1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/TextAPI/Architecture.h" 71 #include "llvm/TextAPI/InterfaceFile.h" 72 73 using namespace llvm; 74 using namespace llvm::MachO; 75 using namespace llvm::support::endian; 76 using namespace llvm::sys; 77 using namespace lld; 78 using namespace lld::macho; 79 80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 81 std::string lld::toString(const InputFile *f) { 82 if (!f) 83 return "<internal>"; 84 85 // Multiple dylibs can be defined in one .tbd file. 86 if (auto dylibFile = dyn_cast<DylibFile>(f)) 87 if (f->getName().endswith(".tbd")) 88 return (f->getName() + "(" + dylibFile->installName + ")").str(); 89 90 if (f->archiveName.empty()) 91 return std::string(f->getName()); 92 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 93 } 94 95 SetVector<InputFile *> macho::inputFiles; 96 std::unique_ptr<TarWriter> macho::tar; 97 int InputFile::idCount = 0; 98 99 static VersionTuple decodeVersion(uint32_t version) { 100 unsigned major = version >> 16; 101 unsigned minor = (version >> 8) & 0xffu; 102 unsigned subMinor = version & 0xffu; 103 return VersionTuple(major, minor, subMinor); 104 } 105 106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 107 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 108 return {}; 109 110 const char *hdr = input->mb.getBufferStart(); 111 112 std::vector<PlatformInfo> platformInfos; 113 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 PlatformInfo info; 115 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 116 info.minimum = decodeVersion(cmd->minos); 117 platformInfos.emplace_back(std::move(info)); 118 } 119 for (auto *cmd : findCommands<version_min_command>( 120 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 121 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 122 PlatformInfo info; 123 switch (cmd->cmd) { 124 case LC_VERSION_MIN_MACOSX: 125 info.target.Platform = PlatformKind::macOS; 126 break; 127 case LC_VERSION_MIN_IPHONEOS: 128 info.target.Platform = PlatformKind::iOS; 129 break; 130 case LC_VERSION_MIN_TVOS: 131 info.target.Platform = PlatformKind::tvOS; 132 break; 133 case LC_VERSION_MIN_WATCHOS: 134 info.target.Platform = PlatformKind::watchOS; 135 break; 136 } 137 info.minimum = decodeVersion(cmd->version); 138 platformInfos.emplace_back(std::move(info)); 139 } 140 141 return platformInfos; 142 } 143 144 static PlatformKind removeSimulator(PlatformKind platform) { 145 // Mapping of platform to simulator and vice-versa. 146 static const std::map<PlatformKind, PlatformKind> platformMap = { 147 {PlatformKind::iOSSimulator, PlatformKind::iOS}, 148 {PlatformKind::tvOSSimulator, PlatformKind::tvOS}, 149 {PlatformKind::watchOSSimulator, PlatformKind::watchOS}}; 150 151 auto iter = platformMap.find(platform); 152 if (iter == platformMap.end()) 153 return platform; 154 return iter->second; 155 } 156 157 static bool checkCompatibility(const InputFile *input) { 158 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 159 if (platformInfos.empty()) 160 return true; 161 162 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 163 return removeSimulator(info.target.Platform) == 164 removeSimulator(config->platform()); 165 }); 166 if (it == platformInfos.end()) { 167 std::string platformNames; 168 raw_string_ostream os(platformNames); 169 interleave( 170 platformInfos, os, 171 [&](const PlatformInfo &info) { 172 os << getPlatformName(info.target.Platform); 173 }, 174 "/"); 175 error(toString(input) + " has platform " + platformNames + 176 Twine(", which is different from target platform ") + 177 getPlatformName(config->platform())); 178 return false; 179 } 180 181 if (it->minimum <= config->platformInfo.minimum) 182 return true; 183 184 error(toString(input) + " has version " + it->minimum.getAsString() + 185 ", which is newer than target minimum of " + 186 config->platformInfo.minimum.getAsString()); 187 return false; 188 } 189 190 // Open a given file path and return it as a memory-mapped file. 191 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 192 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 193 if (std::error_code ec = mbOrErr.getError()) { 194 error("cannot open " + path + ": " + ec.message()); 195 return None; 196 } 197 198 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 199 MemoryBufferRef mbref = mb->getMemBufferRef(); 200 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 201 202 // If this is a regular non-fat file, return it. 203 const char *buf = mbref.getBufferStart(); 204 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 205 if (mbref.getBufferSize() < sizeof(uint32_t) || 206 read32be(&hdr->magic) != FAT_MAGIC) { 207 if (tar) 208 tar->append(relativeToRoot(path), mbref.getBuffer()); 209 return mbref; 210 } 211 212 // Object files and archive files may be fat files, which contain multiple 213 // real files for different CPU ISAs. Here, we search for a file that matches 214 // with the current link target and returns it as a MemoryBufferRef. 