1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/TextAPI/Architecture.h" 71 #include "llvm/TextAPI/InterfaceFile.h" 72 73 using namespace llvm; 74 using namespace llvm::MachO; 75 using namespace llvm::support::endian; 76 using namespace llvm::sys; 77 using namespace lld; 78 using namespace lld::macho; 79 80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 81 std::string lld::toString(const InputFile *f) { 82 if (!f) 83 return "<internal>"; 84 85 // Multiple dylibs can be defined in one .tbd file. 86 if (auto dylibFile = dyn_cast<DylibFile>(f)) 87 if (f->getName().endswith(".tbd")) 88 return (f->getName() + "(" + dylibFile->installName + ")").str(); 89 90 if (f->archiveName.empty()) 91 return std::string(f->getName()); 92 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 93 } 94 95 SetVector<InputFile *> macho::inputFiles; 96 std::unique_ptr<TarWriter> macho::tar; 97 int InputFile::idCount = 0; 98 99 static VersionTuple decodeVersion(uint32_t version) { 100 unsigned major = version >> 16; 101 unsigned minor = (version >> 8) & 0xffu; 102 unsigned subMinor = version & 0xffu; 103 return VersionTuple(major, minor, subMinor); 104 } 105 106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 107 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 108 return {}; 109 110 const char *hdr = input->mb.getBufferStart(); 111 112 std::vector<PlatformInfo> platformInfos; 113 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 PlatformInfo info; 115 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 116 info.minimum = decodeVersion(cmd->minos); 117 platformInfos.emplace_back(std::move(info)); 118 } 119 for (auto *cmd : findCommands<version_min_command>( 120 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 121 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 122 PlatformInfo info; 123 switch (cmd->cmd) { 124 case LC_VERSION_MIN_MACOSX: 125 info.target.Platform = PlatformKind::macOS; 126 break; 127 case LC_VERSION_MIN_IPHONEOS: 128 info.target.Platform = PlatformKind::iOS; 129 break; 130 case LC_VERSION_MIN_TVOS: 131 info.target.Platform = PlatformKind::tvOS; 132 break; 133 case LC_VERSION_MIN_WATCHOS: 134 info.target.Platform = PlatformKind::watchOS; 135 break; 136 } 137 info.minimum = decodeVersion(cmd->version); 138 platformInfos.emplace_back(std::move(info)); 139 } 140 141 return platformInfos; 142 } 143 144 static PlatformKind removeSimulator(PlatformKind platform) { 145 // Mapping of platform to simulator and vice-versa. 146 static const std::map<PlatformKind, PlatformKind> platformMap = { 147 {PlatformKind::iOSSimulator, PlatformKind::iOS}, 148 {PlatformKind::tvOSSimulator, PlatformKind::tvOS}, 149 {PlatformKind::watchOSSimulator, PlatformKind::watchOS}}; 150 151 auto iter = platformMap.find(platform); 152 if (iter == platformMap.end()) 153 return platform; 154 return iter->second; 155 } 156 157 static bool checkCompatibility(const InputFile *input) { 158 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 159 if (platformInfos.empty()) 160 return true; 161 162 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 163 return removeSimulator(info.target.Platform) == 164 removeSimulator(config->platform()); 165 }); 166 if (it == platformInfos.end()) { 167 std::string platformNames; 168 raw_string_ostream os(platformNames); 169 interleave( 170 platformInfos, os, 171 [&](const PlatformInfo &info) { 172 os << getPlatformName(info.target.Platform); 173 }, 174 "/"); 175 error(toString(input) + " has platform " + platformNames + 176 Twine(", which is different from target platform ") + 177 getPlatformName(config->platform())); 178 return false; 179 } 180 181 if (it->minimum > config->platformInfo.minimum) 182 warn(toString(input) + " has version " + it->minimum.getAsString() + 183 ", which is newer than target minimum of " + 184 config->platformInfo.minimum.getAsString()); 185 186 return true; 187 } 188 189 // Open a given file path and return it as a memory-mapped file. 190 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 191 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 192 if (std::error_code ec = mbOrErr.getError()) { 193 error("cannot open " + path + ": " + ec.message()); 194 return None; 195 } 196 197 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 198 MemoryBufferRef mbref = mb->getMemBufferRef(); 199 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 200 201 // If this is a regular non-fat file, return it. 202 const char *buf = mbref.getBufferStart(); 203 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 204 if (mbref.getBufferSize() < sizeof(uint32_t) || 205 read32be(&hdr->magic) != FAT_MAGIC) { 206 if (tar) 207 tar->append(relativeToRoot(path), mbref.getBuffer()); 208 return mbref; 209 } 210 211 // Object files and archive files may be fat files, which contain multiple 212 // real files for different CPU ISAs. Here, we search for a file that matches 213 // with the current link target and returns it as a MemoryBufferRef. 