1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "EhFrame.h"
49 #include "ExportTrie.h"
50 #include "InputSection.h"
51 #include "MachOStructs.h"
52 #include "ObjC.h"
53 #include "OutputSection.h"
54 #include "OutputSegment.h"
55 #include "SymbolTable.h"
56 #include "Symbols.h"
57 #include "SyntheticSections.h"
58 #include "Target.h"
59 
60 #include "lld/Common/CommonLinkerContext.h"
61 #include "lld/Common/DWARF.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/BinaryStreamReader.h"
67 #include "llvm/Support/Endian.h"
68 #include "llvm/Support/LEB128.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/Path.h"
71 #include "llvm/Support/TarWriter.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/TextAPI/Architecture.h"
74 #include "llvm/TextAPI/InterfaceFile.h"
75 
76 #include <type_traits>
77 
78 using namespace llvm;
79 using namespace llvm::MachO;
80 using namespace llvm::support::endian;
81 using namespace llvm::sys;
82 using namespace lld;
83 using namespace lld::macho;
84 
85 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
86 std::string lld::toString(const InputFile *f) {
87   if (!f)
88     return "<internal>";
89 
90   // Multiple dylibs can be defined in one .tbd file.
91   if (auto dylibFile = dyn_cast<DylibFile>(f))
92     if (f->getName().endswith(".tbd"))
93       return (f->getName() + "(" + dylibFile->installName + ")").str();
94 
95   if (f->archiveName.empty())
96     return std::string(f->getName());
97   return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
98 }
99 
100 std::string lld::toString(const Section &sec) {
101   return (toString(sec.file) + ":(" + sec.name + ")").str();
102 }
103 
104 SetVector<InputFile *> macho::inputFiles;
105 std::unique_ptr<TarWriter> macho::tar;
106 int InputFile::idCount = 0;
107 
108 static VersionTuple decodeVersion(uint32_t version) {
109   unsigned major = version >> 16;
110   unsigned minor = (version >> 8) & 0xffu;
111   unsigned subMinor = version & 0xffu;
112   return VersionTuple(major, minor, subMinor);
113 }
114 
115 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
116   if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
117     return {};
118 
119   const char *hdr = input->mb.getBufferStart();
120 
121   // "Zippered" object files can have multiple LC_BUILD_VERSION load commands.
122   std::vector<PlatformInfo> platformInfos;
123   for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
124     PlatformInfo info;
125     info.target.Platform = static_cast<PlatformType>(cmd->platform);
126     info.minimum = decodeVersion(cmd->minos);
127     platformInfos.emplace_back(std::move(info));
128   }
129   for (auto *cmd : findCommands<version_min_command>(
130            hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
131            LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
132     PlatformInfo info;
133     switch (cmd->cmd) {
134     case LC_VERSION_MIN_MACOSX:
135       info.target.Platform = PLATFORM_MACOS;
136       break;
137     case LC_VERSION_MIN_IPHONEOS:
138       info.target.Platform = PLATFORM_IOS;
139       break;
140     case LC_VERSION_MIN_TVOS:
141       info.target.Platform = PLATFORM_TVOS;
142       break;
143     case LC_VERSION_MIN_WATCHOS:
144       info.target.Platform = PLATFORM_WATCHOS;
145       break;
146     }
147     info.minimum = decodeVersion(cmd->version);
148     platformInfos.emplace_back(std::move(info));
149   }
150 
151   return platformInfos;
152 }
153 
154 static bool checkCompatibility(const InputFile *input) {
155   std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
156   if (platformInfos.empty())
157     return true;
158 
159   auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
160     return removeSimulator(info.target.Platform) ==
161            removeSimulator(config->platform());
162   });
163   if (it == platformInfos.end()) {
164     std::string platformNames;
165     raw_string_ostream os(platformNames);
166     interleave(
167         platformInfos, os,
168         [&](const PlatformInfo &info) {
169           os << getPlatformName(info.target.Platform);
170         },
171         "/");
172     error(toString(input) + " has platform " + platformNames +
173           Twine(", which is different from target platform ") +
174           getPlatformName(config->platform()));
175     return false;
176   }
177 
178   if (it->minimum > config->platformInfo.minimum)
179     warn(toString(input) + " has version " + it->minimum.getAsString() +
180          ", which is newer than target minimum of " +
181          config->platformInfo.minimum.getAsString());
182 
183   return true;
184 }
185 
186 // This cache mostly exists to store system libraries (and .tbds) as they're
187 // loaded, rather than the input archives, which are already cached at a higher
188 // level, and other files like the filelist that are only read once.
189 // Theoretically this caching could be more efficient by hoisting it, but that
190 // would require altering many callers to track the state.
191 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
192 // Open a given file path and return it as a memory-mapped file.
193 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
194   CachedHashStringRef key(path);
195   auto entry = cachedReads.find(key);
196   if (entry != cachedReads.end())
197     return entry->second;
198 
199   ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
200   if (std::error_code ec = mbOrErr.getError()) {
201     error("cannot open " + path + ": " + ec.message());
202     return None;
203   }
204 
205   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
206   MemoryBufferRef mbref = mb->getMemBufferRef();
207   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
208 
209   // If this is a regular non-fat file, return it.
210   const char *buf = mbref.getBufferStart();
211   const auto *hdr = reinterpret_cast<const fat_header *>(buf);
212   if (mbref.getBufferSize() < sizeof(uint32_t) ||
213       read32be(&hdr->magic) != FAT_MAGIC) {
214     if (tar)
215       tar->append(relativeToRoot(path), mbref.getBuffer());
216     return cachedReads[key] = mbref;
217   }
218 
219   llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
220 
221   // Object files and archive files may be fat files, which contain multiple
222   // real files for different CPU ISAs. Here, we search for a file that matches
223   // with the current link target and returns it as a MemoryBufferRef.
224   const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
225 
226   for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
227     if (reinterpret_cast<const char *>(arch + i + 1) >
228         buf + mbref.getBufferSize()) {
229       error(path + ": fat_arch struct extends beyond end of file");
230       return None;
231     }
232 
233     if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
234         read32be(&arch[i].cpusubtype) != target->cpuSubtype)
235       continue;
236 
237     uint32_t offset = read32be(&arch[i].offset);
238     uint32_t size = read32be(&arch[i].size);
239     if (offset + size > mbref.getBufferSize())
240       error(path + ": slice extends beyond end of file");
241     if (tar)
242       tar->append(relativeToRoot(path), mbref.getBuffer());
243     return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
244                                               path.copy(bAlloc));
245   }
246 
247   error("unable to find matching architecture in " + path);
248   return None;
249 }
250 
251 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
252     : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {}
253 
254 // Some sections comprise of fixed-size records, so instead of splitting them at
255 // symbol boundaries, we split them based on size. Records are distinct from
256 // literals in that they may contain references to other sections, instead of
257 // being leaf nodes in the InputSection graph.
258 //
259 // Note that "record" is a term I came up with. In contrast, "literal" is a term
260 // used by the Mach-O format.
261 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) {
262   if (name == section_names::compactUnwind) {
263     if (segname == segment_names::ld)
264       return target->wordSize == 8 ? 32 : 20;
265   }
266   if (!config->dedupLiterals)
267     return {};
268 
269   if (name == section_names::cfString && segname == segment_names::data)
270     return target->wordSize == 8 ? 32 : 16;
271 
272   if (config->icfLevel == ICFLevel::none)
273     return {};
274 
275   if (name == section_names::objcClassRefs && segname == segment_names::data)
276     return target->wordSize;
277   return {};
278 }
279 
280 static Error parseCallGraph(ArrayRef<uint8_t> data,
281                             std::vector<CallGraphEntry> &callGraph) {
282   TimeTraceScope timeScope("Parsing call graph section");
283   BinaryStreamReader reader(data, support::little);
284   while (!reader.empty()) {
285     uint32_t fromIndex, toIndex;
286     uint64_t count;
287     if (Error err = reader.readInteger(fromIndex))
288       return err;
289     if (Error err = reader.readInteger(toIndex))
290       return err;
291     if (Error err = reader.readInteger(count))
292       return err;
293     callGraph.emplace_back(fromIndex, toIndex, count);
294   }
295   return Error::success();
296 }
297 
298 // Parse the sequence of sections within a single LC_SEGMENT(_64).
299 // Split each section into subsections.
300 template <class SectionHeader>
301 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
302   sections.reserve(sectionHeaders.size());
303   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
304 
305   for (const SectionHeader &sec : sectionHeaders) {
306     StringRef name =
307         StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
308     StringRef segname =
309         StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
310     sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr));
311     if (sec.align >= 32) {
312       error("alignment " + std::to_string(sec.align) + " of section " + name +
313             " is too large");
314       continue;
315     }
316     Section &section = *sections.back();
317     uint32_t align = 1 << sec.align;
318     ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
319                                                     : buf + sec.offset,
320                               static_cast<size_t>(sec.size)};
321 
322     auto splitRecords = [&](int recordSize) -> void {
323       if (data.empty())
324         return;
325       Subsections &subsections = section.subsections;
326       subsections.reserve(data.size() / recordSize);
327       for (uint64_t off = 0; off < data.size(); off += recordSize) {
328         auto *isec = make<ConcatInputSection>(
329             section, data.slice(off, recordSize), align);
330         subsections.push_back({off, isec});
331       }
332       section.doneSplitting = true;
333     };
334 
335     if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
336         (config->dedupLiterals && isWordLiteralSection(sec.flags))) {
337       if (sec.nreloc && config->dedupLiterals)
338         fatal(toString(this) + " contains relocations in " + sec.segname + "," +
339               sec.sectname +
340               ", so LLD cannot deduplicate literals. Try re-running without "
341               "--deduplicate-literals.");
342 
343       InputSection *isec;
344       if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
345         isec = make<CStringInputSection>(section, data, align);
346         // FIXME: parallelize this?