215 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 216 217 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 218 if (reinterpret_cast<const char *>(arch + i + 1) > 219 buf + mbref.getBufferSize()) { 220 error(path + ": fat_arch struct extends beyond end of file"); 221 return None; 222 } 223 224 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 225 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 226 continue; 227 228 uint32_t offset = read32be(&arch[i].offset); 229 uint32_t size = read32be(&arch[i].size); 230 if (offset + size > mbref.getBufferSize()) 231 error(path + ": slice extends beyond end of file"); 232 if (tar) 233 tar->append(relativeToRoot(path), mbref.getBuffer()); 234 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 235 } 236 237 error("unable to find matching architecture in " + path); 238 return None; 239 } 240 241 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 242 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 243 244 template <class Section> 245 static void parseSection(ObjFile *file, const uint8_t *buf, const Section &sec, 246 InputSection *isec) { 247 isec->file = file; 248 isec->name = 249 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 250 isec->segname = 251 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 252 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 253 static_cast<size_t>(sec.size)}; 254 if (sec.align >= 32) 255 error("alignment " + std::to_string(sec.align) + " of section " + 256 isec->name + " is too large"); 257 else 258 isec->align = 1 << sec.align; 259 isec->flags = sec.flags; 260 } 261 262 template <class Section> 263 void ObjFile::parseSections(ArrayRef<Section> sections) { 264 subsections.reserve(sections.size()); 265 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 266 267 for (const Section &sec : sections) { 268 if (config->dedupLiterals && sectionType(sec.flags) == S_CSTRING_LITERALS) { 269 if (sec.nreloc) 270 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 271 sec.sectname + 272 ", so LLD cannot deduplicate literals. Try re-running without " 273 "--deduplicate-literals."); 274 275 auto *isec = make<CStringInputSection>(); 276 parseSection(this, buf, sec, isec); 277 isec->splitIntoPieces(); // FIXME: parallelize this? 278 subsections.push_back({{0, isec}}); 279 } else { 280 auto *isec = make<ConcatInputSection>(); 281 parseSection(this, buf, sec, isec); 282 if (!(isDebugSection(isec->flags) && 283 isec->segname == segment_names::dwarf)) { 284 subsections.push_back({{0, isec}}); 285 } else { 286 // Instead of emitting DWARF sections, we emit STABS symbols to the 287 // object files that contain them. We filter them out early to avoid 288 // parsing their relocations unnecessarily. But we must still push an 289 // empty map to ensure the indices line up for the remaining sections. 290 subsections.push_back({}); 291 debugSections.push_back(isec); 292 } 293 } 294 } 295 } 296 297 // Find the subsection corresponding to the greatest section offset that is <= 298 // that of the given offset. 299 // 300 // offset: an offset relative to the start of the original InputSection (before 301 // any subsection splitting has occurred). It will be updated to represent the 302 // same location as an offset relative to the start of the containing 303 // subsection. 304 static InputSection *findContainingSubsection(SubsectionMap &map, 305 uint64_t *offset) { 306 auto it = std::prev(llvm::upper_bound( 307 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 308 return value < subsecEntry.offset; 309 })); 310 *offset -= it->offset; 311 return it->isec; 312 } 313 314 template <class Section> 315 static bool validateRelocationInfo(InputFile *file, const Section &sec, 316 relocation_info rel) { 317 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 318 bool valid = true; 319 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 320 valid = false; 321 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 322 std::to_string(rel.r_address) + " of " + sec.segname + "," + 323 sec.sectname + " in " + toString(file)) 324 .str(); 325 }; 326 327 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 328 error(message("must be extern")); 329 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 330 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 331 "be PC-relative")); 332 if (isThreadLocalVariables(sec.flags) && 333 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 334 error(message("not allowed in thread-local section, must be UNSIGNED")); 335 if (rel.r_length < 2 || rel.r_length > 3 || 336 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 337 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 338 error(message("has width " + std::to_string(1 << rel.r_length) + 339 " bytes, but must be " + 340 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 341 " bytes")); 342 } 343 return valid; 344 } 345 346 template <class Section> 347 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 348 const Section &sec, SubsectionMap &subsecMap) { 349 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 350 ArrayRef<relocation_info> relInfos( 351 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 352 353 for (size_t i = 0; i < relInfos.size(); i++) { 354 // Paired relocations serve as Mach-O's method for attaching a 355 // supplemental datum to a primary relocation record. ELF does not 356 // need them because the *_RELOC_RELA records contain the extra 357 // addend field, vs. *_RELOC_REL which omit the addend. 