1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "Target.h" 57 58 #include "lld/Common/DWARF.h" 59 #include "lld/Common/ErrorHandler.h" 60 #include "lld/Common/Memory.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/Path.h" 68 #include "llvm/Support/TarWriter.h" 69 #include "llvm/TextAPI/MachO/Architecture.h" 70 #include "llvm/TextAPI/MachO/InterfaceFile.h" 71 72 using namespace llvm; 73 using namespace llvm::MachO; 74 using namespace llvm::support::endian; 75 using namespace llvm::sys; 76 using namespace lld; 77 using namespace lld::macho; 78 79 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 80 std::string lld::toString(const InputFile *f) { 81 if (!f) 82 return "<internal>"; 83 84 // Multiple dylibs can be defined in one .tbd file. 85 if (auto dylibFile = dyn_cast<DylibFile>(f)) 86 if (f->getName().endswith(".tbd")) 87 return (f->getName() + "(" + dylibFile->dylibName + ")").str(); 88 89 if (f->archiveName.empty()) 90 return std::string(f->getName()); 91 return (path::filename(f->archiveName) + "(" + path::filename(f->getName()) + 92 ")") 93 .str(); 94 } 95 96 SetVector<InputFile *> macho::inputFiles; 97 std::unique_ptr<TarWriter> macho::tar; 98 int InputFile::idCount = 0; 99 100 // Open a given file path and return it as a memory-mapped file. 101 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 102 // Open a file. 103 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 104 if (std::error_code ec = mbOrErr.getError()) { 105 error("cannot open " + path + ": " + ec.message()); 106 return None; 107 } 108 109 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 110 MemoryBufferRef mbref = mb->getMemBufferRef(); 111 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 112 113 // If this is a regular non-fat file, return it. 114 const char *buf = mbref.getBufferStart(); 115 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 116 if (mbref.getBufferSize() < sizeof(uint32_t) || 117 read32be(&hdr->magic) != FAT_MAGIC) { 118 if (tar) 119 tar->append(relativeToRoot(path), mbref.getBuffer()); 120 return mbref; 121 } 122 123 // Object files and archive files may be fat files, which contains 124 // multiple real files for different CPU ISAs. Here, we search for a 125 // file that matches with the current link target and returns it as 126 // a MemoryBufferRef. 127 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 128 129 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 130 if (reinterpret_cast<const char *>(arch + i + 1) > 131 buf + mbref.getBufferSize()) { 132 error(path + ": fat_arch struct extends beyond end of file"); 133 return None; 134 } 135 136 if (read32be(&arch[i].cputype) != target->cpuType || 137 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 138 continue; 139 140 uint32_t offset = read32be(&arch[i].offset); 141 uint32_t size = read32be(&arch[i].size); 142 if (offset + size > mbref.getBufferSize()) 143 error(path + ": slice extends beyond end of file"); 144 if (tar) 145 tar->append(relativeToRoot(path), mbref.getBuffer()); 146 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 147 } 148 149 error("unable to find matching architecture in " + path); 150 return None; 151 } 152 153 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 154 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 155 156 template <class Section> 157 void ObjFile::parseSections(ArrayRef<Section> sections) { 158 subsections.reserve(sections.size()); 159 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 160 161 for (const Section &sec : sections) { 162 InputSection *isec = make<InputSection>(); 163 isec->file = this; 164 isec->name = 165 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 166 isec->segname = 167 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 168 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 169 static_cast<size_t>(sec.size)}; 170 if (sec.align >= 32) 171 error("alignment " + std::to_string(sec.align) + " of section " + 172 isec->name + " is too large"); 173 else 174 isec->align = 1 << sec.align; 175 isec->flags = sec.flags; 176 177 if (!(isDebugSection(isec->flags) && 178 isec->segname == segment_names::dwarf)) { 179 subsections.push_back({{0, isec}}); 180 } else { 181 // Instead of emitting DWARF sections, we emit STABS symbols to the 182 // object files that contain them. We filter them out early to avoid 183 // parsing their relocations unnecessarily. But we must still push an 184 // empty map to ensure the indices line up for the remaining sections. 