1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "EhFrame.h" 49 #include "ExportTrie.h" 50 #include "InputSection.h" 51 #include "MachOStructs.h" 52 #include "ObjC.h" 53 #include "OutputSection.h" 54 #include "OutputSegment.h" 55 #include "SymbolTable.h" 56 #include "Symbols.h" 57 #include "SyntheticSections.h" 58 #include "Target.h" 59 60 #include "lld/Common/CommonLinkerContext.h" 61 #include "lld/Common/DWARF.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/BinaryStreamReader.h" 67 #include "llvm/Support/Endian.h" 68 #include "llvm/Support/LEB128.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/Path.h" 71 #include "llvm/Support/TarWriter.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/TextAPI/Architecture.h" 74 #include "llvm/TextAPI/InterfaceFile.h" 75 76 #include <type_traits> 77 78 using namespace llvm; 79 using namespace llvm::MachO; 80 using namespace llvm::support::endian; 81 using namespace llvm::sys; 82 using namespace lld; 83 using namespace lld::macho; 84 85 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 86 std::string lld::toString(const InputFile *f) { 87 if (!f) 88 return "<internal>"; 89 90 // Multiple dylibs can be defined in one .tbd file. 91 if (auto dylibFile = dyn_cast<DylibFile>(f)) 92 if (f->getName().endswith(".tbd")) 93 return (f->getName() + "(" + dylibFile->installName + ")").str(); 94 95 if (f->archiveName.empty()) 96 return std::string(f->getName()); 97 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 98 } 99 100 std::string lld::toString(const Section &sec) { 101 return (toString(sec.file) + ":(" + sec.name + ")").str(); 102 } 103 104 SetVector<InputFile *> macho::inputFiles; 105 std::unique_ptr<TarWriter> macho::tar; 106 int InputFile::idCount = 0; 107 108 static VersionTuple decodeVersion(uint32_t version) { 109 unsigned major = version >> 16; 110 unsigned minor = (version >> 8) & 0xffu; 111 unsigned subMinor = version & 0xffu; 112 return VersionTuple(major, minor, subMinor); 113 } 114 115 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 116 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 117 return {}; 118 119 const char *hdr = input->mb.getBufferStart(); 120 121 // "Zippered" object files can have multiple LC_BUILD_VERSION load commands. 122 std::vector<PlatformInfo> platformInfos; 123 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 124 PlatformInfo info; 125 info.target.Platform = static_cast<PlatformType>(cmd->platform); 126 info.minimum = decodeVersion(cmd->minos); 127 platformInfos.emplace_back(std::move(info)); 128 } 129 for (auto *cmd : findCommands<version_min_command>( 130 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 131 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 132 PlatformInfo info; 133 switch (cmd->cmd) { 134 case LC_VERSION_MIN_MACOSX: 135 info.target.Platform = PLATFORM_MACOS; 136 break; 137 case LC_VERSION_MIN_IPHONEOS: 138 info.target.Platform = PLATFORM_IOS; 139 break; 140 case LC_VERSION_MIN_TVOS: 141 info.target.Platform = PLATFORM_TVOS; 142 break; 143 case LC_VERSION_MIN_WATCHOS: 144 info.target.Platform = PLATFORM_WATCHOS; 145 break; 146 } 147 info.minimum = decodeVersion(cmd->version); 148 platformInfos.emplace_back(std::move(info)); 149 } 150 151 return platformInfos; 152 } 153 154 static bool checkCompatibility(const InputFile *input) { 155 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 156 if (platformInfos.empty()) 157 return true; 158 159 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 160 return removeSimulator(info.target.Platform) == 161 removeSimulator(config->platform()); 162 }); 163 if (it == platformInfos.end()) { 164 std::string platformNames; 165 raw_string_ostream os(platformNames); 166 interleave( 167 platformInfos, os, 168 [&](const PlatformInfo &info) { 169 os << getPlatformName(info.target.Platform); 170 }, 171 "/"); 172 error(toString(input) + " has platform " + platformNames + 173 Twine(", which is different from target platform ") + 174 getPlatformName(config->platform())); 175 return false; 176 } 177 178 if (it->minimum > config->platformInfo.minimum) 179 warn(toString(input) + " has version " + it->minimum.getAsString() + 180 ", which is newer than target minimum of " + 181 config->platformInfo.minimum.getAsString()); 182 183 return true; 184 } 185 186 // This cache mostly exists to store system libraries (and .tbds) as they're 187 // loaded, rather than the input archives, which are already cached at a higher 188 // level, and other files like the filelist that are only read once. 189 // Theoretically this caching could be more efficient by hoisting it, but that 190 // would require altering many callers to track the state. 191 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 192 // Open a given file path and return it as a memory-mapped file. 193 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 194 CachedHashStringRef key(path); 195 auto entry = cachedReads.find(key); 196 if (entry != cachedReads.end()) 197 return entry->second; 198 199 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 200 if (std::error_code ec = mbOrErr.getError()) { 201 error("cannot open " + path + ": " + ec.message()); 202 return None; 203 } 204 205 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 206 MemoryBufferRef mbref = mb->getMemBufferRef(); 207 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 208 209 // If this is a regular non-fat file, return it. 210 const char *buf = mbref.getBufferStart(); 211 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 212 if (mbref.getBufferSize() < sizeof(uint32_t) || 213 read32be(&hdr->magic) != FAT_MAGIC) { 214 if (tar) 215 tar->append(relativeToRoot(path), mbref.getBuffer()); 216 return cachedReads[key] = mbref; 217 } 218 219 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); 220 221 // Object files and archive files may be fat files, which contain multiple 222 // real files for different CPU ISAs. Here, we search for a file that matches 223 // with the current link target and returns it as a MemoryBufferRef. 224 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 225 226 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 227 if (reinterpret_cast<const char *>(arch + i + 1) > 228 buf + mbref.getBufferSize()) { 229 error(path + ": fat_arch struct extends beyond end of file"); 230 return None; 231 } 232 233 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 234 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 235 continue; 236 237 uint32_t offset = read32be(&arch[i].offset); 238 uint32_t size = read32be(&arch[i].size); 239 if (offset + size > mbref.getBufferSize()) 240 error(path + ": slice extends beyond end of file"); 241 if (tar) 242 tar->append(relativeToRoot(path), mbref.getBuffer()); 243 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 244 path.copy(bAlloc)); 245 } 246 247 error("unable to find matching architecture in " + path); 248 return None; 249 } 250 251 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 252 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} 253 254 // Some sections comprise of fixed-size records, so instead of splitting them at 255 // symbol boundaries, we split them based on size. Records are distinct from 256 // literals in that they may contain references to other sections, instead of 257 // being leaf nodes in the InputSection graph. 258 // 259 // Note that "record" is a term I came up with. In contrast, "literal" is a term 260 // used by the Mach-O format. 261 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 262 if (name == section_names::compactUnwind) { 263 if (segname == segment_names::ld) 264 return target->wordSize == 8 ? 32 : 20; 265 } 266 if (!config->dedupLiterals) 267 return {}; 268 269 if (name == section_names::cfString && segname == segment_names::data) 270 return target->wordSize == 8 ? 32 : 16; 271 272 if (config->icfLevel == ICFLevel::none) 273 return {}; 274 275 if (name == section_names::objcClassRefs && segname == segment_names::data) 276 return target->wordSize; 277 return {}; 278 } 279 280 static Error parseCallGraph(ArrayRef<uint8_t> data, 281 std::vector<CallGraphEntry> &callGraph) { 282 TimeTraceScope timeScope("Parsing call graph section"); 283 BinaryStreamReader reader(data, support::little); 284 while (!reader.empty()) { 285 uint32_t fromIndex, toIndex; 286 uint64_t count; 287 if (Error err = reader.readInteger(fromIndex)) 288 return err; 289 if (Error err = reader.readInteger(toIndex)) 290 return err; 291 if (Error err = reader.readInteger(count)) 292 return err; 293 callGraph.emplace_back(fromIndex, toIndex, count); 294 } 295 return Error::success(); 296 } 297 298 // Parse the sequence of sections within a single LC_SEGMENT(_64). 299 // Split each section into subsections. 300 template <class SectionHeader> 301 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 302 sections.reserve(sectionHeaders.size()); 303 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 304 305 for (const SectionHeader &sec : sectionHeaders) { 306 StringRef name = 307 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 308 StringRef segname = 309 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 310 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr)); 311 if (sec.align >= 32) { 312 error("alignment " + std::to_string(sec.align) + " of section " + name + 313 " is too large"); 314 continue; 315 } 316 Section §ion = *sections.back(); 317 uint32_t align = 1 << sec.align; 318 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 319 : buf + sec.offset, 320 static_cast<size_t>(sec.size)}; 321 322 auto splitRecords = [&](int recordSize) -> void { 323 if (data.empty()) 324 return; 325 Subsections &subsections = section.subsections; 326 subsections.reserve(data.size() / recordSize); 327 for (uint64_t off = 0; off < data.size(); off += recordSize) { 328 auto *isec = make<ConcatInputSection>( 329 section, data.slice(off, recordSize), align); 330 subsections.push_back({off, isec}); 331 } 332 section.doneSplitting = true; 333 }; 334 335 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 336 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 337 if (sec.nreloc && config->dedupLiterals) 338 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 339 sec.sectname + 340 ", so LLD cannot deduplicate literals. Try re-running without " 341 "--deduplicate-literals."); 342 343 InputSection *isec; 344 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 345 isec = make<CStringInputSection>(section, data, align); 346 // FIXME: parallelize this? 347 cast<CStringInputSection>(isec)->splitIntoPieces(); 348 } else { 349 isec = make<WordLiteralInputSection>(section, data, align); 350 } 351 section.subsections.push_back({0, isec}); 352 } else if (auto recordSize = getRecordSize(segname, name)) { 353 splitRecords(*recordSize); 354 } else if (name == section_names::ehFrame && 355 segname == segment_names::text) { 356 splitEhFrames(data, *sections.back()); 357 } else if (segname == segment_names::llvm) { 358 if (config->callGraphProfileSort && name == section_names::cgProfile) 359 checkError(parseCallGraph(data, callGraph)); 360 // ld64 does not appear to emit contents from sections within the __LLVM 361 // segment. Symbols within those sections point to bitcode metadata 362 // instead of actual symbols. Global symbols within those sections could 363 // have the same name without causing duplicate symbol errors. To avoid 364 // spurious duplicate symbol errors, we do not parse these sections. 