1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/TextAPI/Architecture.h" 71 #include "llvm/TextAPI/InterfaceFile.h" 72 73 using namespace llvm; 74 using namespace llvm::MachO; 75 using namespace llvm::support::endian; 76 using namespace llvm::sys; 77 using namespace lld; 78 using namespace lld::macho; 79 80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 81 std::string lld::toString(const InputFile *f) { 82 if (!f) 83 return "<internal>"; 84 85 // Multiple dylibs can be defined in one .tbd file. 86 if (auto dylibFile = dyn_cast<DylibFile>(f)) 87 if (f->getName().endswith(".tbd")) 88 return (f->getName() + "(" + dylibFile->installName + ")").str(); 89 90 if (f->archiveName.empty()) 91 return std::string(f->getName()); 92 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 93 } 94 95 SetVector<InputFile *> macho::inputFiles; 96 std::unique_ptr<TarWriter> macho::tar; 97 int InputFile::idCount = 0; 98 99 static VersionTuple decodeVersion(uint32_t version) { 100 unsigned major = version >> 16; 101 unsigned minor = (version >> 8) & 0xffu; 102 unsigned subMinor = version & 0xffu; 103 return VersionTuple(major, minor, subMinor); 104 } 105 106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 107 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 108 return {}; 109 110 const char *hdr = input->mb.getBufferStart(); 111 112 std::vector<PlatformInfo> platformInfos; 113 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 PlatformInfo info; 115 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 116 info.minimum = decodeVersion(cmd->minos); 117 platformInfos.emplace_back(std::move(info)); 118 } 119 for (auto *cmd : findCommands<version_min_command>( 120 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 121 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 122 PlatformInfo info; 123 switch (cmd->cmd) { 124 case LC_VERSION_MIN_MACOSX: 125 info.target.Platform = PlatformKind::macOS; 126 break; 127 case LC_VERSION_MIN_IPHONEOS: 128 info.target.Platform = PlatformKind::iOS; 129 break; 130 case LC_VERSION_MIN_TVOS: 131 info.target.Platform = PlatformKind::tvOS; 132 break; 133 case LC_VERSION_MIN_WATCHOS: 134 info.target.Platform = PlatformKind::watchOS; 135 break; 136 } 137 info.minimum = decodeVersion(cmd->version); 138 platformInfos.emplace_back(std::move(info)); 139 } 140 141 return platformInfos; 142 } 143 144 static bool checkCompatibility(const InputFile *input) { 145 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 146 if (platformInfos.empty()) 147 return true; 148 149 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 150 return removeSimulator(info.target.Platform) == 151 removeSimulator(config->platform()); 152 }); 153 if (it == platformInfos.end()) { 154 std::string platformNames; 155 raw_string_ostream os(platformNames); 156 interleave( 157 platformInfos, os, 158 [&](const PlatformInfo &info) { 159 os << getPlatformName(info.target.Platform); 160 }, 161 "/"); 162 error(toString(input) + " has platform " + platformNames + 163 Twine(", which is different from target platform ") + 164 getPlatformName(config->platform())); 165 return false; 166 } 167 168 if (it->minimum > config->platformInfo.minimum) 169 warn(toString(input) + " has version " + it->minimum.getAsString() + 170 ", which is newer than target minimum of " + 171 config->platformInfo.minimum.getAsString()); 172 173 return true; 174 } 175 176 // Open a given file path and return it as a memory-mapped file. 177 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 178 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 179 if (std::error_code ec = mbOrErr.getError()) { 180 error("cannot open " + path + ": " + ec.message()); 181 return None; 182 } 183 184 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 185 MemoryBufferRef mbref = mb->getMemBufferRef(); 186 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 187 188 // If this is a regular non-fat file, return it. 189 const char *buf = mbref.getBufferStart(); 190 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 191 if (mbref.getBufferSize() < sizeof(uint32_t) || 192 read32be(&hdr->magic) != FAT_MAGIC) { 193 if (tar) 194 tar->append(relativeToRoot(path), mbref.getBuffer()); 195 return mbref; 196 } 197 198 // Object files and archive files may be fat files, which contain multiple 199 // real files for different CPU ISAs. Here, we search for a file that matches 200 // with the current link target and returns it as a MemoryBufferRef. 201 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 202 203 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 204 if (reinterpret_cast<const char *>(arch + i + 1) > 205 buf + mbref.getBufferSize()) { 206 error(path + ": fat_arch struct extends beyond end of file"); 207 return None; 208 } 209 210 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 211 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 212 continue; 213 214 uint32_t offset = read32be(&arch[i].offset); 215 uint32_t size = read32be(&arch[i].size); 216 if (offset + size > mbref.getBufferSize()) 217 error(path + ": slice extends beyond end of file"); 218 if (tar) 219 tar->append(relativeToRoot(path), mbref.getBuffer()); 220 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 221 } 222 223 error("unable to find matching architecture in " + path); 224 return None; 225 } 226 227 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 228 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 229 230 // Some sections comprise of fixed-size records, so instead of splitting them at 231 // symbol boundaries, we split them based on size. Records are distinct from 232 // literals in that they may contain references to other sections, instead of 233 // being leaf nodes in the InputSection graph. 234 // 235 // Note that "record" is a term I came up with. In contrast, "literal" is a term 236 // used by the Mach-O format. 237 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 238 if (name == section_names::cfString) { 239 if (config->icfLevel != ICFLevel::none && segname == segment_names::data) 240 return target->wordSize == 8 ? 32 : 16; 241 } else if (name == section_names::compactUnwind) { 242 if (segname == segment_names::ld) 243 return target->wordSize == 8 ? 