347         cast<CStringInputSection>(isec)->splitIntoPieces();
348       } else {
349         isec = make<WordLiteralInputSection>(section, data, align);
350       }
351       section.subsections.push_back({0, isec});
352     } else if (auto recordSize = getRecordSize(segname, name)) {
353       splitRecords(*recordSize);
354     } else if (name == section_names::ehFrame &&
355                segname == segment_names::text) {
356       splitEhFrames(data, *sections.back());
357     } else if (segname == segment_names::llvm) {
358       if (config->callGraphProfileSort && name == section_names::cgProfile)
359         checkError(parseCallGraph(data, callGraph));
360       // ld64 does not appear to emit contents from sections within the __LLVM
361       // segment. Symbols within those sections point to bitcode metadata
362       // instead of actual symbols. Global symbols within those sections could
363       // have the same name without causing duplicate symbol errors. To avoid
364       // spurious duplicate symbol errors, we do not parse these sections.
365       // TODO: Evaluate whether the bitcode metadata is needed.
366     } else {
367       if (name == section_names::addrSig)
368         addrSigSection = sections.back();
369 
370       auto *isec = make<ConcatInputSection>(section, data, align);
371       if (isDebugSection(isec->getFlags()) &&
372           isec->getSegName() == segment_names::dwarf) {
373         // Instead of emitting DWARF sections, we emit STABS symbols to the
374         // object files that contain them. We filter them out early to avoid
375         // parsing their relocations unnecessarily.
376         debugSections.push_back(isec);
377       } else {
378         section.subsections.push_back({0, isec});
379       }
380     }
381   }
382 }
383 
384 void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) {
385   EhReader reader(this, data, /*dataOff=*/0, target->wordSize);
386   size_t off = 0;
387   while (off < reader.size()) {
388     uint64_t frameOff = off;
389     uint64_t length = reader.readLength(&off);
390     if (length == 0)
391       break;
392     uint64_t fullLength = length + (off - frameOff);
393     off += length;
394     // We hard-code an alignment of 1 here because we don't actually want our
395     // EH frames to be aligned to the section alignment. EH frame decoders don't
396     // expect this alignment. Moreover, each EH frame must start where the
397     // previous one ends, and where it ends is indicated by the length field.
398     // Unless we update the length field (troublesome), we should keep the
399     // alignment to 1.
400     // Note that we still want to preserve the alignment of the overall section,
401     // just not of the individual EH frames.
402     ehFrameSection.subsections.push_back(
403         {frameOff, make<ConcatInputSection>(ehFrameSection,
404                                             data.slice(frameOff, fullLength),
405                                             /*align=*/1)});
406   }
407   ehFrameSection.doneSplitting = true;
408 }
409 
410 template <class T>
411 static Section *findContainingSection(const std::vector<Section *> &sections,
412                                       T *offset) {
413   static_assert(std::is_same<uint64_t, T>::value ||
414                     std::is_same<uint32_t, T>::value,
415                 "unexpected type for offset");
416   auto it = std::prev(llvm::upper_bound(
417       sections, *offset,
418       [](uint64_t value, const Section *sec) { return value < sec->addr; }));
419   *offset -= (*it)->addr;
420   return *it;
421 }
422 
423 // Find the subsection corresponding to the greatest section offset that is <=
424 // that of the given offset.
425 //
426 // offset: an offset relative to the start of the original InputSection (before
427 // any subsection splitting has occurred). It will be updated to represent the
428 // same location as an offset relative to the start of the containing
429 // subsection.
430 template <class T>
431 static InputSection *findContainingSubsection(const Section &section,
432                                               T *offset) {
433   static_assert(std::is_same<uint64_t, T>::value ||
434                     std::is_same<uint32_t, T>::value,
435                 "unexpected type for offset");
436   auto it = std::prev(llvm::upper_bound(
437       section.subsections, *offset,
438       [](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
439   *offset -= it->offset;
440   return it->isec;
441 }
442 
443 // Find a symbol at offset `off` within `isec`.
444 static Defined *findSymbolAtOffset(const ConcatInputSection *isec,
445                                    uint64_t off) {
446   auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) {
447     return d->value < off;
448   });
449   // The offset should point at the exact address of a symbol (with no addend.)
450   if (it == isec->symbols.end() || (*it)->value != off) {
451     assert(isec->wasCoalesced);
452     return nullptr;
453   }
454   return *it;
455 }
456 
457 // Linker optimization hints mark a sequence of instructions used for
458 // synthesizing an address which that be transformed into a faster sequence. The
459 // transformations depend on conditions that are determined at link time, like
460 // the distance to the referenced symbol or its alignment.
461 //
462 // Each hint has a type and refers to 2 or 3 instructions. Each of those
463 // instructions must have a corresponding relocation. After addresses have been
464 // finalized and relocations have been performed, we check if the requirements
465 // hold, and perform the optimizations if they do.
466 //
467 // Similar linker relaxations exist for ELF as well, with the difference being
468 // that the explicit marking allows for the relaxation of non-consecutive
469 // relocations too.
470 //
471 // The specific types of hints are documented in Arch/ARM64.cpp
472 void ObjFile::parseOptimizationHints(ArrayRef<uint8_t> data) {
473   auto expectedArgCount = [](uint8_t type) {
474     switch (type) {
475     case LOH_ARM64_ADRP_ADRP:
476     case LOH_ARM64_ADRP_LDR:
477     case LOH_ARM64_ADRP_ADD:
478     case LOH_ARM64_ADRP_LDR_GOT:
479       return 2;
480     case LOH_ARM64_ADRP_ADD_LDR:
481     case LOH_ARM64_ADRP_ADD_STR:
482     case LOH_ARM64_ADRP_LDR_GOT_LDR:
483     case LOH_ARM64_ADRP_LDR_GOT_STR:
484       return 3;
485     }
486     return -1;
487   };
488 
489   // Each hint contains at least 4 ULEB128-encoded fields, so in the worst case,
490   // there are data.size() / 4 LOHs. It's a huge overestimation though, as
491   // offsets are unlikely to fall in the 0-127 byte range, so we pre-allocate
492   // half as much.
493   optimizationHints.reserve(data.size() / 8);
494 
495   for (const uint8_t *p = data.begin(); p < data.end();) {
496     const ptrdiff_t inputOffset = p - data.begin();
497     unsigned int n = 0;
498     uint8_t type = decodeULEB128(p, &n, data.end());
499     p += n;
500 
501     // An entry of type 0 terminates the list.
502     if (type == 0)
503       break;
504 
505     int expectedCount = expectedArgCount(type);
506     if (LLVM_UNLIKELY(expectedCount == -1)) {
507       error("Linker optimization hint at offset " + Twine(inputOffset) +
508             " has unknown type " + Twine(type));
509       return;
510     }
511 
512     uint8_t argCount = decodeULEB128(p, &n, data.end());
513     p += n;
514 
515     if (LLVM_UNLIKELY(argCount != expectedCount)) {
516       error("Linker optimization hint at offset " + Twine(inputOffset) +
517             " has " + Twine(argCount) + " arguments instead of the expected " +
518             Twine(expectedCount));
519       return;
520     }
521 
522     uint64_t offset0 = decodeULEB128(p, &n, data.end());
523     p += n;
524 
525     int16_t delta[2];
526     for (int i = 0; i < argCount - 1; ++i) {
527       uint64_t address = decodeULEB128(p, &n, data.end());
528       p += n;
529       int64_t d = address - offset0;
530       if (LLVM_UNLIKELY(d > std::numeric_limits<int16_t>::max() ||
531                         d < std::numeric_limits<int16_t>::min())) {
532         error("Linker optimization hint at offset " + Twine(inputOffset) +
533               " has addresses too far apart");
534         return;
535       }
536       delta[i] = d;
537     }
538 
539     optimizationHints.push_back({offset0, {delta[0], delta[1]}, type});
540   }
541 
542   // We sort the per-object vector of optimization hints so each section only
543   // needs to hold an ArrayRef to a contiguous range of hints.
544   llvm::sort(optimizationHints,
545              [](const OptimizationHint &a, const OptimizationHint &b) {
546                return a.offset0 < b.offset0;
547              });
548 
549   auto section = sections.begin();
550   auto subsection = (*section)->subsections.begin();
551   uint64_t subsectionBase = 0;
552   uint64_t subsectionEnd = 0;
553 
554   auto updateAddr = [&]() {
555     subsectionBase = (*section)->addr + subsection->offset;
556     subsectionEnd = subsectionBase + subsection->isec->getSize();
557   };
558 
559   auto advanceSubsection = [&]() {
560     if (section == sections.end())
561       return;
562     ++subsection;
563     if (subsection == (*section)->subsections.end()) {
564       ++section;
565       if (section == sections.end())
566         return;
567       subsection = (*section)->subsections.begin();
568     }
569   };
570 
571   updateAddr();
572   auto hintStart = optimizationHints.begin();
573   for (auto hintEnd = hintStart, end = optimizationHints.end(); hintEnd != end;
574        ++hintEnd) {
575     if (hintEnd->offset0 >= subsectionEnd) {
576       subsection->isec->optimizationHints =
577           ArrayRef<OptimizationHint>(&*hintStart, hintEnd - hintStart);
578 
579       hintStart = hintEnd;
580       while (hintStart->offset0 >= subsectionEnd) {
581         advanceSubsection();
582         if (section == sections.end())
583           break;
584         updateAddr();
585       }
586     }
587 
588     hintEnd->offset0 -= subsectionBase;
589     for (int i = 0, count = expectedArgCount(hintEnd->type); i < count - 1;
590          ++i) {
591       if (LLVM_UNLIKELY(
592               hintEnd->delta[i] < -static_cast<int64_t>(hintEnd->offset0) ||
593               hintEnd->delta[i] >=
594                   static_cast<int64_t>(subsectionEnd - hintEnd->offset0))) {
595         error("Linker optimization hint spans multiple sections");
596         return;
597       }
598     }
599   }
600   if (section != sections.end())
601     subsection->isec->optimizationHints = ArrayRef<OptimizationHint>(
602         &*hintStart, optimizationHints.end() - hintStart);
603 }
604 
605 template <class SectionHeader>
606 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
607                                    relocation_info rel) {
608   const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
609   bool valid = true;
610   auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
611     valid = false;
612     return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
613             std::to_string(rel.r_address) + " of " + sec.segname + "," +
614             sec.sectname + " in " + toString(file))
615         .str();
616   };
617 
618   if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
619     error(message("must be extern"));
620   if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
621     error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
622                   "be PC-relative"));
623   if (isThreadLocalVariables(sec.flags) &&
624       !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
625     error(message("not allowed in thread-local section, must be UNSIGNED"));
626   if (rel.r_length < 2 || rel.r_length > 3 ||
627       !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
628     static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
629     error(message("has width " + std::to_string(1 << rel.r_length) +
630                   " bytes, but must be " +
631                   widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
632                   " bytes"));
633   }
634   return valid;
635 }
636 
637 template <class SectionHeader>
638 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
639                                const SectionHeader &sec, Section &section) {
640   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
641   ArrayRef<relocation_info> relInfos(
642       reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
643 
644   Subsections &subsections = section.subsections;
645   auto subsecIt = subsections.rbegin();
646   for (size_t i = 0; i < relInfos.size(); i++) {
647     // Paired relocations serve as Mach-O's method for attaching a
648     // supplemental datum to a primary relocation record. ELF does not
649     // need them because the *_RELOC_RELA records contain the extra
650     // addend field, vs. *_RELOC_REL which omit the addend.
