.target.Platform) == 153 removeSimulator(config->platform()); 154 }); 155 if (it == platformInfos.end()) { 156 std::string platformNames; 157 raw_string_ostream os(platformNames); 158 interleave( 159 platformInfos, os, 160 [&](const PlatformInfo &info) { 161 os << getPlatformName(info.target.Platform); 162 }, 163 "/"); 164 error(toString(input) + " has platform " + platformNames + 165 Twine(", which is different from target platform ") + 166 getPlatformName(config->platform())); 167 return false; 168 } 169 170 if (it->minimum > config->platformInfo.minimum) 171 warn(toString(input) + " has version " + it->minimum.getAsString() + 172 ", which is newer than target minimum of " + 173 config->platformInfo.minimum.getAsString()); 174 175 return true; 176 } 177 178 // This cache mostly exists to store system libraries (and .tbds) as they're 179 // loaded, rather than the input archives, which are already cached at a higher 180 // level, and other files like the filelist that are only read once. 181 // Theoretically this caching could be more efficient by hoisting it, but that 182 // would require altering many callers to track the state. 183 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 184 // Open a given file path and return it as a memory-mapped file. 185 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 186 CachedHashStringRef key(path); 187 auto entry = cachedReads.find(key); 188 if (entry != cachedReads.end()) 189 return entry->second; 190 191 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 192 if (std::error_code ec = mbOrErr.getError()) { 193 error("cannot open " + path + ": " + ec.message()); 194 return None; 195 } 196 197 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 198 MemoryBufferRef mbref = mb->getMemBufferRef(); 199 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 200 201 // If this is a regular non-fat file, return it. 202 const char *buf = mbref.getBufferStart(); 203 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 204 if (mbref.getBufferSize() < sizeof(uint32_t) || 205 read32be(&hdr->magic) != FAT_MAGIC) { 206 if (tar) 207 tar->append(relativeToRoot(path), mbref.getBuffer()); 208 return cachedReads[key] = mbref; 209 } 210 211 // Object files and archive files may be fat files, which contain multiple 212 // real files for different CPU ISAs. Here, we search for a file that matches 213 // with the current link target and returns it as a MemoryBufferRef. 214 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 215 216 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 217 if (reinterpret_cast<const char *>(arch + i + 1) > 218 buf + mbref.getBufferSize()) { 219 error(path + ": fat_arch struct extends beyond end of file"); 220 return None; 221 } 222 223 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 224 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 225 continue; 226 227 uint32_t offset = read32be(&arch[i].offset); 228 uint32_t size = read32be(&arch[i].size); 229 if (offset + size > mbref.getBufferSize()) 230 error(path + ": slice extends beyond end of file"); 231 if (tar) 232 tar->append(relativeToRoot(path), mbref.getBuffer()); 233 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 234 path.copy(bAlloc)); 235 } 236 237 error("unable to find matching architecture in " + path); 238 return None; 239 } 240 241 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 242 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 243 244 // Some sections comprise of fixed-size records, so instead of splitting them at 245 // symbol boundaries, we split them based on size. Records are distinct from 246 // literals in that they may contain references to other sections, instead of 247 // being leaf nodes in the InputSection graph. 248 // 249 // Note that "record" is a term I came up with. In contrast, "literal" is a term 250 // used by the Mach-O format. 251 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 252 if (name == section_names::cfString) { 253 if (config->icfLevel != ICFLevel::none && segname == segment_names::data) 254 return target->wordSize == 8 ? 32 : 16; 255 } else if (name == section_names::compactUnwind) { 256 if (segname == segment_names::ld) 257 return target->wordSize == 8 ? 32 : 20; 258 } 259 return {}; 260 } 261 262 // Parse the sequence of sections within a single LC_SEGMENT(_64). 263 // Split each section into subsections. 264 template <class SectionHeader> 265 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 266 sections.reserve(sectionHeaders.size()); 267 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 268 269 for (const SectionHeader &sec : sectionHeaders) { 270 StringRef name = 271 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 272 StringRef segname = 273 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 274 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 275 : buf + sec.offset, 276 static_cast<size_t>(sec.size)}; 277 if (sec.align >= 32) { 278 error("alignment " + std::to_string(sec.align) + " of section " + name + 279 " is too large"); 280 sections.push_back(sec.addr); 281 continue; 282 } 283 uint32_t align = 1 << sec.align; 284 uint32_t flags = sec.flags; 285 286 auto splitRecords = [&](int recordSize) -> void { 287 sections.push_back(sec.addr); 288 if (data.empty()) 289 return; 290 Subsections &subsections = sections.back().subsections; 291 subsections.reserve(data.size() / recordSize); 292 auto *isec = make<ConcatInputSection>( 293 segname, name, this, data.slice(0, recordSize), align, flags); 294 subsections.push_back({0, isec}); 295 for (uint64_t off = recordSize; off < data.size(); off += recordSize) { 296 // Copying requires less memory than constructing a fresh InputSection. 297 auto *copy = make<ConcatInputSection>(*isec); 298 copy->data = data.slice(off, recordSize); 299 subsections.push_back({off, copy}); 300 } 301 }; 302 303 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 304 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 305 if (sec.nreloc && config->dedupLiterals) 306 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 307 sec.sectname + 308 ", so LLD cannot deduplicate literals. Try re-running without " 309 "--deduplicate-literals."); 310 311 InputSection *isec; 312 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 313 isec = 314 make<CStringInputSection>(segname, name, this, data, align, flags); 315 // FIXME: parallelize this? 316 cast<CStringInputSection>(isec)->splitIntoPieces(); 317 } else { 318 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 319 flags); 320 } 321 sections.push_back(sec.addr); 322 sections.back().subsections.push_back({0, isec}); 323 } else if (auto recordSize = getRecordSize(segname, name)) { 324 splitRecords(*recordSize); 325 if (name == section_names::compactUnwind) 326 compactUnwindSection = §ions.back(); 327 } else if (segname == segment_names::llvm) { 328 // ld64 does not appear to emit contents from sections within the __LLVM 329 // segment. Symbols within those sections point to bitcode metadata 330 // instead of actual symbols. Global symbols within those sections could 331 // have the same name without causing duplicate symbol errors. Push an 332 // empty entry to ensure indices line up for the remaining sections. 