365 // TODO: Evaluate whether the bitcode metadata is needed. 366 } else { 367 if (name == section_names::addrSig) 368 addrSigSection = sections.back(); 369 370 auto *isec = make<ConcatInputSection>(section, data, align); 371 if (isDebugSection(isec->getFlags()) && 372 isec->getSegName() == segment_names::dwarf) { 373 // Instead of emitting DWARF sections, we emit STABS symbols to the 374 // object files that contain them. We filter them out early to avoid 375 // parsing their relocations unnecessarily. 376 debugSections.push_back(isec); 377 } else { 378 section.subsections.push_back({0, isec}); 379 } 380 } 381 } 382 } 383 384 void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) { 385 EhReader reader(this, data, /*dataOff=*/0, target->wordSize); 386 size_t off = 0; 387 while (off < reader.size()) { 388 uint64_t frameOff = off; 389 uint64_t length = reader.readLength(&off); 390 if (length == 0) 391 break; 392 uint64_t fullLength = length + (off - frameOff); 393 off += length; 394 // We hard-code an alignment of 1 here because we don't actually want our 395 // EH frames to be aligned to the section alignment. EH frame decoders don't 396 // expect this alignment. Moreover, each EH frame must start where the 397 // previous one ends, and where it ends is indicated by the length field. 398 // Unless we update the length field (troublesome), we should keep the 399 // alignment to 1. 400 // Note that we still want to preserve the alignment of the overall section, 401 // just not of the individual EH frames. 402 ehFrameSection.subsections.push_back( 403 {frameOff, make<ConcatInputSection>(ehFrameSection, 404 data.slice(frameOff, fullLength), 405 /*align=*/1)}); 406 } 407 ehFrameSection.doneSplitting = true; 408 } 409 410 template <class T> 411 static Section *findContainingSection(const std::vector<Section *> §ions, 412 T *offset) { 413 static_assert(std::is_same<uint64_t, T>::value || 414 std::is_same<uint32_t, T>::value, 415 "unexpected type for offset"); 416 auto it = std::prev(llvm::upper_bound( 417 sections, *offset, 418 [](uint64_t value, const Section *sec) { return value < sec->addr; })); 419 *offset -= (*it)->addr; 420 return *it; 421 } 422 423 // Find the subsection corresponding to the greatest section offset that is <= 424 // that of the given offset. 425 // 426 // offset: an offset relative to the start of the original InputSection (before 427 // any subsection splitting has occurred). It will be updated to represent the 428 // same location as an offset relative to the start of the containing 429 // subsection. 430 template <class T> 431 static InputSection *findContainingSubsection(const Section §ion, 432 T *offset) { 433 static_assert(std::is_same<uint64_t, T>::value || 434 std::is_same<uint32_t, T>::value, 435 "unexpected type for offset"); 436 auto it = std::prev(llvm::upper_bound( 437 section.subsections, *offset, 438 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 439 *offset -= it->offset; 440 return it->isec; 441 } 442 443 // Find a symbol at offset `off` within `isec`. 444 static Defined *findSymbolAtOffset(const ConcatInputSection *isec, 445 uint64_t off) { 446 auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) { 447 return d->value < off; 448 }); 449 // The offset should point at the exact address of a symbol (with no addend.) 450 if (it == isec->symbols.end() || (*it)->value != off) { 451 assert(isec->wasCoalesced); 452 return nullptr; 453 } 454 return *it; 455 } 456 457 // Linker optimization hints mark a sequence of instructions used for 458 // synthesizing an address which that be transformed into a faster sequence. The 459 // transformations depend on conditions that are determined at link time, like 460 // the distance to the referenced symbol or its alignment. 461 // 462 // Each hint has a type and refers to 2 or 3 instructions. Each of those 463 // instructions must have a corresponding relocation. After addresses have been 464 // finalized and relocations have been performed, we check if the requirements 465 // hold, and perform the optimizations if they do. 466 // 467 // Similar linker relaxations exist for ELF as well, with the difference being 468 // that the explicit marking allows for the relaxation of non-consecutive 469 // relocations too. 470 // 471 // The specific types of hints are documented in Arch/ARM64.cpp 472 void ObjFile::parseOptimizationHints(ArrayRef<uint8_t> data) { 473 auto expectedArgCount = [](uint8_t type) { 474 switch (type) { 475 case LOH_ARM64_ADRP_ADRP: 476 case LOH_ARM64_ADRP_LDR: 477 case LOH_ARM64_ADRP_ADD: 478 case LOH_ARM64_ADRP_LDR_GOT: 479 return 2; 480 case LOH_ARM64_ADRP_ADD_LDR: 481 case LOH_ARM64_ADRP_ADD_STR: 482 case LOH_ARM64_ADRP_LDR_GOT_LDR: 483 case LOH_ARM64_ADRP_LDR_GOT_STR: 484 return 3; 485 } 486 return -1; 487 }; 488 489 // Each hint contains at least 4 ULEB128-encoded fields, so in the worst case, 490 // there are data.size() / 4 LOHs. It's a huge overestimation though, as 491 // offsets are unlikely to fall in the 0-127 byte range, so we pre-allocate 492 // half as much. 493 optimizationHints.reserve(data.size() / 8); 494 495 for (const uint8_t *p = data.begin(); p < data.end();) { 496 const ptrdiff_t inputOffset = p - data.begin(); 497 unsigned int n = 0; 498 uint8_t type = decodeULEB128(p, &n, data.end()); 499 p += n; 500 501 // An entry of type 0 terminates the list. 502 if (type == 0) 503 break; 504 505 int expectedCount = expectedArgCount(type); 506 if (LLVM_UNLIKELY(expectedCount == -1)) { 507 error("Linker optimization hint at offset " + Twine(inputOffset) + 508 " has unknown type " + Twine(type)); 509 return; 510 } 511 512 uint8_t argCount = decodeULEB128(p, &n, data.end()); 513 p += n; 514 515 if (LLVM_UNLIKELY(argCount != expectedCount)) { 516 error("Linker optimization hint at offset " + Twine(inputOffset) + 517 " has " + Twine(argCount) + " arguments instead of the expected " + 518 Twine(expectedCount)); 519 return; 520 } 521 522 uint64_t offset0 = decodeULEB128(p, &n, data.end()); 523 p += n; 524 525 int16_t delta[2]; 526 for (int i = 0; i < argCount - 1; ++i) { 527 uint64_t address = decodeULEB128(p, &n, data.end()); 528 p += n; 529 int64_t d = address - offset0; 530 if (LLVM_UNLIKELY(d > std::numeric_limits<int16_t>::max() || 531 d < std::numeric_limits<int16_t>::min())) { 532 error("Linker optimization hint at offset " + Twine(inputOffset) + 533 " has addresses too far apart"); 534 return; 535 } 536 delta[i] = d; 537 } 538 539 optimizationHints.push_back({offset0, {delta[0], delta[1]}, type}); 540 } 541 542 // We sort the per-object vector of optimization hints so each section only 543 // needs to hold an ArrayRef to a contiguous range of hints. 544 llvm::sort(optimizationHints, 545 [](const OptimizationHint &a, const OptimizationHint &b) { 546 return a.offset0 < b.offset0; 547 }); 548 549 auto section = sections.begin(); 550 auto subsection = (*section)->subsections.begin(); 551 uint64_t subsectionBase = 0; 552 uint64_t subsectionEnd = 0; 553 554 auto updateAddr = [&]() { 555 subsectionBase = (*section)->addr + subsection->offset; 556 subsectionEnd = subsectionBase + subsection->isec->getSize(); 557 }; 558 559 auto advanceSubsection = [&]() { 560 if (section == sections.end()) 561 return; 562 ++subsection; 563 if (subsection == (*section)->subsections.end()) { 564 ++section; 565 if (section == sections.end()) 566 return; 567 subsection = (*section)->subsections.begin(); 568 } 569 }; 570 571 updateAddr(); 572 auto hintStart = optimizationHints.begin(); 573 for (auto hintEnd = hintStart, end = optimizationHints.end(); hintEnd != end; 574 ++hintEnd) { 575 if (hintEnd->offset0 >= subsectionEnd) { 576 subsection->isec->optimizationHints = 577 ArrayRef<OptimizationHint>(&*hintStart, hintEnd - hintStart); 578 579 hintStart = hintEnd; 580 while (hintStart->offset0 >= subsectionEnd) { 581 advanceSubsection(); 582 if (section == sections.end()) 583 break; 584 updateAddr(); 585 } 586 } 587 588 hintEnd->offset0 -= subsectionBase; 589 for (int i = 0, count = expectedArgCount(hintEnd->type); i < count - 1; 590 ++i) { 591 if (LLVM_UNLIKELY( 592 hintEnd->delta[i] < -static_cast<int64_t>(hintEnd->offset0) || 593 hintEnd->delta[i] >= 594 static_cast<int64_t>(subsectionEnd - hintEnd->offset0))) { 595 error("Linker optimization hint spans multiple sections"); 596 return; 597 } 598 } 599 } 600 if (section != sections.end()) 601 subsection->isec->optimizationHints = ArrayRef<OptimizationHint>( 602 &*hintStart, optimizationHints.end() - hintStart); 603 } 604 605 template <class SectionHeader> 606 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 607 relocation_info rel) { 608 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 609 bool valid = true; 610 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 611 valid = false; 612 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 613 std::to_string(rel.r_address) + " of " + sec.segname + "," + 614 sec.sectname + " in " + toString(file)) 615 .str(); 616 }; 617 618 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 619 error(message("must be extern")); 620 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 621 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 622 "be PC-relative")); 623 if (isThreadLocalVariables(sec.flags) && 624 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 625 error(message("not allowed in thread-local section, must be UNSIGNED")); 626 if (rel.r_length < 2 || rel.r_length > 3 || 627 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 628 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 629 error(message("has width " + std::to_string(1 << rel.r_length) + 630 " bytes, but must be " + 631 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 632 " bytes")); 633 } 634 return valid; 635 } 636 637 template <class SectionHeader> 638 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 639 const SectionHeader &sec, Section §ion) { 640 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 641 ArrayRef<relocation_info> relInfos( 642 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 643 644 Subsections &subsections = section.subsections; 645 auto subsecIt = subsections.rbegin(); 646 for (size_t i = 0; i < relInfos.size(); i++) { 647 // Paired relocations serve as Mach-O's method for attaching a 648 // supplemental datum to a primary relocation record. ELF does not 649 // need them because the *_RELOC_RELA records contain the extra 650 // addend field, vs. *_RELOC_REL which omit the addend. 