214 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 215 216 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 217 if (reinterpret_cast<const char *>(arch + i + 1) > 218 buf + mbref.getBufferSize()) { 219 error(path + ": fat_arch struct extends beyond end of file"); 220 return None; 221 } 222 223 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 224 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 225 continue; 226 227 uint32_t offset = read32be(&arch[i].offset); 228 uint32_t size = read32be(&arch[i].size); 229 if (offset + size > mbref.getBufferSize()) 230 error(path + ": slice extends beyond end of file"); 231 if (tar) 232 tar->append(relativeToRoot(path), mbref.getBuffer()); 233 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 234 } 235 236 error("unable to find matching architecture in " + path); 237 return None; 238 } 239 240 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 241 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 242 243 template <class Section> 244 void ObjFile::parseSections(ArrayRef<Section> sections) { 245 subsections.reserve(sections.size()); 246 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 247 248 for (const Section &sec : sections) { 249 StringRef name = 250 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 251 StringRef segname = 252 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 253 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 254 : buf + sec.offset, 255 static_cast<size_t>(sec.size)}; 256 if (sec.align >= 32) { 257 error("alignment " + std::to_string(sec.align) + " of section " + name + 258 " is too large"); 259 subsections.push_back({}); 260 continue; 261 } 262 uint32_t align = 1 << sec.align; 263 uint32_t flags = sec.flags; 264 265 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 266 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 267 if (sec.nreloc && config->dedupLiterals) 268 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 269 sec.sectname + 270 ", so LLD cannot deduplicate literals. Try re-running without " 271 "--deduplicate-literals."); 272 273 InputSection *isec; 274 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 275 isec = 276 make<CStringInputSection>(segname, name, this, data, align, flags); 277 // FIXME: parallelize this? 278 cast<CStringInputSection>(isec)->splitIntoPieces(); 279 } else { 280 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 281 flags); 282 } 283 subsections.push_back({{0, isec}}); 284 } else { 285 auto *isec = 286 make<ConcatInputSection>(segname, name, this, data, align, flags); 287 if (!(isDebugSection(isec->flags) && 288 isec->segname == segment_names::dwarf)) { 289 subsections.push_back({{0, isec}}); 290 } else { 291 // Instead of emitting DWARF sections, we emit STABS symbols to the 292 // object files that contain them. We filter them out early to avoid 293 // parsing their relocations unnecessarily. But we must still push an 294 // empty map to ensure the indices line up for the remaining sections. 295 subsections.push_back({}); 296 debugSections.push_back(isec); 297 } 298 } 299 } 300 } 301 302 // Find the subsection corresponding to the greatest section offset that is <= 303 // that of the given offset. 304 // 305 // offset: an offset relative to the start of the original InputSection (before 306 // any subsection splitting has occurred). It will be updated to represent the 307 // same location as an offset relative to the start of the containing 308 // subsection. 309 static InputSection *findContainingSubsection(SubsectionMap &map, 310 uint64_t *offset) { 311 auto it = std::prev(llvm::upper_bound( 312 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 313 return value < subsecEntry.offset; 314 })); 315 *offset -= it->offset; 316 return it->isec; 317 } 318 319 template <class Section> 320 static bool validateRelocationInfo(InputFile *file, const Section &sec, 321 relocation_info rel) { 322 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 323 bool valid = true; 324 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 325 valid = false; 326 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 327 std::to_string(rel.r_address) + " of " + sec.segname + "," + 328 sec.sectname + " in " + toString(file)) 329 .str(); 330 }; 331 332 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 333 error(message("must be extern")); 334 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 335 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 336 "be PC-relative")); 337 if (isThreadLocalVariables(sec.flags) && 338 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 339 error(message("not allowed in thread-local section, must be UNSIGNED")); 340 if (rel.r_length < 2 || rel.r_length > 3 || 341 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 342 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 343 error(message("has width " + std::to_string(1 << rel.r_length) + 344 " bytes, but must be " + 345 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 346 " bytes")); 347 } 348 return valid; 349 } 350 351 template <class Section> 352 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 353 const Section &sec, SubsectionMap &subsecMap) { 354 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 355 ArrayRef<relocation_info> relInfos( 356 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 357 358 for (size_t i = 0; i < relInfos.size(); i++) { 359 // Paired relocations serve as Mach-O's method for attaching a 360 // supplemental datum to a primary relocation record. ELF does not 361 // need them because the *_RELOC_RELA records contain the extra 362 // addend field, vs. *_RELOC_REL which omit the addend. 