1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/TextAPI/Architecture.h" 71 #include "llvm/TextAPI/InterfaceFile.h" 72 73 using namespace llvm; 74 using namespace llvm::MachO; 75 using namespace llvm::support::endian; 76 using namespace llvm::sys; 77 using namespace lld; 78 using namespace lld::macho; 79 80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 81 std::string lld::toString(const InputFile *f) { 82 if (!f) 83 return "<internal>"; 84 85 // Multiple dylibs can be defined in one .tbd file. 86 if (auto dylibFile = dyn_cast<DylibFile>(f)) 87 if (f->getName().endswith(".tbd")) 88 return (f->getName() + "(" + dylibFile->installName + ")").str(); 89 90 if (f->archiveName.empty()) 91 return std::string(f->getName()); 92 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 93 } 94 95 SetVector<InputFile *> macho::inputFiles; 96 std::unique_ptr<TarWriter> macho::tar; 97 int InputFile::idCount = 0; 98 99 static VersionTuple decodeVersion(uint32_t version) { 100 unsigned major = version >> 16; 101 unsigned minor = (version >> 8) & 0xffu; 102 unsigned subMinor = version & 0xffu; 103 return VersionTuple(major, minor, subMinor); 104 } 105 106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 107 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 108 return {}; 109 110 const char *hdr = input->mb.getBufferStart(); 111 112 std::vector<PlatformInfo> platformInfos; 113 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 PlatformInfo info; 115 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 116 info.minimum = decodeVersion(cmd->minos); 117 platformInfos.emplace_back(std::move(info)); 118 } 119 for (auto *cmd : findCommands<version_min_command>( 120 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 121 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 122 PlatformInfo info; 123 switch (cmd->cmd) { 124 case LC_VERSION_MIN_MACOSX: 125 info.target.Platform = PlatformKind::macOS; 126 break; 127 case LC_VERSION_MIN_IPHONEOS: 128 info.target.Platform = PlatformKind::iOS; 129 break; 130 case LC_VERSION_MIN_TVOS: 131 info.target.Platform = PlatformKind::tvOS; 132 break; 133 case LC_VERSION_MIN_WATCHOS: 134 info.target.Platform = PlatformKind::watchOS; 135 break; 136 } 137 info.minimum = decodeVersion(cmd->version); 138 platformInfos.emplace_back(std::move(info)); 139 } 140 141 return platformInfos; 142 } 143 144 static bool checkCompatibility(const InputFile *input) { 145 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 146 if (platformInfos.empty()) 147 return true; 148 149 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 150 return removeSimulator(info.target.Platform) == 151 removeSimulator(config->platform()); 152 }); 153 if (it == platformInfos.end()) { 154 std::string platformNames; 155 raw_string_ostream os(platformNames); 156 interleave( 157 platformInfos, os, 158 [&](const PlatformInfo &info) { 159 os << getPlatformName(info.target.Platform); 160 }, 161 "/"); 162 error(toString(input) + " has platform " + platformNames + 163 Twine(", which is different from target platform ") + 164 getPlatformName(config->platform())); 165 return false; 166 } 167 168 if (it->minimum > config->platformInfo.minimum) 169 warn(toString(input) + " has version " + it->minimum.getAsString() + 170 ", which is newer than target minimum of " + 171 config->platformInfo.minimum.getAsString()); 172 173 return true; 174 } 175 176 // Open a given file path and return it as a memory-mapped file. 177 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 178 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 179 if (std::error_code ec = mbOrErr.getError()) { 180 error("cannot open " + path + ": " + ec.message()); 181 return None; 182 } 183 184 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 185 MemoryBufferRef mbref = mb->getMemBufferRef(); 186 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 187 188 // If this is a regular non-fat file, return it. 189 const char *buf = mbref.getBufferStart(); 190 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 191 if (mbref.getBufferSize() < sizeof(uint32_t) || 192 read32be(&hdr->magic) != FAT_MAGIC) { 193 if (tar) 194 tar->append(relativeToRoot(path), mbref.getBuffer()); 195 return mbref; 196 } 197 198 // Object files and archive files may be fat files, which contain multiple 199 // real files for different CPU ISAs. Here, we search for a file that matches 200 // with the current link target and returns it as a MemoryBufferRef. 201 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 202 203 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 204 if (reinterpret_cast<const char *>(arch + i + 1) > 205 buf + mbref.getBufferSize()) { 206 error(path + ": fat_arch struct extends beyond end of file"); 207 return None; 208 } 209 210 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 211 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 212 continue; 213 214 uint32_t offset = read32be(&arch[i].offset); 215 uint32_t size = read32be(&arch[i].size); 216 if (offset + size > mbref.getBufferSize()) 217 error(path + ": slice extends beyond end of file"); 218 if (tar) 219 tar->append(relativeToRoot(path), mbref.getBuffer()); 220 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 221 } 222 223 error("unable to find matching architecture in " + path); 224 return None; 225 } 226 227 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 228 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 229 230 // Some sections comprise of fixed-size records, so instead of splitting them at 231 // symbol boundaries, we split them based on size. Records are distinct from 232 // literals in that they may contain references to other sections, instead of 233 // being leaf nodes in the InputSection graph. 234 // 235 // Note that "record" is a term I came up with. In contrast, "literal" is a term 236 // used by the Mach-O format. 237 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 238 if (name == section_names::cfString) 239 if (config->icfLevel != ICFLevel::none && segname == segment_names::data) 240 return target->wordSize == 8 ? 