651 // 652 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 653 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 654 // datum for each is a symbolic address. The result is the offset 655 // between two addresses. 656 // 657 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 658 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 659 // base symbolic address. 660 // 661 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 662 // addend into the instruction stream. On X86, a relocatable address 663 // field always occupies an entire contiguous sequence of byte(s), 664 // so there is no need to merge opcode bits with address 665 // bits. Therefore, it's easy and convenient to store addends in the 666 // instruction-stream bytes that would otherwise contain zeroes. By 667 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 668 // address bits so that bitwise arithmetic is necessary to extract 669 // and insert them. Storing addends in the instruction stream is 670 // possible, but inconvenient and more costly at link time. 671 672 relocation_info relInfo = relInfos[i]; 673 bool isSubtrahend = 674 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 675 int64_t pairedAddend = 0; 676 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 677 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 678 relInfo = relInfos[++i]; 679 } 680 assert(i < relInfos.size()); 681 if (!validateRelocationInfo(this, sec, relInfo)) 682 continue; 683 if (relInfo.r_address & R_SCATTERED) 684 fatal("TODO: Scattered relocations not supported"); 685 686 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 687 assert(!(embeddedAddend && pairedAddend)); 688 int64_t totalAddend = pairedAddend + embeddedAddend; 689 Reloc r; 690 r.type = relInfo.r_type; 691 r.pcrel = relInfo.r_pcrel; 692 r.length = relInfo.r_length; 693 r.offset = relInfo.r_address; 694 if (relInfo.r_extern) { 695 r.referent = symbols[relInfo.r_symbolnum]; 696 r.addend = isSubtrahend ? 0 : totalAddend; 697 } else { 698 assert(!isSubtrahend); 699 const SectionHeader &referentSecHead = 700 sectionHeaders[relInfo.r_symbolnum - 1]; 701 uint64_t referentOffset; 702 if (relInfo.r_pcrel) { 703 // The implicit addend for pcrel section relocations is the pcrel offset 704 // in terms of the addresses in the input file. Here we adjust it so 705 // that it describes the offset from the start of the referent section. 706 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 707 // have pcrel section relocations. We may want to factor this out into 708 // the arch-specific .cpp file. 709 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 710 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 711 referentSecHead.addr; 712 } else { 713 // The addend for a non-pcrel relocation is its absolute address. 714 referentOffset = totalAddend - referentSecHead.addr; 715 } 716 r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1], 717 &referentOffset); 718 r.addend = referentOffset; 719 } 720 721 // Find the subsection that this relocation belongs to. 722 // Though not required by the Mach-O format, clang and gcc seem to emit 723 // relocations in order, so let's take advantage of it. However, ld64 emits 724 // unsorted relocations (in `-r` mode), so we have a fallback for that 725 // uncommon case. 726 InputSection *subsec; 727 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 728 ++subsecIt; 729 if (subsecIt == subsections.rend() || 730 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 731 subsec = findContainingSubsection(section, &r.offset); 732 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 733 // for the other relocations. 734 subsecIt = subsections.rend(); 735 } else { 736 subsec = subsecIt->isec; 737 r.offset -= subsecIt->offset; 738 } 739 subsec->relocs.push_back(r); 740 741 if (isSubtrahend) { 742 relocation_info minuendInfo = relInfos[++i]; 743 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 744 // attached to the same address. 745 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 746 relInfo.r_address == minuendInfo.r_address); 747 Reloc p; 748 p.type = minuendInfo.r_type; 749 if (minuendInfo.r_extern) { 750 p.referent = symbols[minuendInfo.r_symbolnum]; 751 p.addend = totalAddend; 752 } else { 753 uint64_t referentOffset = 754 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 755 p.referent = findContainingSubsection( 756 *sections[minuendInfo.r_symbolnum - 1], &referentOffset); 757 p.addend = referentOffset; 758 } 759 subsec->relocs.push_back(p); 760 } 761 } 762 } 763 764 template <class NList> 765 static macho::Symbol *createDefined(const NList &sym, StringRef name, 766 InputSection *isec, uint64_t value, 767 uint64_t size) { 768 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 769 // N_EXT: Global symbols. These go in the symbol table during the link, 770 // and also in the export table of the output so that the dynamic 771 // linker sees them. 772 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 773 // symbol table during the link so that duplicates are 774 // either reported (for non-weak symbols) or merged 775 // (for weak symbols), but they do not go in the export 776 // table of the output. 777 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 778 // object files) may produce them. LLD does not yet support -r. 779 // These are translation-unit scoped, identical to the `0` case. 780 // 0: Translation-unit scoped. These are not in the symbol table during 781 // link, and not in the export table of the output either. 782 bool isWeakDefCanBeHidden = 783 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 784 785 if (sym.n_type & N_EXT) { 786 bool isPrivateExtern = sym.n_type & N_PEXT; 787 // lld's behavior for merging symbols is slightly different from ld64: 788 // ld64 picks the winning symbol based on several criteria (see 789 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 790 // just merges metadata and keeps the contents of the first symbol 791 // with that name (see SymbolTable::addDefined). For: 792 // * inline function F in a TU built with -fvisibility-inlines-hidden 793 // * and inline function F in another TU built without that flag 794 // ld64 will pick the one from the file built without 795 // -fvisibility-inlines-hidden. 796 // lld will instead pick the one listed first on the link command line and 797 // give it visibility as if the function was built without 798 // -fvisibility-inlines-hidden. 799 // If both functions have the same contents, this will have the same 800 // behavior. If not, it won't, but the input had an ODR violation in 801 // that case. 802 // 803 // Similarly, merging a symbol 804 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 805 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 806 // should produce one 807 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 808 // with ld64's semantics, because it means the non-private-extern 809 // definition will continue to take priority if more private extern 810 // definitions are encountered. With lld's semantics there's no observable 811 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 812 // that's privateExtern -- neither makes it into the dynamic symbol table, 813 // unless the autohide symbol is explicitly exported. 814 // But if a symbol is both privateExtern and autohide then it can't 815 // be exported. 816 // So we nullify the autohide flag when privateExtern is present 817 // and promote the symbol to privateExtern when it is not already. 818 if (isWeakDefCanBeHidden && isPrivateExtern) 819 isWeakDefCanBeHidden = false; 820 else if (isWeakDefCanBeHidden) 821 isPrivateExtern = true; 822 return symtab->addDefined( 823 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 824 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 825 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 826 isWeakDefCanBeHidden); 827 } 828 assert(!isWeakDefCanBeHidden && 829 "weak_def_can_be_hidden on already-hidden symbol?"); 830 bool includeInSymtab = 831 !name.startswith("l") && !name.startswith("L") && !isEhFrameSection(isec); 832 return make<Defined>( 833 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 834 /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab, 835 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 836 sym.n_desc & N_NO_DEAD_STRIP); 837 } 838 839 // Absolute symbols are defined symbols that do not have an associated 840 // InputSection. They cannot be weak. 841 template <class NList> 842 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 843 StringRef name) { 844 if (sym.n_type & N_EXT) { 845 return symtab->addDefined( 846 name, file, nullptr, sym.n_value, /*size=*/0, 847 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 848 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 849 /*isWeakDefCanBeHidden=*/false); 850 } 851 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 852 /*isWeakDef=*/false, 853 /*isExternal=*/false, /*isPrivateExtern=*/false, 854 /*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF, 855 /*isReferencedDynamically=*/false, 856 sym.n_desc & N_NO_DEAD_STRIP); 857 } 858 859 template <class NList> 860 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 861 StringRef name) { 862 uint8_t type = sym.n_type & N_TYPE; 863 switch (type) { 864 case N_UNDF: 865 return sym.n_value == 0 866 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 867 : symtab->addCommon(name, this, sym.n_value, 868 1 << GET_COMM_ALIGN(sym.n_desc), 869 sym.n_type & N_PEXT); 870 case N_ABS: 871 return createAbsolute(sym, this, name); 872 case N_PBUD: 873 case N_INDR: 874 error("TODO: support symbols of type " + std::to_string(type)); 875 return nullptr; 876 case N_SECT: 877 llvm_unreachable( 878 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 879 default: 880 llvm_unreachable("invalid symbol type"); 881 } 882 } 883 884 template <class NList> static bool isUndef(const NList &sym) { 885 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 886 } 887 888 template <class LP> 889 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 890 ArrayRef<typename LP::nlist> nList, 891 const char *strtab, bool subsectionsViaSymbols) { 892 using NList = typename LP::nlist; 893 894 // Groups indices of the symbols by the sections that contain them. 895 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 896 symbols.resize(nList.size()); 897 SmallVector<unsigned, 32> undefineds; 898 for (uint32_t i = 0; i < nList.size(); ++i) { 899 const NList &sym = nList[i]; 900 901 // Ignore debug symbols for now. 902 // FIXME: may need special handling. 