363 // 364 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 365 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 366 // datum for each is a symbolic address. The result is the offset 367 // between two addresses. 368 // 369 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 370 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 371 // base symbolic address. 372 // 373 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 374 // addend into the instruction stream. On X86, a relocatable address 375 // field always occupies an entire contiguous sequence of byte(s), 376 // so there is no need to merge opcode bits with address 377 // bits. Therefore, it's easy and convenient to store addends in the 378 // instruction-stream bytes that would otherwise contain zeroes. By 379 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 380 // address bits so that bitwise arithmetic is necessary to extract 381 // and insert them. Storing addends in the instruction stream is 382 // possible, but inconvenient and more costly at link time. 383 384 int64_t pairedAddend = 0; 385 relocation_info relInfo = relInfos[i]; 386 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 387 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 388 relInfo = relInfos[++i]; 389 } 390 assert(i < relInfos.size()); 391 if (!validateRelocationInfo(this, sec, relInfo)) 392 continue; 393 if (relInfo.r_address & R_SCATTERED) 394 fatal("TODO: Scattered relocations not supported"); 395 396 bool isSubtrahend = 397 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 398 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 399 assert(!(embeddedAddend && pairedAddend)); 400 int64_t totalAddend = pairedAddend + embeddedAddend; 401 Reloc r; 402 r.type = relInfo.r_type; 403 r.pcrel = relInfo.r_pcrel; 404 r.length = relInfo.r_length; 405 r.offset = relInfo.r_address; 406 if (relInfo.r_extern) { 407 r.referent = symbols[relInfo.r_symbolnum]; 408 r.addend = isSubtrahend ? 0 : totalAddend; 409 } else { 410 assert(!isSubtrahend); 411 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 412 uint64_t referentOffset; 413 if (relInfo.r_pcrel) { 414 // The implicit addend for pcrel section relocations is the pcrel offset 415 // in terms of the addresses in the input file. Here we adjust it so 416 // that it describes the offset from the start of the referent section. 417 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 418 // have pcrel section relocations. We may want to factor this out into 419 // the arch-specific .cpp file. 420 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 421 referentOffset = 422 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 423 } else { 424 // The addend for a non-pcrel relocation is its absolute address. 425 referentOffset = totalAddend - referentSec.addr; 426 } 427 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 428 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 429 r.addend = referentOffset; 430 } 431 432 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 433 subsec->relocs.push_back(r); 434 435 if (isSubtrahend) { 436 relocation_info minuendInfo = relInfos[++i]; 437 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 438 // attached to the same address. 439 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 440 relInfo.r_address == minuendInfo.r_address); 441 Reloc p; 442 p.type = minuendInfo.r_type; 443 if (minuendInfo.r_extern) { 444 p.referent = symbols[minuendInfo.r_symbolnum]; 445 p.addend = totalAddend; 446 } else { 447 uint64_t referentOffset = 448 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 449 SubsectionMap &referentSubsecMap = 450 subsections[minuendInfo.r_symbolnum - 1]; 451 p.referent = 452 findContainingSubsection(referentSubsecMap, &referentOffset); 453 p.addend = referentOffset; 454 } 455 subsec->relocs.push_back(p); 456 } 457 } 458 } 459 460 template <class NList> 461 static macho::Symbol *createDefined(const NList &sym, StringRef name, 462 InputSection *isec, uint64_t value, 463 uint64_t size) { 464 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 465 // N_EXT: Global symbols. These go in the symbol table during the link, 466 // and also in the export table of the output so that the dynamic 467 // linker sees them. 468 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 469 // symbol table during the link so that duplicates are 470 // either reported (for non-weak symbols) or merged 471 // (for weak symbols), but they do not go in the export 472 // table of the output. 473 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 474 // object files) may produce them. LLD does not yet support -r. 475 // These are translation-unit scoped, identical to the `0` case. 476 // 0: Translation-unit scoped. These are not in the symbol table during 477 // link, and not in the export table of the output either. 478 bool isWeakDefCanBeHidden = 479 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 480 481 if (sym.n_type & N_EXT) { 482 bool isPrivateExtern = sym.n_type & N_PEXT; 483 // lld's behavior for merging symbols is slightly different from ld64: 484 // ld64 picks the winning symbol based on several criteria (see 485 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 486 // just merges metadata and keeps the contents of the first symbol 487 // with that name (see SymbolTable::addDefined). For: 488 // * inline function F in a TU built with -fvisibility-inlines-hidden 489 // * and inline function F in another TU built without that flag 490 // ld64 will pick the one from the file built without 491 // -fvisibility-inlines-hidden. 