333 // TODO: Evaluate whether the bitcode metadata is needed. 334 sections.push_back(sec.addr); 335 } else { 336 auto *isec = 337 make<ConcatInputSection>(segname, name, this, data, align, flags); 338 if (isDebugSection(isec->getFlags()) && 339 isec->getSegName() == segment_names::dwarf) { 340 // Instead of emitting DWARF sections, we emit STABS symbols to the 341 // object files that contain them. We filter them out early to avoid 342 // parsing their relocations unnecessarily. But we must still push an 343 // empty entry to ensure the indices line up for the remaining sections. 344 sections.push_back(sec.addr); 345 debugSections.push_back(isec); 346 } else { 347 sections.push_back(sec.addr); 348 sections.back().subsections.push_back({0, isec}); 349 } 350 } 351 } 352 } 353 354 // Find the subsection corresponding to the greatest section offset that is <= 355 // that of the given offset. 356 // 357 // offset: an offset relative to the start of the original InputSection (before 358 // any subsection splitting has occurred). It will be updated to represent the 359 // same location as an offset relative to the start of the containing 360 // subsection. 361 template <class T> 362 static InputSection *findContainingSubsection(const Subsections &subsections, 363 T *offset) { 364 static_assert(std::is_same<uint64_t, T>::value || 365 std::is_same<uint32_t, T>::value, 366 "unexpected type for offset"); 367 auto it = std::prev(llvm::upper_bound( 368 subsections, *offset, 369 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 370 *offset -= it->offset; 371 return it->isec; 372 } 373 374 template <class SectionHeader> 375 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 376 relocation_info rel) { 377 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 378 bool valid = true; 379 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 380 valid = false; 381 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 382 std::to_string(rel.r_address) + " of " + sec.segname + "," + 383 sec.sectname + " in " + toString(file)) 384 .str(); 385 }; 386 387 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 388 error(message("must be extern")); 389 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 390 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 391 "be PC-relative")); 392 if (isThreadLocalVariables(sec.flags) && 393 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 394 error(message("not allowed in thread-local section, must be UNSIGNED")); 395 if (rel.r_length < 2 || rel.r_length > 3 || 396 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 397 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 398 error(message("has width " + std::to_string(1 << rel.r_length) + 399 " bytes, but must be " + 400 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 401 " bytes")); 402 } 403 return valid; 404 } 405 406 template <class SectionHeader> 407 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 408 const SectionHeader &sec, 409 Subsections &subsections) { 410 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 411 ArrayRef<relocation_info> relInfos( 412 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 413 414 auto subsecIt = subsections.rbegin(); 415 for (size_t i = 0; i < relInfos.size(); i++) { 416 // Paired relocations serve as Mach-O's method for attaching a 417 // supplemental datum to a primary relocation record. ELF does not 418 // need them because the *_RELOC_RELA records contain the extra 419 // addend field, vs. *_RELOC_REL which omit the addend. 420 // 421 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 422 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 423 // datum for each is a symbolic address. The result is the offset 424 // between two addresses. 425 // 426 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 427 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 428 // base symbolic address. 429 // 430 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 431 // addend into the instruction stream. On X86, a relocatable address 432 // field always occupies an entire contiguous sequence of byte(s), 433 // so there is no need to merge opcode bits with address 434 // bits. Therefore, it's easy and convenient to store addends in the 435 // instruction-stream bytes that would otherwise contain zeroes. By 436 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 437 // address bits so that bitwise arithmetic is necessary to extract 438 // and insert them. Storing addends in the instruction stream is 439 // possible, but inconvenient and more costly at link time. 440 441 relocation_info relInfo = relInfos[i]; 442 bool isSubtrahend = 443 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 444 if (isSubtrahend && StringRef(sec.sectname) == section_names::ehFrame) { 445 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 446 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 447 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 448 ++i; 449 continue; 450 } 451 int64_t pairedAddend = 0; 452 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 453 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 454 relInfo = relInfos[++i]; 455 } 456 assert(i < relInfos.size()); 457 if (!validateRelocationInfo(this, sec, relInfo)) 458 continue; 459 if (relInfo.r_address & R_SCATTERED) 460 fatal("TODO: Scattered relocations not supported"); 461 462 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 463 assert(!(embeddedAddend && pairedAddend)); 464 int64_t totalAddend = pairedAddend + embeddedAddend; 465 Reloc r; 466 r.type = relInfo.r_type; 467 r.pcrel = relInfo.r_pcrel; 468 r.length = relInfo.r_length; 469 r.offset = relInfo.r_address; 470 if (relInfo.r_extern) { 471 r.referent = symbols[relInfo.r_symbolnum]; 472 r.addend = isSubtrahend ? 