651     //
652     // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
653     // and the paired *_RELOC_UNSIGNED record holds the minuend. The
654     // datum for each is a symbolic address. The result is the offset
655     // between two addresses.
656     //
657     // The ARM64_RELOC_ADDEND record holds the addend, and the paired
658     // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
659     // base symbolic address.
660     //
661     // Note: X86 does not use *_RELOC_ADDEND because it can embed an
662     // addend into the instruction stream. On X86, a relocatable address
663     // field always occupies an entire contiguous sequence of byte(s),
664     // so there is no need to merge opcode bits with address
665     // bits. Therefore, it's easy and convenient to store addends in the
666     // instruction-stream bytes that would otherwise contain zeroes. By
667     // contrast, RISC ISAs such as ARM64 mix opcode bits with with
668     // address bits so that bitwise arithmetic is necessary to extract
669     // and insert them. Storing addends in the instruction stream is
670     // possible, but inconvenient and more costly at link time.
671 
672     relocation_info relInfo = relInfos[i];
673     bool isSubtrahend =
674         target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
675     int64_t pairedAddend = 0;
676     if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
677       pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
678       relInfo = relInfos[++i];
679     }
680     assert(i < relInfos.size());
681     if (!validateRelocationInfo(this, sec, relInfo))
682       continue;
683     if (relInfo.r_address & R_SCATTERED)
684       fatal("TODO: Scattered relocations not supported");
685 
686     int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
687     assert(!(embeddedAddend && pairedAddend));
688     int64_t totalAddend = pairedAddend + embeddedAddend;
689     Reloc r;
690     r.type = relInfo.r_type;
691     r.pcrel = relInfo.r_pcrel;
692     r.length = relInfo.r_length;
693     r.offset = relInfo.r_address;
694     if (relInfo.r_extern) {
695       r.referent = symbols[relInfo.r_symbolnum];
696       r.addend = isSubtrahend ? 0 : totalAddend;
697     } else {
698       assert(!isSubtrahend);
699       const SectionHeader &referentSecHead =
700           sectionHeaders[relInfo.r_symbolnum - 1];
701       uint64_t referentOffset;
702       if (relInfo.r_pcrel) {
703         // The implicit addend for pcrel section relocations is the pcrel offset
704         // in terms of the addresses in the input file. Here we adjust it so
705         // that it describes the offset from the start of the referent section.
706         // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
707         // have pcrel section relocations. We may want to factor this out into
708         // the arch-specific .cpp file.
709         assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
710         referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
711                          referentSecHead.addr;
712       } else {
713         // The addend for a non-pcrel relocation is its absolute address.
714         referentOffset = totalAddend - referentSecHead.addr;
715       }
716       r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1],
717                                             &referentOffset);
718       r.addend = referentOffset;
719     }
720 
721     // Find the subsection that this relocation belongs to.
722     // Though not required by the Mach-O format, clang and gcc seem to emit
723     // relocations in order, so let's take advantage of it. However, ld64 emits
724     // unsorted relocations (in `-r` mode), so we have a fallback for that
725     // uncommon case.
726     InputSection *subsec;
727     while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
728       ++subsecIt;
729     if (subsecIt == subsections.rend() ||
730         subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
731       subsec = findContainingSubsection(section, &r.offset);
732       // Now that we know the relocs are unsorted, avoid trying the 'fast path'
733       // for the other relocations.
734       subsecIt = subsections.rend();
735     } else {
736       subsec = subsecIt->isec;
737       r.offset -= subsecIt->offset;
738     }
739     subsec->relocs.push_back(r);
740 
741     if (isSubtrahend) {
742       relocation_info minuendInfo = relInfos[++i];
743       // SUBTRACTOR relocations should always be followed by an UNSIGNED one
744       // attached to the same address.
745       assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
746              relInfo.r_address == minuendInfo.r_address);
747       Reloc p;
748       p.type = minuendInfo.r_type;
749       if (minuendInfo.r_extern) {
750         p.referent = symbols[minuendInfo.r_symbolnum];
751         p.addend = totalAddend;
752       } else {
753         uint64_t referentOffset =
754             totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
755         p.referent = findContainingSubsection(
756             *sections[minuendInfo.r_symbolnum - 1], &referentOffset);
757         p.addend = referentOffset;
758       }
759       subsec->relocs.push_back(p);
760     }
761   }
762 }
763 
764 template <class NList>
765 static macho::Symbol *createDefined(const NList &sym, StringRef name,
766                                     InputSection *isec, uint64_t value,
767                                     uint64_t size) {
768   // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
769   // N_EXT: Global symbols. These go in the symbol table during the link,
770   //        and also in the export table of the output so that the dynamic
771   //        linker sees them.
772   // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
773   //                 symbol table during the link so that duplicates are
774   //                 either reported (for non-weak symbols) or merged
775   //                 (for weak symbols), but they do not go in the export
776   //                 table of the output.
777   // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
778   //         object files) may produce them. LLD does not yet support -r.
779   //         These are translation-unit scoped, identical to the `0` case.
780   // 0: Translation-unit scoped. These are not in the symbol table during
781   //    link, and not in the export table of the output either.
782   bool isWeakDefCanBeHidden =
783       (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
784 
785   if (sym.n_type & N_EXT) {
786     bool isPrivateExtern = sym.n_type & N_PEXT;
787     // lld's behavior for merging symbols is slightly different from ld64:
788     // ld64 picks the winning symbol based on several criteria (see
789     // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
790     // just merges metadata and keeps the contents of the first symbol
791     // with that name (see SymbolTable::addDefined). For:
792     // * inline function F in a TU built with -fvisibility-inlines-hidden
793     // * and inline function F in another TU built without that flag
794     // ld64 will pick the one from the file built without
795     // -fvisibility-inlines-hidden.
796     // lld will instead pick the one listed first on the link command line and
797     // give it visibility as if the function was built without
798     // -fvisibility-inlines-hidden.
799     // If both functions have the same contents, this will have the same
800     // behavior. If not, it won't, but the input had an ODR violation in
801     // that case.
802     //
803     // Similarly, merging a symbol
804     // that's isPrivateExtern and not isWeakDefCanBeHidden with one
805     // that's not isPrivateExtern but isWeakDefCanBeHidden technically
806     // should produce one
807     // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
808     // with ld64's semantics, because it means the non-private-extern
809     // definition will continue to take priority if more private extern
810     // definitions are encountered. With lld's semantics there's no observable
811     // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
812     // that's privateExtern -- neither makes it into the dynamic symbol table,
813     // unless the autohide symbol is explicitly exported.
814     // But if a symbol is both privateExtern and autohide then it can't
815     // be exported.
816     // So we nullify the autohide flag when privateExtern is present
817     // and promote the symbol to privateExtern when it is not already.
818     if (isWeakDefCanBeHidden && isPrivateExtern)
819       isWeakDefCanBeHidden = false;
820     else if (isWeakDefCanBeHidden)
821       isPrivateExtern = true;
822     return symtab->addDefined(
823         name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
824         isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
825         sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP,
826         isWeakDefCanBeHidden);
827   }
828   assert(!isWeakDefCanBeHidden &&
829          "weak_def_can_be_hidden on already-hidden symbol?");
830   bool includeInSymtab =
831       !name.startswith("l") && !name.startswith("L") && !isEhFrameSection(isec);
832   return make<Defined>(
833       name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
834       /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab,
835       sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
836       sym.n_desc & N_NO_DEAD_STRIP);
837 }
838 
839 // Absolute symbols are defined symbols that do not have an associated
840 // InputSection. They cannot be weak.
841 template <class NList>
842 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
843                                      StringRef name) {
844   if (sym.n_type & N_EXT) {
845     return symtab->addDefined(
846         name, file, nullptr, sym.n_value, /*size=*/0,
847         /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF,
848         /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP,
849         /*isWeakDefCanBeHidden=*/false);
850   }
851   return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
852                        /*isWeakDef=*/false,
853                        /*isExternal=*/false, /*isPrivateExtern=*/false,
854                        /*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF,
855                        /*isReferencedDynamically=*/false,
856                        sym.n_desc & N_NO_DEAD_STRIP);
857 }
858 
859 template <class NList>
860 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
861                                               StringRef name) {
862   uint8_t type = sym.n_type & N_TYPE;
863   switch (type) {
864   case N_UNDF:
865     return sym.n_value == 0
866                ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
867                : symtab->addCommon(name, this, sym.n_value,
868                                    1 << GET_COMM_ALIGN(sym.n_desc),
869                                    sym.n_type & N_PEXT);
870   case N_ABS:
871     return createAbsolute(sym, this, name);
872   case N_PBUD:
873   case N_INDR:
874     error("TODO: support symbols of type " + std::to_string(type));
875     return nullptr;
876   case N_SECT:
877     llvm_unreachable(
878         "N_SECT symbols should not be passed to parseNonSectionSymbol");
879   default:
880     llvm_unreachable("invalid symbol type");
881   }
882 }
883 
884 template <class NList> static bool isUndef(const NList &sym) {
885   return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
886 }
887 
888 template <class LP>
889 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
890                            ArrayRef<typename LP::nlist> nList,
891                            const char *strtab, bool subsectionsViaSymbols) {
892   using NList = typename LP::nlist;
893 
894   // Groups indices of the symbols by the sections that contain them.