492 // lld will instead pick the one listed first on the link command line and 493 // give it visibility as if the function was built without 494 // -fvisibility-inlines-hidden. 495 // If both functions have the same contents, this will have the same 496 // behavior. If not, it won't, but the input had an ODR violation in 497 // that case. 498 // 499 // Similarly, merging a symbol 500 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 501 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 502 // should produce one 503 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 504 // with ld64's semantics, because it means the non-private-extern 505 // definition will continue to take priority if more private extern 506 // definitions are encountered. With lld's semantics there's no observable 507 // difference between a symbol that's isWeakDefCanBeHidden or one that's 508 // privateExtern -- neither makes it into the dynamic symbol table. So just 509 // promote isWeakDefCanBeHidden to isPrivateExtern here. 510 if (isWeakDefCanBeHidden) 511 isPrivateExtern = true; 512 513 return symtab->addDefined( 514 name, isec->file, isec, value, size, sym.n_desc & N_WEAK_DEF, 515 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 516 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); 517 } 518 519 assert(!isWeakDefCanBeHidden && 520 "weak_def_can_be_hidden on already-hidden symbol?"); 521 return make<Defined>( 522 name, isec->file, isec, value, size, sym.n_desc & N_WEAK_DEF, 523 /*isExternal=*/false, /*isPrivateExtern=*/false, 524 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 525 sym.n_desc & N_NO_DEAD_STRIP); 526 } 527 528 // Absolute symbols are defined symbols that do not have an associated 529 // InputSection. They cannot be weak. 530 template <class NList> 531 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 532 StringRef name) { 533 if (sym.n_type & N_EXT) { 534 return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0, 535 /*isWeakDef=*/false, sym.n_type & N_PEXT, 536 sym.n_desc & N_ARM_THUMB_DEF, 537 /*isReferencedDynamically=*/false, 538 sym.n_desc & N_NO_DEAD_STRIP); 539 } 540 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 541 /*isWeakDef=*/false, 542 /*isExternal=*/false, /*isPrivateExtern=*/false, 543 sym.n_desc & N_ARM_THUMB_DEF, 544 /*isReferencedDynamically=*/false, 545 sym.n_desc & N_NO_DEAD_STRIP); 546 } 547 548 template <class NList> 549 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 550 StringRef name) { 551 uint8_t type = sym.n_type & N_TYPE; 552 switch (type) { 553 case N_UNDF: 554 return sym.n_value == 0 555 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 556 : symtab->addCommon(name, this, sym.n_value, 557 1 << GET_COMM_ALIGN(sym.n_desc), 558 sym.n_type & N_PEXT); 559 case N_ABS: 560 return createAbsolute(sym, this, name); 561 case N_PBUD: 562 case N_INDR: 563 error("TODO: support symbols of type " + std::to_string(type)); 564 return nullptr; 565 case N_SECT: 566 llvm_unreachable( 567 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 568 default: 569 llvm_unreachable("invalid symbol type"); 570 } 571 } 572 573 template <class LP> 574 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 575 ArrayRef<typename LP::nlist> nList, 576 const char *strtab, bool subsectionsViaSymbols) { 577 using NList = typename LP::nlist; 578 579 // Groups indices of the symbols by the sections that contain them. 580 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 581 symbols.resize(nList.size()); 582 for (uint32_t i = 0; i < nList.size(); ++i) { 583 const NList &sym = nList[i]; 584 StringRef name = strtab + sym.n_strx; 585 if ((sym.n_type & N_TYPE) == N_SECT) { 586 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 587 // parseSections() may have chosen not to parse this section. 588 if (subsecMap.empty()) 589 continue; 590 symbolsBySection[sym.n_sect - 1].push_back(i); 591 } else { 592 symbols[i] = parseNonSectionSymbol(sym, name); 593 } 594 } 595 596 // Calculate symbol sizes and create subsections by splitting the sections 597 // along symbol boundaries. 598 for (size_t i = 0; i < subsections.size(); ++i) { 599 SubsectionMap &subsecMap = subsections[i]; 600 if (subsecMap.empty()) 601 continue; 602 603 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 604 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 605 return nList[lhs].n_value < nList[rhs].n_value; 606 }); 607 uint64_t sectionAddr = sectionHeaders[i].addr; 608 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 609 610 // We populate subsecMap by repeatedly splitting the last (highest address) 611 // subsection. 612 SubsectionEntry subsecEntry = subsecMap.back(); 613 for (size_t j = 0; j < symbolIndices.size(); ++j) { 614 uint32_t symIndex = symbolIndices[j]; 615 const NList &sym = nList[symIndex]; 616 StringRef name = strtab + sym.n_strx; 617 InputSection *isec = subsecEntry.isec; 618 619 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 620 size_t symbolOffset = sym.n_value - subsecAddr; 621 uint64_t symbolSize = 622 j + 1 < symbolIndices.size() 623 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 624 : isec->data.size() - symbolOffset; 625 // There are 4 cases where we do not need to create a new subsection: 626 // 1. If the input file does not use subsections-via-symbols. 