1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "Target.h" 57 58 #include "lld/Common/DWARF.h" 59 #include "lld/Common/ErrorHandler.h" 60 #include "lld/Common/Memory.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/Path.h" 68 #include "llvm/Support/TarWriter.h" 69 #include "llvm/TextAPI/MachO/Architecture.h" 70 #include "llvm/TextAPI/MachO/InterfaceFile.h" 71 72 using namespace llvm; 73 using namespace llvm::MachO; 74 using namespace llvm::support::endian; 75 using namespace llvm::sys; 76 using namespace lld; 77 using namespace lld::macho; 78 79 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 80 std::string lld::toString(const InputFile *f) { 81 if (!f) 82 return "<internal>"; 83 84 // Multiple dylibs can be defined in one .tbd file. 85 if (auto dylibFile = dyn_cast<DylibFile>(f)) 86 if (f->getName().endswith(".tbd")) 87 return (f->getName() + "(" + dylibFile->dylibName + ")").str(); 88 89 if (f->archiveName.empty()) 90 return std::string(f->getName()); 91 return (path::filename(f->archiveName) + "(" + path::filename(f->getName()) + 92 ")") 93 .str(); 94 } 95 96 SetVector<InputFile *> macho::inputFiles; 97 std::unique_ptr<TarWriter> macho::tar; 98 int InputFile::idCount = 0; 99 100 // Open a given file path and return it as a memory-mapped file. 101 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 102 // Open a file. 103 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 104 if (std::error_code ec = mbOrErr.getError()) { 105 error("cannot open " + path + ": " + ec.message()); 106 return None; 107 } 108 109 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 110 MemoryBufferRef mbref = mb->getMemBufferRef(); 111 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 112 113 // If this is a regular non-fat file, return it. 114 const char *buf = mbref.getBufferStart(); 115 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 116 if (mbref.getBufferSize() < sizeof(uint32_t) || 117 read32be(&hdr->magic) != FAT_MAGIC) { 118 if (tar) 119 tar->append(relativeToRoot(path), mbref.getBuffer()); 120 return mbref; 121 } 122 123 // Object files and archive files may be fat files, which contains 124 // multiple real files for different CPU ISAs. Here, we search for a 125 // file that matches with the current link target and returns it as 126 // a MemoryBufferRef. 127 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 128 129 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 130 if (reinterpret_cast<const char *>(arch + i + 1) > 131 buf + mbref.getBufferSize()) { 132 error(path + ": fat_arch struct extends beyond end of file"); 133 return None; 134 } 135 136 if (read32be(&arch[i].cputype) != target->cpuType || 137 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 138 continue; 139 140 uint32_t offset = read32be(&arch[i].offset); 141 uint32_t size = read32be(&arch[i].size); 142 if (offset + size > mbref.getBufferSize()) 143 error(path + ": slice extends beyond end of file"); 144 if (tar) 145 tar->append(relativeToRoot(path), mbref.getBuffer()); 146 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 147 } 148 149 error("unable to find matching architecture in " + path); 150 return None; 151 } 152 153 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 154 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 155 156 void ObjFile::parseSections(ArrayRef<section_64> sections) { 157 subsections.reserve(sections.size()); 158 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 159 160 for (const section_64 &sec : sections) { 161 InputSection *isec = make<InputSection>(); 162 isec->file = this; 163 isec->name = 164 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 165 isec->segname = 166 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 167 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 168 static_cast<size_t>(sec.size)}; 169 if (sec.align >= 32) 170 error("alignment " + std::to_string(sec.align) + " of section " + 171 isec->name + " is too large"); 172 else 173 isec->align = 1 << sec.align; 174 isec->flags = sec.flags; 175 176 if (!(isDebugSection(isec->flags) && 177 isec->segname == segment_names::dwarf)) { 178 subsections.push_back({{0, isec}}); 179 } else { 180 // Instead of emitting DWARF sections, we emit STABS symbols to the 181 // object files that contain them. We filter them out early to avoid 182 // parsing their relocations unnecessarily. But we must still push an 183 // empty map to ensure the indices line up for the remaining sections. 