32 : 16; 241 return {}; 242 } 243 244 template <class Section> 245 void ObjFile::parseSections(ArrayRef<Section> sections) { 246 subsections.reserve(sections.size()); 247 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 248 249 for (const Section &sec : sections) { 250 StringRef name = 251 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 252 StringRef segname = 253 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 254 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 255 : buf + sec.offset, 256 static_cast<size_t>(sec.size)}; 257 if (sec.align >= 32) { 258 error("alignment " + std::to_string(sec.align) + " of section " + name + 259 " is too large"); 260 subsections.push_back({}); 261 continue; 262 } 263 uint32_t align = 1 << sec.align; 264 uint32_t flags = sec.flags; 265 266 auto splitRecords = [&](int recordSize) -> void { 267 subsections.push_back({}); 268 if (data.size() == 0) 269 return; 270 271 SubsectionMap &subsecMap = subsections.back(); 272 subsecMap.reserve(data.size() / recordSize); 273 auto *isec = make<ConcatInputSection>( 274 segname, name, this, data.slice(0, recordSize), align, flags); 275 subsecMap.push_back({0, isec}); 276 for (uint64_t off = recordSize; off < data.size(); off += recordSize) { 277 // Copying requires less memory than constructing a fresh InputSection. 278 auto *copy = make<ConcatInputSection>(*isec); 279 copy->data = data.slice(off, recordSize); 280 subsecMap.push_back({off, copy}); 281 } 282 }; 283 284 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 285 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 286 if (sec.nreloc && config->dedupLiterals) 287 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 288 sec.sectname + 289 ", so LLD cannot deduplicate literals. Try re-running without " 290 "--deduplicate-literals."); 291 292 InputSection *isec; 293 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 294 isec = 295 make<CStringInputSection>(segname, name, this, data, align, flags); 296 // FIXME: parallelize this? 297 cast<CStringInputSection>(isec)->splitIntoPieces(); 298 } else { 299 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 300 flags); 301 } 302 subsections.push_back({{0, isec}}); 303 } else if (auto recordSize = getRecordSize(segname, name)) { 304 splitRecords(*recordSize); 305 } else if (segname == segment_names::llvm) { 306 // ld64 does not appear to emit contents from sections within the __LLVM 307 // segment. Symbols within those sections point to bitcode metadata 308 // instead of actual symbols. Global symbols within those sections could 309 // have the same name without causing duplicate symbol errors. Push an 310 // empty map to ensure indices line up for the remaining sections. 311 // TODO: Evaluate whether the bitcode metadata is needed. 312 subsections.push_back({}); 313 } else { 314 auto *isec = 315 make<ConcatInputSection>(segname, name, this, data, align, flags); 316 if (isDebugSection(isec->getFlags()) && 317 isec->getSegName() == segment_names::dwarf) { 318 // Instead of emitting DWARF sections, we emit STABS symbols to the 319 // object files that contain them. We filter them out early to avoid 320 // parsing their relocations unnecessarily. But we must still push an 321 // empty map to ensure the indices line up for the remaining sections. 322 subsections.push_back({}); 323 debugSections.push_back(isec); 324 } else { 325 subsections.push_back({{0, isec}}); 326 } 327 } 328 } 329 } 330 331 // Find the subsection corresponding to the greatest section offset that is <= 332 // that of the given offset. 333 // 334 // offset: an offset relative to the start of the original InputSection (before 335 // any subsection splitting has occurred). It will be updated to represent the 336 // same location as an offset relative to the start of the containing 337 // subsection. 338 static InputSection *findContainingSubsection(SubsectionMap &map, 339 uint64_t *offset) { 340 auto it = std::prev(llvm::upper_bound( 341 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 342 return value < subsecEntry.offset; 343 })); 344 *offset -= it->offset; 345 return it->isec; 346 } 347 348 template <class Section> 349 static bool validateRelocationInfo(InputFile *file, const Section &sec, 350 relocation_info rel) { 351 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 352 bool valid = true; 353 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 354 valid = false; 355 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 356 std::to_string(rel.r_address) + " of " + sec.segname + "," + 357 sec.sectname + " in " + toString(file)) 358 .str(); 359 }; 360 361 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 362 error(message("must be extern")); 363 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 364 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 365 "be PC-relative")); 366 if (isThreadLocalVariables(sec.flags) && 367 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 368 error(message("not allowed in thread-local section, must be UNSIGNED")); 369 if (rel.r_length < 2 || rel.r_length > 3 || 370 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 371 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 372 error(message("has width " + std::to_string(1 << rel.r_length) + 373 " bytes, but must be " + 374 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 375 " bytes")); 376 } 377 return valid; 378 } 379 380 template <class Section> 381 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 382 const Section &sec, SubsectionMap &subsecMap) { 383 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 384 ArrayRef<relocation_info> relInfos( 385 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 386 387 auto subsecIt = subsecMap.rbegin(); 388 for (size_t i = 0; i < relInfos.size(); i++) { 389 // Paired relocations serve as Mach-O's method for attaching a 390 // supplemental datum to a primary relocation record. ELF does not 391 // need them because the *_RELOC_RELA records contain the extra 392 // addend field, vs. *_RELOC_REL which omit the addend. 393 // 394 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 395 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 396 // datum for each is a symbolic address. The result is the offset 397 // between two addresses. 