1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/CommonLinkerContext.h" 60 #include "lld/Common/DWARF.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/BinaryStreamReader.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/Support/TimeProfiler.h" 71 #include "llvm/TextAPI/Architecture.h" 72 #include "llvm/TextAPI/InterfaceFile.h" 73 74 #include <type_traits> 75 76 using namespace llvm; 77 using namespace llvm::MachO; 78 using namespace llvm::support::endian; 79 using namespace llvm::sys; 80 using namespace lld; 81 using namespace lld::macho; 82 83 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 84 std::string lld::toString(const InputFile *f) { 85 if (!f) 86 return "<internal>"; 87 88 // Multiple dylibs can be defined in one .tbd file. 89 if (auto dylibFile = dyn_cast<DylibFile>(f)) 90 if (f->getName().endswith(".tbd")) 91 return (f->getName() + "(" + dylibFile->installName + ")").str(); 92 93 if (f->archiveName.empty()) 94 return std::string(f->getName()); 95 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 96 } 97 98 SetVector<InputFile *> macho::inputFiles; 99 std::unique_ptr<TarWriter> macho::tar; 100 int InputFile::idCount = 0; 101 102 static VersionTuple decodeVersion(uint32_t version) { 103 unsigned major = version >> 16; 104 unsigned minor = (version >> 8) & 0xffu; 105 unsigned subMinor = version & 0xffu; 106 return VersionTuple(major, minor, subMinor); 107 } 108 109 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 110 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 111 return {}; 112 113 const char *hdr = input->mb.getBufferStart(); 114 115 std::vector<PlatformInfo> platformInfos; 116 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 117 PlatformInfo info; 118 info.target.Platform = static_cast<PlatformType>(cmd->platform); 119 info.minimum = decodeVersion(cmd->minos); 120 platformInfos.emplace_back(std::move(info)); 121 } 122 for (auto *cmd : findCommands<version_min_command>( 123 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 124 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 125 PlatformInfo info; 126 switch (cmd->cmd) { 127 case LC_VERSION_MIN_MACOSX: 128 info.target.Platform = PLATFORM_MACOS; 129 break; 130 case LC_VERSION_MIN_IPHONEOS: 131 info.target.Platform = PLATFORM_IOS; 132 break; 133 case LC_VERSION_MIN_TVOS: 134 info.target.Platform = PLATFORM_TVOS; 135 break; 136 case LC_VERSION_MIN_WATCHOS: 137 info.target.Platform = PLATFORM_WATCHOS; 138 break; 139 } 140 info.minimum = decodeVersion(cmd->version); 141 platformInfos.emplace_back(std::move(info)); 142 } 143 144 return platformInfos; 145 } 146 147 static bool checkCompatibility(const InputFile *input) { 148 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 149 if (platformInfos.empty()) 150 return true; 151 152 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 153 return removeSimulator(info.target.Platform) == 154 removeSimulator(config->platform()); 155 }); 156 if (it == platformInfos.end()) { 157 std::string platformNames; 158 raw_string_ostream os(platformNames); 159 interleave( 160 platformInfos, os, 161 [&](const PlatformInfo &info) { 162 os << getPlatformName(info.target.Platform); 163 }, 164 "/"); 165 error(toString(input) + " has platform " + platformNames + 166 Twine(", which is different from target platform ") + 167 getPlatformName(config->platform())); 168 return false; 169 } 170 171 if (it->minimum > config->platformInfo.minimum) 172 warn(toString(input) + " has version " + it->minimum.getAsString() + 173 ", which is newer than target minimum of " + 174 config->platformInfo.minimum.getAsString()); 175 176 return true; 177 } 178 179 // This cache mostly exists to store system libraries (and .tbds) as they're 180 // loaded, rather than the input archives, which are already cached at a higher 181 // level, and other files like the filelist that are only read once. 182 // Theoretically this caching could be more efficient by hoisting it, but that 183 // would require altering many callers to track the state. 184 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 185 // Open a given file path and return it as a memory-mapped file. 186 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 187 CachedHashStringRef key(path); 188 auto entry = cachedReads.find(key); 189 if (entry != cachedReads.end()) 190 return entry->second; 191 192 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 193 if (std::error_code ec = mbOrErr.getError()) { 194 error("cannot open " + path + ": " + ec.message()); 195 return None; 196 } 197 198 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 199 MemoryBufferRef mbref = mb->getMemBufferRef(); 200 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 201 202 // If this is a regular non-fat file, return it. 203 const char *buf = mbref.getBufferStart(); 204 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 205 if (mbref.getBufferSize() < sizeof(uint32_t) || 206 read32be(&hdr->magic) != FAT_MAGIC) { 207 if (tar) 208 tar->append(relativeToRoot(path), mbref.getBuffer()); 209 return cachedReads[key] = mbref; 210 } 211 212 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); 213 214 // Object files and archive files may be fat files, which contain multiple 215 // real files for different CPU ISAs. Here, we search for a file that matches 216 // with the current link target and returns it as a MemoryBufferRef. 217 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 218 219 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 220 if (reinterpret_cast<const char *>(arch + i + 1) > 221 buf + mbref.getBufferSize()) { 222 error(path + ": fat_arch struct extends beyond end of file"); 223 return None; 224 } 225 226 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 227 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 228 continue; 229 230 uint32_t offset = read32be(&arch[i].offset); 231 uint32_t size = read32be(&arch[i].size); 232 if (offset + size > mbref.getBufferSize()) 233 error(path + ": slice extends beyond end of file"); 234 if (tar) 235 tar->append(relativeToRoot(path), mbref.getBuffer()); 236 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 237 path.copy(bAlloc)); 238 } 239 240 error("unable to find matching architecture in " + path); 241 return None; 242 } 243 244 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 245 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} 246 247 // Some sections comprise of fixed-size records, so instead of splitting them at 248 // symbol boundaries, we split them based on size. Records are distinct from 249 // literals in that they may contain references to other sections, instead of 250 // being leaf nodes in the InputSection graph. 251 // 252 // Note that "record" is a term I came up with. In contrast, "literal" is a term 253 // used by the Mach-O format. 254 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 255 if (name == section_names::cfString) { 256 if (config->icfLevel != ICFLevel::none && segname == segment_names::data) 257 return target->wordSize == 8 ? 32 : 16; 258 } else if (name == section_names::compactUnwind) { 259 if (segname == segment_names::ld) 260 return target->wordSize == 8 ? 32 : 20; 261 } 262 return {}; 263 } 264 265 // Parse the sequence of sections within a single LC_SEGMENT(_64). 266 // Split each section into subsections. 