184 subsections.push_back({}); 185 debugSections.push_back(isec); 186 } 187 } 188 } 189 190 // Find the subsection corresponding to the greatest section offset that is <= 191 // that of the given offset. 192 // 193 // offset: an offset relative to the start of the original InputSection (before 194 // any subsection splitting has occurred). It will be updated to represent the 195 // same location as an offset relative to the start of the containing 196 // subsection. 197 static InputSection *findContainingSubsection(SubsectionMap &map, 198 uint32_t *offset) { 199 auto it = std::prev(map.upper_bound(*offset)); 200 *offset -= it->first; 201 return it->second; 202 } 203 204 static bool validateRelocationInfo(InputFile *file, const section_64 &sec, 205 relocation_info rel) { 206 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 207 bool valid = true; 208 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 209 valid = false; 210 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 211 std::to_string(rel.r_address) + " of " + sec.segname + "," + 212 sec.sectname + " in " + toString(file)) 213 .str(); 214 }; 215 216 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 217 error(message("must be extern")); 218 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 219 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 220 "be PC-relative")); 221 if (isThreadLocalVariables(sec.flags) && 222 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 223 error(message("not allowed in thread-local section, must be UNSIGNED")); 224 if (rel.r_length < 2 || rel.r_length > 3 || 225 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 226 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 227 error(message("has width " + std::to_string(1 << rel.r_length) + 228 " bytes, but must be " + 229 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 230 " bytes")); 231 } 232 return valid; 233 } 234 235 void ObjFile::parseRelocations(const section_64 &sec, 236 SubsectionMap &subsecMap) { 237 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 238 ArrayRef<relocation_info> relInfos( 239 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 240 241 for (size_t i = 0; i < relInfos.size(); i++) { 242 // Paired relocations serve as Mach-O's method for attaching a 243 // supplemental datum to a primary relocation record. ELF does not 244 // need them because the *_RELOC_RELA records contain the extra 245 // addend field, vs. *_RELOC_REL which omit the addend. 246 // 247 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 248 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 249 // datum for each is a symbolic address. The result is the offset 250 // between two addresses. 251 // 252 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 253 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 254 // base symbolic address. 255 // 256 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 257 // addend into the instruction stream. On X86, a relocatable address 258 // field always occupies an entire contiguous sequence of byte(s), 259 // so there is no need to merge opcode bits with address 260 // bits. Therefore, it's easy and convenient to store addends in the 261 // instruction-stream bytes that would otherwise contain zeroes. By 262 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 263 // address bits so that bitwise arithmetic is necessary to extract 264 // and insert them. Storing addends in the instruction stream is 265 // possible, but inconvenient and more costly at link time. 266 267 int64_t pairedAddend = 0; 268 relocation_info relInfo = relInfos[i]; 269 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 270 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 271 relInfo = relInfos[++i]; 272 } 273 assert(i < relInfos.size()); 274 if (!validateRelocationInfo(this, sec, relInfo)) 275 continue; 276 if (relInfo.r_address & R_SCATTERED) 277 fatal("TODO: Scattered relocations not supported"); 278 279 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec, relInfo); 280 assert(!