0 : totalAddend; 473 } else { 474 assert(!isSubtrahend); 475 const SectionHeader &referentSecHead = 476 sectionHeaders[relInfo.r_symbolnum - 1]; 477 uint64_t referentOffset; 478 if (relInfo.r_pcrel) { 479 // The implicit addend for pcrel section relocations is the pcrel offset 480 // in terms of the addresses in the input file. Here we adjust it so 481 // that it describes the offset from the start of the referent section. 482 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 483 // have pcrel section relocations. We may want to factor this out into 484 // the arch-specific .cpp file. 485 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 486 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 487 referentSecHead.addr; 488 } else { 489 // The addend for a non-pcrel relocation is its absolute address. 490 referentOffset = totalAddend - referentSecHead.addr; 491 } 492 Subsections &referentSubsections = 493 sections[relInfo.r_symbolnum - 1].subsections; 494 r.referent = 495 findContainingSubsection(referentSubsections, &referentOffset); 496 r.addend = referentOffset; 497 } 498 499 // Find the subsection that this relocation belongs to. 500 // Though not required by the Mach-O format, clang and gcc seem to emit 501 // relocations in order, so let's take advantage of it. However, ld64 emits 502 // unsorted relocations (in `-r` mode), so we have a fallback for that 503 // uncommon case. 504 InputSection *subsec; 505 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 506 ++subsecIt; 507 if (subsecIt == subsections.rend() || 508 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 509 subsec = findContainingSubsection(subsections, &r.offset); 510 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 511 // for the other relocations. 512 subsecIt = subsections.rend(); 513 } else { 514 subsec = subsecIt->isec; 515 r.offset -= subsecIt->offset; 516 } 517 subsec->relocs.push_back(r); 518 519 if (isSubtrahend) { 520 relocation_info minuendInfo = relInfos[++i]; 521 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 522 // attached to the same address. 523 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 524 relInfo.r_address == minuendInfo.r_address); 525 Reloc p; 526 p.type = minuendInfo.r_type; 527 if (minuendInfo.r_extern) { 528 p.referent = symbols[minuendInfo.r_symbolnum]; 529 p.addend = totalAddend; 530 } else { 531 uint64_t referentOffset = 532 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 533 Subsections &referentSubsectVec = 534 sections[minuendInfo.r_symbolnum - 1].subsections; 535 p.referent = 536 findContainingSubsection(referentSubsectVec, &referentOffset); 537 p.addend = referentOffset; 538 } 539 subsec->relocs.push_back(p); 540 } 541 } 542 } 543 544 template <class NList> 545 static macho::Symbol *createDefined(const NList &sym, StringRef name, 546 InputSection *isec, uint64_t value, 547 uint64_t size) { 548 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 549 // N_EXT: Global symbols. These go in the symbol table during the link, 550 // and also in the export table of the output so that the dynamic 551 // linker sees them. 552 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 553 // symbol table during the link so that duplicates are 554 // either reported (for non-weak symbols) or merged 555 // (for weak symbols), but they do not go in the export 556 // table of the output. 557 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 558 // object files) may produce them. LLD does not yet support -r. 559 // These are translation-unit scoped, identical to the `0` case. 560 // 0: Translation-unit scoped. These are not in the symbol table during 561 // link, and not in the export table of the output either. 562 bool isWeakDefCanBeHidden = 563 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 564 565 if (sym.n_type & N_EXT) { 566 bool isPrivateExtern = sym.n_type & N_PEXT; 567 // lld's behavior for merging symbols is slightly different from ld64: 568 // ld64 picks the winning symbol based on several criteria (see 569 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 570 // just merges metadata and keeps the contents of the first symbol 571 // with that name (see SymbolTable::addDefined). For: 572 // * inline function F in a TU built with -fvisibility-inlines-hidden 573 // * and inline function F in another TU built without that flag 574 // ld64 will pick the one from the file built without 575 // -fvisibility-inlines-hidden. 576 // lld will instead pick the one listed first on the link command line and 577 // give it visibility as if the function was built without 578 // -fvisibility-inlines-hidden. 579 // If both functions have the same contents, this will have the same 580 // behavior. If not, it won't, but the input had an ODR violation in 581 // that case. 582 // 583 // Similarly, merging a symbol 584 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 585 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 586 // should produce one 587 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 588 // with ld64's semantics, because it means the non-private-extern 589 // definition will continue to take priority if more private extern 590 // definitions are encountered. With lld's semantics there's no observable 591 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 592 // that's privateExtern -- neither makes it into the dynamic symbol table, 593 // unless the autohide symbol is explicitly exported. 594 // But if a symbol is both privateExtern and autohide then it can't 595 // be exported. 596 // So we nullify the autohide flag when privateExtern is present 597 // and promote the symbol to privateExtern when it is not already. 