358 // 359 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 360 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 361 // datum for each is a symbolic address. The result is the offset 362 // between two addresses. 363 // 364 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 365 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 366 // base symbolic address. 367 // 368 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 369 // addend into the instruction stream. On X86, a relocatable address 370 // field always occupies an entire contiguous sequence of byte(s), 371 // so there is no need to merge opcode bits with address 372 // bits. Therefore, it's easy and convenient to store addends in the 373 // instruction-stream bytes that would otherwise contain zeroes. By 374 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 375 // address bits so that bitwise arithmetic is necessary to extract 376 // and insert them. Storing addends in the instruction stream is 377 // possible, but inconvenient and more costly at link time. 378 379 int64_t pairedAddend = 0; 380 relocation_info relInfo = relInfos[i]; 381 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 382 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 383 relInfo = relInfos[++i]; 384 } 385 assert(i < relInfos.size()); 386 if (!validateRelocationInfo(this, sec, relInfo)) 387 continue; 388 if (relInfo.r_address & R_SCATTERED) 389 fatal("TODO: Scattered relocations not supported"); 390 391 bool isSubtrahend = 392 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 393 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 394 assert(!(embeddedAddend && pairedAddend)); 395 int64_t totalAddend = pairedAddend + embeddedAddend; 396 Reloc r; 397 r.type = relInfo.r_type; 398 r.pcrel = relInfo.r_pcrel; 399 r.length = relInfo.r_length; 400 r.offset = relInfo.r_address; 401 if (relInfo.r_extern) { 402 r.referent = symbols[relInfo.r_symbolnum]; 403 r.addend = isSubtrahend ? 0 : totalAddend; 404 } else { 405 assert(!isSubtrahend); 406 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 407 uint64_t referentOffset; 408 if (relInfo.r_pcrel) { 409 // The implicit addend for pcrel section relocations is the pcrel offset 410 // in terms of the addresses in the input file. Here we adjust it so 411 // that it describes the offset from the start of the referent section. 412 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 413 // have pcrel section relocations. We may want to factor this out into 414 // the arch-specific .cpp file. 415 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 416 referentOffset = 417 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 418 } else { 419 // The addend for a non-pcrel relocation is its absolute address. 420 referentOffset = totalAddend - referentSec.addr; 421 } 422 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 423 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 424 r.addend = referentOffset; 425 } 426 427 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 428 subsec->relocs.push_back(r); 429 430 if (isSubtrahend) { 431 relocation_info minuendInfo = relInfos[++i]; 432 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 433 // attached to the same address. 434 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 435 relInfo.r_address == minuendInfo.r_address); 436 Reloc p; 437 p.type = minuendInfo.r_type; 438 if (minuendInfo.r_extern) { 439 p.referent = symbols[minuendInfo.r_symbolnum]; 440 p.addend = totalAddend; 441 } else { 442 uint64_t referentOffset = 443 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 444 SubsectionMap &referentSubsecMap = 445 subsections[minuendInfo.r_symbolnum - 1]; 446 p.referent = 447 findContainingSubsection(referentSubsecMap, &referentOffset); 448 p.addend = referentOffset; 449 } 450 subsec->relocs.push_back(p); 451 } 452 } 453 } 454 455 template <class NList> 456 static macho::Symbol *createDefined(const NList &sym, StringRef name, 457 InputSection *isec, uint64_t value, 458 uint64_t size) { 459 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 460 // N_EXT: Global symbols. These go in the symbol table during the link, 461 // and also in the export table of the output so that the dynamic 462 // linker sees them. 463 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 464 // symbol table during the link so that duplicates are 465 // either reported (for non-weak symbols) or merged 466 // (for weak symbols), but they do not go in the export 467 // table of the output. 468 // N_PEXT: Does not occur in input files in practice, 469 // a private extern must be external. 470 // 0: Translation-unit scoped. These are not in the symbol table during 471 // link, and not in the export table of the output either. 472 473 bool isWeakDefCanBeHidden = 474 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 475 476 if (sym.n_type & (N_EXT | N_PEXT)) { 477 assert((sym.n_type & N_EXT) && "invalid input"); 478 bool isPrivateExtern = sym.n_type & N_PEXT; 479 480 // lld's behavior for merging symbols is slightly different from ld64: 481 // ld64 picks the winning symbol based on several criteria (see 482 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 483 // just merges metadata and keeps the contents of the first symbol 484 // with that name (see SymbolTable::addDefined). For: 485 // * inline function F in a TU built with -fvisibility-inlines-hidden 486 // * and inline function F in another TU built without that flag 487 // ld64 will pick the one from the file built without 488 // -fvisibility-inlines-hidden. 