(embeddedAddend && pairedAddend)); 281 int64_t totalAddend = pairedAddend + embeddedAddend; 282 Reloc r; 283 r.type = relInfo.r_type; 284 r.pcrel = relInfo.r_pcrel; 285 r.length = relInfo.r_length; 286 r.offset = relInfo.r_address; 287 if (relInfo.r_extern) { 288 r.referent = symbols[relInfo.r_symbolnum]; 289 r.addend = totalAddend; 290 } else { 291 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 292 const section_64 &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 293 uint32_t referentOffset; 294 if (relInfo.r_pcrel) { 295 // The implicit addend for pcrel section relocations is the pcrel offset 296 // in terms of the addresses in the input file. Here we adjust it so 297 // that it describes the offset from the start of the referent section. 298 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 299 // have pcrel section relocations. We may want to factor this out into 300 // the arch-specific .cpp file. 301 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 302 referentOffset = 303 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 304 } else { 305 // The addend for a non-pcrel relocation is its absolute address. 306 referentOffset = totalAddend - referentSec.addr; 307 } 308 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 309 r.addend = referentOffset; 310 } 311 312 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 313 subsec->relocs.push_back(r); 314 315 if (target->hasAttr(r.type, RelocAttrBits::SUBTRAHEND)) { 316 relInfo = relInfos[++i]; 317 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 318 // indicating the minuend symbol. 319 assert(target->hasAttr(relInfo.r_type, RelocAttrBits::UNSIGNED) && 320 relInfo.r_extern); 321 Reloc p; 322 p.type = relInfo.r_type; 323 p.referent = symbols[relInfo.r_symbolnum]; 324 subsec->relocs.push_back(p); 325 } 326 } 327 } 328 329 static macho::Symbol *createDefined(const structs::nlist_64 &sym, 330 StringRef name, InputSection *isec, 331 uint32_t value) { 332 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 333 // N_EXT: Global symbols 334 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped 335 // N_PEXT: Does not occur in input files in practice, 336 // a private extern must be external. 337 // 0: Translation-unit scoped. These are not in the symbol table. 338 339 if (sym.n_type & (N_EXT | N_PEXT)) { 340 assert((sym.n_type & N_EXT) && "invalid input"); 341 return symtab->addDefined(name, isec->file, isec, value, 342 sym.n_desc & N_WEAK_DEF, sym.n_type & N_PEXT); 343 } 344 return make<Defined>(name, isec->file, isec, value, sym.n_desc & N_WEAK_DEF, 345 /*isExternal=*/false, /*isPrivateExtern=*/false); 346 } 347 348 // Checks if the version specified in `cmd` is compatible with target 349 // version. IOW, check if cmd's version >= config's version. 350 static bool hasCompatVersion(const InputFile *input, 351 const build_version_command *cmd) { 352 353 if (config->target.Platform != static_cast<PlatformKind>(cmd->platform)) { 354 error(toString(input) + " has platform " + 355 getPlatformName(static_cast<PlatformKind>(cmd->platform)) + 356 Twine(", which is different from target platform ") + 357 getPlatformName(config->target.Platform)); 358 return false; 359 } 360 361 unsigned major = cmd->minos >> 16; 362 unsigned minor = (cmd->minos >> 8) & 0xffu; 363 unsigned subMinor = cmd->minos & 0xffu; 364 VersionTuple version(major, minor, subMinor); 365 if (version >= config->platformInfo.minimum) 366 return true; 367 368 error(toString(input) + " has version " + version.getAsString() + 369 ", which is incompatible with target version of " + 370 config->platformInfo.minimum.getAsString()); 371 return false; 372 } 373 374 // Absolute symbols are defined symbols that do not have an associated 375 // InputSection. They cannot be weak. 376 static macho::Symbol *createAbsolute(const structs::nlist_64 &sym, 377 InputFile *file, StringRef name) { 378 if (sym.n_type & (N_EXT | N_PEXT)) { 379 assert((sym.n_type & N_EXT) && "invalid input"); 380 return symtab->addDefined(name, file, nullptr, sym.n_value, 381 /*isWeakDef=*/false, sym.n_type & N_PEXT); 382 } 383 return make<Defined>(name, file, nullptr, sym.n_value, /*isWeakDef=*/false, 384 /*isExternal=*/false, /*isPrivateExtern=*/false); 385 } 386 387 macho::Symbol *ObjFile::parseNonSectionSymbol(const structs::nlist_64 &sym, 388 StringRef name) { 389 uint8_t type = sym.n_type & N_TYPE; 390 switch (type) { 391 case N_UNDF: 392 return sym.n_value == 0 393 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 394 : symtab->addCommon(name, this, sym.n_value, 395 1 << GET_COMM_ALIGN(sym.n_desc), 396 sym.n_type & N_PEXT); 397 case N_ABS: 398 return createAbsolute(sym, this, name); 399 case N_PBUD: 400 case N_INDR: 401 error("TODO: support symbols of type " + std::to_string(type)); 402 return nullptr; 403 case N_SECT: 404 llvm_unreachable( 405 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 406 default: 407 llvm_unreachable("invalid symbol type"); 408 } 409 } 410 411 void ObjFile::parseSymbols(ArrayRef<structs::nlist_64> nList, 412 const char *strtab, bool subsectionsViaSymbols) { 413 // resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols 414 // out-of-sequence. 