185 subsections.push_back({}); 186 debugSections.push_back(isec); 187 } 188 } 189 } 190 191 // Find the subsection corresponding to the greatest section offset that is <= 192 // that of the given offset. 193 // 194 // offset: an offset relative to the start of the original InputSection (before 195 // any subsection splitting has occurred). It will be updated to represent the 196 // same location as an offset relative to the start of the containing 197 // subsection. 198 static InputSection *findContainingSubsection(SubsectionMapping &map, 199 uint64_t *offset) { 200 auto it = std::prev(llvm::upper_bound( 201 map, *offset, [](uint64_t value, SubsectionEntry subsectionEntry) { 202 return value < subsectionEntry.offset; 203 })); 204 *offset -= it->offset; 205 return it->isec; 206 } 207 208 template <class Section> 209 static bool validateRelocationInfo(InputFile *file, const Section &sec, 210 relocation_info rel) { 211 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 212 bool valid = true; 213 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 214 valid = false; 215 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 216 std::to_string(rel.r_address) + " of " + sec.segname + "," + 217 sec.sectname + " in " + toString(file)) 218 .str(); 219 }; 220 221 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 222 error(message("must be extern")); 223 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 224 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 225 "be PC-relative")); 226 if (isThreadLocalVariables(sec.flags) && 227 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 228 error(message("not allowed in thread-local section, must be UNSIGNED")); 229 if (rel.r_length < 2 || rel.r_length > 3 || 230 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 231 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 232 error(message("has width " + std::to_string(1 << rel.r_length) + 233 " bytes, but must be " + 234 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 235 " bytes")); 236 } 237 return valid; 238 } 239 240 template <class Section> 241 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 242 const Section &sec, 243 SubsectionMapping &subsecMap) { 244 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 245 ArrayRef<relocation_info> relInfos( 246 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 247 248 for (size_t i = 0; i < relInfos.size(); i++) { 249 // Paired relocations serve as Mach-O's method for attaching a 250 // supplemental datum to a primary relocation record. ELF does not 251 // need them because the *_RELOC_RELA records contain the extra 252 // addend field, vs. *_RELOC_REL which omit the addend. 253 // 254 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 255 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 256 // datum for each is a symbolic address. The result is the offset 257 // between two addresses. 258 // 259 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 260 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 261 // base symbolic address. 262 // 263 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 264 // addend into the instruction stream. On X86, a relocatable address 265 // field always occupies an entire contiguous sequence of byte(s), 266 // so there is no need to merge opcode bits with address 267 // bits. Therefore, it's easy and convenient to store addends in the 268 // instruction-stream bytes that would otherwise contain zeroes. By 269 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 270 // address bits so that bitwise arithmetic is necessary to extract 271 // and insert them. Storing addends in the instruction stream is 272 // possible, but inconvenient and more costly at link time. 273 274 int64_t pairedAddend = 0; 275 relocation_info relInfo = relInfos[i]; 276 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 277 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 278 relInfo = relInfos[++i]; 279 } 280 assert(i < relInfos.size()); 281 if (!validateRelocationInfo(this, sec, relInfo)) 282 continue; 283 if (relInfo.r_address & R_SCATTERED) 284 fatal("TODO: Scattered relocations not supported"); 285 286 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 287 assert(!