627 // 2. Multiple symbols at the same address only induce one subsection. 628 // (The symbolOffset == 0 check covers both this case as well as 629 // the first loop iteration.) 630 // 3. Alternative entry points do not induce new subsections. 631 // 4. If we have a literal section (e.g. __cstring and __literal4). 632 if (!subsectionsViaSymbols || symbolOffset == 0 || 633 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 634 symbols[symIndex] = 635 createDefined(sym, name, isec, symbolOffset, symbolSize); 636 continue; 637 } 638 auto *concatIsec = cast<ConcatInputSection>(isec); 639 640 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 641 nextIsec->numRefs = 0; 642 nextIsec->wasCoalesced = false; 643 if (isZeroFill(isec->flags)) { 644 // Zero-fill sections have NULL data.data() non-zero data.size() 645 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 646 isec->data = {nullptr, symbolOffset}; 647 } else { 648 nextIsec->data = isec->data.slice(symbolOffset); 649 isec->data = isec->data.slice(0, symbolOffset); 650 } 651 652 // By construction, the symbol will be at offset zero in the new 653 // subsection. 654 symbols[symIndex] = 655 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 656 // TODO: ld64 appears to preserve the original alignment as well as each 657 // subsection's offset from the last aligned address. We should consider 658 // emulating that behavior. 659 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 660 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 661 subsecEntry = subsecMap.back(); 662 } 663 } 664 } 665 666 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 667 StringRef sectName) 668 : InputFile(OpaqueKind, mb) { 669 ConcatInputSection *isec = 670 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16)); 671 isec->file = this; 672 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 673 isec->data = {buf, mb.getBufferSize()}; 674 isec->live = true; 675 subsections.push_back({{0, isec}}); 676 } 677 678 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 679 : InputFile(ObjKind, mb), modTime(modTime) { 680 this->archiveName = std::string(archiveName); 681 if (target->wordSize == 8) 682 parse<LP64>(); 683 else 684 parse<ILP32>(); 685 } 686 687 template <class LP> void ObjFile::parse() { 688 using Header = typename LP::mach_header; 689 using SegmentCommand = typename LP::segment_command; 690 using Section = typename LP::section; 691 using NList = typename LP::nlist; 692 693 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 694 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 695 696 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 697 if (arch != config->arch()) { 698 error(toString(this) + " has architecture " + getArchitectureName(arch) + 699 " which is incompatible with target architecture " + 700 getArchitectureName(config->arch())); 701 return; 702 } 703 704 if (!checkCompatibility(this)) 705 return; 706 707 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 708 StringRef data{reinterpret_cast<const char *>(cmd + 1), 709 cmd->cmdsize - sizeof(linker_option_command)}; 710 parseLCLinkerOption(this, cmd->count, data); 711 } 712 713 ArrayRef<Section> sectionHeaders; 714 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 715 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 716 sectionHeaders = 717 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 718 parseSections(sectionHeaders); 719 } 720 721 // TODO: Error on missing LC_SYMTAB? 722 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 723 auto *c = reinterpret_cast<const symtab_command *>(cmd); 724 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 725 c->nsyms); 726 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 727 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 728 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 729 } 730 731 // The relocations may refer to the symbols, so we parse them after we have 732 // parsed all the symbols. 733 for (size_t i = 0, n = subsections.size(); i < n; ++i) 734 if (!subsections[i].empty()) 735 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 736 737 parseDebugInfo(); 738 if (config->emitDataInCodeInfo) 739 parseDataInCode(); 740 } 741 742 void ObjFile::parseDebugInfo() { 743 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 744 if (!dObj) 745 return; 746 747 auto *ctx = make<DWARFContext>( 748 std::move(dObj), "", 749 [&](Error err) { 750 warn(toString(this) + ": " + toString(std::move(err))); 751 }, 752 [&](Error warning) { 753 warn(toString(this) + ": " + toString(std::move(warning))); 754 }); 755 756 // TODO: Since object files can contain a lot of DWARF info, we should verify 757 // that we are parsing just the info we need 758 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 759 // FIXME: There can be more than one compile unit per object file. See 760 // PR48637. 