1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/TextAPI/Architecture.h" 71 #include "llvm/TextAPI/InterfaceFile.h" 72 73 using namespace llvm; 74 using namespace llvm::MachO; 75 using namespace llvm::support::endian; 76 using namespace llvm::sys; 77 using namespace lld; 78 using namespace lld::macho; 79 80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 81 std::string lld::toString(const InputFile *f) { 82 if (!f) 83 return "<internal>"; 84 85 // Multiple dylibs can be defined in one .tbd file. 86 if (auto dylibFile = dyn_cast<DylibFile>(f)) 87 if (f->getName().endswith(".tbd")) 88 return (f->getName() + "(" + dylibFile->installName + ")").str(); 89 90 if (f->archiveName.empty()) 91 return std::string(f->getName()); 92 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 93 } 94 95 SetVector<InputFile *> macho::inputFiles; 96 std::unique_ptr<TarWriter> macho::tar; 97 int InputFile::idCount = 0; 98 99 static VersionTuple decodeVersion(uint32_t version) { 100 unsigned major = version >> 16; 101 unsigned minor = (version >> 8) & 0xffu; 102 unsigned subMinor = version & 0xffu; 103 return VersionTuple(major, minor, subMinor); 104 } 105 106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 107 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 108 return {}; 109 110 const char *hdr = input->mb.getBufferStart(); 111 112 std::vector<PlatformInfo> platformInfos; 113 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 PlatformInfo info; 115 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 116 info.minimum = decodeVersion(cmd->minos); 117 platformInfos.emplace_back(std::move(info)); 118 } 119 for (auto *cmd : findCommands<version_min_command>( 120 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 121 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 122 PlatformInfo info; 123 switch (cmd->cmd) { 124 case LC_VERSION_MIN_MACOSX: 125 info.target.Platform = PlatformKind::macOS; 126 break; 127 case LC_VERSION_MIN_IPHONEOS: 128 info.target.Platform = PlatformKind::iOS; 129 break; 130 case LC_VERSION_MIN_TVOS: 131 info.target.Platform = PlatformKind::tvOS; 132 break; 133 case LC_VERSION_MIN_WATCHOS: 134 info.target.Platform = PlatformKind::watchOS; 135 break; 136 } 137 info.minimum = decodeVersion(cmd->version); 138 platformInfos.emplace_back(std::move(info)); 139 } 140 141 return platformInfos; 142 } 143 144 static bool checkCompatibility(const InputFile *input) { 145 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 146 if (platformInfos.empty()) 147 return true; 148 149 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 150 return removeSimulator(info.target.Platform) == 151 removeSimulator(config->platform()); 152 }); 153 if (it == platformInfos.end()) { 154 std::string platformNames; 155 raw_string_ostream os(platformNames); 156 interleave( 157 platformInfos, os, 158 [&](const PlatformInfo &info) { 159 os << getPlatformName(info.target.Platform); 160 }, 161 "/"); 162 error(toString(input) + " has platform " + platformNames + 163 Twine(", which is different from target platform ") + 164 getPlatformName(config->platform())); 165 return false; 166 } 167 168 if (it->minimum > config->platformInfo.minimum) 169 warn(toString(input) + " has version " + it->minimum.getAsString() + 170 ", which is newer than target minimum of " + 171 config->platformInfo.minimum.getAsString()); 172 173 return true; 174 } 175 176 // This cache mostly exists to store system libraries (and .tbds) as they're 177 // loaded, rather than the input archives, which are already cached at a higher 178 // level, and other files like the filelist that are only read once. 179 // Theoretically this caching could be more efficient by hoisting it, but that 180 // would require altering many callers to track the state. 181 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 182 // Open a given file path and return it as a memory-mapped file. 183 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 184 CachedHashStringRef key(path); 185 auto entry = cachedReads.find(key); 186 if (entry != cachedReads.end()) 187 return entry->second; 188 189 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 190 if (std::error_code ec = mbOrErr.getError()) { 191 error("cannot open " + path + ": " + ec.message()); 192 return None; 193 } 194 195 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 196 MemoryBufferRef mbref = mb->getMemBufferRef(); 197 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 198 199 // If this is a regular non-fat file, return it. 200 const char *buf = mbref.getBufferStart(); 201 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 202 if (mbref.getBufferSize() < sizeof(uint32_t) || 203 read32be(&hdr->magic) != FAT_MAGIC) { 204 if (tar) 205 tar->append(relativeToRoot(path), mbref.getBuffer()); 206 return cachedReads[key] = mbref; 207 } 208 209 // Object files and archive files may be fat files, which contain multiple 210 // real files for different CPU ISAs. Here, we search for a file that matches 211 // with the current link target and returns it as a MemoryBufferRef. 