1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "Target.h" 57 58 #include "lld/Common/DWARF.h" 59 #include "lld/Common/ErrorHandler.h" 60 #include "lld/Common/Memory.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/Path.h" 68 #include "llvm/Support/TarWriter.h" 69 #include "llvm/TextAPI/MachO/Architecture.h" 70 71 using namespace llvm; 72 using namespace llvm::MachO; 73 using namespace llvm::support::endian; 74 using namespace llvm::sys; 75 using namespace lld; 76 using namespace lld::macho; 77 78 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 79 std::string lld::toString(const InputFile *f) { 80 if (!f) 81 return "<internal>"; 82 if (f->archiveName.empty()) 83 return std::string(f->getName()); 84 return (path::filename(f->archiveName) + "(" + path::filename(f->getName()) + 85 ")") 86 .str(); 87 } 88 89 SetVector<InputFile *> macho::inputFiles; 90 std::unique_ptr<TarWriter> macho::tar; 91 int InputFile::idCount = 0; 92 93 // Open a given file path and return it as a memory-mapped file. 94 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 95 // Open a file. 96 auto mbOrErr = MemoryBuffer::getFile(path); 97 if (auto ec = mbOrErr.getError()) { 98 error("cannot open " + path + ": " + ec.message()); 99 return None; 100 } 101 102 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 103 MemoryBufferRef mbref = mb->getMemBufferRef(); 104 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 105 106 // If this is a regular non-fat file, return it. 107 const char *buf = mbref.getBufferStart(); 108 auto *hdr = reinterpret_cast<const MachO::fat_header *>(buf); 109 if (mbref.getBufferSize() < sizeof(uint32_t) || 110 read32be(&hdr->magic) != MachO::FAT_MAGIC) { 111 if (tar) 112 tar->append(relativeToRoot(path), mbref.getBuffer()); 113 return mbref; 114 } 115 116 // Object files and archive files may be fat files, which contains 117 // multiple real files for different CPU ISAs. Here, we search for a 118 // file that matches with the current link target and returns it as 119 // a MemoryBufferRef. 120 auto *arch = reinterpret_cast<const MachO::fat_arch *>(buf + sizeof(*hdr)); 121 122 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 123 if (reinterpret_cast<const char *>(arch + i + 1) > 124 buf + mbref.getBufferSize()) { 125 error(path + ": fat_arch struct extends beyond end of file"); 126 return None; 127 } 128 129 if (read32be(&arch[i].cputype) != target->cpuType || 130 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 131 continue; 132 133 uint32_t offset = read32be(&arch[i].offset); 134 uint32_t size = read32be(&arch[i].size); 135 if (offset + size > mbref.getBufferSize()) 136 error(path + ": slice extends beyond end of file"); 137 if (tar) 138 tar->append(relativeToRoot(path), mbref.getBuffer()); 139 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 140 } 141 142 error("unable to find matching architecture in " + path); 143 return None; 144 } 145 146 const load_command *macho::findCommand(const mach_header_64 *hdr, 147 uint32_t type) { 148 const uint8_t *p = 149 reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); 150 151 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 152 auto *cmd = reinterpret_cast<const load_command *>(p); 153 if (cmd->cmd == type) 154 return cmd; 155 p += cmd->cmdsize; 156 } 157 return nullptr; 158 } 159 160 void ObjFile::parseSections(ArrayRef<section_64> sections) { 161 subsections.reserve(sections.size()); 162 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 163 164 for (const section_64 &sec : sections) { 165 InputSection *isec = make<InputSection>(); 166 isec->file = this; 167 isec->name = 168 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 169 isec->segname = 170 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 171 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 172 static_cast<size_t>(sec.size)}; 173 if (sec.align >= 32) 174 error("alignment " + std::to_string(sec.align) + " of section " + 175 isec->name + " is too large"); 176 else 177 isec->align = 1 << sec.align; 178 isec->flags = sec.flags; 179 180 if (!(isDebugSection(isec->flags) && 181 isec->segname == segment_names::dwarf)) { 182 subsections.push_back({{0, isec}}); 183 } else { 184 // Instead of emitting DWARF sections, we emit STABS symbols to the 185 // object files that contain them. We filter them out early to avoid 186 // parsing their relocations unnecessarily. But we must still push an 187 // empty map to ensure the indices line up for the remaining sections. 188 subsections.push_back({}); 189 debugSections.push_back(isec); 190 } 191 } 192 } 193 194 // Find the subsection corresponding to the greatest section offset that is <= 195 // that of the given offset. 