598 if (isWeakDefCanBeHidden && isPrivateExtern) 599 isWeakDefCanBeHidden = false; 600 else if (isWeakDefCanBeHidden) 601 isPrivateExtern = true; 602 return symtab->addDefined( 603 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 604 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 605 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 606 isWeakDefCanBeHidden); 607 } 608 assert(!isWeakDefCanBeHidden && 609 "weak_def_can_be_hidden on already-hidden symbol?"); 610 return make<Defined>( 611 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 612 /*isExternal=*/false, /*isPrivateExtern=*/false, 613 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 614 sym.n_desc & N_NO_DEAD_STRIP); 615 } 616 617 // Absolute symbols are defined symbols that do not have an associated 618 // InputSection. They cannot be weak. 619 template <class NList> 620 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 621 StringRef name) { 622 if (sym.n_type & N_EXT) { 623 return symtab->addDefined( 624 name, file, nullptr, sym.n_value, /*size=*/0, 625 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 626 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 627 /*isWeakDefCanBeHidden=*/false); 628 } 629 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 630 /*isWeakDef=*/false, 631 /*isExternal=*/false, /*isPrivateExtern=*/false, 632 sym.n_desc & N_ARM_THUMB_DEF, 633 /*isReferencedDynamically=*/false, 634 sym.n_desc & N_NO_DEAD_STRIP); 635 } 636 637 template <class NList> 638 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 639 StringRef name) { 640 uint8_t type = sym.n_type & N_TYPE; 641 switch (type) { 642 case N_UNDF: 643 return sym.n_value == 0 644 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 645 : symtab->addCommon(name, this, sym.n_value, 646 1 << GET_COMM_ALIGN(sym.n_desc), 647 sym.n_type & N_PEXT); 648 case N_ABS: 649 return createAbsolute(sym, this, name); 650 case N_PBUD: 651 case N_INDR: 652 error("TODO: support symbols of type " + std::to_string(type)); 653 return nullptr; 654 case N_SECT: 655 llvm_unreachable( 656 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 657 default: 658 llvm_unreachable("invalid symbol type"); 659 } 660 } 661 662 template <class NList> static bool isUndef(const NList &sym) { 663 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 664 } 665 666 template <class LP> 667 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 668 ArrayRef<typename LP::nlist> nList, 669 const char *strtab, bool subsectionsViaSymbols) { 670 using NList = typename LP::nlist; 671 672 // Groups indices of the symbols by the sections that contain them. 673 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 674 symbols.resize(nList.size()); 675 SmallVector<unsigned, 32> undefineds; 676 for (uint32_t i = 0; i < nList.size(); ++i) { 677 const NList &sym = nList[i]; 678 679 // Ignore debug symbols for now. 680 // FIXME: may need special handling. 681 if (sym.n_type & N_STAB) 682 continue; 683 684 StringRef name = strtab + sym.n_strx; 685 if ((sym.n_type & N_TYPE) == N_SECT) { 686 Subsections &subsections = sections[sym.n_sect - 1].subsections; 687 // parseSections() may have chosen not to parse this section. 688 if (subsections.empty()) 689 continue; 690 symbolsBySection[sym.n_sect - 1].push_back(i); 691 } else if (isUndef(sym)) { 692 undefineds.push_back(i); 693 } else { 694 symbols[i] = parseNonSectionSymbol(sym, name); 695 } 696 } 697 698 for (size_t i = 0; i < sections.size(); ++i) { 699 Subsections &subsections = sections[i].subsections; 700 if (subsections.empty()) 701 continue; 702 InputSection *lastIsec = subsections.back().isec; 703 if (lastIsec->getName() == section_names::ehFrame) { 704 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 705 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 706 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 707 continue; 708 } 709 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 710 uint64_t sectionAddr = sectionHeaders[i].addr; 711 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 712 713 // Record-based sections have already been split into subsections during 714 // parseSections(), so we simply need to match Symbols to the corresponding 715 // subsection here. 716 if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) { 717 for (size_t j = 0; j < symbolIndices.size(); ++j) { 718 uint32_t symIndex = symbolIndices[j]; 719 const NList &sym = nList[symIndex]; 720 StringRef name = strtab + sym.n_strx; 721 uint64_t symbolOffset = sym.n_value - sectionAddr; 722 InputSection *isec = 723 findContainingSubsection(subsections, &symbolOffset); 724 if (symbolOffset != 0) { 725 error(toString(lastIsec) + ": symbol " + name + 726 " at misaligned offset"); 727 continue; 728 } 729 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 730 } 731 continue; 732 } 733 734 // Calculate symbol sizes and create subsections by splitting the sections 735 // along symbol boundaries. 736 // We populate subsections by repeatedly splitting the last (highest 737 // address) subsection. 738 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 739 return nList[lhs].n_value < nList[rhs].n_value; 740 }); 741 for (size_t j = 0; j < symbolIndices.size(); ++j) { 742 uint32_t symIndex = symbolIndices[j]; 743 const NList &sym = nList[symIndex]; 744 StringRef name = strtab + sym.n_strx; 745 Subsection &subsec = subsections.back(); 746 InputSection *isec = subsec.isec; 747 748 uint64_t subsecAddr = sectionAddr + subsec.offset; 749 size_t symbolOffset = sym.n_value - subsecAddr; 750 uint64_t symbolSize = 751 j + 1 < symbolIndices.size() 752 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 753 : isec->data.size() - symbolOffset; 754 // There are 4 cases where we do not need to create a new subsection: 755 // 1. If the input file does not use subsections-via-symbols. 756 // 2. Multiple symbols at the same address only induce one subsection. 757 // (The symbolOffset == 0 check covers both this case as well as 758 // the first loop iteration.) 759 // 3. Alternative entry points do not induce new subsections. 760 // 4. If we have a literal section (e.g. __cstring and __literal4). 761 if (!subsectionsViaSymbols || symbolOffset == 0 || 762 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 763 symbols[symIndex] = 764 createDefined(sym, name, isec, symbolOffset, symbolSize); 765 continue; 766 } 767 auto *concatIsec = cast<ConcatInputSection>(isec); 768 769 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 770 nextIsec->wasCoalesced = false; 771 if (isZeroFill(isec->getFlags())) { 772 // Zero-fill sections have NULL data.data() non-zero data.size() 773 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 774 isec->data = {nullptr, symbolOffset}; 775 } else { 776 nextIsec->data = isec->data.slice(symbolOffset); 777 isec->data = isec->data.slice(0, symbolOffset); 778 } 779 780 // By construction, the symbol will be at offset zero in the new 781 // subsection. 782 symbols[symIndex] = 783 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 784 // TODO: ld64 appears to preserve the original alignment as well as each 785 // subsection's offset from the last aligned address. We should consider 786 // emulating that behavior. 