895   std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
896   symbols.resize(nList.size());
897   SmallVector<unsigned, 32> undefineds;
898   for (uint32_t i = 0; i < nList.size(); ++i) {
899     const NList &sym = nList[i];
900 
901     // Ignore debug symbols for now.
902     // FIXME: may need special handling.
903     if (sym.n_type & N_STAB)
904       continue;
905 
906     if ((sym.n_type & N_TYPE) == N_SECT) {
907       Subsections &subsections = sections[sym.n_sect - 1]->subsections;
908       // parseSections() may have chosen not to parse this section.
909       if (subsections.empty())
910         continue;
911       symbolsBySection[sym.n_sect - 1].push_back(i);
912     } else if (isUndef(sym)) {
913       undefineds.push_back(i);
914     } else {
915       symbols[i] = parseNonSectionSymbol(sym, StringRef(strtab + sym.n_strx));
916     }
917   }
918 
919   for (size_t i = 0; i < sections.size(); ++i) {
920     Subsections &subsections = sections[i]->subsections;
921     if (subsections.empty())
922       continue;
923     std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
924     uint64_t sectionAddr = sectionHeaders[i].addr;
925     uint32_t sectionAlign = 1u << sectionHeaders[i].align;
926 
927     // Some sections have already been split into subsections during
928     // parseSections(), so we simply need to match Symbols to the corresponding
929     // subsection here.
930     if (sections[i]->doneSplitting) {
931       for (size_t j = 0; j < symbolIndices.size(); ++j) {
932         uint32_t symIndex = symbolIndices[j];
933         const NList &sym = nList[symIndex];
934         StringRef name = strtab + sym.n_strx;
935         uint64_t symbolOffset = sym.n_value - sectionAddr;
936         InputSection *isec =
937             findContainingSubsection(*sections[i], &symbolOffset);
938         if (symbolOffset != 0) {
939           error(toString(*sections[i]) + ":  symbol " + name +
940                 " at misaligned offset");
941           continue;
942         }
943         symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize());
944       }
945       continue;
946     }
947     sections[i]->doneSplitting = true;
948 
949     // Calculate symbol sizes and create subsections by splitting the sections
950     // along symbol boundaries.
951     // We populate subsections by repeatedly splitting the last (highest
952     // address) subsection.
953     llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
954       return nList[lhs].n_value < nList[rhs].n_value;
955     });
956     for (size_t j = 0; j < symbolIndices.size(); ++j) {
957       uint32_t symIndex = symbolIndices[j];
958       const NList &sym = nList[symIndex];
959       StringRef name = strtab + sym.n_strx;
960       Subsection &subsec = subsections.back();
961       InputSection *isec = subsec.isec;
962 
963       uint64_t subsecAddr = sectionAddr + subsec.offset;
964       size_t symbolOffset = sym.n_value - subsecAddr;
965       uint64_t symbolSize =
966           j + 1 < symbolIndices.size()
967               ? nList[symbolIndices[j + 1]].n_value - sym.n_value
968               : isec->data.size() - symbolOffset;
969       // There are 4 cases where we do not need to create a new subsection:
970       //   1. If the input file does not use subsections-via-symbols.
971       //   2. Multiple symbols at the same address only induce one subsection.
972       //      (The symbolOffset == 0 check covers both this case as well as
973       //      the first loop iteration.)
974       //   3. Alternative entry points do not induce new subsections.
975       //   4. If we have a literal section (e.g. __cstring and __literal4).
976       if (!subsectionsViaSymbols || symbolOffset == 0 ||
977           sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
978         symbols[symIndex] =
979             createDefined(sym, name, isec, symbolOffset, symbolSize);
980         continue;
981       }
982       auto *concatIsec = cast<ConcatInputSection>(isec);
983 
984       auto *nextIsec = make<ConcatInputSection>(*concatIsec);
985       nextIsec->wasCoalesced = false;
986       if (isZeroFill(isec->getFlags())) {
987         // Zero-fill sections have NULL data.data() non-zero data.size()
988         nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
989         isec->data = {nullptr, symbolOffset};
990       } else {
991         nextIsec->data = isec->data.slice(symbolOffset);
992         isec->data = isec->data.slice(0, symbolOffset);
993       }
994 
995       // By construction, the symbol will be at offset zero in the new
996       // subsection.
997       symbols[symIndex] =
998           createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
999       // TODO: ld64 appears to preserve the original alignment as well as each
1000       // subsection's offset from the last aligned address. We should consider
1001       // emulating that behavior.
1002       nextIsec->align = MinAlign(sectionAlign, sym.n_value);
1003       subsections.push_back({sym.n_value - sectionAddr, nextIsec});
1004     }
1005   }
1006 
1007   // Undefined symbols can trigger recursive fetch from Archives due to
1008   // LazySymbols. Process defined symbols first so that the relative order
1009   // between a defined symbol and an undefined symbol does not change the
1010   // symbol resolution behavior. In addition, a set of interconnected symbols
1011   // will all be resolved to the same file, instead of being resolved to
1012   // different files.
1013   for (unsigned i : undefineds) {
1014     const NList &sym = nList[i];
1015     StringRef name = strtab + sym.n_strx;
1016     symbols[i] = parseNonSectionSymbol(sym, name);
1017   }
1018 }
1019 
1020 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
1021                        StringRef sectName)
1022     : InputFile(OpaqueKind, mb) {
1023   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1024   ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
1025   sections.push_back(make<Section>(/*file=*/this, segName.take_front(16),
1026                                    sectName.take_front(16),
1027                                    /*flags=*/0, /*addr=*/0));
1028   Section &section = *sections.back();
1029   ConcatInputSection *isec = make<ConcatInputSection>(section, data);
1030   isec->live = true;
1031   section.subsections.push_back({0, isec});
1032 }
1033 
1034 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
1035                  bool lazy)
1036     : InputFile(ObjKind, mb, lazy), modTime(modTime) {
1037   this->archiveName = std::string(archiveName);
1038   if (lazy) {
1039     if (target->wordSize == 8)
1040       parseLazy<LP64>();
1041     else
1042       parseLazy<ILP32>();
1043   } else {
1044     if (target->wordSize == 8)
1045       parse<LP64>();
1046     else
1047       parse<ILP32>();
1048   }
1049 }
1050 
1051 template <class LP> void ObjFile::parse() {
1052   using Header = typename LP::mach_header;
1053   using SegmentCommand = typename LP::segment_command;
1054   using SectionHeader = typename LP::section;
1055   using NList = typename LP::nlist;
1056 
1057   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1058   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
1059 
1060   Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
1061   if (arch != config->arch()) {
1062     auto msg = config->errorForArchMismatch
1063                    ? static_cast<void (*)(const Twine &)>(error)
1064                    : warn;
1065     msg(toString(this) + " has architecture " + getArchitectureName(arch) +
1066         " which is incompatible with target architecture " +
1067         getArchitectureName(config->arch()));
1068     return;
1069   }
1070 
1071   if (!checkCompatibility(this))
1072     return;
1073 
1074   for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
1075     StringRef data{reinterpret_cast<const char *>(cmd + 1),
1076                    cmd->cmdsize - sizeof(linker_option_command)};
1077     parseLCLinkerOption(this, cmd->count, data);
1078   }
1079 
1080   ArrayRef<SectionHeader> sectionHeaders;
1081   if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
1082     auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
1083     sectionHeaders = ArrayRef<SectionHeader>{
1084         reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
1085     parseSections(sectionHeaders);
1086   }
1087 
1088   // TODO: Error on missing LC_SYMTAB?
1089   if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
1090     auto *c = reinterpret_cast<const symtab_command *>(cmd);
1091     ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1092                           c->nsyms);
1093     const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1094     bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
1095     parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
1096   }
1097 
1098   // The relocations may refer to the symbols, so we parse them after we have
1099   // parsed all the symbols.
1100   for (size_t i = 0, n = sections.size(); i < n; ++i)
1101     if (!sections[i]->subsections.empty())
1102       parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]);
1103 
1104   if (!config->ignoreOptimizationHints)
1105     if (auto *cmd = findCommand<linkedit_data_command>(
1106             hdr, LC_LINKER_OPTIMIZATION_HINT))
1107       parseOptimizationHints({buf + cmd->dataoff, cmd->datasize});
1108 
1109   parseDebugInfo();
1110 
1111   Section *ehFrameSection = nullptr;
1112   Section *compactUnwindSection = nullptr;
1113   for (Section *sec : sections) {
1114     Section **s = StringSwitch<Section **>(sec->name)
1115                       .Case(section_names::compactUnwind, &compactUnwindSection)
1116                       .Case(section_names::ehFrame, &ehFrameSection)
1117                       .Default(nullptr);
1118     if (s)
1119       *s = sec;
1120   }
1121   if (compactUnwindSection)
1122     registerCompactUnwind(*compactUnwindSection);
1123   if (ehFrameSection)
1124     registerEhFrames(*ehFrameSection);
1125 }
1126 
1127 template <class LP> void ObjFile::parseLazy() {
1128   using Header = typename LP::mach_header;
1129   using NList = typename LP::nlist;
1130 
1131   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1132   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
1133   const load_command *cmd = findCommand(hdr, LC_SYMTAB);
1134   if (!cmd)
1135     return;
1136   auto *c = reinterpret_cast<const symtab_command *>(cmd);
1137   ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1138                         c->nsyms);
1139   const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1140   symbols.resize(nList.size());
1141   for (auto it : llvm::enumerate(nList)) {
1142     const NList &sym = it.value();
1143     if ((sym.n_type & N_EXT) && !isUndef(sym)) {
1144       // TODO: Bound checking
1145       StringRef name = strtab + sym.n_strx;
1146       symbols[it.index()] = symtab->addLazyObject(name, *this);
1147       if (!lazy)
1148         break;
1149     }
1150   }
1151 }
1152 
1153 void ObjFile::parseDebugInfo() {
1154   std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
1155   if (!dObj)
1156     return;
1157 
1158   // We do not re-use the context from getDwarf() here as that function
1159   // constructs an expensive DWARFCache object.