196 // 197 // offset: an offset relative to the start of the original InputSection (before 198 // any subsection splitting has occurred). It will be updated to represent the 199 // same location as an offset relative to the start of the containing 200 // subsection. 201 static InputSection *findContainingSubsection(SubsectionMap &map, 202 uint32_t *offset) { 203 auto it = std::prev(map.upper_bound(*offset)); 204 *offset -= it->first; 205 return it->second; 206 } 207 208 static bool validateRelocationInfo(InputFile *file, const section_64 &sec, 209 relocation_info rel) { 210 const TargetInfo::RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 211 bool valid = true; 212 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 213 valid = false; 214 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 215 std::to_string(rel.r_address) + " of " + sec.segname + "," + 216 sec.sectname + " in " + toString(file)) 217 .str(); 218 }; 219 220 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 221 error(message("must be extern")); 222 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 223 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 224 "be PC-relative")); 225 if (isThreadLocalVariables(sec.flags) && 226 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 227 error(message("not allowed in thread-local section, must be UNSIGNED")); 228 if (rel.r_length < 2 || rel.r_length > 3 || 229 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 230 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 231 error(message("has width " + std::to_string(1 << rel.r_length) + 232 " bytes, but must be " + 233 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 234 " bytes")); 235 } 236 return valid; 237 } 238 239 void ObjFile::parseRelocations(const section_64 &sec, 240 SubsectionMap &subsecMap) { 241 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 242 ArrayRef<relocation_info> relInfos( 243 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 244 245 for (size_t i = 0; i < relInfos.size(); i++) { 246 // Paired relocations serve as Mach-O's method for attaching a 247 // supplemental datum to a primary relocation record. ELF does not 248 // need them because the *_RELOC_RELA records contain the extra 249 // addend field, vs. *_RELOC_REL which omit the addend. 250 // 251 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 252 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 253 // datum for each is a symbolic address. The result is the offset 254 // between two addresses. 255 // 256 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 257 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 258 // base symbolic address. 259 // 260 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 261 // addend into the instruction stream. On X86, a relocatable address 262 // field always occupies an entire contiguous sequence of byte(s), 263 // so there is no need to merge opcode bits with address 264 // bits. Therefore, it's easy and convenient to store addends in the 265 // instruction-stream bytes that would otherwise contain zeroes. By 266 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 267 // address bits so that bitwise arithmetic is necessary to extract 268 // and insert them. Storing addends in the instruction stream is 269 // possible, but inconvenient and more costly at link time. 270 271 uint64_t pairedAddend = 0; 272 relocation_info relInfo = relInfos[i]; 273 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 274 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 275 relInfo = relInfos[++i]; 276 } 277 assert(i < relInfos.size()); 278 if (!validateRelocationInfo(this, sec, relInfo)) 279 continue; 280 if (relInfo.r_address & R_SCATTERED) 281 fatal("TODO: Scattered relocations not supported"); 282 283 Reloc p; 284 if (target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND)) { 285 p.type = relInfo.r_type; 286 p.referent = symbols[relInfo.r_symbolnum]; 287 relInfo = relInfos[++i]; 288 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 289 // indicating the minuend symbol. 290 assert(target->hasAttr(relInfo.r_type, RelocAttrBits::UNSIGNED) && 291 relInfo.r_extern); 292 } 293 uint64_t embeddedAddend = target->getEmbeddedAddend(mb, sec, relInfo); 294 assert(!(embeddedAddend && pairedAddend)); 295 uint64_t totalAddend = pairedAddend + embeddedAddend; 296 Reloc r; 297 r.type = relInfo.r_type; 298 r.pcrel = relInfo.r_pcrel; 299 r.length = relInfo.r_length; 300 r.offset = relInfo.r_address; 301 if (relInfo.r_extern) { 302 r.referent = symbols[relInfo.r_symbolnum]; 303 r.addend = totalAddend; 304 } else { 305 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 306 const section_64 &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 307 uint32_t referentOffset; 308 if (relInfo.r_pcrel) { 309 // The implicit addend for pcrel section relocations is the pcrel offset 310 // in terms of the addresses in the input file. Here we adjust it so 311 // that it describes the offset from the start of the referent section. 