398 // 399 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 400 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 401 // base symbolic address. 402 // 403 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 404 // addend into the instruction stream. On X86, a relocatable address 405 // field always occupies an entire contiguous sequence of byte(s), 406 // so there is no need to merge opcode bits with address 407 // bits. Therefore, it's easy and convenient to store addends in the 408 // instruction-stream bytes that would otherwise contain zeroes. By 409 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 410 // address bits so that bitwise arithmetic is necessary to extract 411 // and insert them. Storing addends in the instruction stream is 412 // possible, but inconvenient and more costly at link time. 413 414 int64_t pairedAddend = 0; 415 relocation_info relInfo = relInfos[i]; 416 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 417 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 418 relInfo = relInfos[++i]; 419 } 420 assert(i < relInfos.size()); 421 if (!validateRelocationInfo(this, sec, relInfo)) 422 continue; 423 if (relInfo.r_address & R_SCATTERED) 424 fatal("TODO: Scattered relocations not supported"); 425 426 bool isSubtrahend = 427 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 428 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 429 assert(!(embeddedAddend && pairedAddend)); 430 int64_t totalAddend = pairedAddend + embeddedAddend; 431 Reloc r; 432 r.type = relInfo.r_type; 433 r.pcrel = relInfo.r_pcrel; 434 r.length = relInfo.r_length; 435 r.offset = relInfo.r_address; 436 if (relInfo.r_extern) { 437 r.referent = symbols[relInfo.r_symbolnum]; 438 r.addend = isSubtrahend ? 0 : totalAddend; 439 } else { 440 assert(!isSubtrahend); 441 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 442 uint64_t referentOffset; 443 if (relInfo.r_pcrel) { 444 // The implicit addend for pcrel section relocations is the pcrel offset 445 // in terms of the addresses in the input file. Here we adjust it so 446 // that it describes the offset from the start of the referent section. 447 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 448 // have pcrel section relocations. We may want to factor this out into 449 // the arch-specific .cpp file. 450 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 451 referentOffset = 452 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 453 } else { 454 // The addend for a non-pcrel relocation is its absolute address. 455 referentOffset = totalAddend - referentSec.addr; 456 } 457 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 458 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 459 r.addend = referentOffset; 460 } 461 462 // Find the subsection that this relocation belongs to. 463 // Though not required by the Mach-O format, clang and gcc seem to emit 464 // relocations in order, so let's take advantage of it. However, ld64 emits 465 // unsorted relocations (in `-r` mode), so we have a fallback for that 466 // uncommon case. 467 InputSection *subsec; 468 while (subsecIt != subsecMap.rend() && subsecIt->offset > r.offset) 469 ++subsecIt; 470 if (subsecIt == subsecMap.rend() || 471 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 472 subsec = findContainingSubsection(subsecMap, &r.offset); 473 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 474 // for the other relocations. 475 subsecIt = subsecMap.rend(); 476 } else { 477 subsec = subsecIt->isec; 478 r.offset -= subsecIt->offset; 479 } 480 subsec->relocs.push_back(r); 481 482 if (isSubtrahend) { 483 relocation_info minuendInfo = relInfos[++i]; 484 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 485 // attached to the same address. 486 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 487 relInfo.r_address == minuendInfo.r_address); 488 Reloc p; 489 p.type = minuendInfo.r_type; 490 if (minuendInfo.r_extern) { 491 p.referent = symbols[minuendInfo.r_symbolnum]; 492 p.addend = totalAddend; 493 } else { 494 uint64_t referentOffset = 495 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 496 SubsectionMap &referentSubsecMap = 497 subsections[minuendInfo.r_symbolnum - 1]; 498 p.referent = 499 findContainingSubsection(referentSubsecMap, &referentOffset); 500 p.addend = referentOffset; 501 } 502 subsec->relocs.push_back(p); 503 } 504 } 505 } 506 507 template <class NList> 508 static macho::Symbol *createDefined(const NList &sym, StringRef name, 509 InputSection *isec, uint64_t value, 510 uint64_t size) { 511 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 512 // N_EXT: Global symbols. These go in the symbol table during the link, 513 // and also in the export table of the output so that the dynamic 514 // linker sees them. 515 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 516 // symbol table during the link so that duplicates are 517 // either reported (for non-weak symbols) or merged 518 // (for weak symbols), but they do not go in the export 519 // table of the output. 520 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 521 // object files) may produce them. LLD does not yet support -r. 522 // These are translation-unit scoped, identical to the `0` case. 523 // 0: Translation-unit scoped. These are not in the symbol table during 524 // link, and not in the export table of the output either. 525 bool isWeakDefCanBeHidden = 526 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 527 528 if (sym.n_type & N_EXT) { 529 bool isPrivateExtern = sym.n_type & N_PEXT; 530 // lld's behavior for merging symbols is slightly different from ld64: 531 // ld64 picks the winning symbol based on several criteria (see 532 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 533 // just merges metadata and keeps the contents of the first symbol 534 // with that name (see SymbolTable::addDefined). For: 535 // * inline function F in a TU built with -fvisibility-inlines-hidden 536 // * and inline function F in another TU built without that flag 537 // ld64 will pick the one from the file built without 538 // -fvisibility-inlines-hidden. 539 // lld will instead pick the one listed first on the link command line and 540 // give it visibility as if the function was built without 541 // -fvisibility-inlines-hidden. 