415 symbols.resize(nList.size()); 416 std::vector<size_t> altEntrySymIdxs; 417 418 for (size_t i = 0, n = nList.size(); i < n; ++i) { 419 const structs::nlist_64 &sym = nList[i]; 420 StringRef name = strtab + sym.n_strx; 421 422 if ((sym.n_type & N_TYPE) != N_SECT) { 423 symbols[i] = parseNonSectionSymbol(sym, name); 424 continue; 425 } 426 427 const section_64 &sec = sectionHeaders[sym.n_sect - 1]; 428 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 429 430 // parseSections() may have chosen not to parse this section. 431 if (subsecMap.empty()) 432 continue; 433 434 uint64_t offset = sym.n_value - sec.addr; 435 436 // If the input file does not use subsections-via-symbols, all symbols can 437 // use the same subsection. Otherwise, we must split the sections along 438 // symbol boundaries. 439 if (!subsectionsViaSymbols) { 440 symbols[i] = createDefined(sym, name, subsecMap[0], offset); 441 continue; 442 } 443 444 // nList entries aren't necessarily arranged in address order. Therefore, 445 // we can't create alt-entry symbols at this point because a later symbol 446 // may split its section, which may affect which subsection the alt-entry 447 // symbol is assigned to. So we need to handle them in a second pass below. 448 if (sym.n_desc & N_ALT_ENTRY) { 449 altEntrySymIdxs.push_back(i); 450 continue; 451 } 452 453 // Find the subsection corresponding to the greatest section offset that is 454 // <= that of the current symbol. The subsection that we find either needs 455 // to be used directly or split in two. 456 uint32_t firstSize = offset; 457 InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize); 458 459 if (firstSize == 0) { 460 // Alias of an existing symbol, or the first symbol in the section. These 461 // are handled by reusing the existing section. 462 symbols[i] = createDefined(sym, name, firstIsec, 0); 463 continue; 464 } 465 466 // We saw a symbol definition at a new offset. Split the section into two 467 // subsections. The new symbol uses the second subsection. 468 auto *secondIsec = make<InputSection>(*firstIsec); 469 secondIsec->data = firstIsec->data.slice(firstSize); 470 firstIsec->data = firstIsec->data.slice(0, firstSize); 471 // TODO: ld64 appears to preserve the original alignment as well as each 472 // subsection's offset from the last aligned address. We should consider 473 // emulating that behavior. 474 secondIsec->align = MinAlign(firstIsec->align, offset); 475 476 subsecMap[offset] = secondIsec; 477 // By construction, the symbol will be at offset zero in the new section. 478 symbols[i] = createDefined(sym, name, secondIsec, 0); 479 } 480 481 for (size_t idx : altEntrySymIdxs) { 482 const structs::nlist_64 &sym = nList[idx]; 483 StringRef name = strtab + sym.n_strx; 484 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 485 uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr; 486 InputSection *subsec = findContainingSubsection(subsecMap, &off); 487 symbols[idx] = createDefined(sym, name, subsec, off); 488 } 489 } 490 491 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 492 StringRef sectName) 493 : InputFile(OpaqueKind, mb) { 494 InputSection *isec = make<InputSection>(); 495 isec->file = this; 496 isec->name = sectName.take_front(16); 497 isec->segname = segName.take_front(16); 498 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 499 isec->data = {buf, mb.getBufferSize()}; 500 subsections.push_back({{0, isec}}); 501 } 502 503 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 504 : InputFile(ObjKind, mb), modTime(modTime) { 505 this->archiveName = std::string(archiveName); 506 507 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 508 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 509 