312 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 313 referentOffset = 314 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 315 } else { 316 // The addend for a non-pcrel relocation is its absolute address. 317 referentOffset = totalAddend - referentSec.addr; 318 } 319 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 320 r.addend = referentOffset; 321 } 322 323 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 324 if (p.type != GENERIC_RELOC_INVALID) 325 subsec->relocs.push_back(p); 326 subsec->relocs.push_back(r); 327 } 328 } 329 330 static macho::Symbol *createDefined(const structs::nlist_64 &sym, 331 StringRef name, InputSection *isec, 332 uint32_t value) { 333 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 334 // N_EXT: Global symbols 335 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped 336 // N_PEXT: Does not occur in input files in practice, 337 // a private extern must be external. 338 // 0: Translation-unit scoped. These are not in the symbol table. 339 340 if (sym.n_type & (N_EXT | N_PEXT)) { 341 assert((sym.n_type & N_EXT) && "invalid input"); 342 return symtab->addDefined(name, isec->file, isec, value, 343 sym.n_desc & N_WEAK_DEF, sym.n_type & N_PEXT); 344 } 345 return make<Defined>(name, isec->file, isec, value, sym.n_desc & N_WEAK_DEF, 346 /*isExternal=*/false, /*isPrivateExtern=*/false); 347 } 348 349 // Absolute symbols are defined symbols that do not have an associated 350 // InputSection. They cannot be weak. 351 static macho::Symbol *createAbsolute(const structs::nlist_64 &sym, 352 InputFile *file, StringRef name) { 353 if (sym.n_type & (N_EXT | N_PEXT)) { 354 assert((sym.n_type & N_EXT) && "invalid input"); 355 return symtab->addDefined(name, file, nullptr, sym.n_value, 356 /*isWeakDef=*/false, sym.n_type & N_PEXT); 357 } 358 return make<Defined>(name, file, nullptr, sym.n_value, /*isWeakDef=*/false, 359 /*isExternal=*/false, /*isPrivateExtern=*/false); 360 } 361 362 macho::Symbol *ObjFile::parseNonSectionSymbol(const structs::nlist_64 &sym, 363 StringRef name) { 364 uint8_t type = sym.n_type & N_TYPE; 365 switch (type) { 366 case N_UNDF: 367 return sym.n_value == 0 368 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 369 : symtab->addCommon(name, this, sym.n_value, 370 1 << GET_COMM_ALIGN(sym.n_desc), 371 sym.n_type & N_PEXT); 372 case N_ABS: 373 return createAbsolute(sym, this, name); 374 case N_PBUD: 375 case N_INDR: 376 error("TODO: support symbols of type " + std::to_string(type)); 377 return nullptr; 378 case N_SECT: 379 llvm_unreachable( 380 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 381 default: 382 llvm_unreachable("invalid symbol type"); 383 } 384 } 385 386 void ObjFile::parseSymbols(ArrayRef<structs::nlist_64> nList, 387 const char *strtab, bool subsectionsViaSymbols) { 388 // resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols 389 // out-of-sequence. 390 symbols.resize(nList.size()); 391 std::vector<size_t> altEntrySymIdxs; 392 393 for (size_t i = 0, n = nList.size(); i < n; ++i) { 394 const structs::nlist_64 &sym = nList[i]; 395 StringRef name = strtab + sym.n_strx; 396 397 if ((sym.n_type & N_TYPE) != N_SECT) { 398 symbols[i] = parseNonSectionSymbol(sym, name); 399 continue; 400 } 401 402 const section_64 &sec = sectionHeaders[sym.n_sect - 1]; 403 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 404 assert(!subsecMap.empty()); 405 uint64_t offset = sym.n_value - sec.addr; 406 407 // If the input file does not use subsections-via-symbols, all symbols can 408 // use the same subsection. Otherwise, we must split the sections along 409 // symbol boundaries. 410 if (!subsectionsViaSymbols) { 411 symbols[i] = createDefined(sym, name, subsecMap[0], offset); 412 continue; 413 } 414 415 // nList entries aren't necessarily arranged in address order. Therefore, 416 // we can't create alt-entry symbols at this point because a later symbol 417 // may split its section, which may affect which subsection the alt-entry 418 // symbol is assigned to. So we need to handle them in a second pass below. 419 if (sym.n_desc & N_ALT_ENTRY) { 420 altEntrySymIdxs.push_back(i); 421 continue; 422 } 423 424 // Find the subsection corresponding to the greatest section offset that is 425 // <= that of the current symbol. The subsection that we find either needs 426 // to be used directly or split in two. 427 uint32_t firstSize = offset; 428 InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize); 429 430 if (firstSize == 0) { 431 // Alias of an existing symbol, or the first symbol in the section. These 432 // are handled by reusing the existing section. 