(embeddedAddend && pairedAddend)); 288 int64_t totalAddend = pairedAddend + embeddedAddend; 289 Reloc r; 290 r.type = relInfo.r_type; 291 r.pcrel = relInfo.r_pcrel; 292 r.length = relInfo.r_length; 293 r.offset = relInfo.r_address; 294 if (relInfo.r_extern) { 295 r.referent = symbols[relInfo.r_symbolnum]; 296 r.addend = totalAddend; 297 } else { 298 SubsectionMapping &referentSubsecMap = 299 subsections[relInfo.r_symbolnum - 1]; 300 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 301 uint64_t referentOffset; 302 if (relInfo.r_pcrel) { 303 // The implicit addend for pcrel section relocations is the pcrel offset 304 // in terms of the addresses in the input file. Here we adjust it so 305 // that it describes the offset from the start of the referent section. 306 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 307 // have pcrel section relocations. We may want to factor this out into 308 // the arch-specific .cpp file. 309 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 310 referentOffset = 311 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 312 } else { 313 // The addend for a non-pcrel relocation is its absolute address. 314 referentOffset = totalAddend - referentSec.addr; 315 } 316 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 317 r.addend = referentOffset; 318 } 319 320 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 321 subsec->relocs.push_back(r); 322 323 if (target->hasAttr(r.type, RelocAttrBits::SUBTRAHEND)) { 324 relInfo = relInfos[++i]; 325 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 326 // indicating the minuend symbol. 327 assert(target->hasAttr(relInfo.r_type, RelocAttrBits::UNSIGNED) && 328 relInfo.r_extern); 329 Reloc p; 330 p.type = relInfo.r_type; 331 p.referent = symbols[relInfo.r_symbolnum]; 332 subsec->relocs.push_back(p); 333 } 334 } 335 } 336 337 template <class NList> 338 static macho::Symbol *createDefined(const NList &sym, StringRef name, 339 InputSection *isec, uint64_t value, 340 uint64_t size) { 341 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 342 // N_EXT: Global symbols 343 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped 344 // N_PEXT: Does not occur in input files in practice, 345 // a private extern must be external. 346 // 0: Translation-unit scoped. These are not in the symbol table. 347 348 if (sym.n_type & (N_EXT | N_PEXT)) { 349 assert((sym.n_type & N_EXT) && "invalid input"); 350 return symtab->addDefined(name, isec->file, isec, value, size, 351 sym.n_desc & N_WEAK_DEF, sym.n_type & N_PEXT); 352 } 353 return make<Defined>(name, isec->file, isec, value, size, 354 sym.n_desc & N_WEAK_DEF, 355 /*isExternal=*/false, /*isPrivateExtern=*/false); 356 } 357 358 // Checks if the version specified in `cmd` is compatible with target 359 // version. IOW, check if cmd's version >= config's version. 360 static bool hasCompatVersion(const InputFile *input, 361 const build_version_command *cmd) { 362 363 if (config->target.Platform != static_cast<PlatformKind>(cmd->platform)) { 364 error(toString(input) + " has platform " + 365 getPlatformName(static_cast<PlatformKind>(cmd->platform)) + 366 Twine(", which is different from target platform ") + 367 getPlatformName(config->target.Platform)); 368 return false; 369 } 370 371 unsigned major = cmd->minos >> 16; 372 unsigned minor = (cmd->minos >> 8) & 0xffu; 373 unsigned subMinor = cmd->minos & 0xffu; 374 VersionTuple version(major, minor, subMinor); 375 if (version >= config->platformInfo.minimum) 376 return true; 377 378 error(toString(input) + " has version " + version.getAsString() + 379 ", which is incompatible with target version of " + 380 config->platformInfo.minimum.getAsString()); 381 return false; 382 } 383 384 // Absolute symbols are defined symbols that do not have an associated 385 // InputSection. They cannot be weak. 386 template <class NList> 387 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 388 StringRef name) { 389 if (sym.n_type & (N_EXT | N_PEXT)) { 390 assert((sym.n_type & N_EXT) && "invalid input"); 391 return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0, 392 /*isWeakDef=*/false, sym.n_type & N_PEXT); 393 } 394 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 395 /*isWeakDef=*/false, 396 /*isExternal=*/false, /*isPrivateExtern=*/false); 397 } 398 399 template <class NList> 400 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 401 StringRef name) { 402 uint8_t type = sym.n_type & N_TYPE; 403 switch (type) { 404 case N_UNDF: 405 return sym.n_value == 0 406 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 407 : symtab->addCommon(name, this, sym.n_value, 408 1 << GET_COMM_ALIGN(sym.n_desc), 409 sym.n_type & N_PEXT); 410 case N_ABS: 411 return createAbsolute(sym, this, name); 412 case N_PBUD: 413 case N_INDR: 414 error("TODO: support symbols of type " + std::to_string(type)); 415 return nullptr; 416 case N_SECT: 417 llvm_unreachable( 418 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 419 default: 420 llvm_unreachable("invalid symbol type"); 421 } 422 } 423 424 template <class LP> 425 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 426 ArrayRef<typename LP::nlist> nList, 427 const char *strtab, bool subsectionsViaSymbols) { 428 using Section = typename LP::section; 429 using NList = typename LP::nlist; 430 431 // Precompute the boundaries of symbols within a section. 