212 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 213 214 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 215 if (reinterpret_cast<const char *>(arch + i + 1) > 216 buf + mbref.getBufferSize()) { 217 error(path + ": fat_arch struct extends beyond end of file"); 218 return None; 219 } 220 221 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 222 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 223 continue; 224 225 uint32_t offset = read32be(&arch[i].offset); 226 uint32_t size = read32be(&arch[i].size); 227 if (offset + size > mbref.getBufferSize()) 228 error(path + ": slice extends beyond end of file"); 229 if (tar) 230 tar->append(relativeToRoot(path), mbref.getBuffer()); 231 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 232 path.copy(bAlloc)); 233 } 234 235 error("unable to find matching architecture in " + path); 236 return None; 237 } 238 239 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 240 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 241 242 // Some sections comprise of fixed-size records, so instead of splitting them at 243 // symbol boundaries, we split them based on size. Records are distinct from 244 // literals in that they may contain references to other sections, instead of 245 // being leaf nodes in the InputSection graph. 246 // 247 // Note that "record" is a term I came up with. In contrast, "literal" is a term 248 // used by the Mach-O format. 249 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 250 if (name == section_names::cfString) { 251 if (config->icfLevel != ICFLevel::none && segname == segment_names::data) 252 return target->wordSize == 8 ? 32 : 16; 253 } else if (name == section_names::compactUnwind) { 254 if (segname == segment_names::ld) 255 return target->wordSize == 8 ? 32 : 20; 256 } 257 return {}; 258 } 259 260 // Parse the sequence of sections within a single LC_SEGMENT(_64). 261 // Split each section into subsections. 262 template <class SectionHeader> 263 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 264 sections.reserve(sectionHeaders.size()); 265 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 266 267 for (const SectionHeader &sec : sectionHeaders) { 268 StringRef name = 269 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 270 StringRef segname = 271 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 272 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 273 : buf + sec.offset, 274 static_cast<size_t>(sec.size)}; 275 if (sec.align >= 32) { 276 error("alignment " + std::to_string(sec.align) + " of section " + name + 277 " is too large"); 278 sections.push_back({}); 279 continue; 280 } 281 uint32_t align = 1 << sec.align; 282 uint32_t flags = sec.flags; 283 284 auto splitRecords = [&](int recordSize) -> void { 285 sections.push_back({}); 286 if (data.empty()) 287 return; 288 289 Subsections &subsections = sections.back().subsections; 290 subsections.reserve(data.size() / recordSize); 291 auto *isec = make<ConcatInputSection>( 292 segname, name, this, data.slice(0, recordSize), align, flags); 293 subsections.push_back({0, isec}); 294 for (uint64_t off = recordSize; off < data.size(); off += recordSize) { 295 // Copying requires less memory than constructing a fresh InputSection. 296 auto *copy = make<ConcatInputSection>(*isec); 297 copy->data = data.slice(off, recordSize); 298 subsections.push_back({off, copy}); 299 } 300 }; 301 302 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 303 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 304 if (sec.nreloc && config->dedupLiterals) 305 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 306 sec.sectname + 307 ", so LLD cannot deduplicate literals. Try re-running without " 308 "--deduplicate-literals."); 309 310 InputSection *isec; 311 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 312 isec = 313 make<CStringInputSection>(segname, name, this, data, align, flags); 314 // FIXME: parallelize this? 315 cast<CStringInputSection>(isec)->splitIntoPieces(); 316 } else { 317 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 318 flags); 319 } 320 sections.push_back({}); 321 sections.back().subsections.push_back({0, isec}); 322 } else if (auto recordSize = getRecordSize(segname, name)) { 323 splitRecords(*recordSize); 324 } else if (segname == segment_names::llvm) { 325 // ld64 does not appear to emit contents from sections within the __LLVM 326 // segment. Symbols within those sections point to bitcode metadata 327 // instead of actual symbols. Global symbols within those sections could 328 // have the same name without causing duplicate symbol errors. Push an 329 // empty entry to ensure indices line up for the remaining sections. 330 // TODO: Evaluate whether the bitcode metadata is needed. 331 sections.push_back({}); 332 } else { 333 auto *isec = 334 make<ConcatInputSection>(segname, name, this, data, align, flags); 335 if (isDebugSection(isec->getFlags()) && 336 isec->getSegName() == segment_names::dwarf) { 337 // Instead of emitting DWARF sections, we emit STABS symbols to the 338 // object files that contain them. We filter them out early to avoid 339 // parsing their relocations unnecessarily. But we must still push an 340 // empty entry to ensure the indices line up for the remaining sections. 