433 symbols[i] = createDefined(sym, name, firstIsec, 0); 434 continue; 435 } 436 437 // We saw a symbol definition at a new offset. Split the section into two 438 // subsections. The new symbol uses the second subsection. 439 auto *secondIsec = make<InputSection>(*firstIsec); 440 secondIsec->data = firstIsec->data.slice(firstSize); 441 firstIsec->data = firstIsec->data.slice(0, firstSize); 442 // TODO: ld64 appears to preserve the original alignment as well as each 443 // subsection's offset from the last aligned address. We should consider 444 // emulating that behavior. 445 secondIsec->align = MinAlign(firstIsec->align, offset); 446 447 subsecMap[offset] = secondIsec; 448 // By construction, the symbol will be at offset zero in the new section. 449 symbols[i] = createDefined(sym, name, secondIsec, 0); 450 } 451 452 for (size_t idx : altEntrySymIdxs) { 453 const structs::nlist_64 &sym = nList[idx]; 454 StringRef name = strtab + sym.n_strx; 455 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 456 uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr; 457 InputSection *subsec = findContainingSubsection(subsecMap, &off); 458 symbols[idx] = createDefined(sym, name, subsec, off); 459 } 460 } 461 462 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 463 StringRef sectName) 464 : InputFile(OpaqueKind, mb) { 465 InputSection *isec = make<InputSection>(); 466 isec->file = this; 467 isec->name = sectName.take_front(16); 468 isec->segname = segName.take_front(16); 469 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 470 isec->data = {buf, mb.getBufferSize()}; 471 subsections.push_back({{0, isec}}); 472 } 473 474 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 475 : InputFile(ObjKind, mb), modTime(modTime) { 476 this->archiveName = std::string(archiveName); 477 478 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 479 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 480 481 MachO::Architecture arch = 482 MachO::getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 483 if (arch != config->arch) { 484 error(toString(this) + " has architecture " + getArchitectureName(arch) + 485 " which is incompatible with target architecture " + 486 getArchitectureName(config->arch)); 487 return; 488 } 489 490 if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { 491 auto *c = reinterpret_cast<const linker_option_command *>(cmd); 492 StringRef data{reinterpret_cast<const char *>(c + 1), 493 c->cmdsize - sizeof(linker_option_command)}; 494 parseLCLinkerOption(this, c->count, data); 495 } 496 497 if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) { 498 auto *c = reinterpret_cast<const segment_command_64 *>(cmd); 499 sectionHeaders = ArrayRef<section_64>{ 500 reinterpret_cast<const section_64 *>(c + 1), c->nsects}; 501 parseSections(sectionHeaders); 502 } 503 504 // TODO: Error on missing LC_SYMTAB? 505 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 506 auto *c = reinterpret_cast<const symtab_command *>(cmd); 507 ArrayRef<structs::nlist_64> nList( 508 reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms); 509 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 510 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 511 parseSymbols(nList, strtab, subsectionsViaSymbols); 512 } 513 514 // The relocations may refer to the symbols, so we parse them after we have 515 // parsed all the symbols. 516 for (size_t i = 0, n = subsections.size(); i < n; ++i) 517 if (!subsections[i].empty()) 518 parseRelocations(sectionHeaders[i], subsections[i]); 519 520 parseDebugInfo(); 521 } 522 523 void ObjFile::parseDebugInfo() { 524 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 525 if (!dObj) 526 return; 527 528 auto *ctx = make<DWARFContext>( 529 std::move(dObj), "", 530 [&](Error err) { 531 warn(toString(this) + ": " + toString(std::move(err))); 532 }, 533 [&](Error warning) { 534 warn(toString(this) + ": " + toString(std::move(warning))); 535 }); 536 537 // TODO: Since object files can contain a lot of DWARF info, we should verify 538 // that we are parsing just the info we need 539 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 540 auto it = units.begin(); 541 compileUnit = it->get(); 542 assert(std::next(it) == units.end()); 543 } 544 545 // The path can point to either a dylib or a .tbd file. 546 static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) { 547 Optional<MemoryBufferRef> mbref = readFile(path); 548 if (!mbref) { 549 error("could not read dylib file at " + path); 550 return {}; 551 } 552 return loadDylib(*mbref, umbrella); 553 } 554 555 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 556 // the first document storing child pointers to the rest of them. When we are 557 // processing a given TBD file, we store that top-level document in 558 // currentTopLevelTapi. When processing re-exports, we search its children for 559 // potentially matching documents in the same TBD file. Note that the children 560 // themselves don't point to further documents, i.e. this is a two-level tree. 561 // 562 // Re-exports can either refer to on-disk files, or to documents within .tbd 563 // files. 