432 // If subsectionsViaSymbols is True then the corresponding subsections will be 433 // created, otherwise these boundaries are used for the calculation of symbols 434 // sizes only. 435 for (const NList &sym : nList) { 436 if ((sym.n_type & N_TYPE) == N_SECT && !(sym.n_desc & N_ALT_ENTRY) && 437 !subsections[sym.n_sect - 1].empty()) { 438 SubsectionMapping &subsectionMapping = subsections[sym.n_sect - 1]; 439 subsectionMapping.push_back( 440 {sym.n_value - sectionHeaders[sym.n_sect - 1].addr, 441 subsectionMapping.front().isec}); 442 } 443 } 444 445 for (SubsectionMapping &subsectionMap : subsections) { 446 if (subsectionMap.empty()) 447 continue; 448 llvm::sort(subsectionMap, 449 [](const SubsectionEntry &lhs, const SubsectionEntry &rhs) { 450 return lhs.offset < rhs.offset; 451 }); 452 subsectionMap.erase( 453 std::unique(subsectionMap.begin(), subsectionMap.end(), 454 [](const SubsectionEntry &lhs, const SubsectionEntry &rhs) { 455 return lhs.offset == rhs.offset; 456 }), 457 subsectionMap.end()); 458 if (!subsectionsViaSymbols) 459 continue; 460 for (size_t i = 0; i < subsectionMap.size(); ++i) { 461 uint32_t offset = subsectionMap[i].offset; 462 InputSection *&isec = subsectionMap[i].isec; 463 uint32_t end = i + 1 < subsectionMap.size() ? subsectionMap[i + 1].offset 464 : isec->data.size(); 465 isec = make<InputSection>(*isec); 466 isec->data = isec->data.slice(offset, end - offset); 467 // TODO: ld64 appears to preserve the original alignment as well as each 468 // subsection's offset from the last aligned address. We should consider 469 // emulating that behavior. 470 isec->align = MinAlign(isec->align, offset); 471 } 472 } 473 474 symbols.resize(nList.size()); 475 for (size_t i = 0, n = nList.size(); i < n; ++i) { 476 const NList &sym = nList[i]; 477 StringRef name = strtab + sym.n_strx; 478 479 if ((sym.n_type & N_TYPE) != N_SECT) { 480 symbols[i] = parseNonSectionSymbol(sym, name); 481 continue; 482 } 483 484 const Section &sec = sectionHeaders[sym.n_sect - 1]; 485 SubsectionMapping &subsecMap = subsections[sym.n_sect - 1]; 486 487 // parseSections() may have chosen not to parse this section. 488 if (subsecMap.empty()) 489 continue; 490 491 uint64_t offset = sym.n_value - sec.addr; 492 493 auto it = llvm::upper_bound( 494 subsecMap, offset, [](uint64_t value, SubsectionEntry subsectionEntry) { 495 return value < subsectionEntry.offset; 496 }); 497 uint32_t size = it != subsecMap.end() 498 ? it->offset - offset 499 : subsecMap.front().isec->getSize() - offset; 500 501 // If the input file does not use subsections-via-symbols, all symbols can 502 // use the same subsection. Otherwise, we must split the sections along 503 // symbol boundaries. 504 if (!subsectionsViaSymbols) { 505 symbols[i] = 506 createDefined(sym, name, subsecMap.front().isec, offset, size); 507 continue; 508 } 509 510 InputSection *subsec = (--it)->isec; 511 symbols[i] = createDefined(sym, name, subsec, offset - it->offset, size); 512 } 513 514 if (!subsectionsViaSymbols) 515 for (SubsectionMapping &subsectionMap : subsections) 516 if (!subsectionMap.empty()) 517 subsectionMap = {subsectionMap.front()}; 518 } 519 520 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 521 StringRef sectName) 522 : InputFile(OpaqueKind, mb) { 523 InputSection *isec = make<InputSection>(); 524 isec->file = this; 525 isec->name = sectName.take_front(16); 526 isec->segname = segName.take_front(16); 527 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 528 isec->data = {buf, mb.getBufferSize()}; 529 subsections.push_back({{0, isec}}); 530 } 531 532 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 533 : InputFile(ObjKind, mb), modTime(modTime) { 534 this->archiveName = std::string(archiveName); 535 if (target->wordSize == 8) 536 parse<LP64>(); 537 else 538 parse<ILP32>(); 539 } 540 541 template <class LP> void ObjFile::parse() { 542 using Header = typename LP::mach_header; 543 using SegmentCommand = typename LP::segment_command; 544 using Section = typename LP::section; 545 using NList = typename LP::nlist; 546 547 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 548 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 549 550 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 551 if (arch != config->target.Arch) { 552 error(toString(this) + " has architecture " + getArchitectureName(arch) + 553 " which is incompatible with target architecture " + 554 getArchitectureName(config->target.Arch)); 555 return; 556 } 557 558 if (const auto *cmd = 559 findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) { 560 if (!hasCompatVersion(this, cmd)) 561 return; 562 } 563 564 if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { 565 auto *c = reinterpret_cast<const linker_option_command *>(cmd); 566 StringRef data{reinterpret_cast<const char *>(c + 1), 567 c->cmdsize - sizeof(linker_option_command)}; 568 parseLCLinkerOption(this, c->count, data); 569 } 570 571 ArrayRef<Section> sectionHeaders; 572 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 573 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 574 sectionHeaders = 575 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 576 parseSections(sectionHeaders); 577 } 578 579 // TODO: Error on missing LC_SYMTAB? 580 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 581 auto *c = reinterpret_cast<const symtab_command *>(cmd); 582 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 583 c->nsyms); 584 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 585 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 586 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 587 } 588 589 // The relocations may refer to the symbols, so we parse them after we have 590 // parsed all the symbols. 591 for (size_t i = 0, n = subsections.size(); i < n; ++i) 592 if (!subsections[i].empty()) 593 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 594 595 parseDebugInfo(); 596 } 597 598 void ObjFile::parseDebugInfo() { 599 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 600 if (!dObj) 601 return; 602 603 auto *ctx = make<DWARFContext>( 604 std::move(dObj), "", 605 [&](Error err) { 606 warn(toString(this) + ": " + toString(std::move(err))); 607 }, 608 [&](Error warning) { 609 warn(toString(this) + ": " + toString(std::move(warning))); 610 }); 611 612 // TODO: Since object files can contain a lot of DWARF info, we should verify 613 // that we are parsing just the info we need 614 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 615 // FIXME: There can be more than one compile unit per object file. See 616 // PR48637. 617 auto it = units.begin(); 618 compileUnit = it->get(); 619 } 620 621 // The path can point to either a dylib or a .tbd file. 622 static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) { 623 Optional<MemoryBufferRef> mbref = readFile(path); 624 if (!mbref) { 625 error("could not read dylib file at " + path); 626 return {}; 627 } 628 return loadDylib(*mbref, umbrella); 629 } 630 631 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 632 // the first document storing child pointers to the rest of them. When we are 633 // processing a given TBD file, we store that top-level document in 634 // currentTopLevelTapi. When processing re-exports, we search its children for 635 // potentially matching documents in the same TBD file. Note that the children 636 // themselves don't point to further documents, i.e. this is a two-level tree. 637 // 638 // Re-exports can either refer to on-disk files, or to documents within .tbd 639 // files. 640 static Optional<DylibFile *> 641 findDylib(StringRef path, DylibFile *umbrella, 642 const InterfaceFile *currentTopLevelTapi) { 643 if (path::is_absolute(path, path::Style::posix)) 644 for (StringRef root : config->systemLibraryRoots) 645 if (Optional<std::string> dylibPath = 646 resolveDylibPath((root + path).str())) 647 return loadDylib(*dylibPath, umbrella); 648 649 // TODO: Expand @loader_path, @executable_path, @rpath etc, handle -dylib_path 650 651 if (currentTopLevelTapi) { 652 for (InterfaceFile &child : 653 make_pointee_range(currentTopLevelTapi->documents())) { 654 assert(child.documents().empty()); 655 if (path == child.getInstallName()) 656 return make<DylibFile>(child, umbrella); 657 } 658 } 659 660 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 661 return loadDylib(*dylibPath, umbrella); 662 663 return {}; 664 } 665 666 // If a re-exported dylib is public (lives in /usr/lib or 667 // /System/Library/Frameworks), then it is considered implicitly linked: we 668 // should bind to its symbols directly instead of via the re-exporting umbrella 669 // library. 