903 if (sym.n_type & N_STAB) 904 continue; 905 906 if ((sym.n_type & N_TYPE) == N_SECT) { 907 Subsections &subsections = sections[sym.n_sect - 1]->subsections; 908 // parseSections() may have chosen not to parse this section. 909 if (subsections.empty()) 910 continue; 911 symbolsBySection[sym.n_sect - 1].push_back(i); 912 } else if (isUndef(sym)) { 913 undefineds.push_back(i); 914 } else { 915 symbols[i] = parseNonSectionSymbol(sym, StringRef(strtab + sym.n_strx)); 916 } 917 } 918 919 for (size_t i = 0; i < sections.size(); ++i) { 920 Subsections &subsections = sections[i]->subsections; 921 if (subsections.empty()) 922 continue; 923 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 924 uint64_t sectionAddr = sectionHeaders[i].addr; 925 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 926 927 // Some sections have already been split into subsections during 928 // parseSections(), so we simply need to match Symbols to the corresponding 929 // subsection here. 930 if (sections[i]->doneSplitting) { 931 for (size_t j = 0; j < symbolIndices.size(); ++j) { 932 uint32_t symIndex = symbolIndices[j]; 933 const NList &sym = nList[symIndex]; 934 StringRef name = strtab + sym.n_strx; 935 uint64_t symbolOffset = sym.n_value - sectionAddr; 936 InputSection *isec = 937 findContainingSubsection(*sections[i], &symbolOffset); 938 if (symbolOffset != 0) { 939 error(toString(*sections[i]) + ": symbol " + name + 940 " at misaligned offset"); 941 continue; 942 } 943 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 944 } 945 continue; 946 } 947 sections[i]->doneSplitting = true; 948 949 // Calculate symbol sizes and create subsections by splitting the sections 950 // along symbol boundaries. 951 // We populate subsections by repeatedly splitting the last (highest 952 // address) subsection. 953 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 954 return nList[lhs].n_value < nList[rhs].n_value; 955 }); 956 for (size_t j = 0; j < symbolIndices.size(); ++j) { 957 uint32_t symIndex = symbolIndices[j]; 958 const NList &sym = nList[symIndex]; 959 StringRef name = strtab + sym.n_strx; 960 Subsection &subsec = subsections.back(); 961 InputSection *isec = subsec.isec; 962 963 uint64_t subsecAddr = sectionAddr + subsec.offset; 964 size_t symbolOffset = sym.n_value - subsecAddr; 965 uint64_t symbolSize = 966 j + 1 < symbolIndices.size() 967 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 968 : isec->data.size() - symbolOffset; 969 // There are 4 cases where we do not need to create a new subsection: 970 // 1. If the input file does not use subsections-via-symbols. 971 // 2. Multiple symbols at the same address only induce one subsection. 972 // (The symbolOffset == 0 check covers both this case as well as 973 // the first loop iteration.) 974 // 3. Alternative entry points do not induce new subsections. 975 // 4. If we have a literal section (e.g. __cstring and __literal4). 976 if (!subsectionsViaSymbols || symbolOffset == 0 || 977 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 978 symbols[symIndex] = 979 createDefined(sym, name, isec, symbolOffset, symbolSize); 980 continue; 981 } 982 auto *concatIsec = cast<ConcatInputSection>(isec); 983 984 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 985 nextIsec->wasCoalesced = false; 986 if (isZeroFill(isec->getFlags())) { 987 // Zero-fill sections have NULL data.data() non-zero data.size() 988 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 989 isec->data = {nullptr, symbolOffset}; 990 } else { 991 nextIsec->data = isec->data.slice(symbolOffset); 992 isec->data = isec->data.slice(0, symbolOffset); 993 } 994 995 // By construction, the symbol will be at offset zero in the new 996 // subsection. 997 symbols[symIndex] = 998 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 999 // TODO: ld64 appears to preserve the original alignment as well as each 1000 // subsection's offset from the last aligned address. We should consider 1001 // emulating that behavior. 1002 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 1003 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 1004 } 1005 } 1006 1007 // Undefined symbols can trigger recursive fetch from Archives due to 1008 // LazySymbols. Process defined symbols first so that the relative order 1009 // between a defined symbol and an undefined symbol does not change the 1010 // symbol resolution behavior. In addition, a set of interconnected symbols 1011 // will all be resolved to the same file, instead of being resolved to 1012 // different files. 1013 for (unsigned i : undefineds) { 1014 const NList &sym = nList[i]; 1015 StringRef name = strtab + sym.n_strx; 1016 symbols[i] = parseNonSectionSymbol(sym, name); 1017 } 1018 } 1019 1020 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 1021 StringRef sectName) 1022 : InputFile(OpaqueKind, mb) { 1023 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1024 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 1025 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16), 1026 sectName.take_front(16), 1027 /*flags=*/0, /*addr=*/0)); 1028 Section §ion = *sections.back(); 1029 ConcatInputSection *isec = make<ConcatInputSection>(section, data); 1030 isec->live = true; 1031 section.subsections.push_back({0, isec}); 1032 } 1033 1034 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 1035 bool lazy) 1036 : InputFile(ObjKind, mb, lazy), modTime(modTime) { 1037 this->archiveName = std::string(archiveName); 1038 if (lazy) { 1039 if (target->wordSize == 8) 1040 parseLazy<LP64>(); 1041 else 1042 parseLazy<ILP32>(); 1043 } else { 1044 if (target->wordSize == 8) 1045 parse<LP64>(); 1046 else 1047 parse<ILP32>(); 1048 } 1049 } 1050 1051 template <class LP> void ObjFile::parse() { 1052 using Header = typename LP::mach_header; 1053 using SegmentCommand = typename LP::segment_command; 1054 using SectionHeader = typename LP::section; 1055 using NList = typename LP::nlist; 1056 1057 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1058 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 1059 1060 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 1061 if (arch != config->arch()) { 1062 auto msg = config->errorForArchMismatch 1063 ? static_cast<void (*)(const Twine &)>(error) 1064 : warn; 1065 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 1066 " which is incompatible with target architecture " + 1067 getArchitectureName(config->arch())); 1068 return; 1069 } 1070 1071 if (!checkCompatibility(this)) 1072 return; 1073 1074 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 1075 StringRef data{reinterpret_cast<const char *>(cmd + 1), 1076 cmd->cmdsize - sizeof(linker_option_command)}; 1077 parseLCLinkerOption(this, cmd->count, data); 1078 } 1079 1080 ArrayRef<SectionHeader> sectionHeaders; 1081 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 1082 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 1083 sectionHeaders = ArrayRef<SectionHeader>{ 1084 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 1085 parseSections(sectionHeaders); 1086 } 1087 1088 // TODO: Error on missing LC_SYMTAB? 1089 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 1090 auto *c = reinterpret_cast<const symtab_command *>(cmd); 1091 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 1092 c->nsyms); 1093 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 1094 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 1095 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 1096 } 1097 1098 // The relocations may refer to the symbols, so we parse them after we have 1099 // parsed all the symbols. 1100 for (size_t i = 0, n = sections.size(); i < n; ++i) 1101 if (!sections[i]->subsections.empty()) 1102 parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]); 1103 1104 if (!config->ignoreOptimizationHints) 1105 if (auto *cmd = findCommand<linkedit_data_command>( 1106 hdr, LC_LINKER_OPTIMIZATION_HINT)) 1107 parseOptimizationHints({buf + cmd->dataoff, cmd->datasize}); 1108 1109 parseDebugInfo(); 1110 1111 Section *ehFrameSection = nullptr; 1112 Section *compactUnwindSection = nullptr; 1113 for (Section *sec : sections) { 1114 Section **s = StringSwitch<Section **>(sec->name) 1115 .Case(section_names::compactUnwind, &compactUnwindSection) 1116 .Case(section_names::ehFrame, &ehFrameSection) 1117 .Default(nullptr); 1118 if (s) 1119 *s = sec; 1120 } 1121 if (compactUnwindSection) 1122 registerCompactUnwind(*compactUnwindSection); 1123 if (ehFrameSection) 1124 registerEhFrames(*ehFrameSection); 1125 } 1126 1127 template <class LP> void ObjFile::parseLazy() { 1128 using Header = typename LP::mach_header; 1129 using NList = typename LP::nlist; 1130 1131 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1132 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 1133 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 1134 if (!cmd) 1135 return; 1136 auto *c = reinterpret_cast<const symtab_command *>(cmd); 1137 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 1138 c->nsyms); 1139 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 1140 symbols.resize(nList.size()); 1141 for (auto it : llvm::enumerate(nList)) { 1142 const NList &sym = it.value(); 1143 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 1144 // TODO: Bound checking 1145 StringRef name = strtab + sym.n_strx; 1146 symbols[it.index()] = symtab->addLazyObject(name, *this); 1147 if (!lazy) 1148 break; 1149 } 1150 } 1151 } 1152 1153 void ObjFile::parseDebugInfo() { 1154 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 1155 if (!dObj) 1156 return; 1157 1158 // We do not re-use the context from getDwarf() here as that function 1159 // constructs an expensive DWARFCache object. 