787 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 788 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 789 } 790 } 791 792 // Undefined symbols can trigger recursive fetch from Archives due to 793 // LazySymbols. Process defined symbols first so that the relative order 794 // between a defined symbol and an undefined symbol does not change the 795 // symbol resolution behavior. In addition, a set of interconnected symbols 796 // will all be resolved to the same file, instead of being resolved to 797 // different files. 798 for (unsigned i : undefineds) { 799 const NList &sym = nList[i]; 800 StringRef name = strtab + sym.n_strx; 801 symbols[i] = parseNonSectionSymbol(sym, name); 802 } 803 } 804 805 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 806 StringRef sectName) 807 : InputFile(OpaqueKind, mb) { 808 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 809 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 810 ConcatInputSection *isec = 811 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16), 812 /*file=*/this, data); 813 isec->live = true; 814 sections.push_back(0); 815 sections.back().subsections.push_back({0, isec}); 816 } 817 818 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 819 : InputFile(ObjKind, mb), modTime(modTime) { 820 this->archiveName = std::string(archiveName); 821 if (target->wordSize == 8) 822 parse<LP64>(); 823 else 824 parse<ILP32>(); 825 } 826 827 template <class LP> void ObjFile::parse() { 828 using Header = typename LP::mach_header; 829 using SegmentCommand = typename LP::segment_command; 830 using SectionHeader = typename LP::section; 831 using NList = typename LP::nlist; 832 833 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 834 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 835 836 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 837 if (arch != config->arch()) { 838 auto msg = config->errorForArchMismatch 839 ? static_cast<void (*)(const Twine &)>(error) 840 : warn; 841 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 842 " which is incompatible with target architecture " + 843 getArchitectureName(config->arch())); 844 return; 845 } 846 847 if (!checkCompatibility(this)) 848 return; 849 850 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 851 StringRef data{reinterpret_cast<const char *>(cmd + 1), 852 cmd->cmdsize - sizeof(linker_option_command)}; 853 parseLCLinkerOption(this, cmd->count, data); 854 } 855 856 ArrayRef<SectionHeader> sectionHeaders; 857 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 858 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 859 sectionHeaders = ArrayRef<SectionHeader>{ 860 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 861 parseSections(sectionHeaders); 862 } 863 864 // TODO: Error on missing LC_SYMTAB? 865 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 866 auto *c = reinterpret_cast<const symtab_command *>(cmd); 867 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 868 c->nsyms); 869 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 870 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 871 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 872 } 873 874 // The relocations may refer to the symbols, so we parse them after we have 875 // parsed all the symbols. 876 for (size_t i = 0, n = sections.size(); i < n; ++i) 877 if (!sections[i].subsections.empty()) 878 parseRelocations(sectionHeaders, sectionHeaders[i], 879 sections[i].subsections); 880 881 parseDebugInfo(); 882 if (compactUnwindSection) 883 registerCompactUnwind(); 884 } 885 886 void ObjFile::parseDebugInfo() { 887 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 888 if (!dObj) 889 return; 890 891 auto *ctx = make<DWARFContext>( 892 std::move(dObj), "", 893 [&](Error err) { 894 warn(toString(this) + ": " + toString(std::move(err))); 895 }, 896 [&](Error warning) { 897 warn(toString(this) + ": " + toString(std::move(warning))); 898 }); 899 900 // TODO: Since object files can contain a lot of DWARF info, we should verify 901 // that we are parsing just the info we need 902 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 903 // FIXME: There can be more than one compile unit per object file. See 904 // PR48637. 905 auto it = units.begin(); 906 compileUnit = it->get(); 907 } 908 909 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 910 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 911 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 912 if (!cmd) 913 return {}; 914 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 915 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 916 c->datasize / sizeof(data_in_code_entry)}; 917 } 918 919 // Create pointers from symbols to their associated compact unwind entries. 920 void ObjFile::registerCompactUnwind() { 921 for (const Subsection &subsection : compactUnwindSection->subsections) { 922 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 923 // Hack!! Since each CUE contains a different function address, if ICF 924 // operated naively and compared the entire contents of each CUE, entries 925 // with identical unwind info but belonging to different functions would 926 // never be considered equivalent. To work around this problem, we slice 927 // away the function address here. (Note that we do not adjust the offsets 928 // of the corresponding relocations.) We rely on `relocateCompactUnwind()` 929 // to correctly handle these truncated input sections. 930 isec->data = isec->data.slice(target->wordSize); 931 932 ConcatInputSection *referentIsec; 933 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 934 Reloc &r = *it; 935 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 936 if (r.offset != 0) { 937 ++it; 938 continue; 939 } 940 uint64_t add = r.addend; 941 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 942 // Check whether the symbol defined in this file is the prevailing one. 943 // Skip if it is e.g. a weak def that didn't prevail. 944 if (sym->getFile() != this) { 945 ++it; 946 continue; 947 } 948 add += sym->value; 949 referentIsec = cast<ConcatInputSection>(sym->isec); 950 } else { 951 referentIsec = 952 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 953 } 954 if (referentIsec->getSegName() != segment_names::text) 955 error("compact unwind references address in " + toString(referentIsec) + 956 " which is not in segment __TEXT"); 957 // The functionAddress relocations are typically section relocations. 