1160   auto *ctx = make<DWARFContext>(
1161       std::move(dObj), "",
1162       [&](Error err) {
1163         warn(toString(this) + ": " + toString(std::move(err)));
1164       },
1165       [&](Error warning) {
1166         warn(toString(this) + ": " + toString(std::move(warning)));
1167       });
1168 
1169   // TODO: Since object files can contain a lot of DWARF info, we should verify
1170   // that we are parsing just the info we need
1171   const DWARFContext::compile_unit_range &units = ctx->compile_units();
1172   // FIXME: There can be more than one compile unit per object file. See
1173   // PR48637.
1174   auto it = units.begin();
1175   compileUnit = it != units.end() ? it->get() : nullptr;
1176 }
1177 
1178 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const {
1179   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1180   const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
1181   if (!cmd)
1182     return {};
1183   const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
1184   return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
1185           c->datasize / sizeof(data_in_code_entry)};
1186 }
1187 
1188 // Create pointers from symbols to their associated compact unwind entries.
1189 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) {
1190   for (const Subsection &subsection : compactUnwindSection.subsections) {
1191     ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
1192     // Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed
1193     // their addends in its data. Thus if ICF operated naively and compared the
1194     // entire contents of each CUE, entries with identical unwind info but e.g.
1195     // belonging to different functions would never be considered equivalent. To
1196     // work around this problem, we remove some parts of the data containing the
1197     // embedded addends. In particular, we remove the function address and LSDA
1198     // pointers.  Since these locations are at the start and end of the entry,
1199     // we can do this using a simple, efficient slice rather than performing a
1200     // copy.  We are not losing any information here because the embedded
1201     // addends have already been parsed in the corresponding Reloc structs.
1202     //
1203     // Removing these pointers would not be safe if they were pointers to
1204     // absolute symbols. In that case, there would be no corresponding
1205     // relocation. However, (AFAIK) MC cannot emit references to absolute
1206     // symbols for either the function address or the LSDA. However, it *can* do
1207     // so for the personality pointer, so we are not slicing that field away.
1208     //
1209     // Note that we do not adjust the offsets of the corresponding relocations;
1210     // instead, we rely on `relocateCompactUnwind()` to correctly handle these
1211     // truncated input sections.
1212     isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize);
1213     uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t));
1214     // llvm-mc omits CU entries for functions that need DWARF encoding, but
1215     // `ld -r` doesn't. We can ignore them because we will re-synthesize these
1216     // CU entries from the DWARF info during the output phase.
1217     if ((encoding & target->modeDwarfEncoding) == target->modeDwarfEncoding)
1218       continue;
1219 
1220     ConcatInputSection *referentIsec;
1221     for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
1222       Reloc &r = *it;
1223       // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
1224       if (r.offset != 0) {
1225         ++it;
1226         continue;
1227       }
1228       uint64_t add = r.addend;
1229       if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
1230         // Check whether the symbol defined in this file is the prevailing one.
1231         // Skip if it is e.g. a weak def that didn't prevail.
1232         if (sym->getFile() != this) {
1233           ++it;
1234           continue;
1235         }
1236         add += sym->value;
1237         referentIsec = cast<ConcatInputSection>(sym->isec);
1238       } else {
1239         referentIsec =
1240             cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
1241       }
1242       // Unwind info lives in __DATA, and finalization of __TEXT will occur
1243       // before finalization of __DATA. Moreover, the finalization of unwind
1244       // info depends on the exact addresses that it references. So it is safe
1245       // for compact unwind to reference addresses in __TEXT, but not addresses
1246       // in any other segment.
1247       if (referentIsec->getSegName() != segment_names::text)
1248         error(isec->getLocation(r.offset) + " references section " +
1249               referentIsec->getName() + " which is not in segment __TEXT");
1250       // The functionAddress relocations are typically section relocations.
1251       // However, unwind info operates on a per-symbol basis, so we search for
1252       // the function symbol here.
1253       Defined *d = findSymbolAtOffset(referentIsec, add);
1254       if (!d) {
1255         ++it;
1256         continue;
1257       }
1258       d->unwindEntry = isec;
1259       // Now that the symbol points to the unwind entry, we can remove the reloc
1260       // that points from the unwind entry back to the symbol.
1261       //
1262       // First, the symbol keeps the unwind entry alive (and not vice versa), so
1263       // this keeps dead-stripping simple.
1264       //
1265       // Moreover, it reduces the work that ICF needs to do to figure out if
1266       // functions with unwind info are foldable.
1267       //
1268       // However, this does make it possible for ICF to fold CUEs that point to
1269       // distinct functions (if the CUEs are otherwise identical).
1270       // UnwindInfoSection takes care of this by re-duplicating the CUEs so that
1271       // each one can hold a distinct functionAddress value.
1272       //
1273       // Given that clang emits relocations in reverse order of address, this
1274       // relocation should be at the end of the vector for most of our input
1275       // object files, so this erase() is typically an O(1) operation.
1276       it = isec->relocs.erase(it);
1277     }
1278   }
1279 }
1280 
1281 struct CIE {
1282   macho::Symbol *personalitySymbol = nullptr;
1283   bool fdesHaveLsda = false;
1284   bool fdesHaveAug = false;
1285 };
1286 
1287 static CIE parseCIE(const InputSection *isec, const EhReader &reader,
1288                     size_t off) {
1289   // Handling the full generality of possible DWARF encodings would be a major
1290   // pain. We instead take advantage of our knowledge of how llvm-mc encodes
1291   // DWARF and handle just that.
1292   constexpr uint8_t expectedPersonalityEnc =
1293       dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4;
1294   constexpr uint8_t expectedPointerEnc =
1295       dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_absptr;
1296 
1297   CIE cie;
1298   uint8_t version = reader.readByte(&off);
1299   if (version != 1 && version != 3)
1300     fatal("Expected CIE version of 1 or 3, got " + Twine(version));
1301   StringRef aug = reader.readString(&off);
1302   reader.skipLeb128(&off); // skip code alignment
1303   reader.skipLeb128(&off); // skip data alignment
1304   reader.skipLeb128(&off); // skip return address register
1305   reader.skipLeb128(&off); // skip aug data length
1306   uint64_t personalityAddrOff = 0;
1307   for (char c : aug) {
1308     switch (c) {
1309     case 'z':
1310       cie.fdesHaveAug = true;
1311       break;
1312     case 'P': {
1313       uint8_t personalityEnc = reader.readByte(&off);
1314       if (personalityEnc != expectedPersonalityEnc)
1315         reader.failOn(off, "unexpected personality encoding 0x" +
1316                                Twine::utohexstr(personalityEnc));
1317       personalityAddrOff = off;
1318       off += 4;
1319       break;
1320     }
1321     case 'L': {
1322       cie.fdesHaveLsda = true;
1323       uint8_t lsdaEnc = reader.readByte(&off);
1324       if (lsdaEnc != expectedPointerEnc)
1325         reader.failOn(off, "unexpected LSDA encoding 0x" +
1326                                Twine::utohexstr(lsdaEnc));
1327       break;
1328     }
1329     case 'R': {
1330       uint8_t pointerEnc = reader.readByte(&off);
1331       if (pointerEnc != expectedPointerEnc)
1332         reader.failOn(off, "unexpected pointer encoding 0x" +
1333                                Twine::utohexstr(pointerEnc));
1334       break;
1335     }
1336     default:
1337       break;
1338     }
1339   }
1340   if (personalityAddrOff != 0) {
1341     auto personalityRelocIt =
1342         llvm::find_if(isec->relocs, [=](const macho::Reloc &r) {
1343           return r.offset == personalityAddrOff;
1344         });
1345     if (personalityRelocIt == isec->relocs.end())
1346       reader.failOn(off, "Failed to locate relocation for personality symbol");
1347     cie.personalitySymbol = personalityRelocIt->referent.get<macho::Symbol *>();
1348   }
1349   return cie;
1350 }
1351 
1352 // EH frame target addresses may be encoded as pcrel offsets. However, instead
1353 // of using an actual pcrel reloc, ld64 emits subtractor relocations instead.
1354 // This function recovers the target address from the subtractors, essentially
1355 // performing the inverse operation of EhRelocator.
1356 //
1357 // Concretely, we expect our relocations to write the value of `PC -
1358 // target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that
1359 // points to a symbol plus an addend.
1360 //
1361 // It is important that the minuend relocation point to a symbol within the
1362 // same section as the fixup value, since sections may get moved around.
1363 //
1364 // For example, for arm64, llvm-mc emits relocations for the target function
1365 // address like so:
1366 //
1367 //   ltmp:
1368 //     <CIE start>
1369 //     ...
1370 //     <CIE end>
1371 //     ... multiple FDEs ...
1372 //     <FDE start>
1373 //     <target function address - (ltmp + pcrel offset)>
1374 //     ...
1375 //
1376 // If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start`
1377 // will move to an earlier address, and `ltmp + pcrel offset` will no longer
1378 // reflect an accurate pcrel value. To avoid this problem, we "canonicalize"
1379 // our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating
1380 // the reloc to be `target function address - (EH_Frame + new pcrel offset)`.
1381 //
1382 // If `Invert` is set, then we instead expect `target_addr - PC` to be written
1383 // to `PC`.
1384 template <bool Invert = false>
1385 Defined *
1386 targetSymFromCanonicalSubtractor(const InputSection *isec,
1387                                  std::vector<macho::Reloc>::iterator relocIt) {
1388   macho::Reloc &subtrahend = *relocIt;
1389   macho::Reloc &minuend = *std::next(relocIt);
1390   assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND));
1391   assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED));
1392   // Note: pcSym may *not* be exactly at the PC; there's usually a non-zero
1393   // addend.