1160 auto *ctx = make<DWARFContext>( 1161 std::move(dObj), "", 1162 [&](Error err) { 1163 warn(toString(this) + ": " + toString(std::move(err))); 1164 }, 1165 [&](Error warning) { 1166 warn(toString(this) + ": " + toString(std::move(warning))); 1167 }); 1168 1169 // TODO: Since object files can contain a lot of DWARF info, we should verify 1170 // that we are parsing just the info we need 1171 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 1172 // FIXME: There can be more than one compile unit per object file. See 1173 // PR48637. 1174 auto it = units.begin(); 1175 compileUnit = it != units.end() ? it->get() : nullptr; 1176 } 1177 1178 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 1179 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1180 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 1181 if (!cmd) 1182 return {}; 1183 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 1184 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 1185 c->datasize / sizeof(data_in_code_entry)}; 1186 } 1187 1188 // Create pointers from symbols to their associated compact unwind entries. 1189 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) { 1190 for (const Subsection &subsection : compactUnwindSection.subsections) { 1191 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 1192 // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed 1193 // their addends in its data. Thus if ICF operated naively and compared the 1194 // entire contents of each CUE, entries with identical unwind info but e.g. 1195 // belonging to different functions would never be considered equivalent. To 1196 // work around this problem, we remove some parts of the data containing the 1197 // embedded addends. In particular, we remove the function address and LSDA 1198 // pointers. Since these locations are at the start and end of the entry, 1199 // we can do this using a simple, efficient slice rather than performing a 1200 // copy. We are not losing any information here because the embedded 1201 // addends have already been parsed in the corresponding Reloc structs. 1202 // 1203 // Removing these pointers would not be safe if they were pointers to 1204 // absolute symbols. In that case, there would be no corresponding 1205 // relocation. However, (AFAIK) MC cannot emit references to absolute 1206 // symbols for either the function address or the LSDA. However, it *can* do 1207 // so for the personality pointer, so we are not slicing that field away. 1208 // 1209 // Note that we do not adjust the offsets of the corresponding relocations; 1210 // instead, we rely on `relocateCompactUnwind()` to correctly handle these 1211 // truncated input sections. 1212 isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize); 1213 uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t)); 1214 // llvm-mc omits CU entries for functions that need DWARF encoding, but 1215 // `ld -r` doesn't. We can ignore them because we will re-synthesize these 1216 // CU entries from the DWARF info during the output phase. 1217 if ((encoding & target->modeDwarfEncoding) == target->modeDwarfEncoding) 1218 continue; 1219 1220 ConcatInputSection *referentIsec; 1221 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 1222 Reloc &r = *it; 1223 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 1224 if (r.offset != 0) { 1225 ++it; 1226 continue; 1227 } 1228 uint64_t add = r.addend; 1229 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 1230 // Check whether the symbol defined in this file is the prevailing one. 1231 // Skip if it is e.g. a weak def that didn't prevail. 1232 if (sym->getFile() != this) { 1233 ++it; 1234 continue; 1235 } 1236 add += sym->value; 1237 referentIsec = cast<ConcatInputSection>(sym->isec); 1238 } else { 1239 referentIsec = 1240 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 1241 } 1242 // Unwind info lives in __DATA, and finalization of __TEXT will occur 1243 // before finalization of __DATA. Moreover, the finalization of unwind 1244 // info depends on the exact addresses that it references. So it is safe 1245 // for compact unwind to reference addresses in __TEXT, but not addresses 1246 // in any other segment. 1247 if (referentIsec->getSegName() != segment_names::text) 1248 error(isec->getLocation(r.offset) + " references section " + 1249 referentIsec->getName() + " which is not in segment __TEXT"); 1250 // The functionAddress relocations are typically section relocations. 1251 // However, unwind info operates on a per-symbol basis, so we search for 1252 // the function symbol here. 1253 Defined *d = findSymbolAtOffset(referentIsec, add); 1254 if (!d) { 1255 ++it; 1256 continue; 1257 } 1258 d->unwindEntry = isec; 1259 // Now that the symbol points to the unwind entry, we can remove the reloc 1260 // that points from the unwind entry back to the symbol. 1261 // 1262 // First, the symbol keeps the unwind entry alive (and not vice versa), so 1263 // this keeps dead-stripping simple. 1264 // 1265 // Moreover, it reduces the work that ICF needs to do to figure out if 1266 // functions with unwind info are foldable. 1267 // 1268 // However, this does make it possible for ICF to fold CUEs that point to 1269 // distinct functions (if the CUEs are otherwise identical). 1270 // UnwindInfoSection takes care of this by re-duplicating the CUEs so that 1271 // each one can hold a distinct functionAddress value. 1272 // 1273 // Given that clang emits relocations in reverse order of address, this 1274 // relocation should be at the end of the vector for most of our input 1275 // object files, so this erase() is typically an O(1) operation. 1276 it = isec->relocs.erase(it); 1277 } 1278 } 1279 } 1280 1281 struct CIE { 1282 macho::Symbol *personalitySymbol = nullptr; 1283 bool fdesHaveLsda = false; 1284 bool fdesHaveAug = false; 1285 }; 1286 1287 static CIE parseCIE(const InputSection *isec, const EhReader &reader, 1288 size_t off) { 1289 // Handling the full generality of possible DWARF encodings would be a major 1290 // pain. We instead take advantage of our knowledge of how llvm-mc encodes 1291 // DWARF and handle just that. 1292 constexpr uint8_t expectedPersonalityEnc = 1293 dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4; 1294 constexpr uint8_t expectedPointerEnc = 1295 dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_absptr; 1296 1297 CIE cie; 1298 uint8_t version = reader.readByte(&off); 1299 if (version != 1 && version != 3) 1300 fatal("Expected CIE version of 1 or 3, got " + Twine(version)); 1301 StringRef aug = reader.readString(&off); 1302 reader.skipLeb128(&off); // skip code alignment 1303 reader.skipLeb128(&off); // skip data alignment 1304 reader.skipLeb128(&off); // skip return address register 1305 reader.skipLeb128(&off); // skip aug data length 1306 uint64_t personalityAddrOff = 0; 1307 for (char c : aug) { 1308 switch (c) { 1309 case 'z': 1310 cie.fdesHaveAug = true; 1311 break; 1312 case 'P': { 1313 uint8_t personalityEnc = reader.readByte(&off); 1314 if (personalityEnc != expectedPersonalityEnc) 1315 reader.failOn(off, "unexpected personality encoding 0x" + 1316 Twine::utohexstr(personalityEnc)); 1317 personalityAddrOff = off; 1318 off += 4; 1319 break; 1320 } 1321 case 'L': { 1322 cie.fdesHaveLsda = true; 1323 uint8_t lsdaEnc = reader.readByte(&off); 1324 if (lsdaEnc != expectedPointerEnc) 1325 reader.failOn(off, "unexpected LSDA encoding 0x" + 1326 Twine::utohexstr(lsdaEnc)); 1327 break; 1328 } 1329 case 'R': { 1330 uint8_t pointerEnc = reader.readByte(&off); 1331 if (pointerEnc != expectedPointerEnc) 1332 reader.failOn(off, "unexpected pointer encoding 0x" + 1333 Twine::utohexstr(pointerEnc)); 1334 break; 1335 } 1336 default: 1337 break; 1338 } 1339 } 1340 if (personalityAddrOff != 0) { 1341 auto personalityRelocIt = 1342 llvm::find_if(isec->relocs, [=](const macho::Reloc &r) { 1343 return r.offset == personalityAddrOff; 1344 }); 1345 if (personalityRelocIt == isec->relocs.end()) 1346 reader.failOn(off, "Failed to locate relocation for personality symbol"); 1347 cie.personalitySymbol = personalityRelocIt->referent.get<macho::Symbol *>(); 1348 } 1349 return cie; 1350 } 1351 1352 // EH frame target addresses may be encoded as pcrel offsets. However, instead 1353 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead. 1354 // This function recovers the target address from the subtractors, essentially 1355 // performing the inverse operation of EhRelocator. 1356 // 1357 // Concretely, we expect our relocations to write the value of `PC - 1358 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that 1359 // points to a symbol plus an addend. 1360 // 1361 // It is important that the minuend relocation point to a symbol within the 1362 // same section as the fixup value, since sections may get moved around. 1363 // 1364 // For example, for arm64, llvm-mc emits relocations for the target function 1365 // address like so: 1366 // 1367 // ltmp: 1368 // <CIE start> 1369 // ... 1370 // <CIE end> 1371 // ... multiple FDEs ... 1372 // <FDE start> 1373 // <target function address - (ltmp + pcrel offset)> 1374 // ... 1375 // 1376 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start` 1377 // will move to an earlier address, and `ltmp + pcrel offset` will no longer 1378 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize" 1379 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating 1380 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`. 1381 // 1382 // If `Invert` is set, then we instead expect `target_addr - PC` to be written 1383 // to `PC`. 1384 template <bool Invert = false> 1385 Defined * 1386 targetSymFromCanonicalSubtractor(const InputSection *isec, 1387 std::vector<macho::Reloc>::iterator relocIt) { 1388 macho::Reloc &subtrahend = *relocIt; 1389 macho::Reloc &minuend = *std::next(relocIt); 1390 assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND)); 1391 assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED)); 1392 // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero 1393 // addend. 