489 // lld will instead pick the one listed first on the link command line and 490 // give it visibility as if the function was built without 491 // -fvisibility-inlines-hidden. 492 // If both functions have the same contents, this will have the same 493 // behavior. If not, it won't, but the input had an ODR violation in 494 // that case. 495 // 496 // Similarly, merging a symbol 497 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 498 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 499 // should produce one 500 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 501 // with ld64's semantics, because it means the non-private-extern 502 // definition will continue to take priority if more private extern 503 // definitions are encountered. With lld's semantics there's no observable 504 // difference between a symbol that's isWeakDefCanBeHidden or one that's 505 // privateExtern -- neither makes it into the dynamic symbol table. So just 506 // promote isWeakDefCanBeHidden to isPrivateExtern here. 507 if (isWeakDefCanBeHidden) 508 isPrivateExtern = true; 509 510 return symtab->addDefined( 511 name, isec->file, isec, value, size, sym.n_desc & N_WEAK_DEF, 512 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 513 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); 514 } 515 516 assert(!isWeakDefCanBeHidden && 517 "weak_def_can_be_hidden on already-hidden symbol?"); 518 return make<Defined>( 519 name, isec->file, isec, value, size, sym.n_desc & N_WEAK_DEF, 520 /*isExternal=*/false, /*isPrivateExtern=*/false, 521 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 522 sym.n_desc & N_NO_DEAD_STRIP); 523 } 524 525 // Absolute symbols are defined symbols that do not have an associated 526 // InputSection. They cannot be weak. 527 template <class NList> 528 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 529 StringRef name) { 530 if (sym.n_type & (N_EXT | N_PEXT)) { 531 assert((sym.n_type & N_EXT) && "invalid input"); 532 return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0, 533 /*isWeakDef=*/false, sym.n_type & N_PEXT, 534 sym.n_desc & N_ARM_THUMB_DEF, 535 /*isReferencedDynamically=*/false, 536 sym.n_desc & N_NO_DEAD_STRIP); 537 } 538 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 539 /*isWeakDef=*/false, 540 /*isExternal=*/false, /*isPrivateExtern=*/false, 541 sym.n_desc & N_ARM_THUMB_DEF, 542 /*isReferencedDynamically=*/false, 543 sym.n_desc & N_NO_DEAD_STRIP); 544 } 545 546 template <class NList> 547 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 548 StringRef name) { 549 uint8_t type = sym.n_type & N_TYPE; 550 switch (type) { 551 case N_UNDF: 552 return sym.n_value == 0 553 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 554 : symtab->addCommon(name, this, sym.n_value, 555 1 << GET_COMM_ALIGN(sym.n_desc), 556 sym.n_type & N_PEXT); 557 case N_ABS: 558 return createAbsolute(sym, this, name); 559 case N_PBUD: 560 case N_INDR: 561 error("TODO: support symbols of type " + std::to_string(type)); 562 return nullptr; 563 case N_SECT: 564 llvm_unreachable( 565 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 566 default: 567 llvm_unreachable("invalid symbol type"); 568 } 569 } 570 571 template <class LP> 572 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 573 ArrayRef<typename LP::nlist> nList, 574 const char *strtab, bool subsectionsViaSymbols) { 575 using NList = typename LP::nlist; 576 577 // Groups indices of the symbols by the sections that contain them. 578 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 579 symbols.resize(nList.size()); 580 for (uint32_t i = 0; i < nList.size(); ++i) { 581 const NList &sym = nList[i]; 582 StringRef name = strtab + sym.n_strx; 583 if ((sym.n_type & N_TYPE) == N_SECT) { 584 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 585 // parseSections() may have chosen not to parse this section. 586 if (subsecMap.empty()) 587 continue; 588 symbolsBySection[sym.n_sect - 1].push_back(i); 589 } else { 590 symbols[i] = parseNonSectionSymbol(sym, name); 591 } 592 } 593 594 // Calculate symbol sizes and create subsections by splitting the sections 595 // along symbol boundaries. 596 for (size_t i = 0; i < subsections.size(); ++i) { 597 SubsectionMap &subsecMap = subsections[i]; 598 if (subsecMap.empty()) 599 continue; 600 601 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 602 llvm::sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 603 return nList[lhs].n_value < nList[rhs].n_value; 604 }); 605 uint64_t sectionAddr = sectionHeaders[i].addr; 606 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 607 608 // We populate subsecMap by repeatedly splitting the last (highest address) 609 // subsection. 