958 // However, unwind info operates on a per-symbol basis, so we search for 959 // the function symbol here. 960 auto symIt = llvm::lower_bound( 961 referentIsec->symbols, add, 962 [](Defined *d, uint64_t add) { return d->value < add; }); 963 // The relocation should point at the exact address of a symbol (with no 964 // addend). 965 if (symIt == referentIsec->symbols.end() || (*symIt)->value != add) { 966 assert(referentIsec->wasCoalesced); 967 ++it; 968 continue; 969 } 970 (*symIt)->unwindEntry = isec; 971 // Since we've sliced away the functionAddress, we should remove the 972 // corresponding relocation too. Given that clang emits relocations in 973 // reverse order of address, this relocation should be at the end of the 974 // vector for most of our input object files, so this is typically an O(1) 975 // operation. 976 it = isec->relocs.erase(it); 977 } 978 } 979 } 980 981 // The path can point to either a dylib or a .tbd file. 982 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 983 Optional<MemoryBufferRef> mbref = readFile(path); 984 if (!mbref) { 985 error("could not read dylib file at " + path); 986 return nullptr; 987 } 988 return loadDylib(*mbref, umbrella); 989 } 990 991 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 992 // the first document storing child pointers to the rest of them. When we are 993 // processing a given TBD file, we store that top-level document in 994 // currentTopLevelTapi. When processing re-exports, we search its children for 995 // potentially matching documents in the same TBD file. Note that the children 996 // themselves don't point to further documents, i.e. this is a two-level tree. 997 // 998 // Re-exports can either refer to on-disk files, or to documents within .tbd 999 // files. 1000 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1001 const InterfaceFile *currentTopLevelTapi) { 1002 // Search order: 1003 // 1. Install name basename in -F / -L directories. 1004 { 1005 StringRef stem = path::stem(path); 1006 SmallString<128> frameworkName; 1007 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1008 bool isFramework = path.endswith(frameworkName); 1009 if (isFramework) { 1010 for (StringRef dir : config->frameworkSearchPaths) { 1011 SmallString<128> candidate = dir; 1012 path::append(candidate, frameworkName); 1013 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1014 return loadDylib(*dylibPath, umbrella); 1015 } 1016 } else if (Optional<StringRef> dylibPath = findPathCombination( 1017 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1018 return loadDylib(*dylibPath, umbrella); 1019 } 1020 1021 // 2. As absolute path. 1022 if (path::is_absolute(path, path::Style::posix)) 1023 for (StringRef root : config->systemLibraryRoots) 1024 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1025 return loadDylib(*dylibPath, umbrella); 1026 1027 // 3. As relative path. 1028 1029 // TODO: Handle -dylib_file 1030 1031 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1032 SmallString<128> newPath; 1033 if (config->outputType == MH_EXECUTE && 1034 path.consume_front("@executable_path/")) { 1035 // ld64 allows overriding this with the undocumented flag -executable_path. 1036 // lld doesn't currently implement that flag. 1037 // FIXME: Consider using finalOutput instead of outputFile. 1038 path::append(newPath, path::parent_path(config->outputFile), path); 1039 path = newPath; 1040 } else if (path.consume_front("@loader_path/")) { 1041 fs::real_path(umbrella->getName(), newPath); 1042 path::remove_filename(newPath); 1043 path::append(newPath, path); 1044 path = newPath; 1045 } else if (path.startswith("@rpath/")) { 1046 for (StringRef rpath : umbrella->rpaths) { 1047 newPath.clear(); 1048 if (rpath.consume_front("@loader_path/")) { 1049 fs::real_path(umbrella->getName(), newPath); 1050 path::remove_filename(newPath); 1051 } 1052 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1053 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1054 return loadDylib(*dylibPath, umbrella); 1055 } 1056 } 1057 1058 // FIXME: Should this be further up? 1059 if (currentTopLevelTapi) { 1060 for (InterfaceFile &child : 1061 make_pointee_range(currentTopLevelTapi->documents())) { 1062 assert(child.documents().empty()); 1063 if (path == child.getInstallName()) { 1064 auto file = make<DylibFile>(child, umbrella); 1065 file->parseReexports(child); 1066 return file; 1067 } 1068 } 1069 } 1070 1071 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1072 return loadDylib(*dylibPath, umbrella); 1073 1074 return nullptr; 1075 } 1076 1077 // If a re-exported dylib is public (lives in /usr/lib or 1078 // /System/Library/Frameworks), then it is considered implicitly linked: we 1079 // should bind to its symbols directly instead of via the re-exporting umbrella 1080 // library. 1081 static bool isImplicitlyLinked(StringRef path) { 1082 if (!config->implicitDylibs) 1083 return false; 1084 1085 if (path::parent_path(path) == "/usr/lib") 1086 return true; 1087 1088 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1089 if (path.consume_front("/System/Library/Frameworks/")) { 1090 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1091 return path::filename(path) == frameworkName; 1092 } 1093 1094 return false; 1095 } 1096 1097 static void loadReexport(StringRef path, DylibFile *umbrella, 1098 const InterfaceFile *currentTopLevelTapi) { 1099 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1100 if (!reexport) 1101 error("unable to locate re-export with install name " + path); 1102 } 1103 1104 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1105 bool isBundleLoader) 1106 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1107 isBundleLoader(isBundleLoader) { 1108 assert(!isBundleLoader || !umbrella); 1109 if (umbrella == nullptr) 1110 umbrella = this; 1111 this->umbrella = umbrella; 1112 1113 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1114 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1115 1116 // Initialize installName. 1117 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1118 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1119 currentVersion = read32le(&c->dylib.current_version); 1120 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1121 installName = 1122 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1123 } else if (!isBundleLoader) { 1124 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1125 // so it's OK. 1126 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1127 return; 1128 } 1129 1130 if (config->printEachFile) 1131 message(toString(this)); 1132 inputFiles.insert(this); 1133 1134 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1135 1136 if (!checkCompatibility(this)) 1137 return; 1138 1139 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1140 1141 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1142 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1143 rpaths.push_back(rpath); 1144 } 1145 1146 // Initialize symbols. 