32 : 20; 244 } 245 return {}; 246 } 247 248 template <class Section> 249 void ObjFile::parseSections(ArrayRef<Section> sections) { 250 subsections.reserve(sections.size()); 251 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 252 253 for (const Section &sec : sections) { 254 StringRef name = 255 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 256 StringRef segname = 257 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 258 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 259 : buf + sec.offset, 260 static_cast<size_t>(sec.size)}; 261 if (sec.align >= 32) { 262 error("alignment " + std::to_string(sec.align) + " of section " + name + 263 " is too large"); 264 subsections.push_back({}); 265 continue; 266 } 267 uint32_t align = 1 << sec.align; 268 uint32_t flags = sec.flags; 269 270 auto splitRecords = [&](int recordSize) -> void { 271 subsections.push_back({}); 272 if (data.empty()) 273 return; 274 275 SubsectionMap &subsecMap = subsections.back(); 276 subsecMap.reserve(data.size() / recordSize); 277 auto *isec = make<ConcatInputSection>( 278 segname, name, this, data.slice(0, recordSize), align, flags); 279 subsecMap.push_back({0, isec}); 280 for (uint64_t off = recordSize; off < data.size(); off += recordSize) { 281 // Copying requires less memory than constructing a fresh InputSection. 282 auto *copy = make<ConcatInputSection>(*isec); 283 copy->data = data.slice(off, recordSize); 284 subsecMap.push_back({off, copy}); 285 } 286 }; 287 288 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 289 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 290 if (sec.nreloc && config->dedupLiterals) 291 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 292 sec.sectname + 293 ", so LLD cannot deduplicate literals. Try re-running without " 294 "--deduplicate-literals."); 295 296 InputSection *isec; 297 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 298 isec = 299 make<CStringInputSection>(segname, name, this, data, align, flags); 300 // FIXME: parallelize this? 301 cast<CStringInputSection>(isec)->splitIntoPieces(); 302 } else { 303 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 304 flags); 305 } 306 subsections.push_back({{0, isec}}); 307 } else if (auto recordSize = getRecordSize(segname, name)) { 308 splitRecords(*recordSize); 309 } else if (segname == segment_names::llvm) { 310 // ld64 does not appear to emit contents from sections within the __LLVM 311 // segment. Symbols within those sections point to bitcode metadata 312 // instead of actual symbols. Global symbols within those sections could 313 // have the same name without causing duplicate symbol errors. Push an 314 // empty map to ensure indices line up for the remaining sections. 315 // TODO: Evaluate whether the bitcode metadata is needed. 316 subsections.push_back({}); 317 } else { 318 auto *isec = 319 make<ConcatInputSection>(segname, name, this, data, align, flags); 320 if (isDebugSection(isec->getFlags()) && 321 isec->getSegName() == segment_names::dwarf) { 322 // Instead of emitting DWARF sections, we emit STABS symbols to the 323 // object files that contain them. We filter them out early to avoid 324 // parsing their relocations unnecessarily. But we must still push an 325 // empty map to ensure the indices line up for the remaining sections. 326 subsections.push_back({}); 327 debugSections.push_back(isec); 328 } else { 329 subsections.push_back({{0, isec}}); 330 } 331 } 332 } 333 } 334 335 // Find the subsection corresponding to the greatest section offset that is <= 336 // that of the given offset. 337 // 338 // offset: an offset relative to the start of the original InputSection (before 339 // any subsection splitting has occurred). It will be updated to represent the 340 // same location as an offset relative to the start of the containing 341 // subsection. 342 static InputSection *findContainingSubsection(SubsectionMap &map, 343 uint64_t *offset) { 344 auto it = std::prev(llvm::upper_bound( 345 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 346 return value < subsecEntry.offset; 347 })); 348 *offset -= it->offset; 349 return it->isec; 350 } 351 352 template <class Section> 353 static bool validateRelocationInfo(InputFile *file, const Section &sec, 354 relocation_info rel) { 355 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 356 bool valid = true; 357 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 358 valid = false; 359 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 360 std::to_string(rel.r_address) + " of " + sec.segname + "," + 361 sec.sectname + " in " + toString(file)) 362 .str(); 363 }; 364 365 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 366 error(message("must be extern")); 367 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 368 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 369 "be PC-relative")); 370 if (isThreadLocalVariables(sec.flags) && 371 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 372 error(message("not allowed in thread-local section, must be UNSIGNED")); 373 if (rel.r_length < 2 || rel.r_length > 3 || 374 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 375 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 376 error(message("has width " + std::to_string(1 << rel.r_length) + 377 " bytes, but must be " + 378 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 379 " bytes")); 380 } 381 return valid; 382 } 383 384 template <class Section> 385 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 386 const Section &sec, SubsectionMap &subsecMap) { 387 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 388 ArrayRef<relocation_info> relInfos( 389 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 390 391 auto subsecIt = subsecMap.rbegin(); 392 for (size_t i = 0; i < relInfos.size(); i++) { 393 // Paired relocations serve as Mach-O's method for attaching a 394 // supplemental datum to a primary relocation record. ELF does not 395 // need them because the *_RELOC_RELA records contain the extra 396 // addend field, vs. *_RELOC_REL which omit the addend. 397 // 398 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 399 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 400 // datum for each is a symbolic address. The result is the offset 401 // between two addresses. 402 // 403 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 404 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 405 // base symbolic address. 