610 SubsectionEntry subsecEntry = subsecMap.back(); 611 for (size_t j = 0; j < symbolIndices.size(); ++j) { 612 uint32_t symIndex = symbolIndices[j]; 613 const NList &sym = nList[symIndex]; 614 StringRef name = strtab + sym.n_strx; 615 InputSection *isec = subsecEntry.isec; 616 617 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 618 uint64_t symbolOffset = sym.n_value - subsecAddr; 619 uint64_t symbolSize = 620 j + 1 < symbolIndices.size() 621 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 622 : isec->data.size() - symbolOffset; 623 // There are 4 cases where we do not need to create a new subsection: 624 // 1. If the input file does not use subsections-via-symbols. 625 // 2. Multiple symbols at the same address only induce one subsection. 626 // (The symbolOffset == 0 check covers both this case as well as 627 // the first loop iteration.) 628 // 3. Alternative entry points do not induce new subsections. 629 // 4. If we have a literal section (e.g. __cstring and __literal4). 630 if (!subsectionsViaSymbols || symbolOffset == 0 || 631 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 632 symbols[symIndex] = 633 createDefined(sym, name, isec, symbolOffset, symbolSize); 634 continue; 635 } 636 auto *concatIsec = cast<ConcatInputSection>(isec); 637 638 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 639 nextIsec->data = isec->data.slice(symbolOffset); 640 nextIsec->numRefs = 0; 641 nextIsec->wasCoalesced = false; 642 isec->data = isec->data.slice(0, symbolOffset); 643 644 // By construction, the symbol will be at offset zero in the new 645 // subsection. 646 symbols[symIndex] = 647 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 648 // TODO: ld64 appears to preserve the original alignment as well as each 649 // subsection's offset from the last aligned address. We should consider 650 // emulating that behavior. 651 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 652 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 653 subsecEntry = subsecMap.back(); 654 } 655 } 656 } 657 658 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 659 StringRef sectName) 660 : InputFile(OpaqueKind, mb) { 661 ConcatInputSection *isec = make<ConcatInputSection>(); 662 isec->file = this; 663 isec->name = sectName.take_front(16); 664 isec->segname = segName.take_front(16); 665 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 666 isec->data = {buf, mb.getBufferSize()}; 667 isec->live = true; 668 subsections.push_back({{0, isec}}); 669 } 670 671 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 672 : InputFile(ObjKind, mb), modTime(modTime) { 673 this->archiveName = std::string(archiveName); 674 if (target->wordSize == 8) 675 parse<LP64>(); 676 else 677 parse<ILP32>(); 678 } 679 680 template <class LP> void ObjFile::parse() { 681 using Header = typename LP::mach_header; 682 using SegmentCommand = typename LP::segment_command; 683 using Section = typename LP::section; 684 using NList = typename LP::nlist; 685 686 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 687 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 688 689 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 690 if (arch != config->arch()) { 691 error(toString(this) + " has architecture " + getArchitectureName(arch) + 692 " which is incompatible with target architecture " + 693 getArchitectureName(config->arch())); 694 return; 695 } 696 697 if (!checkCompatibility(this)) 698 return; 699 700 if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { 701 auto *c = reinterpret_cast<const linker_option_command *>(cmd); 702 StringRef data{reinterpret_cast<const char *>(c + 1), 703 c->cmdsize - sizeof(linker_option_command)}; 704 parseLCLinkerOption(this, c->count, data); 705 } 706 707 ArrayRef<Section> sectionHeaders; 708 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 709 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 710 sectionHeaders = 711 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 712 parseSections(sectionHeaders); 713 } 714 715 // TODO: Error on missing LC_SYMTAB? 716 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 717 auto *c = reinterpret_cast<const symtab_command *>(cmd); 718 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 719 c->nsyms); 720 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 721 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 722 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 723 } 724 725 // The relocations may refer to the symbols, so we parse them after we have 726 // parsed all the symbols. 727 for (size_t i = 0, n = subsections.size(); i < n; ++i) 728 if (!subsections[i].empty()) 729 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 730 731 parseDebugInfo(); 732 } 733 734 void ObjFile::parseDebugInfo() { 735 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 736 if (!dObj) 737 return; 738 739 auto *ctx = make<DWARFContext>( 740 std::move(dObj), "", 741 [&](Error err) { 742 warn(toString(this) + ": " + toString(std::move(err))); 743 }, 744 [&](Error warning) { 745 warn(toString(this) + ": " + toString(std::move(warning))); 746 }); 747 748 // TODO: Since object files can contain a lot of DWARF info, we should verify 749 // that we are parsing just the info we need 750 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 751 // FIXME: There can be more than one compile unit per object file. See 752 // PR48637. 