542 // If both functions have the same contents, this will have the same 543 // behavior. If not, it won't, but the input had an ODR violation in 544 // that case. 545 // 546 // Similarly, merging a symbol 547 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 548 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 549 // should produce one 550 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 551 // with ld64's semantics, because it means the non-private-extern 552 // definition will continue to take priority if more private extern 553 // definitions are encountered. With lld's semantics there's no observable 554 // difference between a symbol that's isWeakDefCanBeHidden or one that's 555 // privateExtern -- neither makes it into the dynamic symbol table. So just 556 // promote isWeakDefCanBeHidden to isPrivateExtern here. 557 if (isWeakDefCanBeHidden) 558 isPrivateExtern = true; 559 560 return symtab->addDefined( 561 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 562 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 563 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); 564 } 565 566 assert(!isWeakDefCanBeHidden && 567 "weak_def_can_be_hidden on already-hidden symbol?"); 568 return make<Defined>( 569 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 570 /*isExternal=*/false, /*isPrivateExtern=*/false, 571 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 572 sym.n_desc & N_NO_DEAD_STRIP); 573 } 574 575 // Absolute symbols are defined symbols that do not have an associated 576 // InputSection. They cannot be weak. 577 template <class NList> 578 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 579 StringRef name) { 580 if (sym.n_type & N_EXT) { 581 return symtab->addDefined( 582 name, file, nullptr, sym.n_value, /*size=*/0, 583 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 584 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP); 585 } 586 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 587 /*isWeakDef=*/false, 588 /*isExternal=*/false, /*isPrivateExtern=*/false, 589 sym.n_desc & N_ARM_THUMB_DEF, 590 /*isReferencedDynamically=*/false, 591 sym.n_desc & N_NO_DEAD_STRIP); 592 } 593 594 template <class NList> 595 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 596 StringRef name) { 597 uint8_t type = sym.n_type & N_TYPE; 598 switch (type) { 599 case N_UNDF: 600 return sym.n_value == 0 601 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 602 : symtab->addCommon(name, this, sym.n_value, 603 1 << GET_COMM_ALIGN(sym.n_desc), 604 sym.n_type & N_PEXT); 605 case N_ABS: 606 return createAbsolute(sym, this, name); 607 case N_PBUD: 608 case N_INDR: 609 error("TODO: support symbols of type " + std::to_string(type)); 610 return nullptr; 611 case N_SECT: 612 llvm_unreachable( 613 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 614 default: 615 llvm_unreachable("invalid symbol type"); 616 } 617 } 618 619 template <class NList> 620 static bool isUndef(const NList &sym) { 621 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 622 } 623 624 template <class LP> 625 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 626 ArrayRef<typename LP::nlist> nList, 627 const char *strtab, bool subsectionsViaSymbols) { 628 using NList = typename LP::nlist; 629 630 // Groups indices of the symbols by the sections that contain them. 631 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 632 symbols.resize(nList.size()); 633 SmallVector<unsigned, 32> undefineds; 634 for (uint32_t i = 0; i < nList.size(); ++i) { 635 const NList &sym = nList[i]; 636 637 // Ignore debug symbols for now. 638 // FIXME: may need special handling. 639 if (sym.n_type & N_STAB) 640 continue; 641 642 StringRef name = strtab + sym.n_strx; 643 if ((sym.n_type & N_TYPE) == N_SECT) { 644 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 645 // parseSections() may have chosen not to parse this section. 646 if (subsecMap.empty()) 647 continue; 648 symbolsBySection[sym.n_sect - 1].push_back(i); 649 } else if (isUndef(sym)) { 650 undefineds.push_back(i); 651 } else { 652 symbols[i] = parseNonSectionSymbol(sym, name); 653 } 654 } 655 656 for (size_t i = 0; i < subsections.size(); ++i) { 657 SubsectionMap &subsecMap = subsections[i]; 658 if (subsecMap.empty()) 659 continue; 660 661 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 662 uint64_t sectionAddr = sectionHeaders[i].addr; 663 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 664 665 InputSection *isec = subsecMap.back().isec; 666 // __cfstring has already been split into subsections during 667 // parseSections(), so we simply need to match Symbols to the corresponding 668 // subsection here. 669 if (config->icfLevel != ICFLevel::none && isCfStringSection(isec)) { 670 for (size_t j = 0; j < symbolIndices.size(); ++j) { 671 uint32_t symIndex = symbolIndices[j]; 672 const NList &sym = nList[symIndex]; 673 StringRef name = strtab + sym.n_strx; 674 uint64_t symbolOffset = sym.n_value - sectionAddr; 675 InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset); 676 if (symbolOffset != 0) { 677 error(toString(this) + ": __cfstring contains symbol " + name + 678 " at misaligned offset"); 679 continue; 680 } 681 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 682 } 683 continue; 684 } 685 686 // Calculate symbol sizes and create subsections by splitting the sections 687 // along symbol boundaries. 688 // We populate subsecMap by repeatedly splitting the last (highest address) 689 // subsection. 690 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 691 return nList[lhs].n_value < nList[rhs].n_value; 692 }); 693 SubsectionEntry subsecEntry = subsecMap.back(); 694 for (size_t j = 0; j < symbolIndices.size(); ++j) { 695 uint32_t symIndex = symbolIndices[j]; 696 const NList &sym = nList[symIndex]; 697 StringRef name = strtab + sym.n_strx; 698 InputSection *isec = subsecEntry.isec; 699 700 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 701 size_t symbolOffset = sym.n_value - subsecAddr; 702 uint64_t symbolSize = 703 j + 1 < symbolIndices.size() 704 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 705 : isec->data.size() - symbolOffset; 706 // There are 4 cases where we do not need to create a new subsection: 707 // 1. If the input file does not use subsections-via-symbols. 