761 auto it = units.begin(); 762 compileUnit = it->get(); 763 } 764 765 void ObjFile::parseDataInCode() { 766 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 767 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 768 if (!cmd) 769 return; 770 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 771 dataInCodeEntries = { 772 reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 773 c->datasize / sizeof(data_in_code_entry)}; 774 assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs, 775 const data_in_code_entry &rhs) { 776 return lhs.offset < rhs.offset; 777 })); 778 } 779 780 // The path can point to either a dylib or a .tbd file. 781 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 782 Optional<MemoryBufferRef> mbref = readFile(path); 783 if (!mbref) { 784 error("could not read dylib file at " + path); 785 return nullptr; 786 } 787 return loadDylib(*mbref, umbrella); 788 } 789 790 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 791 // the first document storing child pointers to the rest of them. When we are 792 // processing a given TBD file, we store that top-level document in 793 // currentTopLevelTapi. When processing re-exports, we search its children for 794 // potentially matching documents in the same TBD file. Note that the children 795 // themselves don't point to further documents, i.e. this is a two-level tree. 796 // 797 // Re-exports can either refer to on-disk files, or to documents within .tbd 798 // files. 799 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 800 const InterfaceFile *currentTopLevelTapi) { 801 if (path::is_absolute(path, path::Style::posix)) 802 for (StringRef root : config->systemLibraryRoots) 803 if (Optional<std::string> dylibPath = 804 resolveDylibPath((root + path).str())) 805 return loadDylib(*dylibPath, umbrella); 806 807 // TODO: Handle -dylib_file 808 809 SmallString<128> newPath; 810 if (config->outputType == MH_EXECUTE && 811 path.consume_front("@executable_path/")) { 812 // ld64 allows overriding this with the undocumented flag -executable_path. 813 // lld doesn't currently implement that flag. 814 path::append(newPath, path::parent_path(config->outputFile), path); 815 path = newPath; 816 } else if (path.consume_front("@loader_path/")) { 817 fs::real_path(umbrella->getName(), newPath); 818 path::remove_filename(newPath); 819 path::append(newPath, path); 820 path = newPath; 821 } else if (path.startswith("@rpath/")) { 822 for (StringRef rpath : umbrella->rpaths) { 823 newPath.clear(); 824 if (rpath.consume_front("@loader_path/")) { 825 fs::real_path(umbrella->getName(), newPath); 826 path::remove_filename(newPath); 827 } 828 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 829 if (Optional<std::string> dylibPath = resolveDylibPath(newPath)) 830 return loadDylib(*dylibPath, umbrella); 831 } 832 } 833 834 if (currentTopLevelTapi) { 835 for (InterfaceFile &child : 836 make_pointee_range(currentTopLevelTapi->documents())) { 837 assert(child.documents().empty()); 838 if (path == child.getInstallName()) { 839 auto file = make<DylibFile>(child, umbrella); 840 file->parseReexports(child); 841 return file; 842 } 843 } 844 } 845 846 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 847 return loadDylib(*dylibPath, umbrella); 848 849 return nullptr; 850 } 851 852 // If a re-exported dylib is public (lives in /usr/lib or 853 // /System/Library/Frameworks), then it is considered implicitly linked: we 854 // should bind to its symbols directly instead of via the re-exporting umbrella 855 // library. 856 static bool isImplicitlyLinked(StringRef path) { 857 if (!config->implicitDylibs) 858 return false; 859 860 if (path::parent_path(path) == "/usr/lib") 861 return true; 862 863 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 864 if (path.consume_front("/System/Library/Frameworks/")) { 865 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 866 return path::filename(path) == frameworkName; 867 } 868 869 return false; 870 } 871 872 static void loadReexport(StringRef path, DylibFile *umbrella, 873 const InterfaceFile *currentTopLevelTapi) { 874 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 875 if (!reexport) 876 error("unable to locate re-export with install name " + path); 877 } 878 879 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 880 bool isBundleLoader) 881 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 882 isBundleLoader(isBundleLoader) { 883 assert(!isBundleLoader || !umbrella); 884 if (umbrella == nullptr) 885 umbrella = this; 886 this->umbrella = umbrella; 887 888 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 889 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 890 891 // Initialize installName. 892 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 893 auto *c = reinterpret_cast<const dylib_command *>(cmd); 894 currentVersion = read32le(&c->dylib.current_version); 895 compatibilityVersion = read32le(&c->dylib.compatibility_version); 896 installName = 897 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 898 } else if (!isBundleLoader) { 899 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 900 // so it's OK. 901 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 902 return; 903 } 904 905 if (config->printEachFile) 906 message(toString(this)); 907 inputFiles.insert(this); 908 909 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 910 911 if (!checkCompatibility(this)) 912 return; 913 914 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 915 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 916 rpaths.push_back(rpath); 917 } 918 919 // Initialize symbols. 