1394   auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>());
1395   Defined *target =
1396       cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>());
1397   if (!pcSym) {
1398     auto *targetIsec =
1399         cast<ConcatInputSection>(minuend.referent.get<InputSection *>());
1400     target = findSymbolAtOffset(targetIsec, minuend.addend);
1401   }
1402   if (Invert)
1403     std::swap(pcSym, target);
1404   if (pcSym->isec == isec) {
1405     if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset)
1406       fatal("invalid FDE relocation in __eh_frame");
1407   } else {
1408     // Ensure the pcReloc points to a symbol within the current EH frame.
1409     // HACK: we should really verify that the original relocation's semantics
1410     // are preserved. In particular, we should have
1411     // `oldSym->value + oldOffset == newSym + newOffset`. However, we don't
1412     // have an easy way to access the offsets from this point in the code; some
1413     // refactoring is needed for that.
1414     macho::Reloc &pcReloc = Invert ? minuend : subtrahend;
1415     pcReloc.referent = isec->symbols[0];
1416     assert(isec->symbols[0]->value == 0);
1417     minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL);
1418   }
1419   return target;
1420 }
1421 
1422 Defined *findSymbolAtAddress(const std::vector<Section *> &sections,
1423                              uint64_t addr) {
1424   Section *sec = findContainingSection(sections, &addr);
1425   auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr));
1426   return findSymbolAtOffset(isec, addr);
1427 }
1428 
1429 // For symbols that don't have compact unwind info, associate them with the more
1430 // general-purpose (and verbose) DWARF unwind info found in __eh_frame.
1431 //
1432 // This requires us to parse the contents of __eh_frame. See EhFrame.h for a
1433 // description of its format.
1434 //
1435 // While parsing, we also look for what MC calls "abs-ified" relocations -- they
1436 // are relocations which are implicitly encoded as offsets in the section data.
1437 // We convert them into explicit Reloc structs so that the EH frames can be
1438 // handled just like a regular ConcatInputSection later in our output phase.
1439 //
1440 // We also need to handle the case where our input object file has explicit
1441 // relocations. This is the case when e.g. it's the output of `ld -r`. We only
1442 // look for the "abs-ified" relocation if an explicit relocation is absent.
1443 void ObjFile::registerEhFrames(Section &ehFrameSection) {
1444   DenseMap<const InputSection *, CIE> cieMap;
1445   for (const Subsection &subsec : ehFrameSection.subsections) {
1446     auto *isec = cast<ConcatInputSection>(subsec.isec);
1447     uint64_t isecOff = subsec.offset;
1448 
1449     // Subtractor relocs require the subtrahend to be a symbol reloc. Ensure
1450     // that all EH frames have an associated symbol so that we can generate
1451     // subtractor relocs that reference them.
1452     if (isec->symbols.size() == 0)
1453       isec->symbols.push_back(make<Defined>(
1454           "EH_Frame", isec->getFile(), isec, /*value=*/0, /*size=*/0,
1455           /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false,
1456           /*includeInSymtab=*/false, /*isThumb=*/false,
1457           /*isReferencedDynamically=*/false, /*noDeadStrip=*/false));
1458     else if (isec->symbols[0]->value != 0)
1459       fatal("found symbol at unexpected offset in __eh_frame");
1460 
1461     EhReader reader(this, isec->data, subsec.offset, target->wordSize);
1462     size_t dataOff = 0; // Offset from the start of the EH frame.
1463     reader.skipValidLength(&dataOff); // readLength() already validated this.
1464     // cieOffOff is the offset from the start of the EH frame to the cieOff
1465     // value, which is itself an offset from the current PC to a CIE.
1466     const size_t cieOffOff = dataOff;
1467 
1468     EhRelocator ehRelocator(isec);
1469     auto cieOffRelocIt = llvm::find_if(
1470         isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; });
1471     InputSection *cieIsec = nullptr;
1472     if (cieOffRelocIt != isec->relocs.end()) {
1473       // We already have an explicit relocation for the CIE offset.
1474       cieIsec =
1475           targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt)
1476               ->isec;
1477       dataOff += sizeof(uint32_t);
1478     } else {
1479       // If we haven't found a relocation, then the CIE offset is most likely
1480       // embedded in the section data (AKA an "abs-ified" reloc.). Parse that
1481       // and generate a Reloc struct.
1482       uint32_t cieMinuend = reader.readU32(&dataOff);
1483       if (cieMinuend == 0)
1484         cieIsec = isec;
1485       else {
1486         uint32_t cieOff = isecOff + dataOff - cieMinuend;
1487         cieIsec = findContainingSubsection(ehFrameSection, &cieOff);
1488         if (cieIsec == nullptr)
1489           fatal("failed to find CIE");
1490       }
1491       if (cieIsec != isec)
1492         ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0],
1493                                       /*length=*/2);
1494     }
1495     if (cieIsec == isec) {
1496       cieMap[cieIsec] = parseCIE(isec, reader, dataOff);
1497       continue;
1498     }
1499 
1500     // Offset of the function address within the EH frame.
1501     const size_t funcAddrOff = dataOff;
1502     uint64_t funcAddr = reader.readPointer(&dataOff) + ehFrameSection.addr +
1503                         isecOff + funcAddrOff;
1504     uint32_t funcLength = reader.readPointer(&dataOff);
1505     size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame.
1506     assert(cieMap.count(cieIsec));
1507     const CIE &cie = cieMap[cieIsec];
1508     Optional<uint64_t> lsdaAddrOpt;
1509     if (cie.fdesHaveAug) {
1510       reader.skipLeb128(&dataOff);
1511       lsdaAddrOff = dataOff;
1512       if (cie.fdesHaveLsda) {
1513         uint64_t lsdaOff = reader.readPointer(&dataOff);
1514         if (lsdaOff != 0) // FIXME possible to test this?
1515           lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff;
1516       }
1517     }
1518 
1519     auto funcAddrRelocIt = isec->relocs.end();
1520     auto lsdaAddrRelocIt = isec->relocs.end();
1521     for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) {
1522       if (it->offset == funcAddrOff)
1523         funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1524       else if (lsdaAddrOpt && it->offset == lsdaAddrOff)
1525         lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1526     }
1527 
1528     Defined *funcSym;
1529     if (funcAddrRelocIt != isec->relocs.end()) {
1530       funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt);
1531       // Canonicalize the symbol. If there are multiple symbols at the same
1532       // address, we want both `registerEhFrame` and `registerCompactUnwind`
1533       // to register the unwind entry under same symbol.
1534       // This is not particularly efficient, but we should run into this case
1535       // infrequently (only when handling the output of `ld -r`).
1536       funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec),
1537                                    funcSym->value);
1538     } else {
1539       funcSym = findSymbolAtAddress(sections, funcAddr);
1540       ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize);
1541     }
1542     // The symbol has been coalesced, or already has a compact unwind entry.
1543     if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry) {
1544       // We must prune unused FDEs for correctness, so we cannot rely on
1545       // -dead_strip being enabled.
1546       isec->live = false;
1547       continue;
1548     }
1549 
1550     InputSection *lsdaIsec = nullptr;
1551     if (lsdaAddrRelocIt != isec->relocs.end()) {
1552       lsdaIsec = targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec;
1553     } else if (lsdaAddrOpt) {
1554       uint64_t lsdaAddr = *lsdaAddrOpt;
1555       Section *sec = findContainingSection(sections, &lsdaAddr);
1556       lsdaIsec =
1557           cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr));
1558       ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize);
1559     }
1560 
1561     fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec};
1562     funcSym->unwindEntry = isec;
1563     ehRelocator.commit();
1564   }
1565 }
1566 
1567 std::string ObjFile::sourceFile() const {
1568   SmallString<261> dir(compileUnit->getCompilationDir());
1569   StringRef sep = sys::path::get_separator();
1570   // We don't use `path::append` here because we want an empty `dir` to result
1571   // in an absolute path. `append` would give us a relative path for that case.
1572   if (!dir.endswith(sep))
1573     dir += sep;
1574   return (dir + compileUnit->getUnitDIE().getShortName()).str();
1575 }
1576 
1577 lld::DWARFCache *ObjFile::getDwarf() {
1578   llvm::call_once(initDwarf, [this]() {
1579     auto dwObj = DwarfObject::create(this);
1580     if (!dwObj)
1581       return;
1582     dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
1583         std::move(dwObj), "",
1584         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
1585         [&](Error warning) {
1586           warn(getName() + ": " + toString(std::move(warning)));
1587         }));
1588   });
1589 
1590   return dwarfCache.get();
1591 }
1592 // The path can point to either a dylib or a .tbd file.
1593 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
1594   Optional<MemoryBufferRef> mbref = readFile(path);
1595   if (!mbref) {
1596     error("could not read dylib file at " + path);
1597     return nullptr;
1598   }
1599   return loadDylib(*mbref, umbrella);
1600 }
1601 
1602 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
1603 // the first document storing child pointers to the rest of them. When we are
1604 // processing a given TBD file, we store that top-level document in
1605 // currentTopLevelTapi. When processing re-exports, we search its children for
1606 // potentially matching documents in the same TBD file. Note that the children
1607 // themselves don't point to further documents, i.e. this is a two-level tree.
1608 //
1609 // Re-exports can either refer to on-disk files, or to documents within .tbd
1610 // files.
1611 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
1612                             const InterfaceFile *currentTopLevelTapi) {
1613   // Search order:
1614   // 1. Install name basename in -F / -L directories.
1615   {
1616     StringRef stem = path::stem(path);
1617     SmallString<128> frameworkName;
1618     path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
1619     bool isFramework = path.endswith(frameworkName);
1620     if (isFramework) {
1621       for (StringRef dir : config->frameworkSearchPaths) {
1622         SmallString<128> candidate = dir;
1623         path::append(candidate, frameworkName);
1624         if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str()))
1625           return loadDylib(*dylibPath, umbrella);
1626       }
1627     } else if (Optional<StringRef> dylibPath = findPathCombination(
1628                    stem, config->librarySearchPaths, {".tbd", ".dylib"}))
1629       return loadDylib(*dylibPath, umbrella);
1630   }
1631 
1632   // 2. As absolute path.