708 // 2. Multiple symbols at the same address only induce one subsection. 709 // (The symbolOffset == 0 check covers both this case as well as 710 // the first loop iteration.) 711 // 3. Alternative entry points do not induce new subsections. 712 // 4. If we have a literal section (e.g. __cstring and __literal4). 713 if (!subsectionsViaSymbols || symbolOffset == 0 || 714 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 715 symbols[symIndex] = 716 createDefined(sym, name, isec, symbolOffset, symbolSize); 717 continue; 718 } 719 auto *concatIsec = cast<ConcatInputSection>(isec); 720 721 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 722 nextIsec->numRefs = 0; 723 nextIsec->wasCoalesced = false; 724 if (isZeroFill(isec->getFlags())) { 725 // Zero-fill sections have NULL data.data() non-zero data.size() 726 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 727 isec->data = {nullptr, symbolOffset}; 728 } else { 729 nextIsec->data = isec->data.slice(symbolOffset); 730 isec->data = isec->data.slice(0, symbolOffset); 731 } 732 733 // By construction, the symbol will be at offset zero in the new 734 // subsection. 735 symbols[symIndex] = 736 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 737 // TODO: ld64 appears to preserve the original alignment as well as each 738 // subsection's offset from the last aligned address. We should consider 739 // emulating that behavior. 740 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 741 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 742 subsecEntry = subsecMap.back(); 743 } 744 } 745 746 // Undefined symbols can trigger recursive fetch from Archives due to 747 // LazySymbols. Process defined symbols first so that the relative order 748 // between a defined symbol and an undefined symbol does not change the 749 // symbol resolution behavior. In addition, a set of interconnected symbols 750 // will all be resolved to the same file, instead of being resolved to 751 // different files. 752 for (unsigned i : undefineds) { 753 const NList &sym = nList[i]; 754 StringRef name = strtab + sym.n_strx; 755 symbols[i] = parseNonSectionSymbol(sym, name); 756 } 757 } 758 759 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 760 StringRef sectName) 761 : InputFile(OpaqueKind, mb) { 762 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 763 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 764 ConcatInputSection *isec = 765 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16), 766 /*file=*/this, data); 767 isec->live = true; 768 subsections.push_back({{0, isec}}); 769 } 770 771 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 772 : InputFile(ObjKind, mb), modTime(modTime) { 773 this->archiveName = std::string(archiveName); 774 if (target->wordSize == 8) 775 parse<LP64>(); 776 else 777 parse<ILP32>(); 778 } 779 780 template <class LP> void ObjFile::parse() { 781 using Header = typename LP::mach_header; 782 using SegmentCommand = typename LP::segment_command; 783 using Section = typename LP::section; 784 using NList = typename LP::nlist; 785 786 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 787 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 788 789 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 790 if (arch != config->arch()) { 791 error(toString(this) + " has architecture " + getArchitectureName(arch) + 792 " which is incompatible with target architecture " + 793 getArchitectureName(config->arch())); 794 return; 795 } 796 797 if (!checkCompatibility(this)) 798 return; 799 800 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 801 StringRef data{reinterpret_cast<const char *>(cmd + 1), 802 cmd->cmdsize - sizeof(linker_option_command)}; 803 parseLCLinkerOption(this, cmd->count, data); 804 } 805 806 ArrayRef<Section> sectionHeaders; 807 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 808 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 809 sectionHeaders = 810 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 811 parseSections(sectionHeaders); 812 } 813 814 // TODO: Error on missing LC_SYMTAB? 815 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 816 auto *c = reinterpret_cast<const symtab_command *>(cmd); 817 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 818 c->nsyms); 819 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 820 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 821 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 822 } 823 824 // The relocations may refer to the symbols, so we parse them after we have 825 // parsed all the symbols. 826 for (size_t i = 0, n = subsections.size(); i < n; ++i) 827 if (!subsections[i].empty()) 828 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 829 830 parseDebugInfo(); 831 if (config->emitDataInCodeInfo) 832 parseDataInCode(); 833 } 834 835 void ObjFile::parseDebugInfo() { 836 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 837 if (!dObj) 838 return; 839 840 auto *ctx = make<DWARFContext>( 841 std::move(dObj), "", 842 [&](Error err) { 843 warn(toString(this) + ": " + toString(std::move(err))); 844 }, 845 [&](Error warning) { 846 warn(toString(this) + ": " + toString(std::move(warning))); 847 }); 848 849 // TODO: Since object files can contain a lot of DWARF info, we should verify 850 // that we are parsing just the info we need 851 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 852 // FIXME: There can be more than one compile unit per object file. See 853 // PR48637. 