1147 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1148 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1149 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1150 parseTrie(buf + c->export_off, c->export_size, 1151 [&](const Twine &name, uint64_t flags) { 1152 StringRef savedName = saver.save(name); 1153 if (handleLDSymbol(savedName)) 1154 return; 1155 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1156 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1157 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1158 isWeakDef, isTlv)); 1159 }); 1160 } else { 1161 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1162 return; 1163 } 1164 } 1165 1166 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1167 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1168 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1169 target->headerSize; 1170 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1171 auto *cmd = reinterpret_cast<const load_command *>(p); 1172 p += cmd->cmdsize; 1173 1174 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1175 cmd->cmd == LC_REEXPORT_DYLIB) { 1176 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1177 StringRef reexportPath = 1178 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1179 loadReexport(reexportPath, exportingFile, nullptr); 1180 } 1181 1182 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1183 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1184 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1185 if (config->namespaceKind == NamespaceKind::flat && 1186 cmd->cmd == LC_LOAD_DYLIB) { 1187 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1188 StringRef dylibPath = 1189 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1190 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1191 if (!dylib) 1192 error(Twine("unable to locate library '") + dylibPath + 1193 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1194 } 1195 } 1196 } 1197 1198 // Some versions of XCode ship with .tbd files that don't have the right 1199 // platform settings. 1200 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 1201 "/usr/lib/system/libsystem_kernel.dylib", 1202 "/usr/lib/system/libsystem_platform.dylib", 1203 "/usr/lib/system/libsystem_pthread.dylib"}; 1204 1205 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1206 bool isBundleLoader) 1207 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1208 isBundleLoader(isBundleLoader) { 1209 // FIXME: Add test for the missing TBD code path. 1210 1211 if (umbrella == nullptr) 1212 umbrella = this; 1213 this->umbrella = umbrella; 1214 1215 installName = saver.save(interface.getInstallName()); 1216 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1217 currentVersion = interface.getCurrentVersion().rawValue(); 1218 1219 if (config->printEachFile) 1220 message(toString(this)); 1221 inputFiles.insert(this); 1222 1223 if (!is_contained(skipPlatformChecks, installName) && 1224 !is_contained(interface.targets(), config->platformInfo.target)) { 1225 error(toString(this) + " is incompatible with " + 1226 std::string(config->platformInfo.target)); 1227 return; 1228 } 1229 1230 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1231 1232 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1233 auto addSymbol = [&](const Twine &name) -> void { 1234 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 1235 /*isWeakDef=*/false, 1236 /*isTlv=*/false)); 1237 }; 1238 // TODO(compnerd) filter out symbols based on the target platform 1239 // TODO: handle weak defs, thread locals 1240 for (const auto *symbol : interface.symbols()) { 1241 if (!symbol->getArchitectures().has(config->arch())) 1242 continue; 1243 1244 if (handleLDSymbol(symbol->getName())) 1245 continue; 1246 1247 switch (symbol->getKind()) { 1248 case SymbolKind::GlobalSymbol: 1249 addSymbol(symbol->getName()); 1250 break; 1251 case SymbolKind::ObjectiveCClass: 1252 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1253 // want to emulate that. 1254 addSymbol(objc::klass + symbol->getName()); 1255 addSymbol(objc::metaclass + symbol->getName()); 1256 break; 1257 case SymbolKind::ObjectiveCClassEHType: 1258 addSymbol(objc::ehtype + symbol->getName()); 1259 break; 1260 case SymbolKind::ObjectiveCInstanceVariable: 1261 addSymbol(objc::ivar + symbol->getName()); 1262 break; 1263 } 1264 } 1265 } 1266 1267 void DylibFile::parseReexports(const InterfaceFile &interface) { 1268 const InterfaceFile *topLevel = 1269 interface.getParent() == nullptr ? &interface : interface.getParent(); 1270 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1271 InterfaceFile::const_target_range targets = intfRef.targets(); 1272 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1273 is_contained(targets, config->platformInfo.target)) 1274 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1275 } 1276 } 1277 1278 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1279 // name, compatibility version or hide/add symbols) for specific target 1280 // versions. 1281 bool DylibFile::handleLDSymbol(StringRef originalName) { 1282 if (!originalName.startswith("$ld$")) 1283 return false; 1284 1285 StringRef action; 1286 StringRef name; 1287 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1288 if (action == "previous") 1289 handleLDPreviousSymbol(name, originalName); 1290 else if (action == "install_name") 1291 handleLDInstallNameSymbol(name, originalName); 1292 return true; 1293 } 1294 1295 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1296 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1297 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1298 StringRef installName; 1299 StringRef compatVersion; 1300 StringRef platformStr; 1301 StringRef startVersion; 1302 StringRef endVersion; 1303 StringRef symbolName; 1304 StringRef rest; 1305 1306 std::tie(installName, name) = name.split('$'); 1307 std::tie(compatVersion, name) = name.split('$'); 1308 std::tie(platformStr, name) = name.split('$'); 1309 std::tie(startVersion, name) = name.split('$'); 1310 std::tie(endVersion, name) = name.split('$'); 1311 std::tie(symbolName, rest) = name.split('$'); 1312 // TODO: ld64 