1633   if (path::is_absolute(path, path::Style::posix))
1634     for (StringRef root : config->systemLibraryRoots)
1635       if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str()))
1636         return loadDylib(*dylibPath, umbrella);
1637 
1638   // 3. As relative path.
1639 
1640   // TODO: Handle -dylib_file
1641 
1642   // Replace @executable_path, @loader_path, @rpath prefixes in install name.
1643   SmallString<128> newPath;
1644   if (config->outputType == MH_EXECUTE &&
1645       path.consume_front("@executable_path/")) {
1646     // ld64 allows overriding this with the undocumented flag -executable_path.
1647     // lld doesn't currently implement that flag.
1648     // FIXME: Consider using finalOutput instead of outputFile.
1649     path::append(newPath, path::parent_path(config->outputFile), path);
1650     path = newPath;
1651   } else if (path.consume_front("@loader_path/")) {
1652     fs::real_path(umbrella->getName(), newPath);
1653     path::remove_filename(newPath);
1654     path::append(newPath, path);
1655     path = newPath;
1656   } else if (path.startswith("@rpath/")) {
1657     for (StringRef rpath : umbrella->rpaths) {
1658       newPath.clear();
1659       if (rpath.consume_front("@loader_path/")) {
1660         fs::real_path(umbrella->getName(), newPath);
1661         path::remove_filename(newPath);
1662       }
1663       path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1664       if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1665         return loadDylib(*dylibPath, umbrella);
1666     }
1667   }
1668 
1669   // FIXME: Should this be further up?
1670   if (currentTopLevelTapi) {
1671     for (InterfaceFile &child :
1672          make_pointee_range(currentTopLevelTapi->documents())) {
1673       assert(child.documents().empty());
1674       if (path == child.getInstallName()) {
1675         auto file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false,
1676                                     /*explicitlyLinked=*/false);
1677         file->parseReexports(child);
1678         return file;
1679       }
1680     }
1681   }
1682 
1683   if (Optional<StringRef> dylibPath = resolveDylibPath(path))
1684     return loadDylib(*dylibPath, umbrella);
1685 
1686   return nullptr;
1687 }
1688 
1689 // If a re-exported dylib is public (lives in /usr/lib or
1690 // /System/Library/Frameworks), then it is considered implicitly linked: we
1691 // should bind to its symbols directly instead of via the re-exporting umbrella
1692 // library.
1693 static bool isImplicitlyLinked(StringRef path) {
1694   if (!config->implicitDylibs)
1695     return false;
1696 
1697   if (path::parent_path(path) == "/usr/lib")
1698     return true;
1699 
1700   // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1701   if (path.consume_front("/System/Library/Frameworks/")) {
1702     StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1703     return path::filename(path) == frameworkName;
1704   }
1705 
1706   return false;
1707 }
1708 
1709 static void loadReexport(StringRef path, DylibFile *umbrella,
1710                          const InterfaceFile *currentTopLevelTapi) {
1711   DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1712   if (!reexport)
1713     error("unable to locate re-export with install name " + path);
1714 }
1715 
1716 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1717                      bool isBundleLoader, bool explicitlyLinked)
1718     : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1719       explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1720   assert(!isBundleLoader || !umbrella);
1721   if (umbrella == nullptr)
1722     umbrella = this;
1723   this->umbrella = umbrella;
1724 
1725   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1726 
1727   // Initialize installName.
1728   if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1729     auto *c = reinterpret_cast<const dylib_command *>(cmd);
1730     currentVersion = read32le(&c->dylib.current_version);
1731     compatibilityVersion = read32le(&c->dylib.compatibility_version);
1732     installName =
1733         reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1734   } else if (!isBundleLoader) {
1735     // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1736     // so it's OK.
1737     error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
1738     return;
1739   }
1740 
1741   if (config->printEachFile)
1742     message(toString(this));
1743   inputFiles.insert(this);
1744 
1745   deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1746 
1747   if (!checkCompatibility(this))
1748     return;
1749 
1750   checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1751 
1752   for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1753     StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1754     rpaths.push_back(rpath);
1755   }
1756 
1757   // Initialize symbols.
1758   exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
1759 
1760   const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY);
1761   const auto *exportsTrie =
1762       findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE);
1763   if (dyldInfo && exportsTrie) {
1764     // It's unclear what should happen in this case. Maybe we should only error
1765     // out if the two load commands refer to different data?
1766     error("dylib " + toString(this) +
1767           " has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE");
1768     return;
1769   } else if (dyldInfo) {
1770     parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size);
1771   } else if (exportsTrie) {
1772     parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize);
1773   } else {
1774     error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " +
1775           toString(this));
1776     return;
1777   }
1778 }
1779 
1780 void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) {
1781   struct TrieEntry {
1782     StringRef name;
1783     uint64_t flags;
1784   };
1785 
1786   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1787   std::vector<TrieEntry> entries;
1788   // Find all the $ld$* symbols to process first.
1789   parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) {
1790     StringRef savedName = saver().save(name);
1791     if (handleLDSymbol(savedName))
1792       return;
1793     entries.push_back({savedName, flags});
1794   });
1795 
1796   // Process the "normal" symbols.
1797   for (TrieEntry &entry : entries) {
1798     if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name)))
1799       continue;
1800 
1801     bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1802     bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1803 
1804     symbols.push_back(
1805         symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv));
1806   }
1807 }
1808 
1809 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1810   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1811   const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1812                      target->headerSize;
1813   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1814     auto *cmd = reinterpret_cast<const load_command *>(p);
1815     p += cmd->cmdsize;
1816 
1817     if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1818         cmd->cmd == LC_REEXPORT_DYLIB) {
1819       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1820       StringRef reexportPath =
1821           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1822       loadReexport(reexportPath, exportingFile, nullptr);
1823     }
1824 
1825     // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1826     // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1827     // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1828     if (config->namespaceKind == NamespaceKind::flat &&
1829         cmd->cmd == LC_LOAD_DYLIB) {
1830       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1831       StringRef dylibPath =
1832           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1833       DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1834       if (!dylib)
1835         error(Twine("unable to locate library '") + dylibPath +
1836               "' loaded from '" + toString(this) + "' for -flat_namespace");
1837     }
1838   }
1839 }
1840 
1841 // Some versions of Xcode ship with .tbd files that don't have the right
1842 // platform settings.
1843 constexpr std::array<StringRef, 3> skipPlatformChecks{
1844     "/usr/lib/system/libsystem_kernel.dylib",
1845     "/usr/lib/system/libsystem_platform.dylib",
1846     "/usr/lib/system/libsystem_pthread.dylib"};
1847 
1848 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface,
1849                                          bool explicitlyLinked) {
1850   // Catalyst outputs can link against implicitly linked macOS-only libraries.
1851   if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked)
1852     return false;
1853   return is_contained(interface.targets(),
1854                       MachO::Target(config->arch(), PLATFORM_MACOS));
1855 }
1856 
1857 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1858                      bool isBundleLoader, bool explicitlyLinked)
1859     : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1860       explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1861   // FIXME: Add test for the missing TBD code path.
1862 
1863   if (umbrella == nullptr)
1864     umbrella = this;
1865   this->umbrella = umbrella;
1866 
1867   installName = saver().save(interface.getInstallName());
1868   compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1869   currentVersion = interface.getCurrentVersion().rawValue();
1870 
1871   if (config->printEachFile)
1872     message(toString(this));
1873   inputFiles.insert(this);
1874 
1875   if (!is_contained(skipPlatformChecks, installName) &&
1876       !is_contained(interface.targets(), config->platformInfo.target) &&
1877       !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) {
1878     error(toString(this) + " is incompatible with " +
1879           std::string(config->platformInfo.target));
1880     return;
1881   }
1882 
1883   checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1884 
1885   exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1886   auto addSymbol = [&](const Twine &name) -> void {
1887     StringRef savedName = saver().save(name);
1888     if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName)))
1889       return;
1890 
1891     symbols.push_back(symtab->addDylib(savedName, exportingFile,
1892                                        /*isWeakDef=*/false,
1893                                        /*isTlv=*/false));
1894   };
1895 
1896   std::vector<const llvm::MachO::Symbol *> normalSymbols;
1897   normalSymbols.reserve(interface.symbolsCount());
1898   for (const auto *symbol : interface.symbols()) {
1899     if (!symbol->getArchitectures().has(config->arch()))
1900       continue;
1901     if (handleLDSymbol(symbol->getName()))
1902       continue;
1903 
1904     switch (symbol->getKind()) {
1905     case SymbolKind::GlobalSymbol:               // Fallthrough
1906     case SymbolKind::ObjectiveCClass:            // Fallthrough
1907     case SymbolKind::ObjectiveCClassEHType:      // Fallthrough
1908     case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough
1909       normalSymbols.push_back(symbol);
1910     }
1911   }
1912 
1913   // TODO(compnerd) filter out symbols based on the target platform
1914   // TODO: handle weak defs, thread locals
1915   for (const auto *symbol : normalSymbols) {
1916     switch (symbol->getKind()) {
1917     case SymbolKind::GlobalSymbol:
1918       addSymbol(symbol->getName());
1919       break;
1920     case SymbolKind::ObjectiveCClass:
1921       // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1922       // want to emulate that.
1923       addSymbol(objc::klass + symbol->getName());
1924       addSymbol(objc::metaclass + symbol->getName());
1925       break;
1926     case SymbolKind::ObjectiveCClassEHType:
1927       addSymbol(objc::ehtype + symbol->getName());
1928       break;
1929     case SymbolKind::ObjectiveCInstanceVariable:
1930       addSymbol(objc::ivar + symbol->getName());
1931       break;
1932     }
1933   }
1934 }
1935 
1936 void DylibFile::parseReexports(const InterfaceFile &interface) {
1937   const InterfaceFile *topLevel =
1938       interface.getParent() == nullptr ? &interface : interface.getParent();
1939   for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1940     InterfaceFile::const_target_range targets = intfRef.targets();
1941     if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1942         is_contained(targets, config->platformInfo.target))
1943       loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1944   }
1945 }
1946 
1947 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1948 // name, compatibility version or hide/add symbols) for specific target
1949 // versions.