267 template <class SectionHeader> 268 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 269 sections.reserve(sectionHeaders.size()); 270 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 271 272 for (const SectionHeader &sec : sectionHeaders) { 273 StringRef name = 274 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 275 StringRef segname = 276 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 277 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 278 : buf + sec.offset, 279 static_cast<size_t>(sec.size)}; 280 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr)); 281 if (sec.align >= 32) { 282 error("alignment " + std::to_string(sec.align) + " of section " + name + 283 " is too large"); 284 continue; 285 } 286 const Section §ion = *sections.back(); 287 uint32_t align = 1 << sec.align; 288 289 auto splitRecords = [&](int recordSize) -> void { 290 if (data.empty()) 291 return; 292 Subsections &subsections = sections.back()->subsections; 293 subsections.reserve(data.size() / recordSize); 294 for (uint64_t off = 0; off < data.size(); off += recordSize) { 295 auto *isec = make<ConcatInputSection>( 296 section, data.slice(off, recordSize), align); 297 subsections.push_back({off, isec}); 298 } 299 }; 300 301 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 302 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 303 if (sec.nreloc && config->dedupLiterals) 304 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 305 sec.sectname + 306 ", so LLD cannot deduplicate literals. Try re-running without " 307 "--deduplicate-literals."); 308 309 InputSection *isec; 310 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 311 isec = make<CStringInputSection>(section, data, align); 312 // FIXME: parallelize this? 313 cast<CStringInputSection>(isec)->splitIntoPieces(); 314 } else { 315 isec = make<WordLiteralInputSection>(section, data, align); 316 } 317 sections.back()->subsections.push_back({0, isec}); 318 } else if (auto recordSize = getRecordSize(segname, name)) { 319 splitRecords(*recordSize); 320 if (name == section_names::compactUnwind) 321 compactUnwindSection = sections.back(); 322 } else if (segname == segment_names::llvm) { 323 if (name == "__cg_profile" && config->callGraphProfileSort) { 324 TimeTraceScope timeScope("Parsing call graph section"); 325 BinaryStreamReader reader(data, support::little); 326 while (!reader.empty()) { 327 uint32_t fromIndex, toIndex; 328 uint64_t count; 329 if (Error err = reader.readInteger(fromIndex)) 330 fatal(toString(this) + ": Expected 32-bit integer"); 331 if (Error err = reader.readInteger(toIndex)) 332 fatal(toString(this) + ": Expected 32-bit integer"); 333 if (Error err = reader.readInteger(count)) 334 fatal(toString(this) + ": Expected 64-bit integer"); 335 callGraph.emplace_back(); 336 CallGraphEntry &entry = callGraph.back(); 337 entry.fromIndex = fromIndex; 338 entry.toIndex = toIndex; 339 entry.count = count; 340 } 341 } 342 // ld64 does not appear to emit contents from sections within the __LLVM 343 // segment. Symbols within those sections point to bitcode metadata 344 // instead of actual symbols. Global symbols within those sections could 345 // have the same name without causing duplicate symbol errors. To avoid 346 // spurious duplicate symbol errors, we do not parse these sections. 347 // TODO: Evaluate whether the bitcode metadata is needed. 348 } else { 349 auto *isec = make<ConcatInputSection>(section, data, align); 350 if (isDebugSection(isec->getFlags()) && 351 isec->getSegName() == segment_names::dwarf) { 352 // Instead of emitting DWARF sections, we emit STABS symbols to the 353 // object files that contain them. We filter them out early to avoid 354 // parsing their relocations unnecessarily. 355 debugSections.push_back(isec); 356 } else { 357 sections.back()->subsections.push_back({0, isec}); 358 } 359 } 360 } 361 } 362 363 // Find the subsection corresponding to the greatest section offset that is <= 364 // that of the given offset. 365 // 366 // offset: an offset relative to the start of the original InputSection (before 367 // any subsection splitting has occurred). It will be updated to represent the 368 // same location as an offset relative to the start of the containing 369 // subsection. 370 template <class T> 371 static InputSection *findContainingSubsection(const Subsections &subsections, 372 T *offset) { 373 static_assert(std::is_same<uint64_t, T>::value || 374 std::is_same<uint32_t, T>::value, 375 "unexpected type for offset"); 376 auto it = std::prev(llvm::upper_bound( 377 subsections, *offset, 378 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 379 *offset -= it->offset; 380 return it->isec; 381 } 382 383 template <class SectionHeader> 384 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 385 relocation_info rel) { 386 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 387 bool valid = true; 388 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 389 valid = false; 390 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 391 std::to_string(rel.r_address) + " of " + sec.segname + "," + 392 sec.sectname + " in " + toString(file)) 393 .str(); 394 }; 395 396 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 397 error(message("must be extern")); 398 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 399 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 400 "be PC-relative")); 401 if (isThreadLocalVariables(sec.flags) && 402 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 403 error(message("not allowed in thread-local section, must be UNSIGNED")); 404 if (rel.r_length < 2 || rel.r_length > 3 || 405 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 406 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 407 error(message("has width " + std::to_string(1 << rel.r_length) + 408 " bytes, but must be " + 409 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 410 " bytes")); 411 } 412 return valid; 413 } 414 415 template <class SectionHeader> 416 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 417 const SectionHeader &sec, 418 Subsections &subsections) { 419 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 420 ArrayRef<relocation_info> relInfos( 421 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 422 423 auto subsecIt = subsections.rbegin(); 424 for (size_t i = 0; i < relInfos.size(); i++) { 425 // Paired relocations serve as Mach-O's method for attaching a 426 // supplemental datum to a primary relocation record. ELF does not 427 // need them because the *_RELOC_RELA records contain the extra 428 // addend field, vs. *_RELOC_REL which omit the addend. 429 // 430 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 431 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 432 // datum for each is a symbolic address. The result is the offset 433 // between two addresses. 434 // 435 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 436 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 437 // base symbolic address. 