510 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 511 if (arch != config->target.Arch) { 512 error(toString(this) + " has architecture " + getArchitectureName(arch) + 513 " which is incompatible with target architecture " + 514 getArchitectureName(config->target.Arch)); 515 return; 516 } 517 518 if (const auto *cmd = 519 findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) { 520 if (!hasCompatVersion(this, cmd)) 521 return; 522 } 523 524 if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { 525 auto *c = reinterpret_cast<const linker_option_command *>(cmd); 526 StringRef data{reinterpret_cast<const char *>(c + 1), 527 c->cmdsize - sizeof(linker_option_command)}; 528 parseLCLinkerOption(this, c->count, data); 529 } 530 531 if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) { 532 auto *c = reinterpret_cast<const segment_command_64 *>(cmd); 533 sectionHeaders = ArrayRef<section_64>{ 534 reinterpret_cast<const section_64 *>(c + 1), c->nsects}; 535 parseSections(sectionHeaders); 536 } 537 538 // TODO: Error on missing LC_SYMTAB? 539 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 540 auto *c = reinterpret_cast<const symtab_command *>(cmd); 541 ArrayRef<structs::nlist_64> nList( 542 reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms); 543 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 544 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 545 parseSymbols(nList, strtab, subsectionsViaSymbols); 546 } 547 548 // The relocations may refer to the symbols, so we parse them after we have 549 // parsed all the symbols. 550 for (size_t i = 0, n = subsections.size(); i < n; ++i) 551 if (!subsections[i].empty()) 552 parseRelocations(sectionHeaders[i], subsections[i]); 553 554 parseDebugInfo(); 555 } 556 557 void ObjFile::parseDebugInfo() { 558 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 559 if (!dObj) 560 return; 561 562 auto *ctx = make<DWARFContext>( 563 std::move(dObj), "", 564 [&](Error err) { 565 warn(toString(this) + ": " + toString(std::move(err))); 566 }, 567 [&](Error warning) { 568 warn(toString(this) + ": " + toString(std::move(warning))); 569 }); 570 571 // TODO: Since object files can contain a lot of DWARF info, we should verify 572 // that we are parsing just the info we need 573 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 574 // FIXME: There can be more than one compile unit per object file. See 575 // PR48637. 576 auto it = units.begin(); 577 compileUnit = it->get(); 578 } 579 580 // The path can point to either a dylib or a .tbd file. 581 static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) { 582 Optional<MemoryBufferRef> mbref = readFile(path); 583 if (!mbref) { 584 error("could not read dylib file at " + path); 585 return {}; 586 } 587 return loadDylib(*mbref, umbrella); 588 } 589 590 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 591 // the first document storing child pointers to the rest of them. When we are 592 // processing a given TBD file, we store that top-level document in 593 // currentTopLevelTapi. When processing re-exports, we search its children for 594 // potentially matching documents in the same TBD file. Note that the children 595 // themselves don't point to further documents, i.e. this is a two-level tree. 596 // 597 // Re-exports can either refer to on-disk files, or to documents within .tbd 598 // files. 599 static Optional<DylibFile *> 600 findDylib(StringRef path, DylibFile *umbrella, 601 const InterfaceFile *currentTopLevelTapi) { 602 if (path::is_absolute(path, path::Style::posix)) 603 for (StringRef root : config->systemLibraryRoots) 604 if (Optional<std::string> dylibPath = 605 resolveDylibPath((root + path).str())) 606 return loadDylib(*dylibPath, umbrella); 607 608 // TODO: Expand @loader_path, @executable_path, @rpath etc, handle -dylib_path 609 610 if (currentTopLevelTapi) { 611 for (InterfaceFile &child : 612 make_pointee_range(currentTopLevelTapi->documents())) { 613 assert(child.documents().empty()); 614 if (path == child.getInstallName()) 615 return make<DylibFile>(child, umbrella); 616 } 617 } 618 619 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 620 return loadDylib(*dylibPath, umbrella); 621 622 return {}; 623 } 624 625 // If a re-exported dylib is public (lives in /usr/lib or 626 // /System/Library/Frameworks), then it is considered implicitly linked: we 627 // should bind to its symbols directly instead of via the re-exporting umbrella 628 // library. 