920 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 921 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 922 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 923 parseTrie(buf + c->export_off, c->export_size, 924 [&](const Twine &name, uint64_t flags) { 925 StringRef savedName = saver.save(name); 926 if (handleLDSymbol(savedName)) 927 return; 928 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 929 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 930 symbols.push_back(symtab->addDylib(savedName, exportingFile, 931 isWeakDef, isTlv)); 932 }); 933 } else { 934 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 935 return; 936 } 937 } 938 939 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 940 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 941 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 942 target->headerSize; 943 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 944 auto *cmd = reinterpret_cast<const load_command *>(p); 945 p += cmd->cmdsize; 946 947 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 948 cmd->cmd == LC_REEXPORT_DYLIB) { 949 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 950 StringRef reexportPath = 951 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 952 loadReexport(reexportPath, exportingFile, nullptr); 953 } 954 955 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 956 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 957 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 958 if (config->namespaceKind == NamespaceKind::flat && 959 cmd->cmd == LC_LOAD_DYLIB) { 960 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 961 StringRef dylibPath = 962 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 963 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 964 if (!dylib) 965 error(Twine("unable to locate library '") + dylibPath + 966 "' loaded from '" + toString(this) + "' for -flat_namespace"); 967 } 968 } 969 } 970 971 // Some versions of XCode ship with .tbd files that don't have the right 972 // platform settings. 973 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 974 "/usr/lib/system/libsystem_kernel.dylib", 975 "/usr/lib/system/libsystem_platform.dylib", 976 "/usr/lib/system/libsystem_pthread.dylib"}; 977 978 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 979 bool isBundleLoader) 980 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 981 isBundleLoader(isBundleLoader) { 982 // FIXME: Add test for the missing TBD code path. 983 984 if (umbrella == nullptr) 985 umbrella = this; 986 this->umbrella = umbrella; 987 988 installName = saver.save(interface.getInstallName()); 989 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 990 currentVersion = interface.getCurrentVersion().rawValue(); 991 992 if (config->printEachFile) 993 message(toString(this)); 994 inputFiles.insert(this); 995 996 if (!is_contained(skipPlatformChecks, installName) && 997 !is_contained(interface.targets(), config->platformInfo.target)) { 998 error(toString(this) + " is incompatible with " + 999 std::string(config->platformInfo.target)); 1000 return; 1001 } 1002 1003 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1004 auto addSymbol = [&](const Twine &name) -> void { 1005 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 1006 /*isWeakDef=*/false, 1007 /*isTlv=*/false)); 1008 }; 1009 // TODO(compnerd) filter out symbols based on the target platform 1010 // TODO: handle weak defs, thread locals 1011 for (const auto *symbol : interface.symbols()) { 1012 if (!symbol->getArchitectures().has(config->arch())) 1013 continue; 1014 1015 if (handleLDSymbol(symbol->getName())) 1016 continue; 1017 1018 switch (symbol->getKind()) { 1019 case SymbolKind::GlobalSymbol: 1020 addSymbol(symbol->getName()); 1021 break; 1022 case SymbolKind::ObjectiveCClass: 1023 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1024 // want to emulate that. 1025 addSymbol(objc::klass + symbol->getName()); 1026 addSymbol(objc::metaclass + symbol->getName()); 1027 break; 1028 case SymbolKind::ObjectiveCClassEHType: 1029 addSymbol(objc::ehtype + symbol->getName()); 1030 break; 1031 case SymbolKind::ObjectiveCInstanceVariable: 1032 addSymbol(objc::ivar + symbol->getName()); 1033 break; 1034 } 1035 } 1036 } 1037 1038 void DylibFile::parseReexports(const InterfaceFile &interface) { 1039 const InterfaceFile *topLevel = 1040 interface.getParent() == nullptr ? &interface : interface.getParent(); 1041 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 1042 InterfaceFile::const_target_range targets = intfRef.targets(); 1043 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1044 is_contained(targets, config->platformInfo.target)) 1045 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1046 } 1047 } 1048 1049 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1050 // name, compatibility version or hide/add symbols) for specific target 1051 // versions. 