438 // 439 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 440 // addend into the instruction stream. On X86, a relocatable address 441 // field always occupies an entire contiguous sequence of byte(s), 442 // so there is no need to merge opcode bits with address 443 // bits. Therefore, it's easy and convenient to store addends in the 444 // instruction-stream bytes that would otherwise contain zeroes. By 445 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 446 // address bits so that bitwise arithmetic is necessary to extract 447 // and insert them. Storing addends in the instruction stream is 448 // possible, but inconvenient and more costly at link time. 449 450 relocation_info relInfo = relInfos[i]; 451 bool isSubtrahend = 452 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 453 if (isSubtrahend && StringRef(sec.sectname) == section_names::ehFrame) { 454 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 455 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 456 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 457 ++i; 458 continue; 459 } 460 int64_t pairedAddend = 0; 461 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 462 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 463 relInfo = relInfos[++i]; 464 } 465 assert(i < relInfos.size()); 466 if (!validateRelocationInfo(this, sec, relInfo)) 467 continue; 468 if (relInfo.r_address & R_SCATTERED) 469 fatal("TODO: Scattered relocations not supported"); 470 471 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 472 assert(!(embeddedAddend && pairedAddend)); 473 int64_t totalAddend = pairedAddend + embeddedAddend; 474 Reloc r; 475 r.type = relInfo.r_type; 476 r.pcrel = relInfo.r_pcrel; 477 r.length = relInfo.r_length; 478 r.offset = relInfo.r_address; 479 if (relInfo.r_extern) { 480 r.referent = symbols[relInfo.r_symbolnum]; 481 r.addend = isSubtrahend ? 0 : totalAddend; 482 } else { 483 assert(!isSubtrahend); 484 const SectionHeader &referentSecHead = 485 sectionHeaders[relInfo.r_symbolnum - 1]; 486 uint64_t referentOffset; 487 if (relInfo.r_pcrel) { 488 // The implicit addend for pcrel section relocations is the pcrel offset 489 // in terms of the addresses in the input file. Here we adjust it so 490 // that it describes the offset from the start of the referent section. 491 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 492 // have pcrel section relocations. We may want to factor this out into 493 // the arch-specific .cpp file. 494 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 495 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 496 referentSecHead.addr; 497 } else { 498 // The addend for a non-pcrel relocation is its absolute address. 499 referentOffset = totalAddend - referentSecHead.addr; 500 } 501 Subsections &referentSubsections = 502 sections[relInfo.r_symbolnum - 1]->subsections; 503 r.referent = 504 findContainingSubsection(referentSubsections, &referentOffset); 505 r.addend = referentOffset; 506 } 507 508 // Find the subsection that this relocation belongs to. 509 // Though not required by the Mach-O format, clang and gcc seem to emit 510 // relocations in order, so let's take advantage of it. However, ld64 emits 511 // unsorted relocations (in `-r` mode), so we have a fallback for that 512 // uncommon case. 513 InputSection *subsec; 514 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 515 ++subsecIt; 516 if (subsecIt == subsections.rend() || 517 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 518 subsec = findContainingSubsection(subsections, &r.offset); 519 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 520 // for the other relocations. 521 subsecIt = subsections.rend(); 522 } else { 523 subsec = subsecIt->isec; 524 r.offset -= subsecIt->offset; 525 } 526 subsec->relocs.push_back(r); 527 528 if (isSubtrahend) { 529 relocation_info minuendInfo = relInfos[++i]; 530 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 531 // attached to the same address. 532 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 533 relInfo.r_address == minuendInfo.r_address); 534 Reloc p; 535 p.type = minuendInfo.r_type; 536 if (minuendInfo.r_extern) { 537 p.referent = symbols[minuendInfo.r_symbolnum]; 538 p.addend = totalAddend; 539 } else { 540 uint64_t referentOffset = 541 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 542 Subsections &referentSubsectVec = 543 sections[minuendInfo.r_symbolnum - 1]->subsections; 544 p.referent = 545 findContainingSubsection(referentSubsectVec, &referentOffset); 546 p.addend = referentOffset; 547 } 548 subsec->relocs.push_back(p); 549 } 550 } 551 } 552 553 template <class NList> 554 static macho::Symbol *createDefined(const NList &sym, StringRef name, 555 InputSection *isec, uint64_t value, 556 uint64_t size) { 557 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 558 // N_EXT: Global symbols. These go in the symbol table during the link, 559 // and also in the export table of the output so that the dynamic 560 // linker sees them. 561 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 562 // symbol table during the link so that duplicates are 563 // either reported (for non-weak symbols) or merged 564 // (for weak symbols), but they do not go in the export 565 // table of the output. 566 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 567 // object files) may produce them. LLD does not yet support -r. 568 // These are translation-unit scoped, identical to the `0` case. 569 // 0: Translation-unit scoped. These are not in the symbol table during 570 // link, and not in the export table of the output either. 571 bool isWeakDefCanBeHidden = 572 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 573 574 if (sym.n_type & N_EXT) { 575 bool isPrivateExtern = sym.n_type & N_PEXT; 576 // lld's behavior for merging symbols is slightly different from ld64: 577 // ld64 picks the winning symbol based on several criteria (see 578 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 579 // just merges metadata and keeps the contents of the first symbol 580 // with that name (see SymbolTable::addDefined). For: 581 // * inline function F in a TU built with -fvisibility-inlines-hidden 582 // * and inline function F in another TU built without that flag 583 // ld64 will pick the one from the file built without 584 // -fvisibility-inlines-hidden. 585 // lld will instead pick the one listed first on the link command line and 586 // give it visibility as if the function was built without 587 // -fvisibility-inlines-hidden. 588 // If both functions have the same contents, this will have the same 589 // behavior. If not, it won't, but the input had an ODR violation in 590 // that case. 591 // 592 // Similarly, merging a symbol 593 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 594 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 595 // should produce one 596 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 597 // with ld64's semantics, because it means the non-private-extern 598 // definition will continue to take priority if more private extern 599 // definitions are encountered. With lld's semantics there's no observable 600 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 601 // that's privateExtern -- neither makes it into the dynamic symbol table, 602 // unless the autohide symbol is explicitly exported. 603 // But if a symbol is both privateExtern and autohide then it can't 604 // be exported. 605 // So we nullify the autohide flag when privateExtern is present 606 // and promote the symbol to privateExtern when it is not already. 