contains some logic for non-empty symbolName as well. 1313 if (!symbolName.empty()) 1314 return; 1315 unsigned platform; 1316 if (platformStr.getAsInteger(10, platform) || 1317 platform != static_cast<unsigned>(config->platform())) 1318 return; 1319 1320 VersionTuple start; 1321 if (start.tryParse(startVersion)) { 1322 warn("failed to parse start version, symbol '" + originalName + 1323 "' ignored"); 1324 return; 1325 } 1326 VersionTuple end; 1327 if (end.tryParse(endVersion)) { 1328 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1329 return; 1330 } 1331 if (config->platformInfo.minimum < start || 1332 config->platformInfo.minimum >= end) 1333 return; 1334 1335 this->installName = saver.save(installName); 1336 1337 if (!compatVersion.empty()) { 1338 VersionTuple cVersion; 1339 if (cVersion.tryParse(compatVersion)) { 1340 warn("failed to parse compatibility version, symbol '" + originalName + 1341 "' ignored"); 1342 return; 1343 } 1344 compatibilityVersion = encodeVersion(cVersion); 1345 } 1346 } 1347 1348 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1349 StringRef originalName) { 1350 // originalName: $ld$ install_name $ os<version> $ install_name 1351 StringRef condition, installName; 1352 std::tie(condition, installName) = name.split('$'); 1353 VersionTuple version; 1354 if (!condition.consume_front("os") || version.tryParse(condition)) 1355 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1356 else if (version == config->platformInfo.minimum) 1357 this->installName = saver.save(installName); 1358 } 1359 1360 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1361 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1362 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1363 } 1364 1365 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1366 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1367 1368 void ArchiveFile::addLazySymbols() { 1369 for (const object::Archive::Symbol &sym : file->symbols()) 1370 symtab->addLazy(sym.getName(), this, sym); 1371 } 1372 1373 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1374 uint32_t modTime, 1375 StringRef archiveName, 1376 uint64_t offsetInArchive) { 1377 if (config->zeroModTime) 1378 modTime = 0; 1379 1380 switch (identify_magic(mb.getBuffer())) { 1381 case file_magic::macho_object: 1382 return make<ObjFile>(mb, modTime, archiveName); 1383 case file_magic::bitcode: 1384 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1385 default: 1386 return createStringError(inconvertibleErrorCode(), 1387 mb.getBufferIdentifier() + 1388 " has unhandled file type"); 1389 } 1390 } 1391 1392 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1393 if (!seen.insert(c.getChildOffset()).second) 1394 return Error::success(); 1395 1396 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1397 if (!mb) 1398 return mb.takeError(); 1399 1400 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1401 if (tar && c.getParent()->isThin()) 1402 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1403 1404 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1405 if (!modTime) 1406 return modTime.takeError(); 1407 1408 Expected<InputFile *> file = 1409 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1410 1411 if (!file) 1412 return file.takeError(); 1413 1414 inputFiles.insert(*file); 1415 printArchiveMemberLoad(reason, *file); 1416 return Error::success(); 1417 } 1418 1419 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1420 object::Archive::Child c = 1421 CHECK(sym.getMember(), toString(this) + 1422 ": could not get the member defining symbol " + 1423 toMachOString(sym)); 1424 1425 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1426 // and become invalid after that call. Copy it to the stack so we can refer 1427 // to it later. 1428 const object::Archive::Symbol symCopy = sym; 1429 1430 // ld64 doesn't demangle sym here even with -demangle. 1431 // Match that: intentionally don't call toMachOString(). 1432 if (Error e = fetch(c, symCopy.getName())) 1433 error(toString(this) + ": could not get the member defining symbol " + 1434 toMachOString(symCopy) + ": " + toString(std::move(e))); 1435 } 1436 1437 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1438 BitcodeFile &file) { 1439 StringRef name = saver.save(objSym.getName()); 1440 1441 // TODO: support weak references 1442 if (objSym.isUndefined()) 1443 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1444 1445 // TODO: Write a test demonstrating why computing isPrivateExtern before 1446 // LTO compilation is important. 1447 bool isPrivateExtern = false; 1448 switch (objSym.getVisibility()) { 1449 case GlobalValue::HiddenVisibility: 1450 isPrivateExtern = true; 1451 break; 1452 case GlobalValue::ProtectedVisibility: 1453 error(name + " has protected visibility, which is not supported by Mach-O"); 1454 break; 1455 case GlobalValue::DefaultVisibility: 1456 break; 1457 } 1458 1459 if (objSym.isCommon()) 1460 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1461 objSym.getCommonAlignment(), isPrivateExtern); 1462 1463 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1464 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1465 /*isThumb=*/false, 1466 /*isReferencedDynamically=*/false, 1467 /*noDeadStrip=*/false, 1468 /*isWeakDefCanBeHidden=*/false); 1469 } 1470 1471 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1472 uint64_t offsetInArchive) 1473 : InputFile(BitcodeKind, mb) { 1474 this->archiveName = std::string(archiveName); 1475 std::string path = mb.getBufferIdentifier().str(); 1476 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1477 // name. If two members with the same name are provided, this causes a 1478 // collision and ThinLTO can't proceed. 1479 // So, we append the archive name to disambiguate two members with the same 1480 // name from multiple different archives, and offset within the archive to 1481 // disambiguate two members of the same name from a single archive. 1482 MemoryBufferRef mbref( 1483 mb.getBuffer(), 1484 saver.save(archiveName.empty() ? path 1485 : archiveName + sys::path::filename(path) + 1486 utostr(offsetInArchive))); 1487 1488 obj = check(lto::InputFile::create(mbref)); 1489 1490 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1491 // "winning" symbol will then be marked as Prevailing at LTO compilation 1492 // time. 1493 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1494 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1495 } 1496 1497 template void ObjFile::parse<LP64>(); 1498