406 // 407 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 408 // addend into the instruction stream. On X86, a relocatable address 409 // field always occupies an entire contiguous sequence of byte(s), 410 // so there is no need to merge opcode bits with address 411 // bits. Therefore, it's easy and convenient to store addends in the 412 // instruction-stream bytes that would otherwise contain zeroes. By 413 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 414 // address bits so that bitwise arithmetic is necessary to extract 415 // and insert them. Storing addends in the instruction stream is 416 // possible, but inconvenient and more costly at link time. 417 418 int64_t pairedAddend = 0; 419 relocation_info relInfo = relInfos[i]; 420 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 421 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 422 relInfo = relInfos[++i]; 423 } 424 assert(i < relInfos.size()); 425 if (!validateRelocationInfo(this, sec, relInfo)) 426 continue; 427 if (relInfo.r_address & R_SCATTERED) 428 fatal("TODO: Scattered relocations not supported"); 429 430 bool isSubtrahend = 431 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 432 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 433 assert(!(embeddedAddend && pairedAddend)); 434 int64_t totalAddend = pairedAddend + embeddedAddend; 435 Reloc r; 436 r.type = relInfo.r_type; 437 r.pcrel = relInfo.r_pcrel; 438 r.length = relInfo.r_length; 439 r.offset = relInfo.r_address; 440 if (relInfo.r_extern) { 441 r.referent = symbols[relInfo.r_symbolnum]; 442 r.addend = isSubtrahend ? 0 : totalAddend; 443 } else { 444 assert(!isSubtrahend); 445 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 446 uint64_t referentOffset; 447 if (relInfo.r_pcrel) { 448 // The implicit addend for pcrel section relocations is the pcrel offset 449 // in terms of the addresses in the input file. Here we adjust it so 450 // that it describes the offset from the start of the referent section. 451 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 452 // have pcrel section relocations. We may want to factor this out into 453 // the arch-specific .cpp file. 454 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 455 referentOffset = 456 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 457 } else { 458 // The addend for a non-pcrel relocation is its absolute address. 459 referentOffset = totalAddend - referentSec.addr; 460 } 461 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 462 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 463 r.addend = referentOffset; 464 } 465 466 // Find the subsection that this relocation belongs to. 467 // Though not required by the Mach-O format, clang and gcc seem to emit 468 // relocations in order, so let's take advantage of it. However, ld64 emits 469 // unsorted relocations (in `-r` mode), so we have a fallback for that 470 // uncommon case. 471 InputSection *subsec; 472 while (subsecIt != subsecMap.rend() && subsecIt->offset > r.offset) 473 ++subsecIt; 474 if (subsecIt == subsecMap.rend() || 475 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 476 subsec = findContainingSubsection(subsecMap, &r.offset); 477 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 478 // for the other relocations. 479 subsecIt = subsecMap.rend(); 480 } else { 481 subsec = subsecIt->isec; 482 r.offset -= subsecIt->offset; 483 } 484 subsec->relocs.push_back(r); 485 486 if (isSubtrahend) { 487 relocation_info minuendInfo = relInfos[++i]; 488 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 489 // attached to the same address. 490 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 491 relInfo.r_address == minuendInfo.r_address); 492 Reloc p; 493 p.type = minuendInfo.r_type; 494 if (minuendInfo.r_extern) { 495 p.referent = symbols[minuendInfo.r_symbolnum]; 496 p.addend = totalAddend; 497 } else { 498 uint64_t referentOffset = 499 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 500 SubsectionMap &referentSubsecMap = 501 subsections[minuendInfo.r_symbolnum - 1]; 502 p.referent = 503 findContainingSubsection(referentSubsecMap, &referentOffset); 504 p.addend = referentOffset; 505 } 506 subsec->relocs.push_back(p); 507 } 508 } 509 } 510 511 template <class NList> 512 static macho::Symbol *createDefined(const NList &sym, StringRef name, 513 InputSection *isec, uint64_t value, 514 uint64_t size) { 515 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 516 // N_EXT: Global symbols. These go in the symbol table during the link, 517 // and also in the export table of the output so that the dynamic 518 // linker sees them. 519 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 520 // symbol table during the link so that duplicates are 521 // either reported (for non-weak symbols) or merged 522 // (for weak symbols), but they do not go in the export 523 // table of the output. 524 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 525 // object files) may produce them. LLD does not yet support -r. 526 // These are translation-unit scoped, identical to the `0` case. 527 // 0: Translation-unit scoped. These are not in the symbol table during 528 // link, and not in the export table of the output either. 529 bool isWeakDefCanBeHidden = 530 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 531 532 if (sym.n_type & N_EXT) { 533 bool isPrivateExtern = sym.n_type & N_PEXT; 534 // lld's behavior for merging symbols is slightly different from ld64: 535 // ld64 picks the winning symbol based on several criteria (see 536 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 537 // just merges metadata and keeps the contents of the first symbol 538 // with that name (see SymbolTable::addDefined). For: 539 // * inline function F in a TU built with -fvisibility-inlines-hidden 540 // * and inline function F in another TU built without that flag 541 // ld64 will pick the one from the file built without 542 // -fvisibility-inlines-hidden. 543 // lld will instead pick the one listed first on the link command line and 544 // give it visibility as if the function was built without 545 // -fvisibility-inlines-hidden. 