607 if (isWeakDefCanBeHidden && isPrivateExtern) 608 isWeakDefCanBeHidden = false; 609 else if (isWeakDefCanBeHidden) 610 isPrivateExtern = true; 611 return symtab->addDefined( 612 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 613 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 614 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 615 isWeakDefCanBeHidden); 616 } 617 assert(!isWeakDefCanBeHidden && 618 "weak_def_can_be_hidden on already-hidden symbol?"); 619 return make<Defined>( 620 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 621 /*isExternal=*/false, /*isPrivateExtern=*/false, 622 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 623 sym.n_desc & N_NO_DEAD_STRIP); 624 } 625 626 // Absolute symbols are defined symbols that do not have an associated 627 // InputSection. They cannot be weak. 628 template <class NList> 629 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 630 StringRef name) { 631 if (sym.n_type & N_EXT) { 632 return symtab->addDefined( 633 name, file, nullptr, sym.n_value, /*size=*/0, 634 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 635 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 636 /*isWeakDefCanBeHidden=*/false); 637 } 638 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 639 /*isWeakDef=*/false, 640 /*isExternal=*/false, /*isPrivateExtern=*/false, 641 sym.n_desc & N_ARM_THUMB_DEF, 642 /*isReferencedDynamically=*/false, 643 sym.n_desc & N_NO_DEAD_STRIP); 644 } 645 646 template <class NList> 647 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 648 StringRef name) { 649 uint8_t type = sym.n_type & N_TYPE; 650 switch (type) { 651 case N_UNDF: 652 return sym.n_value == 0 653 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 654 : symtab->addCommon(name, this, sym.n_value, 655 1 << GET_COMM_ALIGN(sym.n_desc), 656 sym.n_type & N_PEXT); 657 case N_ABS: 658 return createAbsolute(sym, this, name); 659 case N_PBUD: 660 case N_INDR: 661 error("TODO: support symbols of type " + std::to_string(type)); 662 return nullptr; 663 case N_SECT: 664 llvm_unreachable( 665 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 666 default: 667 llvm_unreachable("invalid symbol type"); 668 } 669 } 670 671 template <class NList> static bool isUndef(const NList &sym) { 672 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 673 } 674 675 template <class LP> 676 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 677 ArrayRef<typename LP::nlist> nList, 678 const char *strtab, bool subsectionsViaSymbols) { 679 using NList = typename LP::nlist; 680 681 // Groups indices of the symbols by the sections that contain them. 682 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 683 symbols.resize(nList.size()); 684 SmallVector<unsigned, 32> undefineds; 685 for (uint32_t i = 0; i < nList.size(); ++i) { 686 const NList &sym = nList[i]; 687 688 // Ignore debug symbols for now. 689 // FIXME: may need special handling. 690 if (sym.n_type & N_STAB) 691 continue; 692 693 StringRef name = strtab + sym.n_strx; 694 if ((sym.n_type & N_TYPE) == N_SECT) { 695 Subsections &subsections = sections[sym.n_sect - 1]->subsections; 696 // parseSections() may have chosen not to parse this section. 697 if (subsections.empty()) 698 continue; 699 symbolsBySection[sym.n_sect - 1].push_back(i); 700 } else if (isUndef(sym)) { 701 undefineds.push_back(i); 702 } else { 703 symbols[i] = parseNonSectionSymbol(sym, name); 704 } 705 } 706 707 for (size_t i = 0; i < sections.size(); ++i) { 708 Subsections &subsections = sections[i]->subsections; 709 if (subsections.empty()) 710 continue; 711 InputSection *lastIsec = subsections.back().isec; 712 if (lastIsec->getName() == section_names::ehFrame) { 713 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 714 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 715 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 716 continue; 717 } 718 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 719 uint64_t sectionAddr = sectionHeaders[i].addr; 720 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 721 722 // Record-based sections have already been split into subsections during 723 // parseSections(), so we simply need to match Symbols to the corresponding 724 // subsection here. 725 if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) { 726 for (size_t j = 0; j < symbolIndices.size(); ++j) { 727 uint32_t symIndex = symbolIndices[j]; 728 const NList &sym = nList[symIndex]; 729 StringRef name = strtab + sym.n_strx; 730 uint64_t symbolOffset = sym.n_value - sectionAddr; 731 InputSection *isec = 732 findContainingSubsection(subsections, &symbolOffset); 733 if (symbolOffset != 0) { 734 error(toString(lastIsec) + ": symbol " + name + 735 " at misaligned offset"); 736 continue; 737 } 738 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 739 } 740 continue; 741 } 742 743 // Calculate symbol sizes and create subsections by splitting the sections 744 // along symbol boundaries. 745 // We populate subsections by repeatedly splitting the last (highest 746 // address) subsection. 747 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 748 return nList[lhs].n_value < nList[rhs].n_value; 749 }); 750 for (size_t j = 0; j < symbolIndices.size(); ++j) { 751 uint32_t symIndex = symbolIndices[j]; 752 const NList &sym = nList[symIndex]; 753 StringRef name = strtab + sym.n_strx; 754 Subsection &subsec = subsections.back(); 755 InputSection *isec = subsec.isec; 756 757 uint64_t subsecAddr = sectionAddr + subsec.offset; 758 size_t symbolOffset = sym.n_value - subsecAddr; 759 uint64_t symbolSize = 760 j + 1 < symbolIndices.size() 761 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 762 : isec->data.size() - symbolOffset; 763 // There are 4 cases where we do not need to create a new subsection: 764 // 1. If the input file does not use subsections-via-symbols. 765 // 2. Multiple symbols at the same address only induce one subsection. 766 // (The symbolOffset == 0 check covers both this case as well as 767 // the first loop iteration.) 768 // 3. Alternative entry points do not induce new subsections. 769 // 4. If we have a literal section (e.g. __cstring and __literal4). 770 if (!subsectionsViaSymbols || symbolOffset == 0 || 771 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 772 symbols[symIndex] = 773 createDefined(sym, name, isec, symbolOffset, symbolSize); 774 continue; 775 } 776 auto *concatIsec = cast<ConcatInputSection>(isec); 777 778 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 779 nextIsec->wasCoalesced = false; 780 if (isZeroFill(isec->getFlags())) { 781 // Zero-fill sections have NULL data.data() non-zero data.size() 782 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 783 isec->data = {nullptr, symbolOffset}; 784 } else { 785 nextIsec->data = isec->data.slice(symbolOffset); 786 isec->data = isec->data.slice(0, symbolOffset); 787 } 788 789 // By construction, the symbol will be at offset zero in the new 790 // subsection. 791 symbols[symIndex] = 792 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 793 // TODO: ld64 appears to preserve the original alignment as well as each 794 // subsection's offset from the last aligned address. We should consider 795 // emulating that behavior. 796 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 797 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 798 } 799 } 800 801 // Undefined symbols can trigger recursive fetch from Archives due to 802 // LazySymbols. Process defined symbols first so that the relative order 803 // between a defined symbol and an undefined symbol does not change the 804 // symbol resolution behavior. In addition, a set of interconnected symbols 805 // will all be resolved to the same file, instead of being resolved to 806 // different files. 