670 static bool isImplicitlyLinked(StringRef path) { 671 if (!config->implicitDylibs) 672 return false; 673 674 if (path::parent_path(path) == "/usr/lib") 675 return true; 676 677 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 678 if (path.consume_front("/System/Library/Frameworks/")) { 679 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 680 return path::filename(path) == frameworkName; 681 } 682 683 return false; 684 } 685 686 void loadReexport(StringRef path, DylibFile *umbrella, 687 const InterfaceFile *currentTopLevelTapi) { 688 Optional<DylibFile *> reexport = 689 findDylib(path, umbrella, currentTopLevelTapi); 690 if (!reexport) 691 error("unable to locate re-export with install name " + path); 692 else if (isImplicitlyLinked(path)) 693 inputFiles.insert(*reexport); 694 } 695 696 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 697 bool isBundleLoader) 698 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 699 isBundleLoader(isBundleLoader) { 700 assert(!isBundleLoader || !umbrella); 701 if (umbrella == nullptr) 702 umbrella = this; 703 704 if (target->wordSize == 8) 705 parse<LP64>(umbrella); 706 else 707 parse<ILP32>(umbrella); 708 } 709 710 template <class LP> void DylibFile::parse(DylibFile *umbrella) { 711 using Header = typename LP::mach_header; 712 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 713 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 714 715 // Initialize dylibName. 716 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 717 auto *c = reinterpret_cast<const dylib_command *>(cmd); 718 currentVersion = read32le(&c->dylib.current_version); 719 compatibilityVersion = read32le(&c->dylib.compatibility_version); 720 dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 721 } else if (!isBundleLoader) { 722 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 723 // so it's OK. 724 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 725 return; 726 } 727 728 if (const build_version_command *cmd = 729 findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) { 730 if (!hasCompatVersion(this, cmd)) 731 return; 732 } 733 734 // Initialize symbols. 735 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 736 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 737 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 738 parseTrie(buf + c->export_off, c->export_size, 739 [&](const Twine &name, uint64_t flags) { 740 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 741 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 742 symbols.push_back(symtab->addDylib( 743 saver.save(name), exportingFile, isWeakDef, isTlv)); 744 }); 745 } else { 746 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 747 return; 748 } 749 750 const uint8_t *p = reinterpret_cast<const uint8_t *>(hdr) + sizeof(Header); 751 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 752 auto *cmd = reinterpret_cast<const load_command *>(p); 753 p += cmd->cmdsize; 754 755 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 756 cmd->cmd == LC_REEXPORT_DYLIB) { 757 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 758 StringRef reexportPath = 759 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 760 loadReexport(reexportPath, exportingFile, nullptr); 761 } 762 763 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 764 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 765 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 766 if (config->namespaceKind == NamespaceKind::flat && 767 cmd->cmd == LC_LOAD_DYLIB) { 768 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 769 StringRef dylibPath = 770 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 771 Optional<DylibFile *> dylib = findDylib(dylibPath, umbrella, nullptr); 772 if (!dylib) 773 error(Twine("unable to locate library '") + dylibPath + 774 "' loaded from '" + toString(this) + "' for -flat_namespace"); 775 } 776 } 777 } 778 779 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 780 bool isBundleLoader) 781 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 782 isBundleLoader(isBundleLoader) { 783 // FIXME: Add test for the missing TBD code path. 784 785 if (umbrella == nullptr) 786 umbrella = this; 787 788 dylibName = saver.save(interface.getInstallName()); 789 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 790 currentVersion = interface.getCurrentVersion().rawValue(); 791 792 if (!is_contained(interface.targets(), config->target)) { 