854 auto it = units.begin(); 855 compileUnit = it->get(); 856 } 857 858 void ObjFile::parseDataInCode() { 859 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 860 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 861 if (!cmd) 862 return; 863 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 864 dataInCodeEntries = { 865 reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 866 c->datasize / sizeof(data_in_code_entry)}; 867 assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs, 868 const data_in_code_entry &rhs) { 869 return lhs.offset < rhs.offset; 870 })); 871 } 872 873 // The path can point to either a dylib or a .tbd file. 874 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 875 Optional<MemoryBufferRef> mbref = readFile(path); 876 if (!mbref) { 877 error("could not read dylib file at " + path); 878 return nullptr; 879 } 880 return loadDylib(*mbref, umbrella); 881 } 882 883 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 884 // the first document storing child pointers to the rest of them. When we are 885 // processing a given TBD file, we store that top-level document in 886 // currentTopLevelTapi. When processing re-exports, we search its children for 887 // potentially matching documents in the same TBD file. Note that the children 888 // themselves don't point to further documents, i.e. this is a two-level tree. 889 // 890 // Re-exports can either refer to on-disk files, or to documents within .tbd 891 // files. 892 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 893 const InterfaceFile *currentTopLevelTapi) { 894 // Search order: 895 // 1. Install name basename in -F / -L directories. 896 { 897 StringRef stem = path::stem(path); 898 SmallString<128> frameworkName; 899 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 900 bool isFramework = path.endswith(frameworkName); 901 if (isFramework) { 902 for (StringRef dir : config->frameworkSearchPaths) { 903 SmallString<128> candidate = dir; 904 path::append(candidate, frameworkName); 905 if (Optional<std::string> dylibPath = resolveDylibPath(candidate)) 906 return loadDylib(*dylibPath, umbrella); 907 } 908 } else if (Optional<StringRef> dylibPath = findPathCombination( 909 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 910 return loadDylib(*dylibPath, umbrella); 911 } 912 913 // 2. As absolute path. 914 if (path::is_absolute(path, path::Style::posix)) 915 for (StringRef root : config->systemLibraryRoots) 916 if (Optional<std::string> dylibPath = 917 resolveDylibPath((root + path).str())) 918 return loadDylib(*dylibPath, umbrella); 919 920 // 3. As relative path. 921 922 // TODO: Handle -dylib_file 923 924 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 925 SmallString<128> newPath; 926 if (config->outputType == MH_EXECUTE && 927 path.consume_front("@executable_path/")) { 928 // ld64 allows overriding this with the undocumented flag -executable_path. 929 // lld doesn't currently implement that flag. 930 // FIXME: Consider using finalOutput instead of outputFile. 931 path::append(newPath, path::parent_path(config->outputFile), path); 932 path = newPath; 933 } else if (path.consume_front("@loader_path/")) { 934 fs::real_path(umbrella->getName(), newPath); 935 path::remove_filename(newPath); 936 path::append(newPath, path); 937 path = newPath; 938 } else if (path.startswith("@rpath/")) { 939 for (StringRef rpath : umbrella->rpaths) { 940 newPath.clear(); 941 if (rpath.consume_front("@loader_path/")) { 942 fs::real_path(umbrella->getName(), newPath); 943 path::remove_filename(newPath); 944 } 945 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 946 if (Optional<std::string> dylibPath = resolveDylibPath(newPath)) 947 return loadDylib(*dylibPath, umbrella); 948 } 949 } 950 951 // FIXME: Should this be further up? 952 if (currentTopLevelTapi) { 953 for (InterfaceFile &child : 954 make_pointee_range(currentTopLevelTapi->documents())) { 955 assert(child.documents().empty()); 956 if (path == child.getInstallName()) { 957 auto file = make<DylibFile>(child, umbrella); 958 file->parseReexports(child); 959 return file; 960 } 961 } 962 } 963 964 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 965 return loadDylib(*dylibPath, umbrella); 966 967 return nullptr; 968 } 969 970 // If a re-exported dylib is public (lives in /usr/lib or 971 // /System/Library/Frameworks), then it is considered implicitly linked: we 972 // should bind to its symbols directly instead of via the re-exporting umbrella 973 // library. 974 static bool isImplicitlyLinked(StringRef path) { 975 if (!config->implicitDylibs) 976 return false; 977 978 if (path::parent_path(path) == "/usr/lib") 979 return true; 980 981 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 982 if (path.consume_front("/System/Library/Frameworks/")) { 983 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 984 return path::filename(path) == frameworkName; 985 } 986 987 return false; 988 } 989 990 static void loadReexport(StringRef path, DylibFile *umbrella, 991 const InterfaceFile *currentTopLevelTapi) { 992 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 993 if (!reexport) 994 error("unable to locate re-export with install name " + path); 995 } 996 997 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 998 bool isBundleLoader) 999 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1000 isBundleLoader(isBundleLoader) { 1001 assert(!isBundleLoader || !umbrella); 1002 if (umbrella == nullptr) 1003 umbrella = this; 1004 this->umbrella = umbrella; 1005 1006 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1007 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1008 1009 // Initialize installName. 1010 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1011 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1012 currentVersion = read32le(&c->dylib.current_version); 1013 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1014 installName = 1015 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1016 } else if (!isBundleLoader) { 1017 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1018 // so it's OK. 1019 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1020 return; 1021 } 1022 1023 if (config->printEachFile) 1024 message(toString(this)); 1025 inputFiles.insert(this); 1026 1027 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1028 1029 if (!checkCompatibility(this)) 1030 return; 1031 1032 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1033 1034 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1035 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1036 rpaths.push_back(rpath); 1037 } 1038 1039 // Initialize symbols. 