341 sections.push_back({}); 342 debugSections.push_back(isec); 343 } else { 344 sections.push_back({}); 345 sections.back().subsections.push_back({0, isec}); 346 } 347 } 348 } 349 } 350 351 // Find the subsection corresponding to the greatest section offset that is <= 352 // that of the given offset. 353 // 354 // offset: an offset relative to the start of the original InputSection (before 355 // any subsection splitting has occurred). It will be updated to represent the 356 // same location as an offset relative to the start of the containing 357 // subsection. 358 static InputSection *findContainingSubsection(Subsections &subsections, 359 uint64_t *offset) { 360 auto it = std::prev(llvm::upper_bound( 361 subsections, *offset, 362 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 363 *offset -= it->offset; 364 return it->isec; 365 } 366 367 template <class SectionHeader> 368 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 369 relocation_info rel) { 370 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 371 bool valid = true; 372 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 373 valid = false; 374 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 375 std::to_string(rel.r_address) + " of " + sec.segname + "," + 376 sec.sectname + " in " + toString(file)) 377 .str(); 378 }; 379 380 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 381 error(message("must be extern")); 382 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 383 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 384 "be PC-relative")); 385 if (isThreadLocalVariables(sec.flags) && 386 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 387 error(message("not allowed in thread-local section, must be UNSIGNED")); 388 if (rel.r_length < 2 || rel.r_length > 3 || 389 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 390 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 391 error(message("has width " + std::to_string(1 << rel.r_length) + 392 " bytes, but must be " + 393 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 394 " bytes")); 395 } 396 return valid; 397 } 398 399 template <class SectionHeader> 400 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 401 const SectionHeader &sec, 402 Subsections &subsections) { 403 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 404 ArrayRef<relocation_info> relInfos( 405 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 406 407 auto subsecIt = subsections.rbegin(); 408 for (size_t i = 0; i < relInfos.size(); i++) { 409 // Paired relocations serve as Mach-O's method for attaching a 410 // supplemental datum to a primary relocation record. ELF does not 411 // need them because the *_RELOC_RELA records contain the extra 412 // addend field, vs. *_RELOC_REL which omit the addend. 413 // 414 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 415 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 416 // datum for each is a symbolic address. The result is the offset 417 // between two addresses. 418 // 419 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 420 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 421 // base symbolic address. 422 // 423 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 424 // addend into the instruction stream. On X86, a relocatable address 425 // field always occupies an entire contiguous sequence of byte(s), 426 // so there is no need to merge opcode bits with address 427 // bits. Therefore, it's easy and convenient to store addends in the 428 // instruction-stream bytes that would otherwise contain zeroes. By 429 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 430 // address bits so that bitwise arithmetic is necessary to extract 431 // and insert them. Storing addends in the instruction stream is 432 // possible, but inconvenient and more costly at link time. 433 434 int64_t pairedAddend = 0; 435 relocation_info relInfo = relInfos[i]; 436 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 437 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 438 relInfo = relInfos[++i]; 439 } 440 assert(i < relInfos.size()); 441 if (!validateRelocationInfo(this, sec, relInfo)) 442 continue; 443 if (relInfo.r_address & R_SCATTERED) 444 fatal("TODO: Scattered relocations not supported"); 445 446 bool isSubtrahend = 447 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 448 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 449 assert(!(embeddedAddend && pairedAddend)); 450 int64_t totalAddend = pairedAddend + embeddedAddend; 451 Reloc r; 452 r.type = relInfo.r_type; 453 r.pcrel = relInfo.r_pcrel; 454 r.length = relInfo.r_length; 455 r.offset = relInfo.r_address; 456 if (relInfo.r_extern) { 457 r.referent = symbols[relInfo.r_symbolnum]; 458 r.addend = isSubtrahend ? 0 : totalAddend; 459 } else { 460 assert(!isSubtrahend); 461 const SectionHeader &referentSecHead = 462 sectionHeaders[relInfo.r_symbolnum - 1]; 463 uint64_t referentOffset; 464 if (relInfo.r_pcrel) { 465 // The implicit addend for pcrel section relocations is the pcrel offset 466 // in terms of the addresses in the input file. Here we adjust it so 467 // that it describes the offset from the start of the referent section. 