807 for (unsigned i : undefineds) { 808 const NList &sym = nList[i]; 809 StringRef name = strtab + sym.n_strx; 810 symbols[i] = parseNonSectionSymbol(sym, name); 811 } 812 } 813 814 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 815 StringRef sectName) 816 : InputFile(OpaqueKind, mb) { 817 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 818 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 819 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16), 820 sectName.take_front(16), 821 /*flags=*/0, /*addr=*/0)); 822 Section §ion = *sections.back(); 823 ConcatInputSection *isec = make<ConcatInputSection>(section, data); 824 isec->live = true; 825 section.subsections.push_back({0, isec}); 826 } 827 828 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 829 bool lazy) 830 : InputFile(ObjKind, mb, lazy), modTime(modTime) { 831 this->archiveName = std::string(archiveName); 832 if (lazy) { 833 if (target->wordSize == 8) 834 parseLazy<LP64>(); 835 else 836 parseLazy<ILP32>(); 837 } else { 838 if (target->wordSize == 8) 839 parse<LP64>(); 840 else 841 parse<ILP32>(); 842 } 843 } 844 845 template <class LP> void ObjFile::parse() { 846 using Header = typename LP::mach_header; 847 using SegmentCommand = typename LP::segment_command; 848 using SectionHeader = typename LP::section; 849 using NList = typename LP::nlist; 850 851 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 852 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 853 854 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 855 if (arch != config->arch()) { 856 auto msg = config->errorForArchMismatch 857 ? static_cast<void (*)(const Twine &)>(error) 858 : warn; 859 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 860 " which is incompatible with target architecture " + 861 getArchitectureName(config->arch())); 862 return; 863 } 864 865 if (!checkCompatibility(this)) 866 return; 867 868 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 869 StringRef data{reinterpret_cast<const char *>(cmd + 1), 870 cmd->cmdsize - sizeof(linker_option_command)}; 871 parseLCLinkerOption(this, cmd->count, data); 872 } 873 874 ArrayRef<SectionHeader> sectionHeaders; 875 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 876 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 877 sectionHeaders = ArrayRef<SectionHeader>{ 878 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 879 parseSections(sectionHeaders); 880 } 881 882 // TODO: Error on missing LC_SYMTAB? 883 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 884 auto *c = reinterpret_cast<const symtab_command *>(cmd); 885 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 886 c->nsyms); 887 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 888 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 889 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 890 } 891 892 // The relocations may refer to the symbols, so we parse them after we have 893 // parsed all the symbols. 894 for (size_t i = 0, n = sections.size(); i < n; ++i) 895 if (!sections[i]->subsections.empty()) 896 parseRelocations(sectionHeaders, sectionHeaders[i], 897 sections[i]->subsections); 898 899 parseDebugInfo(); 900 if (compactUnwindSection) 901 registerCompactUnwind(); 902 } 903 904 template <class LP> void ObjFile::parseLazy() { 905 using Header = typename LP::mach_header; 906 using NList = typename LP::nlist; 907 908 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 909 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 910 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 911 if (!cmd) 912 return; 913 auto *c = reinterpret_cast<const symtab_command *>(cmd); 914 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 915 c->nsyms); 916 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 917 symbols.resize(nList.size()); 918 for (auto it : llvm::enumerate(nList)) { 919 const NList &sym = it.value(); 920 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 921 // TODO: Bound checking 922 StringRef name = strtab + sym.n_strx; 923 symbols[it.index()] = symtab->addLazyObject(name, *this); 924 if (!lazy) 925 break; 926 } 927 } 928 } 929 930 void ObjFile::parseDebugInfo() { 931 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 932 if (!dObj) 933 return; 934 935 auto *ctx = make<DWARFContext>( 936 std::move(dObj), "", 937 [&](Error err) { 938 warn(toString(this) + ": " + toString(std::move(err))); 939 }, 940 [&](Error warning) { 941 warn(toString(this) + ": " + toString(std::move(warning))); 942 }); 943 944 // TODO: Since object files can contain a lot of DWARF info, we should verify 945 // that we are parsing just the info we need 946 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 947 // FIXME: There can be more than one compile unit per object file. See 948 // PR48637. 949 auto it = units.begin(); 950 compileUnit = it->get(); 951 } 952 953 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 954 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 955 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 956 if (!cmd) 957 return {}; 958 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 959 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 960 c->datasize / sizeof(data_in_code_entry)}; 961 } 962 963 // Create pointers from symbols to their associated compact unwind entries. 964 void ObjFile::registerCompactUnwind() { 965 for (const Subsection &subsection : compactUnwindSection->subsections) { 966 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 967 // Hack!! Since each CUE contains a different function address, if ICF 968 // operated naively and compared the entire contents of each CUE, entries 969 // with identical unwind info but belonging to different functions would 970 // never be considered equivalent. To work around this problem, we slice 971 // away the function address here. (Note that we do not adjust the offsets 972 // of the corresponding relocations.) We rely on `relocateCompactUnwind()` 973 // to correctly handle these truncated input sections. 974 isec->data = isec->data.slice(target->wordSize); 975 976 ConcatInputSection *referentIsec; 977 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 978 Reloc &r = *it; 979 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 980 if (r.offset != 0) { 981 ++it; 982 continue; 983 } 984 uint64_t add = r.addend; 985 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 986 // Check whether the symbol defined in this file is the prevailing one. 987 // Skip if it is e.g. a weak def that didn't prevail. 988 if (sym->getFile() != this) { 989 ++it; 990 continue; 991 } 992 add += sym->value; 993 referentIsec = cast<ConcatInputSection>(sym->isec); 994 } else { 995 referentIsec = 996 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 997 } 998 if (referentIsec->getSegName() != segment_names::text) 999 error(isec->getLocation(r.offset) + " references section " + 1000 referentIsec->getName() + " which is not in segment __TEXT"); 1001 // The functionAddress relocations are typically section relocations. 1002 // However, unwind info operates on a per-symbol basis, so we search for 1003 // the function symbol here. 1004 auto symIt = llvm::lower_bound( 1005 referentIsec->symbols, add, 1006 [](Defined *d, uint64_t add) { return d->value < add; }); 1007 // The relocation should point at the exact address of a symbol (with no 1008 // addend). 