629 static bool isImplicitlyLinked(StringRef path) { 630 if (!config->implicitDylibs) 631 return false; 632 633 if (path::parent_path(path) == "/usr/lib") 634 return true; 635 636 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 637 if (path.consume_front("/System/Library/Frameworks/")) { 638 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 639 return path::filename(path) == frameworkName; 640 } 641 642 return false; 643 } 644 645 void loadReexport(StringRef path, DylibFile *umbrella, 646 const InterfaceFile *currentTopLevelTapi) { 647 Optional<DylibFile *> reexport = 648 findDylib(path, umbrella, currentTopLevelTapi); 649 if (!reexport) 650 error("unable to locate re-export with install name " + path); 651 else if (isImplicitlyLinked(path)) 652 inputFiles.insert(*reexport); 653 } 654 655 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 656 bool isBundleLoader) 657 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 658 isBundleLoader(isBundleLoader) { 659 assert(!isBundleLoader || !umbrella); 660 if (umbrella == nullptr) 661 umbrella = this; 662 663 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 664 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 665 666 // Initialize dylibName. 667 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 668 auto *c = reinterpret_cast<const dylib_command *>(cmd); 669 currentVersion = read32le(&c->dylib.current_version); 670 compatibilityVersion = read32le(&c->dylib.compatibility_version); 671 dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 672 } else if (!isBundleLoader) { 673 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 674 // so it's OK. 675 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 676 return; 677 } 678 679 if (const build_version_command *cmd = 680 findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) { 681 if (!hasCompatVersion(this, cmd)) 682 return; 683 } 684 685 // Initialize symbols. 686 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 687 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 688 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 689 parseTrie(buf + c->export_off, c->export_size, 690 [&](const Twine &name, uint64_t flags) { 691 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 692 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 693 symbols.push_back(symtab->addDylib( 694 saver.save(name), exportingFile, isWeakDef, isTlv)); 695 }); 696 } else { 697 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 698 return; 699 } 700 701 const uint8_t *p = 702 reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); 703 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 704 auto *cmd = reinterpret_cast<const load_command *>(p); 705 p += cmd->cmdsize; 706 707 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 708 cmd->cmd == LC_REEXPORT_DYLIB) { 709 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 710 StringRef reexportPath = 711 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 712 loadReexport(reexportPath, exportingFile, nullptr); 713 } 714 715 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 716 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 717 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 718 if (config->namespaceKind == NamespaceKind::flat && 719 cmd->cmd == LC_LOAD_DYLIB) { 720 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 721 StringRef dylibPath = 722 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 723 Optional<DylibFile *> dylib = findDylib(dylibPath, umbrella, nullptr); 724 if (!dylib) 725 error(Twine("unable to locate library '") + dylibPath + 726 "' loaded from '" + toString(this) + "' for -flat_namespace"); 727 } 728 } 729 } 730 731 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 732 bool isBundleLoader) 733 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 734 isBundleLoader(isBundleLoader) { 735 // FIXME: Add test for the missing TBD code path. 736 737 if (umbrella == nullptr) 738 umbrella = this; 739 740 dylibName = saver.save(interface.getInstallName()); 741 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 742 currentVersion = interface.getCurrentVersion().rawValue(); 743 744 if (!is_contained(interface.targets(), config->target)) { 745 error(toString(this) + " is