546 // If both functions have the same contents, this will have the same 547 // behavior. If not, it won't, but the input had an ODR violation in 548 // that case. 549 // 550 // Similarly, merging a symbol 551 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 552 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 553 // should produce one 554 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 555 // with ld64's semantics, because it means the non-private-extern 556 // definition will continue to take priority if more private extern 557 // definitions are encountered. With lld's semantics there's no observable 558 // difference between a symbol that's isWeakDefCanBeHidden or one that's 559 // privateExtern -- neither makes it into the dynamic symbol table. So just 560 // promote isWeakDefCanBeHidden to isPrivateExtern here. 561 if (isWeakDefCanBeHidden) 562 isPrivateExtern = true; 563 564 return symtab->addDefined( 565 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 566 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 567 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); 568 } 569 assert(!isWeakDefCanBeHidden && 570 "weak_def_can_be_hidden on already-hidden symbol?"); 571 return make<Defined>( 572 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 573 /*isExternal=*/false, /*isPrivateExtern=*/false, 574 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 575 sym.n_desc & N_NO_DEAD_STRIP); 576 } 577 578 // Absolute symbols are defined symbols that do not have an associated 579 // InputSection. They cannot be weak. 580 template <class NList> 581 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 582 StringRef name) { 583 if (sym.n_type & N_EXT) { 584 return symtab->addDefined( 585 name, file, nullptr, sym.n_value, /*size=*/0, 586 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 587 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP); 588 } 589 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 590 /*isWeakDef=*/false, 591 /*isExternal=*/false, /*isPrivateExtern=*/false, 592 sym.n_desc & N_ARM_THUMB_DEF, 593 /*isReferencedDynamically=*/false, 594 sym.n_desc & N_NO_DEAD_STRIP); 595 } 596 597 template <class NList> 598 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 599 StringRef name) { 600 uint8_t type = sym.n_type & N_TYPE; 601 switch (type) { 602 case N_UNDF: 603 return sym.n_value == 0 604 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 605 : symtab->addCommon(name, this, sym.n_value, 606 1 << GET_COMM_ALIGN(sym.n_desc), 607 sym.n_type & N_PEXT); 608 case N_ABS: 609 return createAbsolute(sym, this, name); 610 case N_PBUD: 611 case N_INDR: 612 error("TODO: support symbols of type " + std::to_string(type)); 613 return nullptr; 614 case N_SECT: 615 llvm_unreachable( 616 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 617 default: 618 llvm_unreachable("invalid symbol type"); 619 } 620 } 621 622 template <class NList> static bool isUndef(const NList &sym) { 623 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 624 } 625 626 template <class LP> 627 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 628 ArrayRef<typename LP::nlist> nList, 629 const char *strtab, bool subsectionsViaSymbols) { 630 using NList = typename LP::nlist; 631 632 // Groups indices of the symbols by the sections that contain them. 633 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 634 symbols.resize(nList.size()); 635 SmallVector<unsigned, 32> undefineds; 636 for (uint32_t i = 0; i < nList.size(); ++i) { 637 const NList &sym = nList[i]; 638 639 // Ignore debug symbols for now. 640 // FIXME: may need special handling. 641 if (sym.n_type & N_STAB) 642 continue; 643 644 StringRef name = strtab + sym.n_strx; 645 if ((sym.n_type & N_TYPE) == N_SECT) { 646 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 647 // parseSections() may have chosen not to parse this section. 648 if (subsecMap.empty()) 649 continue; 650 symbolsBySection[sym.n_sect - 1].push_back(i); 651 } else if (isUndef(sym)) { 652 undefineds.push_back(i); 653 } else { 654 symbols[i] = parseNonSectionSymbol(sym, name); 655 } 656 } 657 658 for (size_t i = 0; i < subsections.size(); ++i) { 659 SubsectionMap &subsecMap = subsections[i]; 660 if (subsecMap.empty()) 661 continue; 662 663 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 664 uint64_t sectionAddr = sectionHeaders[i].addr; 665 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 666 667 InputSection *lastIsec = subsecMap.back().isec; 668 // Record-based sections have already been split into subsections during 669 // parseSections(), so we simply need to match Symbols to the corresponding 670 // subsection here. 671 if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) { 672 for (size_t j = 0; j < symbolIndices.size(); ++j) { 673 uint32_t symIndex = symbolIndices[j]; 674 const NList &sym = nList[symIndex]; 675 StringRef name = strtab + sym.n_strx; 676 uint64_t symbolOffset = sym.n_value - sectionAddr; 677 InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset); 678 if (symbolOffset != 0) { 679 error(toString(lastIsec) + ": symbol " + name + 680 " at misaligned offset"); 681 continue; 682 } 683 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 684 } 685 continue; 686 } 687 688 // Calculate symbol sizes and create subsections by splitting the sections 689 // along symbol boundaries. 690 // We populate subsecMap by repeatedly splitting the last (highest address) 691 // subsection. 692 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 693 return nList[lhs].n_value < nList[rhs].n_value; 694 }); 695 SubsectionEntry subsecEntry = subsecMap.back(); 696 for (size_t j = 0; j < symbolIndices.size(); ++j) { 697 uint32_t symIndex = symbolIndices[j]; 698 const NList &sym = nList[symIndex]; 699 StringRef name = strtab + sym.n_strx; 700 InputSection *isec = subsecEntry.isec; 701 702 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 703 size_t symbolOffset = sym.n_value - subsecAddr; 704 uint64_t symbolSize = 705 j + 1 < symbolIndices.size() 706 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 707 : isec->data.size() - symbolOffset; 708 // There are 4 cases where we do not need to create a new subsection: 709 // 1. If the input file does not use subsections-via-symbols. 710 // 2. Multiple symbols at the same address only induce one subsection. 711 // (The symbolOffset == 0 check covers both this case as well as 712 // the first loop iteration.) 713 // 3. Alternative entry points do not induce new subsections. 714 // 4. If we have a literal section (e.g. __cstring and __literal4). 