1040 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1041 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1042 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1043 parseTrie(buf + c->export_off, c->export_size, 1044 [&](const Twine &name, uint64_t flags) { 1045 StringRef savedName = saver.save(name); 1046 if (handleLDSymbol(savedName)) 1047 return; 1048 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1049 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1050 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1051 isWeakDef, isTlv)); 1052 }); 1053 } else { 1054 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1055 return; 1056 } 1057 } 1058 1059 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1060 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1061 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1062 target->headerSize; 1063 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1064 auto *cmd = reinterpret_cast<const load_command *>(p); 1065 p += cmd->cmdsize; 1066 1067 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1068 cmd->cmd == LC_REEXPORT_DYLIB) { 1069 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1070 StringRef reexportPath = 1071 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1072 loadReexport(reexportPath, exportingFile, nullptr); 1073 } 1074 1075 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1076 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1077 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1078 if (config->namespaceKind == NamespaceKind::flat && 1079 cmd->cmd == LC_LOAD_DYLIB) { 1080 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1081 StringRef dylibPath = 1082 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1083 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1084 if (!dylib) 1085 error(Twine("unable to locate library '") + dylibPath + 1086 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1087 } 1088 } 1089 } 1090 1091 // Some versions of XCode ship with .tbd files that don't have the right 1092 // platform settings. 1093 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 1094 "/usr/lib/system/libsystem_kernel.dylib", 1095 "/usr/lib/system/libsystem_platform.dylib", 1096 "/usr/lib/system/libsystem_pthread.dylib"}; 1097 1098 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1099 bool isBundleLoader) 1100 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1101 isBundleLoader(isBundleLoader) { 1102 // FIXME: Add test for the missing TBD code path. 1103 1104 if (umbrella == nullptr) 1105 umbrella = this; 1106 this->umbrella = umbrella; 1107 1108 installName = saver.save(interface.getInstallName()); 1109 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1110 currentVersion = interface.getCurrentVersion().rawValue(); 1111 1112 if (config->printEachFile) 1113 message(toString(this)); 1114 inputFiles.insert(this); 1115 1116 if (!is_contained(skipPlatformChecks, installName) && 1117 !is_contained(interface.targets(), config->platformInfo.target)) { 1118 error(toString(this) + " is incompatible with " + 1119 std::string(config->platformInfo.target)); 1120 return; 1121 } 1122 1123 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1124 1125 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1126 auto addSymbol = [&](const Twine &name) -> void { 1127 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 1128 /*isWeakDef=*/false, 1129 /*isTlv=*/false)); 1130 }; 1131 // TODO(compnerd) filter out symbols based on the target platform 1132 // TODO: handle weak defs, thread locals 1133 for (const auto *symbol : interface.symbols()) { 1134 if (!symbol->getArchitectures().has(config->arch())) 1135 continue; 1136 1137 if (handleLDSymbol(symbol->getName())) 1138 continue; 1139 1140 switch (symbol->getKind()) { 1141 case SymbolKind::GlobalSymbol: 1142 addSymbol(symbol->getName()); 1143 break; 1144 case SymbolKind::ObjectiveCClass: 1145 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1146 // want to emulate that. 1147 addSymbol(objc::klass + symbol->getName()); 1148 addSymbol(objc::metaclass + symbol->getName()); 1149 break; 1150 case SymbolKind::ObjectiveCClassEHType: 1151 addSymbol(objc::ehtype + symbol->getName()); 1152 break; 1153 case SymbolKind::ObjectiveCInstanceVariable: 1154 addSymbol(objc::ivar + symbol->getName()); 1155 break; 1156 } 1157 } 1158 } 1159 1160 void DylibFile::parseReexports(const InterfaceFile &interface) { 1161 const InterfaceFile *topLevel = 1162 interface.getParent() == nullptr ? &interface : interface.getParent(); 1163 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 1164 InterfaceFile::const_target_range targets = intfRef.targets(); 1165 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1166 is_contained(targets, config->platformInfo.target)) 1167 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1168 } 1169 } 1170 1171 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1172 // name, compatibility version or hide/add symbols) for specific target 1173 // versions. 1174 bool DylibFile::handleLDSymbol(StringRef originalName) { 1175 if (!originalName.startswith("$ld$")) 1176 return false; 1177 1178 StringRef action; 1179 StringRef name; 1180 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1181 if (action == "previous") 1182 handleLDPreviousSymbol(name, originalName); 1183 else if (action == "install_name") 1184 handleLDInstallNameSymbol(name, originalName); 1185 return true; 1186 } 1187 1188 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1189 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1190 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1191 StringRef installName; 1192 StringRef compatVersion; 1193 StringRef platformStr; 1194 StringRef startVersion; 1195 StringRef endVersion; 1196 StringRef symbolName; 1197 StringRef rest; 1198 1199 std::tie(installName, name) = name.split('$'); 1200 std::tie(compatVersion, name) = name.split('$'); 1201 std::tie(platformStr, name) = name.split('$'); 1202 std::tie(startVersion, name) = name.split('$'); 1203 std::tie(endVersion, name) = name.split('$'); 1204 std::tie(symbolName, rest) = name.split('$'); 1205 // TODO: ld64 contains some logic for non-empty symbolName as well. 1206 if (!symbolName.empty()) 1207 return; 1208 unsigned platform; 1209 if (platformStr.getAsInteger(10, platform) || 1210 platform != static_cast<unsigned>(config->platform())) 