1009 if (symIt == referentIsec->symbols.end() || (*symIt)->value != add) { 1010 assert(referentIsec->wasCoalesced); 1011 ++it; 1012 continue; 1013 } 1014 (*symIt)->unwindEntry = isec; 1015 // Since we've sliced away the functionAddress, we should remove the 1016 // corresponding relocation too. Given that clang emits relocations in 1017 // reverse order of address, this relocation should be at the end of the 1018 // vector for most of our input object files, so this is typically an O(1) 1019 // operation. 1020 it = isec->relocs.erase(it); 1021 } 1022 } 1023 } 1024 1025 // The path can point to either a dylib or a .tbd file. 1026 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1027 Optional<MemoryBufferRef> mbref = readFile(path); 1028 if (!mbref) { 1029 error("could not read dylib file at " + path); 1030 return nullptr; 1031 } 1032 return loadDylib(*mbref, umbrella); 1033 } 1034 1035 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1036 // the first document storing child pointers to the rest of them. When we are 1037 // processing a given TBD file, we store that top-level document in 1038 // currentTopLevelTapi. When processing re-exports, we search its children for 1039 // potentially matching documents in the same TBD file. Note that the children 1040 // themselves don't point to further documents, i.e. this is a two-level tree. 1041 // 1042 // Re-exports can either refer to on-disk files, or to documents within .tbd 1043 // files. 1044 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1045 const InterfaceFile *currentTopLevelTapi) { 1046 // Search order: 1047 // 1. Install name basename in -F / -L directories. 1048 { 1049 StringRef stem = path::stem(path); 1050 SmallString<128> frameworkName; 1051 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1052 bool isFramework = path.endswith(frameworkName); 1053 if (isFramework) { 1054 for (StringRef dir : config->frameworkSearchPaths) { 1055 SmallString<128> candidate = dir; 1056 path::append(candidate, frameworkName); 1057 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1058 return loadDylib(*dylibPath, umbrella); 1059 } 1060 } else if (Optional<StringRef> dylibPath = findPathCombination( 1061 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1062 return loadDylib(*dylibPath, umbrella); 1063 } 1064 1065 // 2. As absolute path. 1066 if (path::is_absolute(path, path::Style::posix)) 1067 for (StringRef root : config->systemLibraryRoots) 1068 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1069 return loadDylib(*dylibPath, umbrella); 1070 1071 // 3. As relative path. 1072 1073 // TODO: Handle -dylib_file 1074 1075 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1076 SmallString<128> newPath; 1077 if (config->outputType == MH_EXECUTE && 1078 path.consume_front("@executable_path/")) { 1079 // ld64 allows overriding this with the undocumented flag -executable_path. 1080 // lld doesn't currently implement that flag. 1081 // FIXME: Consider using finalOutput instead of outputFile. 1082 path::append(newPath, path::parent_path(config->outputFile), path); 1083 path = newPath; 1084 } else if (path.consume_front("@loader_path/")) { 1085 fs::real_path(umbrella->getName(), newPath); 1086 path::remove_filename(newPath); 1087 path::append(newPath, path); 1088 path = newPath; 1089 } else if (path.startswith("@rpath/")) { 1090 for (StringRef rpath : umbrella->rpaths) { 1091 newPath.clear(); 1092 if (rpath.consume_front("@loader_path/")) { 1093 fs::real_path(umbrella->getName(), newPath); 1094 path::remove_filename(newPath); 1095 } 1096 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1097 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1098 return loadDylib(*dylibPath, umbrella); 1099 } 1100 } 1101 1102 // FIXME: Should this be further up? 1103 if (currentTopLevelTapi) { 1104 for (InterfaceFile &child : 1105 make_pointee_range(currentTopLevelTapi->documents())) { 1106 assert(child.documents().empty()); 1107 if (path == child.getInstallName()) { 1108 auto file = make<DylibFile>(child, umbrella); 1109 file->parseReexports(child); 1110 return file; 1111 } 1112 } 1113 } 1114 1115 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1116 return loadDylib(*dylibPath, umbrella); 1117 1118 return nullptr; 1119 } 1120 1121 // If a re-exported dylib is public (lives in /usr/lib or 1122 // /System/Library/Frameworks), then it is considered implicitly linked: we 1123 // should bind to its symbols directly instead of via the re-exporting umbrella 1124 // library. 1125 static bool isImplicitlyLinked(StringRef path) { 1126 if (!config->implicitDylibs) 1127 return false; 1128 1129 if (path::parent_path(path) == "/usr/lib") 1130 return true; 1131 1132 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1133 if (path.consume_front("/System/Library/Frameworks/")) { 1134 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1135 return path::filename(path) == frameworkName; 1136 } 1137 1138 return false; 1139 } 1140 1141 static void loadReexport(StringRef path, DylibFile *umbrella, 1142 const InterfaceFile *currentTopLevelTapi) { 1143 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1144 if (!reexport) 1145 error("unable to locate re-export with install name " + path); 1146 } 1147 1148 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1149 bool isBundleLoader) 1150 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1151 isBundleLoader(isBundleLoader) { 1152 assert(!isBundleLoader || !umbrella); 1153 if (umbrella == nullptr) 1154 umbrella = this; 1155 this->umbrella = umbrella; 1156 1157 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1158 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1159 1160 // Initialize installName. 1161 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1162 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1163 currentVersion = read32le(&c->dylib.current_version); 1164 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1165 installName = 1166 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1167 } else if (!isBundleLoader) { 1168 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1169 // so it's OK. 1170 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1171 return; 1172 } 1173 1174 if (config->printEachFile) 1175 message(toString(this)); 1176 inputFiles.insert(this); 1177 1178 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1179 1180 if (!checkCompatibility(this)) 1181 return; 1182 1183 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1184 1185 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1186 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1187 rpaths.push_back(rpath); 1188 } 1189 1190 // Initialize symbols. 1191 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1192 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1193 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1194 struct TrieEntry { 1195 StringRef name; 1196 uint64_t flags; 1197 }; 1198 1199 std::vector<TrieEntry> entries; 1200 // Find all the $ld$* symbols to process first. 1201 parseTrie(buf + c->export_off, c->export_size, 1202 [&](const Twine &name, uint64_t flags) { 1203 StringRef savedName = saver().save(name); 1204 if (handleLDSymbol(savedName)) 1205 return; 1206 entries.push_back({savedName, flags}); 1207 }); 1208 1209 // Process the "normal" symbols. 