793 error(toString(this) + " is incompatible with " + 794 std::string(config->target)); 795 return; 796 } 797 798 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 799 auto addSymbol = [&](const Twine &name) -> void { 800 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 801 /*isWeakDef=*/false, 802 /*isTlv=*/false)); 803 }; 804 // TODO(compnerd) filter out symbols based on the target platform 805 // TODO: handle weak defs, thread locals 806 for (const auto *symbol : interface.symbols()) { 807 if (!symbol->getArchitectures().has(config->target.Arch)) 808 continue; 809 810 switch (symbol->getKind()) { 811 case SymbolKind::GlobalSymbol: 812 addSymbol(symbol->getName()); 813 break; 814 case SymbolKind::ObjectiveCClass: 815 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 816 // want to emulate that. 817 addSymbol(objc::klass + symbol->getName()); 818 addSymbol(objc::metaclass + symbol->getName()); 819 break; 820 case SymbolKind::ObjectiveCClassEHType: 821 addSymbol(objc::ehtype + symbol->getName()); 822 break; 823 case SymbolKind::ObjectiveCInstanceVariable: 824 addSymbol(objc::ivar + symbol->getName()); 825 break; 826 } 827 } 828 829 const InterfaceFile *topLevel = 830 interface.getParent() == nullptr ? &interface : interface.getParent(); 831 832 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 833 InterfaceFile::const_target_range targets = intfRef.targets(); 834 if (is_contained(targets, config->target)) 835 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 836 } 837 } 838 839 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 840 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 841 for (const object::Archive::Symbol &sym : file->symbols()) 842 symtab->addLazy(sym.getName(), this, sym); 843 } 844 845 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 846 object::Archive::Child c = 847 CHECK(sym.getMember(), toString(this) + 848 ": could not get the member for symbol " + 849 toMachOString(sym)); 850 851 if (!seen.insert(c.getChildOffset()).second) 852 return; 853 854 MemoryBufferRef mb = 855 CHECK(c.getMemoryBufferRef(), 856 toString(this) + 857 ": could not get the buffer for the member defining symbol " + 858 toMachOString(sym)); 859 860 if (tar && c.getParent()->isThin()) 861 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 862 863 uint32_t modTime = toTimeT( 864 CHECK(c.getLastModified(), toString(this) + 865 ": could not get the modification time " 866 "for the member defining symbol " + 867 toMachOString(sym))); 868 869 // `sym` is owned by a LazySym, which will be replace<>() by make<ObjFile> 870 // and become invalid after that call. Copy it to the stack so we can refer 871 // to it later. 872 const object::Archive::Symbol sym_copy = sym; 873 874 if (Optional<InputFile *> file = 875 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 876 inputFiles.insert(*file); 877 // ld64 doesn't demangle sym here even with -demangle. Match that, so 878 // intentionally no call to toMachOString() here. 879 printArchiveMemberLoad(sym_copy.getName(), *file); 880 } 881 } 882 883 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 884 BitcodeFile &file) { 885 StringRef name = saver.save(objSym.getName()); 886 887 // TODO: support weak references 888 if (objSym.isUndefined()) 889 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 890 891 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 892 893 // TODO: Write a test demonstrating why computing isPrivateExtern before 894 // LTO compilation is important. 895 bool isPrivateExtern = false; 896 switch (objSym.getVisibility()) { 897 case GlobalValue::HiddenVisibility: 898 isPrivateExtern = true; 899 break; 900 case GlobalValue::ProtectedVisibility: 901 error(name + " has protected visibility, which is not supported by Mach-O"); 902 break; 903 case GlobalValue::DefaultVisibility: 904 break; 905 } 906 907 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 908 /*size=*/0, objSym.isWeak(), isPrivateExtern); 909 } 910 911 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 912 : InputFile(BitcodeKind, mbref) { 913 obj = check(lto::InputFile::create(mbref)); 914 915 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 916 // "winning" symbol will then be marked as Prevailing at LTO compilation 917 // time. 918 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 919 symbols.push_back(createBitcodeSymbol(objSym, *this)); 920 } 921 922 template void ObjFile::parse<LP64>(); 923 template void DylibFile::parse<LP64>(DylibFile *umbrella); 924