715 if (!subsectionsViaSymbols || symbolOffset == 0 || 716 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 717 symbols[symIndex] = 718 createDefined(sym, name, isec, symbolOffset, symbolSize); 719 continue; 720 } 721 auto *concatIsec = cast<ConcatInputSection>(isec); 722 723 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 724 nextIsec->wasCoalesced = false; 725 if (isZeroFill(isec->getFlags())) { 726 // Zero-fill sections have NULL data.data() non-zero data.size() 727 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 728 isec->data = {nullptr, symbolOffset}; 729 } else { 730 nextIsec->data = isec->data.slice(symbolOffset); 731 isec->data = isec->data.slice(0, symbolOffset); 732 } 733 734 // By construction, the symbol will be at offset zero in the new 735 // subsection. 736 symbols[symIndex] = 737 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 738 // TODO: ld64 appears to preserve the original alignment as well as each 739 // subsection's offset from the last aligned address. We should consider 740 // emulating that behavior. 741 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 742 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 743 subsecEntry = subsecMap.back(); 744 } 745 } 746 747 // Undefined symbols can trigger recursive fetch from Archives due to 748 // LazySymbols. Process defined symbols first so that the relative order 749 // between a defined symbol and an undefined symbol does not change the 750 // symbol resolution behavior. In addition, a set of interconnected symbols 751 // will all be resolved to the same file, instead of being resolved to 752 // different files. 753 for (unsigned i : undefineds) { 754 const NList &sym = nList[i]; 755 StringRef name = strtab + sym.n_strx; 756 symbols[i] = parseNonSectionSymbol(sym, name); 757 } 758 } 759 760 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 761 StringRef sectName) 762 : InputFile(OpaqueKind, mb) { 763 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 764 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 765 ConcatInputSection *isec = 766 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16), 767 /*file=*/this, data); 768 isec->live = true; 769 subsections.push_back({{0, isec}}); 770 } 771 772 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 773 : InputFile(ObjKind, mb), modTime(modTime) { 774 this->archiveName = std::string(archiveName); 775 if (target->wordSize == 8) 776 parse<LP64>(); 777 else 778 parse<ILP32>(); 779 } 780 781 template <class LP> void ObjFile::parse() { 782 using Header = typename LP::mach_header; 783 using SegmentCommand = typename LP::segment_command; 784 using Section = typename LP::section; 785 using NList = typename LP::nlist; 786 787 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 788 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 789 790 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 791 if (arch != config->arch()) { 792 error(toString(this) + " has architecture " + getArchitectureName(arch) + 793 " which is incompatible with target architecture " + 794 getArchitectureName(config->arch())); 795 return; 796 } 797 798 if (!checkCompatibility(this)) 799 return; 800 801 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 802 StringRef data{reinterpret_cast<const char *>(cmd + 1), 803 cmd->cmdsize - sizeof(linker_option_command)}; 804 parseLCLinkerOption(this, cmd->count, data); 805 } 806 807 ArrayRef<Section> sectionHeaders; 808 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 809 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 810 sectionHeaders = 811 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 812 parseSections(sectionHeaders); 813 } 814 815 // TODO: Error on missing LC_SYMTAB? 816 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 817 auto *c = reinterpret_cast<const symtab_command *>(cmd); 818 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 819 c->nsyms); 820 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 821 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 822 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 823 } 824 825 // The relocations may refer to the symbols, so we parse them after we have 826 // parsed all the symbols. 827 for (size_t i = 0, n = subsections.size(); i < n; ++i) 828 if (!subsections[i].empty()) 829 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 830 831 parseDebugInfo(); 832 if (config->emitDataInCodeInfo) 833 parseDataInCode(); 834 registerCompactUnwind(); 835 } 836 837 void ObjFile::parseDebugInfo() { 838 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 839 if (!dObj) 840 return; 841 842 auto *ctx = make<DWARFContext>( 843 std::move(dObj), "", 844 [&](Error err) { 845 warn(toString(this) + ": " + toString(std::move(err))); 846 }, 847 [&](Error warning) { 848 warn(toString(this) + ": " + toString(std::move(warning))); 849 }); 850 851 // TODO: Since object files can contain a lot of DWARF info, we should verify 852 // that we are parsing just the info we need 853 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 854 // FIXME: There can be more than one compile unit per object file. See 855 // PR48637. 856 auto it = units.begin(); 857 compileUnit = it->get(); 858 } 859 860 void ObjFile::parseDataInCode() { 861 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 862 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 863 if (!cmd) 864 return; 865 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 866 dataInCodeEntries = { 867 reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 868 c->datasize / sizeof(data_in_code_entry)}; 869 assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs, 870 const data_in_code_entry &rhs) { 871 return lhs.offset < rhs.offset; 872 })); 873 } 874 875 // Create pointers from symbols to their associated compact unwind entries. 876 void ObjFile::registerCompactUnwind() { 877 // First, locate the __compact_unwind section. 878 SubsectionMap *cuSubsecMap = nullptr; 879 for (SubsectionMap &map : subsections) { 880 if (map.empty()) 881 continue; 882 if (map[0].isec->getSegName() != segment_names::ld) 883 continue; 884 cuSubsecMap = ↦ 885 break; 886 } 887 if (!cuSubsecMap) 888 return; 889 890 for (SubsectionEntry &entry : *cuSubsecMap) { 891 ConcatInputSection *isec = cast<ConcatInputSection>(entry.isec); 892 ConcatInputSection *referentIsec; 893 for (const Reloc &r : isec->relocs) { 894 if (r.offset != 0) 895 continue; 896 uint64_t add = r.addend; 897 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 898 add += sym->value; 899 referentIsec = cast<ConcatInputSection>(sym->isec); 900 } else { 901 referentIsec = 902 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 903 } 904 if (referentIsec->getSegName() != segment_names::text) 905 error("compact unwind references address in " + toString(referentIsec) + 906 " which is not in segment __TEXT"); 907 // The functionAddress relocations are typically section relocations. 