incompatible with " + 746 std::string(config->target)); 747 return; 748 } 749 750 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 751 auto addSymbol = [&](const Twine &name) -> void { 752 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 753 /*isWeakDef=*/false, 754 /*isTlv=*/false)); 755 }; 756 // TODO(compnerd) filter out symbols based on the target platform 757 // TODO: handle weak defs, thread locals 758 for (const auto *symbol : interface.symbols()) { 759 if (!symbol->getArchitectures().has(config->target.Arch)) 760 continue; 761 762 switch (symbol->getKind()) { 763 case SymbolKind::GlobalSymbol: 764 addSymbol(symbol->getName()); 765 break; 766 case SymbolKind::ObjectiveCClass: 767 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 768 // want to emulate that. 769 addSymbol(objc::klass + symbol->getName()); 770 addSymbol(objc::metaclass + symbol->getName()); 771 break; 772 case SymbolKind::ObjectiveCClassEHType: 773 addSymbol(objc::ehtype + symbol->getName()); 774 break; 775 case SymbolKind::ObjectiveCInstanceVariable: 776 addSymbol(objc::ivar + symbol->getName()); 777 break; 778 } 779 } 780 781 const InterfaceFile *topLevel = 782 interface.getParent() == nullptr ? &interface : interface.getParent(); 783 784 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 785 InterfaceFile::const_target_range targets = intfRef.targets(); 786 if (is_contained(targets, config->target)) 787 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 788 } 789 } 790 791 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 792 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 793 for (const object::Archive::Symbol &sym : file->symbols()) 794 symtab->addLazy(sym.getName(), this, sym); 795 } 796 797 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 798 object::Archive::Child c = 799 CHECK(sym.getMember(), toString(this) + 800 ": could not get the member for symbol " + 801 toMachOString(sym)); 802 803 if (!seen.insert(c.getChildOffset()).second) 804 return; 805 806 MemoryBufferRef mb = 807 CHECK(c.getMemoryBufferRef(), 808 toString(this) + 809 ": could not get the buffer for the member defining symbol " + 810 toMachOString(sym)); 811 812 if (tar && c.getParent()->isThin()) 813 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 814 815 uint32_t modTime = toTimeT( 816 CHECK(c.getLastModified(), toString(this) + 817 ": could not get the modification time " 818 "for the member defining symbol " + 819 toMachOString(sym))); 820 821 // `sym` is owned by a LazySym, which will be replace<>() by make<ObjFile> 822 // and become invalid after that call. Copy it to the stack so we can refer 823 // to it later. 824 const object::Archive::Symbol sym_copy = sym; 825 826 if (Optional<InputFile *> file = 827 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 828 inputFiles.insert(*file); 829 // ld64 doesn't demangle sym here even with -demangle. Match that, so 830 // intentionally no call to toMachOString() here. 831 printArchiveMemberLoad(sym_copy.getName(), *file); 832 } 833 } 834 835 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 836 BitcodeFile &file) { 837 StringRef name = saver.save(objSym.getName()); 838 839 // TODO: support weak references 840 if (objSym.isUndefined()) 841 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 842 843 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 844 845 // TODO: Write a test demonstrating why computing isPrivateExtern before 846 // LTO compilation is important. 847 bool isPrivateExtern = false; 848 switch (objSym.getVisibility()) { 849 case GlobalValue::HiddenVisibility: 850 isPrivateExtern = true; 851 break; 852 case GlobalValue::ProtectedVisibility: 853 error(name + " has protected visibility, which is not supported by Mach-O"); 854 break; 855 case GlobalValue::DefaultVisibility: 856 break; 857 } 858 859 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 860 objSym.isWeak(), isPrivateExtern); 861 } 862 863 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 864 : InputFile(BitcodeKind, mbref) { 865 obj = check(lto::InputFile::create(mbref)); 866 867 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 868 // "winning" symbol will then be marked as Prevailing at LTO compilation 869 // time. 870 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 871 symbols.push_back(createBitcodeSymbol(objSym, *this)); 872 } 873