1210 for (TrieEntry &entry : entries) { 1211 if (exportingFile->hiddenSymbols.contains( 1212 CachedHashStringRef(entry.name))) 1213 continue; 1214 1215 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1216 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1217 1218 symbols.push_back( 1219 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1220 } 1221 1222 } else { 1223 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1224 return; 1225 } 1226 } 1227 1228 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1229 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1230 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1231 target->headerSize; 1232 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1233 auto *cmd = reinterpret_cast<const load_command *>(p); 1234 p += cmd->cmdsize; 1235 1236 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1237 cmd->cmd == LC_REEXPORT_DYLIB) { 1238 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1239 StringRef reexportPath = 1240 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1241 loadReexport(reexportPath, exportingFile, nullptr); 1242 } 1243 1244 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1245 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1246 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1247 if (config->namespaceKind == NamespaceKind::flat && 1248 cmd->cmd == LC_LOAD_DYLIB) { 1249 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1250 StringRef dylibPath = 1251 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1252 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1253 if (!dylib) 1254 error(Twine("unable to locate library '") + dylibPath + 1255 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1256 } 1257 } 1258 } 1259 1260 // Some versions of XCode ship with .tbd files that don't have the right 1261 // platform settings. 1262 constexpr std::array<StringRef, 4> skipPlatformChecks{ 1263 "/usr/lib/system/libsystem_kernel.dylib", 1264 "/usr/lib/system/libsystem_platform.dylib", 1265 "/usr/lib/system/libsystem_pthread.dylib", 1266 "/usr/lib/system/libcompiler_rt.dylib"}; 1267 1268 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1269 bool isBundleLoader) 1270 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1271 isBundleLoader(isBundleLoader) { 1272 // FIXME: Add test for the missing TBD code path. 1273 1274 if (umbrella == nullptr) 1275 umbrella = this; 1276 this->umbrella = umbrella; 1277 1278 installName = saver().save(interface.getInstallName()); 1279 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1280 currentVersion = interface.getCurrentVersion().rawValue(); 1281 1282 if (config->printEachFile) 1283 message(toString(this)); 1284 inputFiles.insert(this); 1285 1286 if (!is_contained(skipPlatformChecks, installName) && 1287 !is_contained(interface.targets(), config->platformInfo.target)) { 1288 error(toString(this) + " is incompatible with " + 1289 std::string(config->platformInfo.target)); 1290 return; 1291 } 1292 1293 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1294 1295 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1296 auto addSymbol = [&](const Twine &name) -> void { 1297 StringRef savedName = saver().save(name); 1298 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1299 return; 1300 1301 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1302 /*isWeakDef=*/false, 1303 /*isTlv=*/false)); 1304 }; 1305 1306 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1307 normalSymbols.reserve(interface.symbolsCount()); 1308 for (const auto *symbol : interface.symbols()) { 1309 if (!symbol->getArchitectures().has(config->arch())) 1310 continue; 1311 if (handleLDSymbol(symbol->getName())) 1312 continue; 1313 1314 switch (symbol->getKind()) { 1315 case SymbolKind::GlobalSymbol: // Fallthrough 1316 case SymbolKind::ObjectiveCClass: // Fallthrough 1317 case SymbolKind::ObjectiveCClassEHType: // Fallthrough 1318 case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough 1319 normalSymbols.push_back(symbol); 1320 } 1321 } 1322 1323 // TODO(compnerd) filter out symbols based on the target platform 1324 // TODO: handle weak defs, thread locals 1325 for (const auto *symbol : normalSymbols) { 1326 switch (symbol->getKind()) { 1327 case SymbolKind::GlobalSymbol: 1328 addSymbol(symbol->getName()); 1329 break; 1330 case SymbolKind::ObjectiveCClass: 1331 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1332 // want to emulate that. 1333 addSymbol(objc::klass + symbol->getName()); 1334 addSymbol(objc::metaclass + symbol->getName()); 1335 break; 1336 case SymbolKind::ObjectiveCClassEHType: 1337 addSymbol(objc::ehtype + symbol->getName()); 1338 break; 1339 case SymbolKind::ObjectiveCInstanceVariable: 1340 addSymbol(objc::ivar + symbol->getName()); 1341 break; 1342 } 1343 } 1344 } 1345 1346 void DylibFile::parseReexports(const InterfaceFile &interface) { 1347 const InterfaceFile *topLevel = 1348 interface.getParent() == nullptr ? &interface : interface.getParent(); 1349 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1350 InterfaceFile::const_target_range targets = intfRef.targets(); 1351 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1352 is_contained(targets, config->platformInfo.target)) 1353 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1354 } 1355 } 1356 1357 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1358 // name, compatibility version or hide/add symbols) for specific target 1359 // versions. 1360 bool DylibFile::handleLDSymbol(StringRef originalName) { 1361 if (!originalName.startswith("$ld$")) 1362 return false; 1363 1364 StringRef action; 1365 StringRef name; 1366 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1367 if (action == "previous") 1368 handleLDPreviousSymbol(name, originalName); 1369 else if (action == "install_name") 1370 handleLDInstallNameSymbol(name, originalName); 1371 else if (action == "hide") 1372 handleLDHideSymbol(name, originalName); 1373 return true; 1374 } 1375 1376 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1377 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1378 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1379 StringRef installName; 1380 StringRef compatVersion; 1381 StringRef platformStr; 1382 StringRef startVersion; 1383 StringRef endVersion; 1384 StringRef symbolName; 1385 StringRef rest; 1386 1387 std::tie(installName, name) = name.split('$'); 1388 std::tie(compatVersion, name) = name.split('$'); 1389 std::tie(platformStr, name) = name.split('$'); 1390 std::tie(startVersion, name) = name.split('$'); 1391 std::tie(endVersion, name) = name.split('$'); 1392 std::tie(symbolName, rest) = name.split('$'); 1393 // TODO: ld64 contains some logic for non-empty symbolName as well. 1394 if (!symbolName.empty()) 1395 return; 1396 unsigned platform; 1397 if (platformStr.getAsInteger(10, platform) || 1398 platform != static_cast<unsigned>(config->platform())) 1399 return; 1400 1401 VersionTuple start; 1402 if (start.tryParse(startVersion)) { 1403 warn("failed to parse start version, symbol '" + originalName + 1404 "' ignored"); 1405 return; 1406 } 1407 VersionTuple end; 1408 if (end.tryParse(endVersion)) { 1409 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1410 return; 1411 } 1412 if (config->platformInfo.minimum < start || 1413 config->platformInfo.minimum >= end) 1414 return; 1415 1416 this->installName = saver().save(installName); 1417 1418 if (!compatVersion.empty()) { 1419 VersionTuple cVersion; 1420 if (cVersion.tryParse(compatVersion)) { 1421 warn("failed to parse compatibility version, symbol '" + originalName + 1422 "' ignored"); 1423 return; 1424 } 1425 compatibilityVersion = encodeVersion(cVersion); 1426 } 1427 } 1428 1429 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1430 StringRef originalName) { 1431 // originalName: $ld$ install_name $ os<version> $ install_name 1432 StringRef condition, installName; 1433 std::tie(condition, installName) = name.split('$'); 1434 VersionTuple version; 1435 if (!condition.consume_front("os") || version.tryParse(condition)) 1436 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1437 else if (version == config->platformInfo.minimum) 1438 this->installName = saver().save(installName); 1439 } 1440 1441 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 1442 StringRef symbolName; 1443 bool shouldHide = true; 1444 if (name.startswith("os")) { 1445 // If it's hidden based on versions. 