908 // However, unwind info operates on a per-symbol basis, so we search for 909 // the function symbol here. 910 auto it = llvm::lower_bound( 911 referentIsec->symbols, add, 912 [](Defined *d, uint64_t add) { return d->value < add; }); 913 // The relocation should point at the exact address of a symbol (with no 914 // addend). 915 if (it == referentIsec->symbols.end() || (*it)->value != add) { 916 assert(referentIsec->wasCoalesced); 917 continue; 918 } 919 (*it)->compactUnwind = isec; 920 } 921 } 922 } 923 924 // The path can point to either a dylib or a .tbd file. 925 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 926 Optional<MemoryBufferRef> mbref = readFile(path); 927 if (!mbref) { 928 error("could not read dylib file at " + path); 929 return nullptr; 930 } 931 return loadDylib(*mbref, umbrella); 932 } 933 934 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 935 // the first document storing child pointers to the rest of them. When we are 936 // processing a given TBD file, we store that top-level document in 937 // currentTopLevelTapi. When processing re-exports, we search its children for 938 // potentially matching documents in the same TBD file. Note that the children 939 // themselves don't point to further documents, i.e. this is a two-level tree. 940 // 941 // Re-exports can either refer to on-disk files, or to documents within .tbd 942 // files. 943 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 944 const InterfaceFile *currentTopLevelTapi) { 945 // Search order: 946 // 1. Install name basename in -F / -L directories. 947 { 948 StringRef stem = path::stem(path); 949 SmallString<128> frameworkName; 950 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 951 bool isFramework = path.endswith(frameworkName); 952 if (isFramework) { 953 for (StringRef dir : config->frameworkSearchPaths) { 954 SmallString<128> candidate = dir; 955 path::append(candidate, frameworkName); 956 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 957 return loadDylib(*dylibPath, umbrella); 958 } 959 } else if (Optional<StringRef> dylibPath = findPathCombination( 960 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 961 return loadDylib(*dylibPath, umbrella); 962 } 963 964 // 2. As absolute path. 965 if (path::is_absolute(path, path::Style::posix)) 966 for (StringRef root : config->systemLibraryRoots) 967 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 968 return loadDylib(*dylibPath, umbrella); 969 970 // 3. As relative path. 971 972 // TODO: Handle -dylib_file 973 974 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 975 SmallString<128> newPath; 976 if (config->outputType == MH_EXECUTE && 977 path.consume_front("@executable_path/")) { 978 // ld64 allows overriding this with the undocumented flag -executable_path. 979 // lld doesn't currently implement that flag. 980 // FIXME: Consider using finalOutput instead of outputFile. 981 path::append(newPath, path::parent_path(config->outputFile), path); 982 path = newPath; 983 } else if (path.consume_front("@loader_path/")) { 984 fs::real_path(umbrella->getName(), newPath); 985 path::remove_filename(newPath); 986 path::append(newPath, path); 987 path = newPath; 988 } else if (path.startswith("@rpath/")) { 989 for (StringRef rpath : umbrella->rpaths) { 990 newPath.clear(); 991 if (rpath.consume_front("@loader_path/")) { 992 fs::real_path(umbrella->getName(), newPath); 993 path::remove_filename(newPath); 994 } 995 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 996 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 997 return loadDylib(*dylibPath, umbrella); 998 } 999 } 1000 1001 // FIXME: Should this be further up? 1002 if (currentTopLevelTapi) { 1003 for (InterfaceFile &child : 1004 make_pointee_range(currentTopLevelTapi->documents())) { 1005 assert(child.documents().empty()); 1006 if (path == child.getInstallName()) { 1007 auto file = make<DylibFile>(child, umbrella); 1008 file->parseReexports(child); 1009 return file; 1010 } 1011 } 1012 } 1013 1014 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1015 return loadDylib(*dylibPath, umbrella); 1016 1017 return nullptr; 1018 } 1019 1020 // If a re-exported dylib is public (lives in /usr/lib or 1021 // /System/Library/Frameworks), then it is considered implicitly linked: we 1022 // should bind to its symbols directly instead of via the re-exporting umbrella 1023 // library. 1024 static bool isImplicitlyLinked(StringRef path) { 1025 if (!config->implicitDylibs) 1026 return false; 1027 1028 if (path::parent_path(path) == "/usr/lib") 1029 return true; 1030 1031 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1032 if (path.consume_front("/System/Library/Frameworks/")) { 1033 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1034 return path::filename(path) == frameworkName; 1035 } 1036 1037 return false; 1038 } 1039 1040 static void loadReexport(StringRef path, DylibFile *umbrella, 1041 const InterfaceFile *currentTopLevelTapi) { 1042 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1043 if (!reexport) 1044 error("unable to locate re-export with install name " + path); 1045 } 1046 1047 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1048 bool isBundleLoader) 1049 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1050 isBundleLoader(isBundleLoader) { 1051 assert(!isBundleLoader || !umbrella); 1052 if (umbrella == nullptr) 1053 umbrella = this; 1054 this->umbrella = umbrella; 1055 1056 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1057 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1058 1059 // Initialize installName. 1060 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1061 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1062 currentVersion = read32le(&c->dylib.current_version); 1063 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1064 installName = 1065 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1066 } else if (!isBundleLoader) { 1067 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1068 // so it's OK. 1069 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1070 return; 1071 } 1072 1073 if (config->printEachFile) 1074 message(toString(this)); 1075 inputFiles.insert(this); 1076 1077 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1078 1079 if (!checkCompatibility(this)) 1080 return; 1081 1082 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1083 1084 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1085 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1086 rpaths.push_back(rpath); 1087 } 1088 1089 // Initialize symbols. 