564 static Optional<DylibFile *> 565 findDylib(StringRef path, DylibFile *umbrella, 566 const InterfaceFile *currentTopLevelTapi) { 567 if (path::is_absolute(path, path::Style::posix)) 568 for (StringRef root : config->systemLibraryRoots) 569 if (Optional<std::string> dylibPath = 570 resolveDylibPath((root + path).str())) 571 return loadDylib(*dylibPath, umbrella); 572 573 // TODO: Expand @loader_path, @executable_path, @rpath etc, handle -dylib_path 574 575 if (currentTopLevelTapi) { 576 for (InterfaceFile &child : 577 make_pointee_range(currentTopLevelTapi->documents())) { 578 if (path == child.getInstallName()) 579 return make<DylibFile>(child, umbrella); 580 assert(child.documents().empty()); 581 } 582 } 583 584 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 585 return loadDylib(*dylibPath, umbrella); 586 587 return {}; 588 } 589 590 // If a re-exported dylib is public (lives in /usr/lib or 591 // /System/Library/Frameworks), then it is considered implicitly linked: we 592 // should bind to its symbols directly instead of via the re-exporting umbrella 593 // library. 594 static bool isImplicitlyLinked(StringRef path) { 595 if (!config->implicitDylibs) 596 return false; 597 598 if (path::parent_path(path) == "/usr/lib") 599 return true; 600 601 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 602 if (path.consume_front("/System/Library/Frameworks/")) { 603 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 604 return path::filename(path) == frameworkName; 605 } 606 607 return false; 608 } 609 610 void loadReexport(StringRef path, DylibFile *umbrella, 611 const InterfaceFile *currentTopLevelTapi) { 612 Optional<DylibFile *> reexport = 613 findDylib(path, umbrella, currentTopLevelTapi); 614 if (!reexport) 615 error("unable to locate re-export with install name " + path); 616 else if (isImplicitlyLinked(path)) 617 inputFiles.insert(*reexport); 618 } 619 620 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 621 bool isBundleLoader) 622 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 623 isBundleLoader(isBundleLoader) { 624 assert(!isBundleLoader || !umbrella); 625 if (umbrella == nullptr) 626 umbrella = this; 627 628 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 629 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 630 631 // Initialize dylibName. 632 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 633 auto *c = reinterpret_cast<const dylib_command *>(cmd); 634 currentVersion = read32le(&c->dylib.current_version); 635 compatibilityVersion = read32le(&c->dylib.compatibility_version); 636 dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 637 } else if (!isBundleLoader) { 638 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 639 // so it's OK. 640 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 641 return; 642 } 643 644 // Initialize symbols. 645 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 646 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 647 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 648 parseTrie(buf + c->export_off, c->export_size, 649 [&](const Twine &name, uint64_t flags) { 650 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 651 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 652 symbols.push_back(symtab->addDylib( 653 saver.save(name), exportingFile, isWeakDef, isTlv)); 654 }); 655 } else { 656 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 657 return; 658 } 659 660 const uint8_t *p = 661 reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); 662 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 663 auto *cmd = reinterpret_cast<const load_command *>(p); 664 p += cmd->cmdsize; 665 666 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 667 cmd->cmd == LC_REEXPORT_DYLIB) { 668 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 669 StringRef reexportPath = 670 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 671 loadReexport(reexportPath, umbrella, nullptr); 672 } 673 674 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 675 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 676 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 677 if (config->namespaceKind == NamespaceKind::flat && 678 cmd->cmd == LC_LOAD_DYLIB) { 679 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 680 StringRef dylibPath = 681 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 682 Optional<DylibFile *> dylib = findDylib(dylibPath, umbrella, nullptr); 683 if (!dylib) 684 error(Twine("unable to locate library '") + dylibPath + 685 "' loaded from '" + toString(this) + "' for -flat_namespace"); 686 } 