1446 name = name.drop_front(2); 1447 StringRef minVersion; 1448 std::tie(minVersion, symbolName) = name.split('$'); 1449 VersionTuple versionTup; 1450 if (versionTup.tryParse(minVersion)) { 1451 warn("Failed to parse hidden version, symbol `" + originalName + 1452 "` ignored."); 1453 return; 1454 } 1455 shouldHide = versionTup == config->platformInfo.minimum; 1456 } else { 1457 symbolName = name; 1458 } 1459 1460 if (shouldHide) 1461 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 1462 } 1463 1464 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1465 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1466 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1467 } 1468 1469 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1470 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1471 1472 void ArchiveFile::addLazySymbols() { 1473 for (const object::Archive::Symbol &sym : file->symbols()) 1474 symtab->addLazyArchive(sym.getName(), this, sym); 1475 } 1476 1477 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1478 uint32_t modTime, 1479 StringRef archiveName, 1480 uint64_t offsetInArchive) { 1481 if (config->zeroModTime) 1482 modTime = 0; 1483 1484 switch (identify_magic(mb.getBuffer())) { 1485 case file_magic::macho_object: 1486 return make<ObjFile>(mb, modTime, archiveName); 1487 case file_magic::bitcode: 1488 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1489 default: 1490 return createStringError(inconvertibleErrorCode(), 1491 mb.getBufferIdentifier() + 1492 " has unhandled file type"); 1493 } 1494 } 1495 1496 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1497 if (!seen.insert(c.getChildOffset()).second) 1498 return Error::success(); 1499 1500 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1501 if (!mb) 1502 return mb.takeError(); 1503 1504 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1505 if (tar && c.getParent()->isThin()) 1506 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1507 1508 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1509 if (!modTime) 1510 return modTime.takeError(); 1511 1512 Expected<InputFile *> file = 1513 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1514 1515 if (!file) 1516 return file.takeError(); 1517 1518 inputFiles.insert(*file); 1519 printArchiveMemberLoad(reason, *file); 1520 return Error::success(); 1521 } 1522 1523 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1524 object::Archive::Child c = 1525 CHECK(sym.getMember(), toString(this) + 1526 ": could not get the member defining symbol " + 1527 toMachOString(sym)); 1528 1529 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1530 // and become invalid after that call. Copy it to the stack so we can refer 1531 // to it later. 1532 const object::Archive::Symbol symCopy = sym; 1533 1534 // ld64 doesn't demangle sym here even with -demangle. 1535 // Match that: intentionally don't call toMachOString(). 1536 if (Error e = fetch(c, symCopy.getName())) 1537 error(toString(this) + ": could not get the member defining symbol " + 1538 toMachOString(symCopy) + ": " + toString(std::move(e))); 1539 } 1540 1541 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1542 BitcodeFile &file) { 1543 StringRef name = saver().save(objSym.getName()); 1544 1545 if (objSym.isUndefined()) 1546 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 1547 1548 // TODO: Write a test demonstrating why computing isPrivateExtern before 1549 // LTO compilation is important. 1550 bool isPrivateExtern = false; 1551 switch (objSym.getVisibility()) { 1552 case GlobalValue::HiddenVisibility: 1553 isPrivateExtern = true; 1554 break; 1555 case GlobalValue::ProtectedVisibility: 1556 error(name + " has protected visibility, which is not supported by Mach-O"); 1557 break; 1558 case GlobalValue::DefaultVisibility: 1559 break; 1560 } 1561 1562 if (objSym.isCommon()) 1563 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1564 objSym.getCommonAlignment(), isPrivateExtern); 1565 1566 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1567 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1568 /*isThumb=*/false, 1569 /*isReferencedDynamically=*/false, 1570 /*noDeadStrip=*/false, 1571 /*isWeakDefCanBeHidden=*/false); 1572 } 1573 1574 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1575 uint64_t offsetInArchive, bool lazy) 1576 : InputFile(BitcodeKind, mb, lazy) { 1577 this->archiveName = std::string(archiveName); 1578 std::string path = mb.getBufferIdentifier().str(); 1579 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1580 // name. If two members with the same name are provided, this causes a 1581 // collision and ThinLTO can't proceed. 1582 // So, we append the archive name to disambiguate two members with the same 1583 // name from multiple different archives, and offset within the archive to 1584 // disambiguate two members of the same name from a single archive. 1585 MemoryBufferRef mbref(mb.getBuffer(), 1586 saver().save(archiveName.empty() 1587 ? path 1588 : archiveName + 1589 sys::path::filename(path) + 1590 utostr(offsetInArchive))); 1591 1592 obj = check(lto::InputFile::create(mbref)); 1593 if (lazy) 1594 parseLazy(); 1595 else 1596 parse(); 1597 } 1598 1599 void BitcodeFile::parse() { 1600 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1601 // "winning" symbol will then be marked as Prevailing at LTO compilation 1602 // time. 1603 symbols.clear(); 1604 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1605 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1606 } 1607 1608 void BitcodeFile::parseLazy() { 1609 symbols.resize(obj->symbols().size()); 1610 for (auto it : llvm::enumerate(obj->symbols())) { 1611 const lto::InputFile::Symbol &objSym = it.value(); 1612 if (!objSym.isUndefined()) { 1613 symbols[it.index()] = 1614 symtab->addLazyObject(saver().save(objSym.getName()), *this); 1615 if (!lazy) 1616 break; 1617 } 1618 } 1619 } 1620 1621 void macho::extract(InputFile &file, StringRef reason) { 1622 assert(file.lazy); 1623 file.lazy = false; 1624 printArchiveMemberLoad(reason, &file); 1625 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 1626 bitcode->parse(); 1627 } else { 1628 auto &f = cast<ObjFile>(file); 1629 if (target->wordSize == 8) 1630 f.parse<LP64>(); 1631 else 1632 f.parse<ILP32>(); 1633 } 1634 } 1635 1636 template void ObjFile::parse<LP64>(); 1637