1052 bool DylibFile::handleLDSymbol(StringRef originalName) { 1053 if (!originalName.startswith("$ld$")) 1054 return false; 1055 1056 StringRef action; 1057 StringRef name; 1058 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1059 if (action == "previous") 1060 handleLDPreviousSymbol(name, originalName); 1061 else if (action == "install_name") 1062 handleLDInstallNameSymbol(name, originalName); 1063 return true; 1064 } 1065 1066 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1067 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1068 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1069 StringRef installName; 1070 StringRef compatVersion; 1071 StringRef platformStr; 1072 StringRef startVersion; 1073 StringRef endVersion; 1074 StringRef symbolName; 1075 StringRef rest; 1076 1077 std::tie(installName, name) = name.split('$'); 1078 std::tie(compatVersion, name) = name.split('$'); 1079 std::tie(platformStr, name) = name.split('$'); 1080 std::tie(startVersion, name) = name.split('$'); 1081 std::tie(endVersion, name) = name.split('$'); 1082 std::tie(symbolName, rest) = name.split('$'); 1083 // TODO: ld64 contains some logic for non-empty symbolName as well. 1084 if (!symbolName.empty()) 1085 return; 1086 unsigned platform; 1087 if (platformStr.getAsInteger(10, platform) || 1088 platform != static_cast<unsigned>(config->platform())) 1089 return; 1090 1091 VersionTuple start; 1092 if (start.tryParse(startVersion)) { 1093 warn("failed to parse start version, symbol '" + originalName + 1094 "' ignored"); 1095 return; 1096 } 1097 VersionTuple end; 1098 if (end.tryParse(endVersion)) { 1099 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1100 return; 1101 } 1102 if (config->platformInfo.minimum < start || 1103 config->platformInfo.minimum >= end) 1104 return; 1105 1106 this->installName = saver.save(installName); 1107 1108 if (!compatVersion.empty()) { 1109 VersionTuple cVersion; 1110 if (cVersion.tryParse(compatVersion)) { 1111 warn("failed to parse compatibility version, symbol '" + originalName + 1112 "' ignored"); 1113 return; 1114 } 1115 compatibilityVersion = encodeVersion(cVersion); 1116 } 1117 } 1118 1119 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1120 StringRef originalName) { 1121 // originalName: $ld$ install_name $ os<version> $ install_name 1122 StringRef condition, installName; 1123 std::tie(condition, installName) = name.split('$'); 1124 VersionTuple version; 1125 if (!condition.consume_front("os") || version.tryParse(condition)) 1126 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1127 else if (version == config->platformInfo.minimum) 1128 this->installName = saver.save(installName); 1129 } 1130 1131 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1132 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 1133 for (const object::Archive::Symbol &sym : file->symbols()) 1134 symtab->addLazy(sym.getName(), this, sym); 1135 } 1136 1137 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1138 object::Archive::Child c = 1139 CHECK(sym.getMember(), toString(this) + 1140 ": could not get the member for symbol " + 1141 toMachOString(sym)); 1142 1143 if (!seen.insert(c.getChildOffset()).second) 1144 return; 1145 1146 MemoryBufferRef mb = 1147 CHECK(c.getMemoryBufferRef(), 1148 toString(this) + 1149 ": could not get the buffer for the member defining symbol " + 1150 toMachOString(sym)); 1151 1152 if (tar && c.getParent()->isThin()) 1153 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1154 1155 uint32_t modTime = toTimeT( 1156 CHECK(c.getLastModified(), toString(this) + 1157 ": could not get the modification time " 1158 "for the member defining symbol " + 1159 toMachOString(sym))); 1160 1161 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1162 // and become invalid after that call. Copy it to the stack so we can refer 1163 // to it later. 1164 const object::Archive::Symbol symCopy = sym; 1165 1166 if (Optional<InputFile *> file = 1167 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 1168 inputFiles.insert(*file); 1169 // ld64 doesn't demangle sym here even with -demangle. 1170 // Match that: intentionally don't call toMachOString(). 1171 printArchiveMemberLoad(symCopy.getName(), *file); 1172 } 1173 } 1174 1175 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1176 BitcodeFile &file) { 1177 StringRef name = saver.save(objSym.getName()); 1178 1179 // TODO: support weak references 1180 if (objSym.isUndefined()) 1181 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1182 1183 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 1184 1185 // TODO: Write a test demonstrating why computing isPrivateExtern before 1186 // LTO compilation is important. 1187 bool isPrivateExtern = false; 1188 switch (objSym.getVisibility()) { 1189 case GlobalValue::HiddenVisibility: 1190 isPrivateExtern = true; 1191 break; 1192 case GlobalValue::ProtectedVisibility: 1193 error(name + " has protected visibility, which is not supported by Mach-O"); 1194 break; 1195 case GlobalValue::DefaultVisibility: 1196 break; 1197 } 1198 1199 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1200 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1201 /*isThumb=*/false, 1202 /*isReferencedDynamically=*/false, 1203 /*noDeadStrip=*/false); 1204 } 1205 1206 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 1207 : InputFile(BitcodeKind, mbref) { 1208 obj = check(lto::InputFile::create(mbref)); 1209 1210 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1211 // "winning" symbol will then be marked as Prevailing at LTO compilation 1212 // time. 1213 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1214 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1215 } 1216 1217 template void ObjFile::parse<LP64>(); 1218