1950 bool DylibFile::handleLDSymbol(StringRef originalName) {
1951   if (!originalName.startswith("$ld$"))
1952     return false;
1953 
1954   StringRef action;
1955   StringRef name;
1956   std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1957   if (action == "previous")
1958     handleLDPreviousSymbol(name, originalName);
1959   else if (action == "install_name")
1960     handleLDInstallNameSymbol(name, originalName);
1961   else if (action == "hide")
1962     handleLDHideSymbol(name, originalName);
1963   return true;
1964 }
1965 
1966 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1967   // originalName: $ld$ previous $ <installname> $ <compatversion> $
1968   // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1969   StringRef installName;
1970   StringRef compatVersion;
1971   StringRef platformStr;
1972   StringRef startVersion;
1973   StringRef endVersion;
1974   StringRef symbolName;
1975   StringRef rest;
1976 
1977   std::tie(installName, name) = name.split('$');
1978   std::tie(compatVersion, name) = name.split('$');
1979   std::tie(platformStr, name) = name.split('$');
1980   std::tie(startVersion, name) = name.split('$');
1981   std::tie(endVersion, name) = name.split('$');
1982   std::tie(symbolName, rest) = name.split('$');
1983   // TODO: ld64 contains some logic for non-empty symbolName as well.
1984   if (!symbolName.empty())
1985     return;
1986   unsigned platform;
1987   if (platformStr.getAsInteger(10, platform) ||
1988       platform != static_cast<unsigned>(config->platform()))
1989     return;
1990 
1991   VersionTuple start;
1992   if (start.tryParse(startVersion)) {
1993     warn("failed to parse start version, symbol '" + originalName +
1994          "' ignored");
1995     return;
1996   }
1997   VersionTuple end;
1998   if (end.tryParse(endVersion)) {
1999     warn("failed to parse end version, symbol '" + originalName + "' ignored");
2000     return;
2001   }
2002   if (config->platformInfo.minimum < start ||
2003       config->platformInfo.minimum >= end)
2004     return;
2005 
2006   this->installName = saver().save(installName);
2007 
2008   if (!compatVersion.empty()) {
2009     VersionTuple cVersion;
2010     if (cVersion.tryParse(compatVersion)) {
2011       warn("failed to parse compatibility version, symbol '" + originalName +
2012            "' ignored");
2013       return;
2014     }
2015     compatibilityVersion = encodeVersion(cVersion);
2016   }
2017 }
2018 
2019 void DylibFile::handleLDInstallNameSymbol(StringRef name,
2020                                           StringRef originalName) {
2021   // originalName: $ld$ install_name $ os<version> $ install_name
2022   StringRef condition, installName;
2023   std::tie(condition, installName) = name.split('$');
2024   VersionTuple version;
2025   if (!condition.consume_front("os") || version.tryParse(condition))
2026     warn("failed to parse os version, symbol '" + originalName + "' ignored");
2027   else if (version == config->platformInfo.minimum)
2028     this->installName = saver().save(installName);
2029 }
2030 
2031 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) {
2032   StringRef symbolName;
2033   bool shouldHide = true;
2034   if (name.startswith("os")) {
2035     // If it's hidden based on versions.
2036     name = name.drop_front(2);
2037     StringRef minVersion;
2038     std::tie(minVersion, symbolName) = name.split('$');
2039     VersionTuple versionTup;
2040     if (versionTup.tryParse(minVersion)) {
2041       warn("Failed to parse hidden version, symbol `" + originalName +
2042            "` ignored.");
2043       return;
2044     }
2045     shouldHide = versionTup == config->platformInfo.minimum;
2046   } else {
2047     symbolName = name;
2048   }
2049 
2050   if (shouldHide)
2051     exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName));
2052 }
2053 
2054 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
2055   if (config->applicationExtension && !dylibIsAppExtensionSafe)
2056     warn("using '-application_extension' with unsafe dylib: " + toString(this));
2057 }
2058 
2059 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
2060     : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {}
2061 
2062 void ArchiveFile::addLazySymbols() {
2063   for (const object::Archive::Symbol &sym : file->symbols())
2064     symtab->addLazyArchive(sym.getName(), this, sym);
2065 }
2066 
2067 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb,
2068                                                uint32_t modTime,
2069                                                StringRef archiveName,
2070                                                uint64_t offsetInArchive) {
2071   if (config->zeroModTime)
2072     modTime = 0;
2073 
2074   switch (identify_magic(mb.getBuffer())) {
2075   case file_magic::macho_object:
2076     return make<ObjFile>(mb, modTime, archiveName);
2077   case file_magic::bitcode:
2078     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
2079   default:
2080     return createStringError(inconvertibleErrorCode(),
2081                              mb.getBufferIdentifier() +
2082                                  " has unhandled file type");
2083   }
2084 }
2085 
2086 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
2087   if (!seen.insert(c.getChildOffset()).second)
2088     return Error::success();
2089 
2090   Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
2091   if (!mb)
2092     return mb.takeError();
2093 
2094   // Thin archives refer to .o files, so --reproduce needs the .o files too.
2095   if (tar && c.getParent()->isThin())
2096     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
2097 
2098   Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
2099   if (!modTime)
2100     return modTime.takeError();
2101 
2102   Expected<InputFile *> file =
2103       loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset());
2104 
2105   if (!file)
2106     return file.takeError();
2107 
2108   inputFiles.insert(*file);
2109   printArchiveMemberLoad(reason, *file);
2110   return Error::success();
2111 }
2112 
2113 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
2114   object::Archive::Child c =
2115       CHECK(sym.getMember(), toString(this) +
2116                                  ": could not get the member defining symbol " +
2117                                  toMachOString(sym));
2118 
2119   // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
2120   // and become invalid after that call. Copy it to the stack so we can refer
2121   // to it later.
2122   const object::Archive::Symbol symCopy = sym;
2123 
2124   // ld64 doesn't demangle sym here even with -demangle.
2125   // Match that: intentionally don't call toMachOString().
2126   if (Error e = fetch(c, symCopy.getName()))
2127     error(toString(this) + ": could not get the member defining symbol " +
2128           toMachOString(symCopy) + ": " + toString(std::move(e)));
2129 }
2130 
2131 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
2132                                           BitcodeFile &file) {
2133   StringRef name = saver().save(objSym.getName());
2134 
2135   if (objSym.isUndefined())
2136     return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak());
2137 
2138   // TODO: Write a test demonstrating why computing isPrivateExtern before
2139   // LTO compilation is important.
2140   bool isPrivateExtern = false;
2141   switch (objSym.getVisibility()) {
2142   case GlobalValue::HiddenVisibility:
2143     isPrivateExtern = true;
2144     break;
2145   case GlobalValue::ProtectedVisibility:
2146     error(name + " has protected visibility, which is not supported by Mach-O");
2147     break;
2148   case GlobalValue::DefaultVisibility:
2149     break;
2150   }
2151   isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable();
2152 
2153   if (objSym.isCommon())
2154     return symtab->addCommon(name, &file, objSym.getCommonSize(),
2155                              objSym.getCommonAlignment(), isPrivateExtern);
2156 
2157   return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
2158                             /*size=*/0, objSym.isWeak(), isPrivateExtern,
2159                             /*isThumb=*/false,
2160                             /*isReferencedDynamically=*/false,
2161                             /*noDeadStrip=*/false,
2162                             /*isWeakDefCanBeHidden=*/false);
2163 }
2164 
2165 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
2166                          uint64_t offsetInArchive, bool lazy)
2167     : InputFile(BitcodeKind, mb, lazy) {
2168   this->archiveName = std::string(archiveName);
2169   std::string path = mb.getBufferIdentifier().str();
2170   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
2171   // name. If two members with the same name are provided, this causes a
2172   // collision and ThinLTO can't proceed.
2173   // So, we append the archive name to disambiguate two members with the same
2174   // name from multiple different archives, and offset within the archive to
2175   // disambiguate two members of the same name from a single archive.
2176   MemoryBufferRef mbref(mb.getBuffer(),
2177                         saver().save(archiveName.empty()
2178                                          ? path
2179                                          : archiveName +
2180                                                sys::path::filename(path) +
2181                                                utostr(offsetInArchive)));
2182 
2183   obj = check(lto::InputFile::create(mbref));
2184   if (lazy)
2185     parseLazy();
2186   else
2187     parse();
2188 }
2189 
2190 void BitcodeFile::parse() {
2191   // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
2192   // "winning" symbol will then be marked as Prevailing at LTO compilation
2193   // time.
2194   symbols.clear();
2195   for (const lto::InputFile::Symbol &objSym : obj->symbols())
2196     symbols.push_back(createBitcodeSymbol(objSym, *this));
2197 }
2198 
2199 void BitcodeFile::parseLazy() {
2200   symbols.resize(obj->symbols().size());
2201   for (auto it : llvm::enumerate(obj->symbols())) {
2202     const lto::InputFile::Symbol &objSym = it.value();
2203     if (!objSym.isUndefined()) {
2204       symbols[it.index()] =
2205           symtab->addLazyObject(saver().save(objSym.getName()), *this);
2206       if (!lazy)
2207         break;
2208     }
2209   }
2210 }
2211 
2212 void macho::extract(InputFile &file, StringRef reason) {
2213   assert(file.lazy);
2214   file.lazy = false;
2215   printArchiveMemberLoad(reason, &file);
2216   if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) {
2217     bitcode->parse();
2218   } else {
2219     auto &f = cast<ObjFile>(file);
2220     if (target->wordSize == 8)
2221       f.parse<LP64>();
2222     else
2223       f.parse<ILP32>();
2224   }
2225 }
2226 
2227 template void ObjFile::parse<LP64>();
2228