753 auto it = units.begin(); 754 compileUnit = it->get(); 755 } 756 757 // The path can point to either a dylib or a .tbd file. 758 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 759 Optional<MemoryBufferRef> mbref = readFile(path); 760 if (!mbref) { 761 error("could not read dylib file at " + path); 762 return nullptr; 763 } 764 return loadDylib(*mbref, umbrella); 765 } 766 767 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 768 // the first document storing child pointers to the rest of them. When we are 769 // processing a given TBD file, we store that top-level document in 770 // currentTopLevelTapi. When processing re-exports, we search its children for 771 // potentially matching documents in the same TBD file. Note that the children 772 // themselves don't point to further documents, i.e. this is a two-level tree. 773 // 774 // Re-exports can either refer to on-disk files, or to documents within .tbd 775 // files. 776 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 777 const InterfaceFile *currentTopLevelTapi) { 778 if (path::is_absolute(path, path::Style::posix)) 779 for (StringRef root : config->systemLibraryRoots) 780 if (Optional<std::string> dylibPath = 781 resolveDylibPath((root + path).str())) 782 return loadDylib(*dylibPath, umbrella); 783 784 // TODO: Handle -dylib_file 785 786 SmallString<128> newPath; 787 if (config->outputType == MH_EXECUTE && 788 path.consume_front("@executable_path/")) { 789 // ld64 allows overriding this with the undocumented flag -executable_path. 790 // lld doesn't currently implement that flag. 791 path::append(newPath, path::parent_path(config->outputFile), path); 792 path = newPath; 793 } else if (path.consume_front("@loader_path/")) { 794 fs::real_path(umbrella->getName(), newPath); 795 path::remove_filename(newPath); 796 path::append(newPath, path); 797 path = newPath; 798 } else if (path.startswith("@rpath/")) { 799 for (StringRef rpath : umbrella->rpaths) { 800 newPath.clear(); 801 if (rpath.consume_front("@loader_path/")) { 802 fs::real_path(umbrella->getName(), newPath); 803 path::remove_filename(newPath); 804 } 805 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 806 if (Optional<std::string> dylibPath = resolveDylibPath(newPath)) 807 return loadDylib(*dylibPath, umbrella); 808 } 809 } 810 811 if (currentTopLevelTapi) { 812 for (InterfaceFile &child : 813 make_pointee_range(currentTopLevelTapi->documents())) { 814 assert(child.documents().empty()); 815 if (path == child.getInstallName()) { 816 auto file = make<DylibFile>(child, umbrella); 817 file->parseReexports(child); 818 return file; 819 } 820 } 821 } 822 823 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 824 return loadDylib(*dylibPath, umbrella); 825 826 return nullptr; 827 } 828 829 // If a re-exported dylib is public (lives in /usr/lib or 830 // /System/Library/Frameworks), then it is considered implicitly linked: we 831 // should bind to its symbols directly instead of via the re-exporting umbrella 832 // library. 833 static bool isImplicitlyLinked(StringRef path) { 834 if (!config->implicitDylibs) 835 return false; 836 837 if (path::parent_path(path) == "/usr/lib") 838 return true; 839 840 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 841 if (path.consume_front("/System/Library/Frameworks/")) { 842 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 843 return path::filename(path) == frameworkName; 844 } 845 846 return false; 847 } 848 849 static void loadReexport(StringRef path, DylibFile *umbrella, 850 const InterfaceFile *currentTopLevelTapi) { 851 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 852 if (!reexport) 853 error("unable to locate re-export with install name " + path); 854 } 855 856 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 857 bool isBundleLoader) 858 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 859 isBundleLoader(isBundleLoader) { 860 assert(!isBundleLoader || !umbrella); 861 if (umbrella == nullptr) 862 umbrella = this; 863 this->umbrella = umbrella; 864 865 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 866 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 867 868 // Initialize installName. 869 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 870 auto *c = reinterpret_cast<const dylib_command *>(cmd); 871 currentVersion = read32le(&c->dylib.current_version); 872 compatibilityVersion = read32le(&c->dylib.compatibility_version); 873 installName = 874 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 875 } else if (!isBundleLoader) { 876 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 877 // so it's OK. 878 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 879 return; 880 } 881 882 if (config->printEachFile) 883 message(toString(this)); 884 inputFiles.insert(this); 885 886 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 887 888 if (!checkCompatibility(this)) 889 return; 890 891 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 892 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 893 rpaths.push_back(rpath); 894 } 895 896 // Initialize symbols. 