1394 auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>()); 1395 Defined *target = 1396 cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>()); 1397 if (!pcSym) { 1398 auto *targetIsec = 1399 cast<ConcatInputSection>(minuend.referent.get<InputSection *>()); 1400 target = findSymbolAtOffset(targetIsec, minuend.addend); 1401 } 1402 if (Invert) 1403 std::swap(pcSym, target); 1404 if (pcSym->isec == isec) { 1405 if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset) 1406 fatal("invalid FDE relocation in __eh_frame"); 1407 } else { 1408 // Ensure the pcReloc points to a symbol within the current EH frame. 1409 // HACK: we should really verify that the original relocation's semantics 1410 // are preserved. In particular, we should have 1411 // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't 1412 // have an easy way to access the offsets from this point in the code; some 1413 // refactoring is needed for that. 1414 macho::Reloc &pcReloc = Invert ? minuend : subtrahend; 1415 pcReloc.referent = isec->symbols[0]; 1416 assert(isec->symbols[0]->value == 0); 1417 minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL); 1418 } 1419 return target; 1420 } 1421 1422 Defined *findSymbolAtAddress(const std::vector<Section *> §ions, 1423 uint64_t addr) { 1424 Section *sec = findContainingSection(sections, &addr); 1425 auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr)); 1426 return findSymbolAtOffset(isec, addr); 1427 } 1428 1429 // For symbols that don't have compact unwind info, associate them with the more 1430 // general-purpose (and verbose) DWARF unwind info found in __eh_frame. 1431 // 1432 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a 1433 // description of its format. 1434 // 1435 // While parsing, we also look for what MC calls "abs-ified" relocations -- they 1436 // are relocations which are implicitly encoded as offsets in the section data. 1437 // We convert them into explicit Reloc structs so that the EH frames can be 1438 // handled just like a regular ConcatInputSection later in our output phase. 1439 // 1440 // We also need to handle the case where our input object file has explicit 1441 // relocations. This is the case when e.g. it's the output of `ld -r`. We only 1442 // look for the "abs-ified" relocation if an explicit relocation is absent. 1443 void ObjFile::registerEhFrames(Section &ehFrameSection) { 1444 DenseMap<const InputSection *, CIE> cieMap; 1445 for (const Subsection &subsec : ehFrameSection.subsections) { 1446 auto *isec = cast<ConcatInputSection>(subsec.isec); 1447 uint64_t isecOff = subsec.offset; 1448 1449 // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure 1450 // that all EH frames have an associated symbol so that we can generate 1451 // subtractor relocs that reference them. 1452 if (isec->symbols.size() == 0) 1453 isec->symbols.push_back(make<Defined>( 1454 "EH_Frame", isec->getFile(), isec, /*value=*/0, /*size=*/0, 1455 /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false, 1456 /*includeInSymtab=*/false, /*isThumb=*/false, 1457 /*isReferencedDynamically=*/false, /*noDeadStrip=*/false)); 1458 else if (isec->symbols[0]->value != 0) 1459 fatal("found symbol at unexpected offset in __eh_frame"); 1460 1461 EhReader reader(this, isec->data, subsec.offset, target->wordSize); 1462 size_t dataOff = 0; // Offset from the start of the EH frame. 1463 reader.skipValidLength(&dataOff); // readLength() already validated this. 1464 // cieOffOff is the offset from the start of the EH frame to the cieOff 1465 // value, which is itself an offset from the current PC to a CIE. 1466 const size_t cieOffOff = dataOff; 1467 1468 EhRelocator ehRelocator(isec); 1469 auto cieOffRelocIt = llvm::find_if( 1470 isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; }); 1471 InputSection *cieIsec = nullptr; 1472 if (cieOffRelocIt != isec->relocs.end()) { 1473 // We already have an explicit relocation for the CIE offset. 1474 cieIsec = 1475 targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt) 1476 ->isec; 1477 dataOff += sizeof(uint32_t); 1478 } else { 1479 // If we haven't found a relocation, then the CIE offset is most likely 1480 // embedded in the section data (AKA an "abs-ified" reloc.). Parse that 1481 // and generate a Reloc struct. 1482 uint32_t cieMinuend = reader.readU32(&dataOff); 1483 if (cieMinuend == 0) 1484 cieIsec = isec; 1485 else { 1486 uint32_t cieOff = isecOff + dataOff - cieMinuend; 1487 cieIsec = findContainingSubsection(ehFrameSection, &cieOff); 1488 if (cieIsec == nullptr) 1489 fatal("failed to find CIE"); 1490 } 1491 if (cieIsec != isec) 1492 ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0], 1493 /*length=*/2); 1494 } 1495 if (cieIsec == isec) { 1496 cieMap[cieIsec] = parseCIE(isec, reader, dataOff); 1497 continue; 1498 } 1499 1500 // Offset of the function address within the EH frame. 1501 const size_t funcAddrOff = dataOff; 1502 uint64_t funcAddr = reader.readPointer(&dataOff) + ehFrameSection.addr + 1503 isecOff + funcAddrOff; 1504 uint32_t funcLength = reader.readPointer(&dataOff); 1505 size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame. 1506 assert(cieMap.count(cieIsec)); 1507 const CIE &cie = cieMap[cieIsec]; 1508 Optional<uint64_t> lsdaAddrOpt; 1509 if (cie.fdesHaveAug) { 1510 reader.skipLeb128(&dataOff); 1511 lsdaAddrOff = dataOff; 1512 if (cie.fdesHaveLsda) { 1513 uint64_t lsdaOff = reader.readPointer(&dataOff); 1514 if (lsdaOff != 0) // FIXME possible to test this? 1515 lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff; 1516 } 1517 } 1518 1519 auto funcAddrRelocIt = isec->relocs.end(); 1520 auto lsdaAddrRelocIt = isec->relocs.end(); 1521 for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) { 1522 if (it->offset == funcAddrOff) 1523 funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc 1524 else if (lsdaAddrOpt && it->offset == lsdaAddrOff) 1525 lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc 1526 } 1527 1528 Defined *funcSym; 1529 if (funcAddrRelocIt != isec->relocs.end()) { 1530 funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt); 1531 // Canonicalize the symbol. If there are multiple symbols at the same 1532 // address, we want both `registerEhFrame` and `registerCompactUnwind` 1533 // to register the unwind entry under same symbol. 1534 // This is not particularly efficient, but we should run into this case 1535 // infrequently (only when handling the output of `ld -r`). 1536 funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec), 1537 funcSym->value); 1538 } else { 1539 funcSym = findSymbolAtAddress(sections, funcAddr); 1540 ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize); 1541 } 1542 // The symbol has been coalesced, or already has a compact unwind entry. 1543 if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) { 1544 // We must prune unused FDEs for correctness, so we cannot rely on 1545 // -dead_strip being enabled. 1546 isec->live = false; 1547 continue; 1548 } 1549 1550 InputSection *lsdaIsec = nullptr; 1551 if (lsdaAddrRelocIt != isec->relocs.end()) { 1552 lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec; 1553 } else if (lsdaAddrOpt) { 1554 uint64_t lsdaAddr = *lsdaAddrOpt; 1555 Section *sec = findContainingSection(sections, &lsdaAddr); 1556 lsdaIsec = 1557 cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr)); 1558 ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize); 1559 } 1560 1561 fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec}; 1562 funcSym->unwindEntry = isec; 1563 ehRelocator.commit(); 1564 } 1565 } 1566 1567 std::string ObjFile::sourceFile() const { 1568 SmallString<261> dir(compileUnit->getCompilationDir()); 1569 StringRef sep = sys::path::get_separator(); 1570 // We don't use `path::append` here because we want an empty `dir` to result 1571 // in an absolute path. `append` would give us a relative path for that case. 1572 if (!dir.endswith(sep)) 1573 dir += sep; 1574 return (dir + compileUnit->getUnitDIE().getShortName()).str(); 1575 } 1576 1577 lld::DWARFCache *ObjFile::getDwarf() { 1578 llvm::call_once(initDwarf, [this]() { 1579 auto dwObj = DwarfObject::create(this); 1580 if (!dwObj) 1581 return; 1582 dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 1583 std::move(dwObj), "", 1584 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 1585 [&](Error warning) { 1586 warn(getName() + ": " + toString(std::move(warning))); 1587 })); 1588 }); 1589 1590 return dwarfCache.get(); 1591 } 1592 // The path can point to either a dylib or a .tbd file. 1593 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1594 Optional<MemoryBufferRef> mbref = readFile(path); 1595 if (!mbref) { 1596 error("could not read dylib file at " + path); 1597 return nullptr; 1598 } 1599 return loadDylib(*mbref, umbrella); 1600 } 1601 1602 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1603 // the first document storing child pointers to the rest of them. When we are 1604 // processing a given TBD file, we store that top-level document in 1605 // currentTopLevelTapi. When processing re-exports, we search its children for 1606 // potentially matching documents in the same TBD file. Note that the children 1607 // themselves don't point to further documents, i.e. this is a two-level tree. 1608 // 1609 // Re-exports can either refer to on-disk files, or to documents within .tbd 1610 // files. 1611 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1612 const InterfaceFile *currentTopLevelTapi) { 1613 // Search order: 1614 // 1. Install name basename in -F / -L directories. 1615 { 1616 StringRef stem = path::stem(path); 1617 SmallString<128> frameworkName; 1618 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1619 bool isFramework = path.endswith(frameworkName); 1620 if (isFramework) { 1621 for (StringRef dir : config->frameworkSearchPaths) { 1622 SmallString<128> candidate = dir; 1623 path::append(candidate, frameworkName); 1624 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1625 return loadDylib(*dylibPath, umbrella); 1626 } 1627 } else if (Optional<StringRef> dylibPath = findPathCombination( 1628 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1629 return loadDylib(*dylibPath, umbrella); 1630 } 1631 1632 // 2. As absolute path. 1633 if (path::is_absolute(path, path::Style::posix)) 1634 for (StringRef root : config->systemLibraryRoots) 1635 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1636 return loadDylib(*dylibPath, umbrella); 1637 1638 // 3. As relative path. 1639 1640 // TODO: Handle -dylib_file 1641 1642 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1643 SmallString<128> newPath; 1644 if (config->outputType == MH_EXECUTE && 1645 path.consume_front("@executable_path/")) { 1646 // ld64 allows overriding this with the undocumented flag -executable_path. 1647 // lld doesn't currently implement that flag. 1648 // FIXME: Consider using finalOutput instead of outputFile. 