687 } 688 } 689 690 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 691 bool isBundleLoader) 692 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 693 isBundleLoader(isBundleLoader) { 694 // FIXME: Add test for the missing TBD code path. 695 696 if (umbrella == nullptr) 697 umbrella = this; 698 699 if (!interface.getArchitectures().has(config->arch)) { 700 error(toString(this) + " is incompatible with " + 701 getArchitectureName(config->arch)); 702 return; 703 } 704 705 dylibName = saver.save(interface.getInstallName()); 706 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 707 currentVersion = interface.getCurrentVersion().rawValue(); 708 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 709 auto addSymbol = [&](const Twine &name) -> void { 710 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 711 /*isWeakDef=*/false, 712 /*isTlv=*/false)); 713 }; 714 // TODO(compnerd) filter out symbols based on the target platform 715 // TODO: handle weak defs, thread locals 716 for (const auto symbol : interface.symbols()) { 717 if (!symbol->getArchitectures().has(config->arch)) 718 continue; 719 720 switch (symbol->getKind()) { 721 case SymbolKind::GlobalSymbol: 722 addSymbol(symbol->getName()); 723 break; 724 case SymbolKind::ObjectiveCClass: 725 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 726 // want to emulate that. 727 addSymbol(objc::klass + symbol->getName()); 728 addSymbol(objc::metaclass + symbol->getName()); 729 break; 730 case SymbolKind::ObjectiveCClassEHType: 731 addSymbol(objc::ehtype + symbol->getName()); 732 break; 733 case SymbolKind::ObjectiveCInstanceVariable: 734 addSymbol(objc::ivar + symbol->getName()); 735 break; 736 } 737 } 738 739 const InterfaceFile *topLevel = 740 interface.getParent() == nullptr ? &interface : interface.getParent(); 741 742 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) 743 loadReexport(intfRef.getInstallName(), umbrella, topLevel); 744 } 745 746 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 747 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 748 for (const object::Archive::Symbol &sym : file->symbols()) 749 symtab->addLazy(sym.getName(), this, sym); 750 } 751 752 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 753 object::Archive::Child c = 754 CHECK(sym.getMember(), toString(this) + 755 ": could not get the member for symbol " + 756 toMachOString(sym)); 757 758 if (!seen.insert(c.getChildOffset()).second) 759 return; 760 761 MemoryBufferRef mb = 762 CHECK(c.getMemoryBufferRef(), 763 toString(this) + 764 ": could not get the buffer for the member defining symbol " + 765 toMachOString(sym)); 766 767 if (tar && c.getParent()->isThin()) 768 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 769 770 uint32_t modTime = toTimeT( 771 CHECK(c.getLastModified(), toString(this) + 772 ": could not get the modification time " 773 "for the member defining symbol " + 774 toMachOString(sym))); 775 776 // `sym` is owned by a LazySym, which will be replace<>() by make<ObjFile> 777 // and become invalid after that call. Copy it to the stack so we can refer 778 // to it later. 779 const object::Archive::Symbol sym_copy = sym; 780 781 if (Optional<InputFile *> file = 782 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 783 inputFiles.insert(*file); 784 // ld64 doesn't demangle sym here even with -demangle. Match that, so 785 // intentionally no call to toMachOString() here. 786 printArchiveMemberLoad(sym_copy.getName(), *file); 787 } 788 } 789 790 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 791 BitcodeFile &file) { 792 StringRef name = saver.save(objSym.getName()); 793 794 // TODO: support weak references 795 if (objSym.isUndefined()) 796 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 797 798 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 799 800 // TODO: Write a test demonstrating why computing isPrivateExtern before 801 // LTO compilation is important. 802 bool isPrivateExtern = false; 803 switch (objSym.getVisibility()) { 804 case GlobalValue::HiddenVisibility: 805 isPrivateExtern = true; 806 break; 807 case GlobalValue::ProtectedVisibility: 808 error(name + " has protected visibility, which is not supported by Mach-O"); 809 break; 810 case GlobalValue::DefaultVisibility: 811 break; 812 } 813 814 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 815 objSym.isWeak(), isPrivateExtern); 816 } 817 818 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 819 : InputFile(BitcodeKind, mbref) { 820 obj = check(lto::InputFile::create(mbref)); 821 822 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 823 // "winning" symbol will then be marked as Prevailing at LTO compilation 824 // time. 825 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 826 symbols.push_back(createBitcodeSymbol(objSym, *this)); 827 } 828