1211 return; 1212 1213 VersionTuple start; 1214 if (start.tryParse(startVersion)) { 1215 warn("failed to parse start version, symbol '" + originalName + 1216 "' ignored"); 1217 return; 1218 } 1219 VersionTuple end; 1220 if (end.tryParse(endVersion)) { 1221 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1222 return; 1223 } 1224 if (config->platformInfo.minimum < start || 1225 config->platformInfo.minimum >= end) 1226 return; 1227 1228 this->installName = saver.save(installName); 1229 1230 if (!compatVersion.empty()) { 1231 VersionTuple cVersion; 1232 if (cVersion.tryParse(compatVersion)) { 1233 warn("failed to parse compatibility version, symbol '" + originalName + 1234 "' ignored"); 1235 return; 1236 } 1237 compatibilityVersion = encodeVersion(cVersion); 1238 } 1239 } 1240 1241 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1242 StringRef originalName) { 1243 // originalName: $ld$ install_name $ os<version> $ install_name 1244 StringRef condition, installName; 1245 std::tie(condition, installName) = name.split('$'); 1246 VersionTuple version; 1247 if (!condition.consume_front("os") || version.tryParse(condition)) 1248 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1249 else if (version == config->platformInfo.minimum) 1250 this->installName = saver.save(installName); 1251 } 1252 1253 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1254 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1255 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1256 } 1257 1258 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1259 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1260 1261 void ArchiveFile::addLazySymbols() { 1262 for (const object::Archive::Symbol &sym : file->symbols()) 1263 symtab->addLazy(sym.getName(), this, sym); 1264 } 1265 1266 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1267 uint32_t modTime, 1268 StringRef archiveName, 1269 uint64_t offsetInArchive) { 1270 if (config->zeroModTime) 1271 modTime = 0; 1272 1273 switch (identify_magic(mb.getBuffer())) { 1274 case file_magic::macho_object: 1275 return make<ObjFile>(mb, modTime, archiveName); 1276 case file_magic::bitcode: 1277 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1278 default: 1279 return createStringError(inconvertibleErrorCode(), 1280 mb.getBufferIdentifier() + 1281 " has unhandled file type"); 1282 } 1283 } 1284 1285 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1286 if (!seen.insert(c.getChildOffset()).second) 1287 return Error::success(); 1288 1289 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1290 if (!mb) 1291 return mb.takeError(); 1292 1293 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1294 if (tar && c.getParent()->isThin()) 1295 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1296 1297 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1298 if (!modTime) 1299 return modTime.takeError(); 1300 1301 Expected<InputFile *> file = 1302 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1303 1304 if (!file) 1305 return file.takeError(); 1306 1307 inputFiles.insert(*file); 1308 printArchiveMemberLoad(reason, *file); 1309 return Error::success(); 1310 } 1311 1312 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1313 object::Archive::Child c = 1314 CHECK(sym.getMember(), toString(this) + 1315 ": could not get the member defining symbol " + 1316 toMachOString(sym)); 1317 1318 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1319 // and become invalid after that call. Copy it to the stack so we can refer 1320 // to it later. 1321 const object::Archive::Symbol symCopy = sym; 1322 1323 // ld64 doesn't demangle sym here even with -demangle. 1324 // Match that: intentionally don't call toMachOString(). 1325 if (Error e = fetch(c, symCopy.getName())) 1326 error(toString(this) + ": could not get the member defining symbol " + 1327 toMachOString(symCopy) + ": " + toString(std::move(e))); 1328 } 1329 1330 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1331 BitcodeFile &file) { 1332 StringRef name = saver.save(objSym.getName()); 1333 1334 // TODO: support weak references 1335 if (objSym.isUndefined()) 1336 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1337 1338 // TODO: Write a test demonstrating why computing isPrivateExtern before 1339 // LTO compilation is important. 1340 bool isPrivateExtern = false; 1341 switch (objSym.getVisibility()) { 1342 case GlobalValue::HiddenVisibility: 1343 isPrivateExtern = true; 1344 break; 1345 case GlobalValue::ProtectedVisibility: 1346 error(name + " has protected visibility, which is not supported by Mach-O"); 1347 break; 1348 case GlobalValue::DefaultVisibility: 1349 break; 1350 } 1351 1352 if (objSym.isCommon()) 1353 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1354 objSym.getCommonAlignment(), isPrivateExtern); 1355 1356 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1357 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1358 /*isThumb=*/false, 1359 /*isReferencedDynamically=*/false, 1360 /*noDeadStrip=*/false); 1361 } 1362 1363 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1364 uint64_t offsetInArchive) 1365 : InputFile(BitcodeKind, mb) { 1366 std::string path = mb.getBufferIdentifier().str(); 1367 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1368 // name. If two members with the same name are provided, this causes a 1369 // collision and ThinLTO can't proceed. 1370 // So, we append the archive name to disambiguate two members with the same 1371 // name from multiple different archives, and offset within the archive to 1372 // disambiguate two members of the same name from a single archive. 1373 MemoryBufferRef mbref( 1374 mb.getBuffer(), 1375 saver.save(archiveName.empty() ? path 1376 : archiveName + sys::path::filename(path) + 1377 utostr(offsetInArchive))); 1378 1379 obj = check(lto::InputFile::create(mbref)); 1380 1381 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1382 // "winning" symbol will then be marked as Prevailing at LTO compilation 1383 // time. 1384 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1385 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1386 } 1387 1388 template void ObjFile::parse<LP64>(); 1389