897 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 898 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 899 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 900 parseTrie(buf + c->export_off, c->export_size, 901 [&](const Twine &name, uint64_t flags) { 902 StringRef savedName = saver.save(name); 903 if (handleLDSymbol(savedName)) 904 return; 905 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 906 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 907 symbols.push_back(symtab->addDylib(savedName, exportingFile, 908 isWeakDef, isTlv)); 909 }); 910 } else { 911 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 912 return; 913 } 914 } 915 916 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 917 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 918 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 919 target->headerSize; 920 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 921 auto *cmd = reinterpret_cast<const load_command *>(p); 922 p += cmd->cmdsize; 923 924 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 925 cmd->cmd == LC_REEXPORT_DYLIB) { 926 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 927 StringRef reexportPath = 928 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 929 loadReexport(reexportPath, exportingFile, nullptr); 930 } 931 932 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 933 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 934 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 935 if (config->namespaceKind == NamespaceKind::flat && 936 cmd->cmd == LC_LOAD_DYLIB) { 937 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 938 StringRef dylibPath = 939 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 940 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 941 if (!dylib) 942 error(Twine("unable to locate library '") + dylibPath + 943 "' loaded from '" + toString(this) + "' for -flat_namespace"); 944 } 945 } 946 } 947 948 // Some versions of XCode ship with .tbd files that don't have the right 949 // platform settings. 950 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 951 "/usr/lib/system/libsystem_kernel.dylib", 952 "/usr/lib/system/libsystem_platform.dylib", 953 "/usr/lib/system/libsystem_pthread.dylib"}; 954 955 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 956 bool isBundleLoader) 957 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 958 isBundleLoader(isBundleLoader) { 959 // FIXME: Add test for the missing TBD code path. 960 961 if (umbrella == nullptr) 962 umbrella = this; 963 this->umbrella = umbrella; 964 965 installName = saver.save(interface.getInstallName()); 966 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 967 currentVersion = interface.getCurrentVersion().rawValue(); 968 969 if (config->printEachFile) 970 message(toString(this)); 971 inputFiles.insert(this); 972 973 if (!is_contained(skipPlatformChecks, installName) && 974 !is_contained(interface.targets(), config->platformInfo.target)) { 975 error(toString(this) + " is incompatible with " + 976 std::string(config->platformInfo.target)); 977 return; 978 } 979 980 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 981 auto addSymbol = [&](const Twine &name) -> void { 982 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 983 /*isWeakDef=*/false, 984 /*isTlv=*/false)); 985 }; 986 // TODO(compnerd) filter out symbols based on the target platform 987 // TODO: handle weak defs, thread locals 988 for (const auto *symbol : interface.symbols()) { 989 if (!symbol->getArchitectures().has(config->arch())) 990 continue; 991 992 if (handleLDSymbol(symbol->getName())) 993 continue; 994 995 switch (symbol->getKind()) { 996 case SymbolKind::GlobalSymbol: 997 addSymbol(symbol->getName()); 998 break; 999 case SymbolKind::ObjectiveCClass: 1000 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1001 // want to emulate that. 1002 addSymbol(objc::klass + symbol->getName()); 1003 addSymbol(objc::metaclass + symbol->getName()); 1004 break; 1005 case SymbolKind::ObjectiveCClassEHType: 1006 addSymbol(objc::ehtype + symbol->getName()); 1007 break; 1008 case SymbolKind::ObjectiveCInstanceVariable: 1009 addSymbol(objc::ivar + symbol->getName()); 1010 break; 1011 } 1012 } 1013 } 1014 1015 void DylibFile::parseReexports(const InterfaceFile &interface) { 1016 const InterfaceFile *topLevel = 1017 interface.getParent() == nullptr ? &interface : interface.getParent(); 1018 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 1019 InterfaceFile::const_target_range targets = intfRef.targets(); 1020 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1021 is_contained(targets, config->platformInfo.target)) 1022 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1023 } 1024 } 1025 1026 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1027 // name, compatibility version or hide/add symbols) for specific target 1028 // versions. 