1649 path::append(newPath, path::parent_path(config->outputFile), path); 1650 path = newPath; 1651 } else if (path.consume_front("@loader_path/")) { 1652 fs::real_path(umbrella->getName(), newPath); 1653 path::remove_filename(newPath); 1654 path::append(newPath, path); 1655 path = newPath; 1656 } else if (path.startswith("@rpath/")) { 1657 for (StringRef rpath : umbrella->rpaths) { 1658 newPath.clear(); 1659 if (rpath.consume_front("@loader_path/")) { 1660 fs::real_path(umbrella->getName(), newPath); 1661 path::remove_filename(newPath); 1662 } 1663 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1664 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1665 return loadDylib(*dylibPath, umbrella); 1666 } 1667 } 1668 1669 // FIXME: Should this be further up? 1670 if (currentTopLevelTapi) { 1671 for (InterfaceFile &child : 1672 make_pointee_range(currentTopLevelTapi->documents())) { 1673 assert(child.documents().empty()); 1674 if (path == child.getInstallName()) { 1675 auto file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false, 1676 /*explicitlyLinked=*/false); 1677 file->parseReexports(child); 1678 return file; 1679 } 1680 } 1681 } 1682 1683 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1684 return loadDylib(*dylibPath, umbrella); 1685 1686 return nullptr; 1687 } 1688 1689 // If a re-exported dylib is public (lives in /usr/lib or 1690 // /System/Library/Frameworks), then it is considered implicitly linked: we 1691 // should bind to its symbols directly instead of via the re-exporting umbrella 1692 // library. 1693 static bool isImplicitlyLinked(StringRef path) { 1694 if (!config->implicitDylibs) 1695 return false; 1696 1697 if (path::parent_path(path) == "/usr/lib") 1698 return true; 1699 1700 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1701 if (path.consume_front("/System/Library/Frameworks/")) { 1702 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1703 return path::filename(path) == frameworkName; 1704 } 1705 1706 return false; 1707 } 1708 1709 static void loadReexport(StringRef path, DylibFile *umbrella, 1710 const InterfaceFile *currentTopLevelTapi) { 1711 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1712 if (!reexport) 1713 error("unable to locate re-export with install name " + path); 1714 } 1715 1716 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1717 bool isBundleLoader, bool explicitlyLinked) 1718 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1719 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1720 assert(!isBundleLoader || !umbrella); 1721 if (umbrella == nullptr) 1722 umbrella = this; 1723 this->umbrella = umbrella; 1724 1725 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1726 1727 // Initialize installName. 1728 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1729 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1730 currentVersion = read32le(&c->dylib.current_version); 1731 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1732 installName = 1733 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1734 } else if (!isBundleLoader) { 1735 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1736 // so it's OK. 1737 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1738 return; 1739 } 1740 1741 if (config->printEachFile) 1742 message(toString(this)); 1743 inputFiles.insert(this); 1744 1745 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1746 1747 if (!checkCompatibility(this)) 1748 return; 1749 1750 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1751 1752 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1753 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1754 rpaths.push_back(rpath); 1755 } 1756 1757 // Initialize symbols. 1758 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1759 1760 const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY); 1761 const auto *exportsTrie = 1762 findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE); 1763 if (dyldInfo && exportsTrie) { 1764 // It's unclear what should happen in this case. Maybe we should only error 1765 // out if the two load commands refer to different data? 1766 error("dylib " + toString(this) + 1767 " has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE"); 1768 return; 1769 } else if (dyldInfo) { 1770 parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size); 1771 } else if (exportsTrie) { 1772 parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize); 1773 } else { 1774 error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " + 1775 toString(this)); 1776 return; 1777 } 1778 } 1779 1780 void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) { 1781 struct TrieEntry { 1782 StringRef name; 1783 uint64_t flags; 1784 }; 1785 1786 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1787 std::vector<TrieEntry> entries; 1788 // Find all the $ld$* symbols to process first. 1789 parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) { 1790 StringRef savedName = saver().save(name); 1791 if (handleLDSymbol(savedName)) 1792 return; 1793 entries.push_back({savedName, flags}); 1794 }); 1795 1796 // Process the "normal" symbols. 1797 for (TrieEntry &entry : entries) { 1798 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name))) 1799 continue; 1800 1801 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1802 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1803 1804 symbols.push_back( 1805 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1806 } 1807 } 1808 1809 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1810 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1811 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1812 target->headerSize; 1813 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1814 auto *cmd = reinterpret_cast<const load_command *>(p); 1815 p += cmd->cmdsize; 1816 1817 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1818 cmd->cmd == LC_REEXPORT_DYLIB) { 1819 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1820 StringRef reexportPath = 1821 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1822 loadReexport(reexportPath, exportingFile, nullptr); 1823 } 1824 1825 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1826 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1827 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1828 if (config->namespaceKind == NamespaceKind::flat && 1829 cmd->cmd == LC_LOAD_DYLIB) { 1830 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1831 StringRef dylibPath = 1832 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1833 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1834 if (!dylib) 1835 error(Twine("unable to locate library '") + dylibPath + 1836 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1837 } 1838 } 1839 } 1840 1841 // Some versions of Xcode ship with .tbd files that don't have the right 1842 // platform settings. 1843 constexpr std::array<StringRef, 3> skipPlatformChecks{ 1844 "/usr/lib/system/libsystem_kernel.dylib", 1845 "/usr/lib/system/libsystem_platform.dylib", 1846 "/usr/lib/system/libsystem_pthread.dylib"}; 1847 1848 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface, 1849 bool explicitlyLinked) { 1850 // Catalyst outputs can link against implicitly linked macOS-only libraries. 1851 if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked) 1852 return false; 1853 return is_contained(interface.targets(), 1854 MachO::Target(config->arch(), PLATFORM_MACOS)); 1855 } 1856 1857 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1858 bool isBundleLoader, bool explicitlyLinked) 1859 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1860 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1861 // FIXME: Add test for the missing TBD code path. 1862 1863 if (umbrella == nullptr) 1864 umbrella = this; 1865 this->umbrella = umbrella; 1866 1867 installName = saver().save(interface.getInstallName()); 1868 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1869 currentVersion = interface.getCurrentVersion().rawValue(); 1870 1871 if (config->printEachFile) 1872 message(toString(this)); 1873 inputFiles.insert(this); 1874 1875 if (!is_contained(skipPlatformChecks, installName) && 1876 !is_contained(interface.targets(), config->platformInfo.target) && 1877 !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) { 1878 error(toString(this) + " is incompatible with " + 1879 std::string(config->platformInfo.target)); 1880 return; 1881 } 1882 1883 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1884 1885 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1886 auto addSymbol = [&](const Twine &name) -> void { 1887 StringRef savedName = saver().save(name); 1888 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1889 return; 1890 1891 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1892 /*isWeakDef=*/false, 1893 /*isTlv=*/false)); 1894 }; 1895 1896 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1897 normalSymbols.reserve(interface.symbolsCount()); 1898 for (const auto *symbol : interface.symbols()) { 1899 if (!symbol->getArchitectures().has(config->arch())) 1900 continue; 1901 if (handleLDSymbol(symbol->getName())) 1902 continue; 1903 1904 switch (symbol->getKind()) { 1905 case SymbolKind::GlobalSymbol: // Fallthrough 1906 case SymbolKind::ObjectiveCClass: // Fallthrough 1907 case SymbolKind::ObjectiveCClassEHType: // Fallthrough 1908 case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough 1909 normalSymbols.push_back(symbol); 1910 } 1911 } 1912 1913 // TODO(compnerd) filter out symbols based on the target platform 1914 // TODO: handle weak defs, thread locals 1915 for (const auto *symbol : normalSymbols) { 1916 switch (symbol->getKind()) { 1917 case SymbolKind::GlobalSymbol: 1918 addSymbol(symbol->getName()); 1919 break; 1920 case SymbolKind::ObjectiveCClass: 1921 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1922 // want to emulate that. 1923 addSymbol(objc::klass + symbol->getName()); 1924 addSymbol(objc::metaclass + symbol->getName()); 1925 break; 1926 case SymbolKind::ObjectiveCClassEHType: 1927 addSymbol(objc::ehtype + symbol->getName()); 1928 break; 1929 case SymbolKind::ObjectiveCInstanceVariable: 1930 addSymbol(objc::ivar + symbol->getName()); 1931 break; 1932 } 1933 } 1934 } 1935 1936 void DylibFile::parseReexports(const InterfaceFile &interface) { 1937 const InterfaceFile *topLevel = 1938 interface.getParent() == nullptr ? &interface : interface.getParent(); 1939 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1940 InterfaceFile::const_target_range targets = intfRef.targets(); 1941 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1942 is_contained(targets, config->platformInfo.target)) 1943 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1944 } 1945 } 1946 1947 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1948 // name, compatibility version or hide/add symbols) for specific target 1949 // versions. 