1090 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1091 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1092 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1093 parseTrie(buf + c->export_off, c->export_size, 1094 [&](const Twine &name, uint64_t flags) { 1095 StringRef savedName = saver.save(name); 1096 if (handleLDSymbol(savedName)) 1097 return; 1098 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1099 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1100 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1101 isWeakDef, isTlv)); 1102 }); 1103 } else { 1104 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1105 return; 1106 } 1107 } 1108 1109 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1110 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1111 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1112 target->headerSize; 1113 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1114 auto *cmd = reinterpret_cast<const load_command *>(p); 1115 p += cmd->cmdsize; 1116 1117 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1118 cmd->cmd == LC_REEXPORT_DYLIB) { 1119 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1120 StringRef reexportPath = 1121 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1122 loadReexport(reexportPath, exportingFile, nullptr); 1123 } 1124 1125 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1126 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1127 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1128 if (config->namespaceKind == NamespaceKind::flat && 1129 cmd->cmd == LC_LOAD_DYLIB) { 1130 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1131 StringRef dylibPath = 1132 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1133 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1134 if (!dylib) 1135 error(Twine("unable to locate library '") + dylibPath + 1136 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1137 } 1138 } 1139 } 1140 1141 // Some versions of XCode ship with .tbd files that don't have the right 1142 // platform settings. 1143 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 1144 "/usr/lib/system/libsystem_kernel.dylib", 1145 "/usr/lib/system/libsystem_platform.dylib", 1146 "/usr/lib/system/libsystem_pthread.dylib"}; 1147 1148 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1149 bool isBundleLoader) 1150 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1151 isBundleLoader(isBundleLoader) { 1152 // FIXME: Add test for the missing TBD code path. 1153 1154 if (umbrella == nullptr) 1155 umbrella = this; 1156 this->umbrella = umbrella; 1157 1158 installName = saver.save(interface.getInstallName()); 1159 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1160 currentVersion = interface.getCurrentVersion().rawValue(); 1161 1162 if (config->printEachFile) 1163 message(toString(this)); 1164 inputFiles.insert(this); 1165 1166 if (!is_contained(skipPlatformChecks, installName) && 1167 !is_contained(interface.targets(), config->platformInfo.target)) { 1168 error(toString(this) + " is incompatible with " + 1169 std::string(config->platformInfo.target)); 1170 return; 1171 } 1172 1173 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1174 1175 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1176 auto addSymbol = [&](const Twine &name) -> void { 1177 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 1178 /*isWeakDef=*/false, 1179 /*isTlv=*/false)); 1180 }; 1181 // TODO(compnerd) filter out symbols based on the target platform 1182 // TODO: handle weak defs, thread locals 1183 for (const auto *symbol : interface.symbols()) { 1184 if (!symbol->getArchitectures().has(config->arch())) 1185 continue; 1186 1187 if (handleLDSymbol(symbol->getName())) 1188 continue; 1189 1190 switch (symbol->getKind()) { 1191 case SymbolKind::GlobalSymbol: 1192 addSymbol(symbol->getName()); 1193 break; 1194 case SymbolKind::ObjectiveCClass: 1195 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1196 // want to emulate that. 1197 addSymbol(objc::klass + symbol->getName()); 1198 addSymbol(objc::metaclass + symbol->getName()); 1199 break; 1200 case SymbolKind::ObjectiveCClassEHType: 1201 addSymbol(objc::ehtype + symbol->getName()); 1202 break; 1203 case SymbolKind::ObjectiveCInstanceVariable: 1204 addSymbol(objc::ivar + symbol->getName()); 1205 break; 1206 } 1207 } 1208 } 1209 1210 void DylibFile::parseReexports(const InterfaceFile &interface) { 1211 const InterfaceFile *topLevel = 1212 interface.getParent() == nullptr ? &interface : interface.getParent(); 1213 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1214 InterfaceFile::const_target_range targets = intfRef.targets(); 1215 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1216 is_contained(targets, config->platformInfo.target)) 1217 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1218 } 1219 } 1220 1221 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1222 // name, compatibility version or hide/add symbols) for specific target 1223 // versions. 1224 bool DylibFile::handleLDSymbol(StringRef originalName) { 1225 if (!originalName.startswith("$ld$")) 1226 return false; 1227 1228 StringRef action; 1229 StringRef name; 1230 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1231 if (action == "previous") 1232 handleLDPreviousSymbol(name, originalName); 1233 else if (action == "install_name") 1234 handleLDInstallNameSymbol(name, originalName); 1235 return true; 1236 } 1237 1238 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1239 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1240 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1241 StringRef installName; 1242 StringRef compatVersion; 1243 StringRef platformStr; 1244 StringRef startVersion; 1245 StringRef endVersion; 1246 StringRef symbolName; 1247 StringRef rest; 1248 1249 std::tie(installName, name) = name.split('$'); 1250 std::tie(compatVersion, name) = name.split('$'); 1251 std::tie(platformStr, name) = name.split('$'); 1252 std::tie(startVersion, name) = name.split('$'); 1253 std::tie(endVersion, name) = name.split('$'); 1254 std::tie(symbolName, rest) = name.split('$'); 1255 // TODO: ld64 contains some logic for non-empty symbolName as well. 1256 if (!symbolName.empty()) 1257 return; 1258 unsigned platform; 1259 if (platformStr.getAsInteger(10, platform) || 1260 platform != static_cast<unsigned>(config->platform())) 1261 return; 1262 1263 VersionTuple start; 1264 if (start.tryParse(startVersion)) { 1265 warn("failed to parse start version, symbol '" + originalName + 1266 "' ignored"); 1267 return; 1268 } 1269 VersionTuple end; 1270 if (end.tryParse(endVersion)) { 1271 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1272 return; 1273 } 1274 if (config->platformInfo.minimum < start || 1275 config->platformInfo.minimum >= end) 1276 return; 1277 1278 this->installName = saver.save(installName); 1279 1280 if (!compatVersion.empty()) { 1281 VersionTuple cVersion; 1282 if (cVersion.tryParse(compatVersion)) { 1283 warn("failed to parse compatibility version, symbol '" + originalName + 1284 "' ignored"); 1285 return; 1286 } 1287 compatibilityVersion = encodeVersion(cVersion); 1288 } 1289 } 1290 1291 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1292 StringRef originalName) { 1293 // originalName: $ld$ install_name $ os<version> $ install_name 1294 StringRef condition, installName; 1295 std::tie(condition, installName) = name.split('$'); 1296 VersionTuple version; 1297 if (!condition.consume_front("os") || version.tryParse(condition)) 1298 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1299 else if (version == config->platformInfo.minimum) 1300 this->installName = saver.save(installName); 1301 } 1302 1303 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1304 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1305 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1306 } 1307 1308 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1309 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1310 1311 void ArchiveFile::addLazySymbols() { 1312 for (const object::Archive::Symbol &sym : file->symbols()) 1313 symtab->addLazy(sym.getName(), this, sym); 1314 } 1315 1316 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1317 uint32_t modTime, 1318 StringRef archiveName, 1319 uint64_t offsetInArchive) { 1320 if (config->zeroModTime) 1321 modTime = 0; 1322 1323 switch (identify_magic(mb.getBuffer())) { 1324 case file_magic::macho_object: 1325 return make<ObjFile>(mb, modTime, archiveName); 1326 case file_magic::bitcode: 1327 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1328 default: 1329 return createStringError(inconvertibleErrorCode(), 1330 mb.getBufferIdentifier() + 1331 " has unhandled file type"); 1332 } 1333 } 1334 1335 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1336 if (!seen.insert(c.getChildOffset()).second) 1337 return Error::success(); 1338 1339 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1340 if (!mb) 1341 return mb.takeError(); 1342 1343 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1344 if (tar && c.getParent()->isThin()) 1345 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1346 1347 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1348 if (!modTime) 1349 return modTime.takeError(); 1350 1351 Expected<InputFile *> file = 1352 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1353 1354 if (!file) 1355 return file.takeError(); 1356 1357 inputFiles.insert(*file); 1358 printArchiveMemberLoad(reason, *file); 1359 return Error::success(); 1360 } 1361 1362 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1363 object::Archive::Child c = 1364 CHECK(sym.getMember(), toString(this) + 1365 ": could not get the member defining symbol " + 1366 toMachOString(sym)); 1367 1368 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1369 // and become invalid after that call. Copy it to the stack so we can refer 1370 // to it later. 1371 const object::Archive::Symbol symCopy = sym; 1372 1373 // ld64 doesn't demangle sym here even with -demangle. 1374 // Match that: intentionally don't call toMachOString(). 1375 if (Error e = fetch(c, symCopy.getName())) 1376 error(toString(this) + ": could not get the member defining symbol " + 1377 toMachOString(symCopy) + ": " + toString(std::move(e))); 1378 } 1379 1380 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1381 BitcodeFile &file) { 1382 StringRef name = saver.save(objSym.getName()); 1383 1384 // TODO: support weak references 1385 if (objSym.isUndefined()) 1386 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1387 1388 // TODO: Write a test demonstrating why computing isPrivateExtern before 1389 // LTO compilation is important. 1390 bool isPrivateExtern = false; 1391 switch (objSym.getVisibility()) { 1392 case GlobalValue::HiddenVisibility: 1393 isPrivateExtern = true; 1394 break; 1395 case GlobalValue::ProtectedVisibility: 1396 error(name + " has protected visibility, which is not supported by Mach-O"); 1397 break; 1398 case GlobalValue::DefaultVisibility: 1399 break; 1400 } 1401 1402 if (objSym.isCommon()) 1403 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1404 objSym.getCommonAlignment(), isPrivateExtern); 1405 1406 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1407 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1408 /*isThumb=*/false, 1409 /*isReferencedDynamically=*/false, 1410 /*noDeadStrip=*/false); 1411 } 1412 1413 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1414 uint64_t offsetInArchive) 1415 : InputFile(BitcodeKind, mb) { 1416 std::string path = mb.getBufferIdentifier().str(); 1417 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1418 // name. If two members with the same name are provided, this causes a 1419 // collision and ThinLTO can't proceed. 1420 // So, we append the archive name to disambiguate two members with the same 1421 // name from multiple different archives, and offset within the archive to 1422 // disambiguate two members of the same name from a single archive. 1423 MemoryBufferRef mbref( 1424 mb.getBuffer(), 1425 saver.save(archiveName.empty() ? path 1426 : archiveName + sys::path::filename(path) + 1427 utostr(offsetInArchive))); 1428 1429 obj = check(lto::InputFile::create(mbref)); 1430 1431 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1432 // "winning" symbol will then be marked as Prevailing at LTO compilation 1433 // time. 1434 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1435 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1436 } 1437 1438 template void ObjFile::parse<LP64>(); 1439