1029 bool DylibFile::handleLDSymbol(StringRef originalName) { 1030 if (!originalName.startswith("$ld$")) 1031 return false; 1032 1033 StringRef action; 1034 StringRef name; 1035 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1036 if (action == "previous") 1037 handleLDPreviousSymbol(name, originalName); 1038 else if (action == "install_name") 1039 handleLDInstallNameSymbol(name, originalName); 1040 return true; 1041 } 1042 1043 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1044 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1045 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1046 StringRef installName; 1047 StringRef compatVersion; 1048 StringRef platformStr; 1049 StringRef startVersion; 1050 StringRef endVersion; 1051 StringRef symbolName; 1052 StringRef rest; 1053 1054 std::tie(installName, name) = name.split('$'); 1055 std::tie(compatVersion, name) = name.split('$'); 1056 std::tie(platformStr, name) = name.split('$'); 1057 std::tie(startVersion, name) = name.split('$'); 1058 std::tie(endVersion, name) = name.split('$'); 1059 std::tie(symbolName, rest) = name.split('$'); 1060 // TODO: ld64 contains some logic for non-empty symbolName as well. 1061 if (!symbolName.empty()) 1062 return; 1063 unsigned platform; 1064 if (platformStr.getAsInteger(10, platform) || 1065 platform != static_cast<unsigned>(config->platform())) 1066 return; 1067 1068 VersionTuple start; 1069 if (start.tryParse(startVersion)) { 1070 warn("failed to parse start version, symbol '" + originalName + 1071 "' ignored"); 1072 return; 1073 } 1074 VersionTuple end; 1075 if (end.tryParse(endVersion)) { 1076 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1077 return; 1078 } 1079 if (config->platformInfo.minimum < start || 1080 config->platformInfo.minimum >= end) 1081 return; 1082 1083 this->installName = saver.save(installName); 1084 1085 if (!compatVersion.empty()) { 1086 VersionTuple cVersion; 1087 if (cVersion.tryParse(compatVersion)) { 1088 warn("failed to parse compatibility version, symbol '" + originalName + 1089 "' ignored"); 1090 return; 1091 } 1092 compatibilityVersion = encodeVersion(cVersion); 1093 } 1094 } 1095 1096 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1097 StringRef originalName) { 1098 // originalName: $ld$ install_name $ os<version> $ install_name 1099 StringRef condition, installName; 1100 std::tie(condition, installName) = name.split('$'); 1101 VersionTuple version; 1102 if (!condition.consume_front("os") || version.tryParse(condition)) 1103 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1104 else if (version == config->platformInfo.minimum) 1105 this->installName = saver.save(installName); 1106 } 1107 1108 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1109 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 1110 for (const object::Archive::Symbol &sym : file->symbols()) 1111 symtab->addLazy(sym.getName(), this, sym); 1112 } 1113 1114 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1115 object::Archive::Child c = 1116 CHECK(sym.getMember(), toString(this) + 1117 ": could not get the member for symbol " + 1118 toMachOString(sym)); 1119 1120 if (!seen.insert(c.getChildOffset()).second) 1121 return; 1122 1123 MemoryBufferRef mb = 1124 CHECK(c.getMemoryBufferRef(), 1125 toString(this) + 1126 ": could not get the buffer for the member defining symbol " + 1127 toMachOString(sym)); 1128 1129 if (tar && c.getParent()->isThin()) 1130 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1131 1132 uint32_t modTime = toTimeT( 1133 CHECK(c.getLastModified(), toString(this) + 1134 ": could not get the modification time " 1135 "for the member defining symbol " + 1136 toMachOString(sym))); 1137 1138 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1139 // and become invalid after that call. Copy it to the stack so we can refer 1140 // to it later. 1141 const object::Archive::Symbol symCopy = sym; 1142 1143 if (Optional<InputFile *> file = 1144 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 1145 inputFiles.insert(*file); 1146 // ld64 doesn't demangle sym here even with -demangle. 1147 // Match that: intentionally don't call toMachOString(). 1148 printArchiveMemberLoad(symCopy.getName(), *file); 1149 } 1150 } 1151 1152 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1153 BitcodeFile &file) { 1154 StringRef name = saver.save(objSym.getName()); 1155 1156 // TODO: support weak references 1157 if (objSym.isUndefined()) 1158 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1159 1160 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 1161 1162 // TODO: Write a test demonstrating why computing isPrivateExtern before 1163 // LTO compilation is important. 1164 bool isPrivateExtern = false; 1165 switch (objSym.getVisibility()) { 1166 case GlobalValue::HiddenVisibility: 1167 isPrivateExtern = true; 1168 break; 1169 case GlobalValue::ProtectedVisibility: 1170 error(name + " has protected visibility, which is not supported by Mach-O"); 1171 break; 1172 case GlobalValue::DefaultVisibility: 1173 break; 1174 } 1175 1176 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1177 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1178 /*isThumb=*/false, 1179 /*isReferencedDynamically=*/false, 1180 /*noDeadStrip=*/false); 1181 } 1182 1183 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 1184 : InputFile(BitcodeKind, mbref) { 1185 obj = check(lto::InputFile::create(mbref)); 1186 1187 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1188 // "winning" symbol will then be marked as Prevailing at LTO compilation 1189 // time. 1190 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1191 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1192 } 1193 1194 template void ObjFile::parse<LP64>(); 1195