1950 bool DylibFile::handleLDSymbol(StringRef originalName) { 1951 if (!originalName.startswith("$ld$")) 1952 return false; 1953 1954 StringRef action; 1955 StringRef name; 1956 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1957 if (action == "previous") 1958 handleLDPreviousSymbol(name, originalName); 1959 else if (action == "install_name") 1960 handleLDInstallNameSymbol(name, originalName); 1961 else if (action == "hide") 1962 handleLDHideSymbol(name, originalName); 1963 return true; 1964 } 1965 1966 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1967 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1968 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1969 StringRef installName; 1970 StringRef compatVersion; 1971 StringRef platformStr; 1972 StringRef startVersion; 1973 StringRef endVersion; 1974 StringRef symbolName; 1975 StringRef rest; 1976 1977 std::tie(installName, name) = name.split('$'); 1978 std::tie(compatVersion, name) = name.split('$'); 1979 std::tie(platformStr, name) = name.split('$'); 1980 std::tie(startVersion, name) = name.split('$'); 1981 std::tie(endVersion, name) = name.split('$'); 1982 std::tie(symbolName, rest) = name.split('$'); 1983 // TODO: ld64 contains some logic for non-empty symbolName as well. 1984 if (!symbolName.empty()) 1985 return; 1986 unsigned platform; 1987 if (platformStr.getAsInteger(10, platform) || 1988 platform != static_cast<unsigned>(config->platform())) 1989 return; 1990 1991 VersionTuple start; 1992 if (start.tryParse(startVersion)) { 1993 warn("failed to parse start version, symbol '" + originalName + 1994 "' ignored"); 1995 return; 1996 } 1997 VersionTuple end; 1998 if (end.tryParse(endVersion)) { 1999 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 2000 return; 2001 } 2002 if (config->platformInfo.minimum < start || 2003 config->platformInfo.minimum >= end) 2004 return; 2005 2006 this->installName = saver().save(installName); 2007 2008 if (!compatVersion.empty()) { 2009 VersionTuple cVersion; 2010 if (cVersion.tryParse(compatVersion)) { 2011 warn("failed to parse compatibility version, symbol '" + originalName + 2012 "' ignored"); 2013 return; 2014 } 2015 compatibilityVersion = encodeVersion(cVersion); 2016 } 2017 } 2018 2019 void DylibFile::handleLDInstallNameSymbol(StringRef name, 2020 StringRef originalName) { 2021 // originalName: $ld$ install_name $ os<version> $ install_name 2022 StringRef condition, installName; 2023 std::tie(condition, installName) = name.split('$'); 2024 VersionTuple version; 2025 if (!condition.consume_front("os") || version.tryParse(condition)) 2026 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 2027 else if (version == config->platformInfo.minimum) 2028 this->installName = saver().save(installName); 2029 } 2030 2031 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 2032 StringRef symbolName; 2033 bool shouldHide = true; 2034 if (name.startswith("os")) { 2035 // If it's hidden based on versions. 2036 name = name.drop_front(2); 2037 StringRef minVersion; 2038 std::tie(minVersion, symbolName) = name.split('$'); 2039 VersionTuple versionTup; 2040 if (versionTup.tryParse(minVersion)) { 2041 warn("Failed to parse hidden version, symbol `" + originalName + 2042 "` ignored."); 2043 return; 2044 } 2045 shouldHide = versionTup == config->platformInfo.minimum; 2046 } else { 2047 symbolName = name; 2048 } 2049 2050 if (shouldHide) 2051 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 2052 } 2053 2054 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 2055 if (config->applicationExtension && !dylibIsAppExtensionSafe) 2056 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 2057 } 2058 2059 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 2060 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 2061 2062 void ArchiveFile::addLazySymbols() { 2063 for (const object::Archive::Symbol &sym : file->symbols()) 2064 symtab->addLazyArchive(sym.getName(), this, sym); 2065 } 2066 2067 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 2068 uint32_t modTime, 2069 StringRef archiveName, 2070 uint64_t offsetInArchive) { 2071 if (config->zeroModTime) 2072 modTime = 0; 2073 2074 switch (identify_magic(mb.getBuffer())) { 2075 case file_magic::macho_object: 2076 return make<ObjFile>(mb, modTime, archiveName); 2077 case file_magic::bitcode: 2078 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 2079 default: 2080 return createStringError(inconvertibleErrorCode(), 2081 mb.getBufferIdentifier() + 2082 " has unhandled file type"); 2083 } 2084 } 2085 2086 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 2087 if (!seen.insert(c.getChildOffset()).second) 2088 return Error::success(); 2089 2090 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 2091 if (!mb) 2092 return mb.takeError(); 2093 2094 // Thin archives refer to .o files, so --reproduce needs the .o files too. 2095 if (tar && c.getParent()->isThin()) 2096 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 2097 2098 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 2099 if (!modTime) 2100 return modTime.takeError(); 2101 2102 Expected<InputFile *> file = 2103 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 2104 2105 if (!file) 2106 return file.takeError(); 2107 2108 inputFiles.insert(*file); 2109 printArchiveMemberLoad(reason, *file); 2110 return Error::success(); 2111 } 2112 2113 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 2114 object::Archive::Child c = 2115 CHECK(sym.getMember(), toString(this) + 2116 ": could not get the member defining symbol " + 2117 toMachOString(sym)); 2118 2119 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 2120 // and become invalid after that call. Copy it to the stack so we can refer 2121 // to it later. 2122 const object::Archive::Symbol symCopy = sym; 2123 2124 // ld64 doesn't demangle sym here even with -demangle. 2125 // Match that: intentionally don't call toMachOString(). 2126 if (Error e = fetch(c, symCopy.getName())) 2127 error(toString(this) + ": could not get the member defining symbol " + 2128 toMachOString(symCopy) + ": " + toString(std::move(e))); 2129 } 2130 2131 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 2132 BitcodeFile &file) { 2133 StringRef name = saver().save(objSym.getName()); 2134 2135 if (objSym.isUndefined()) 2136 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 2137 2138 // TODO: Write a test demonstrating why computing isPrivateExtern before 2139 // LTO compilation is important. 2140 bool isPrivateExtern = false; 2141 switch (objSym.getVisibility()) { 2142 case GlobalValue::HiddenVisibility: 2143 isPrivateExtern = true; 2144 break; 2145 case GlobalValue::ProtectedVisibility: 2146 error(name + " has protected visibility, which is not supported by Mach-O"); 2147 break; 2148 case GlobalValue::DefaultVisibility: 2149 break; 2150 } 2151 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable(); 2152 2153 if (objSym.isCommon()) 2154 return symtab->addCommon(name, &file, objSym.getCommonSize(), 2155 objSym.getCommonAlignment(), isPrivateExtern); 2156 2157 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 2158 /*size=*/0, objSym.isWeak(), isPrivateExtern, 2159 /*isThumb=*/false, 2160 /*isReferencedDynamically=*/false, 2161 /*noDeadStrip=*/false, 2162 /*isWeakDefCanBeHidden=*/false); 2163 } 2164 2165 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 2166 uint64_t offsetInArchive, bool lazy) 2167 : InputFile(BitcodeKind, mb, lazy) { 2168 this->archiveName = std::string(archiveName); 2169 std::string path = mb.getBufferIdentifier().str(); 2170 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 2171 // name. If two members with the same name are provided, this causes a 2172 // collision and ThinLTO can't proceed. 2173 // So, we append the archive name to disambiguate two members with the same 2174 // name from multiple different archives, and offset within the archive to 2175 // disambiguate two members of the same name from a single archive. 2176 MemoryBufferRef mbref(mb.getBuffer(), 2177 saver().save(archiveName.empty() 2178 ? path 2179 : archiveName + 2180 sys::path::filename(path) + 2181 utostr(offsetInArchive))); 2182 2183 obj = check(lto::InputFile::create(mbref)); 2184 if (lazy) 2185 parseLazy(); 2186 else 2187 parse(); 2188 } 2189 2190 void BitcodeFile::parse() { 2191 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 2192 // "winning" symbol will then be marked as Prevailing at LTO compilation 2193 // time. 2194 symbols.clear(); 2195 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 2196 symbols.push_back(createBitcodeSymbol(objSym, *this)); 2197 } 2198 2199 void BitcodeFile::parseLazy() { 2200 symbols.resize(obj->symbols().size()); 2201 for (auto it : llvm::enumerate(obj->symbols())) { 2202 const lto::InputFile::Symbol &objSym = it.value(); 2203 if (!objSym.isUndefined()) { 2204 symbols[it.index()] = 2205 symtab->addLazyObject(saver().save(objSym.getName()), *this); 2206 if (!lazy) 2207 break; 2208 } 2209 } 2210 } 2211 2212 void macho::extract(InputFile &file, StringRef reason) { 2213 assert(file.lazy); 2214 file.lazy = false; 2215 printArchiveMemberLoad(reason, &file); 2216 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 2217 bitcode->parse(); 2218 } else { 2219 auto &f = cast<ObjFile>(file); 2220 if (target->wordSize == 8) 2221 f.parse<LP64>(); 2222 else 2223 f.parse<ILP32>(); 2224 } 2225 } 2226 2227 template void ObjFile::parse<LP64>(); 2228