468 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 469 // have pcrel section relocations. We may want to factor this out into 470 // the arch-specific .cpp file. 471 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 472 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 473 referentSecHead.addr; 474 } else { 475 // The addend for a non-pcrel relocation is its absolute address. 476 referentOffset = totalAddend - referentSecHead.addr; 477 } 478 Subsections &referentSubsections = 479 sections[relInfo.r_symbolnum - 1].subsections; 480 r.referent = 481 findContainingSubsection(referentSubsections, &referentOffset); 482 r.addend = referentOffset; 483 } 484 485 // Find the subsection that this relocation belongs to. 486 // Though not required by the Mach-O format, clang and gcc seem to emit 487 // relocations in order, so let's take advantage of it. However, ld64 emits 488 // unsorted relocations (in `-r` mode), so we have a fallback for that 489 // uncommon case. 490 InputSection *subsec; 491 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 492 ++subsecIt; 493 if (subsecIt == subsections.rend() || 494 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 495 subsec = findContainingSubsection(subsections, &r.offset); 496 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 497 // for the other relocations. 498 subsecIt = subsections.rend(); 499 } else { 500 subsec = subsecIt->isec; 501 r.offset -= subsecIt->offset; 502 } 503 subsec->relocs.push_back(r); 504 505 if (isSubtrahend) { 506 relocation_info minuendInfo = relInfos[++i]; 507 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 508 // attached to the same address. 509 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 510 relInfo.r_address == minuendInfo.r_address); 511 Reloc p; 512 p.type = minuendInfo.r_type; 513 if (minuendInfo.r_extern) { 514 p.referent = symbols[minuendInfo.r_symbolnum]; 515 p.addend = totalAddend; 516 } else { 517 uint64_t referentOffset = 518 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 519 Subsections &referentSubsectVec = 520 sections[minuendInfo.r_symbolnum - 1].subsections; 521 p.referent = 522 findContainingSubsection(referentSubsectVec, &referentOffset); 523 p.addend = referentOffset; 524 } 525 subsec->relocs.push_back(p); 526 } 527 } 528 } 529 530 template <class NList> 531 static macho::Symbol *createDefined(const NList &sym, StringRef name, 532 InputSection *isec, uint64_t value, 533 uint64_t size) { 534 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 535 // N_EXT: Global symbols. These go in the symbol table during the link, 536 // and also in the export table of the output so that the dynamic 537 // linker sees them. 538 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 539 // symbol table during the link so that duplicates are 540 // either reported (for non-weak symbols) or merged 541 // (for weak symbols), but they do not go in the export 542 // table of the output. 543 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 544 // object files) may produce them. LLD does not yet support -r. 545 // These are translation-unit scoped, identical to the `0` case. 546 // 0: Translation-unit scoped. These are not in the symbol table during 547 // link, and not in the export table of the output either. 548 bool isWeakDefCanBeHidden = 549 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 550 551 if (sym.n_type & N_EXT) { 552 bool isPrivateExtern = sym.n_type & N_PEXT; 553 // lld's behavior for merging symbols is slightly different from ld64: 554 // ld64 picks the winning symbol based on several criteria (see 555 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 556 // just merges metadata and keeps the contents of the first symbol 557 // with that name (see SymbolTable::addDefined). For: 558 // * inline function F in a TU built with -fvisibility-inlines-hidden 559 // * and inline function F in another TU built without that flag 560 // ld64 will pick the one from the file built without 561 // -fvisibility-inlines-hidden. 562 // lld will instead pick the one listed first on the link command line and 563 // give it visibility as if the function was built without 564 // -fvisibility-inlines-hidden. 565 // If both functions have the same contents, this will have the same 566 // behavior. If not, it won't, but the input had an ODR violation in 567 // that case. 568 // 569 // Similarly, merging a symbol 570 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 571 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 572 // should produce one 573 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 574 // with ld64's semantics, because it means the non-private-extern 575 // definition will continue to take priority if more private extern 576 // definitions are encountered. With lld's semantics there's no observable 577 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 578 // that's privateExtern -- neither makes it into the dynamic symbol table, 579 // unless the autohide symbol is explicitly exported. 580 // But if a symbol is both privateExtern and autohide then it can't 581 // be exported. 582 // So we nullify the autohide flag when privateExtern is present 583 // and promote the symbol to privateExtern when it is not already. 584 if (isWeakDefCanBeHidden && isPrivateExtern) 585 isWeakDefCanBeHidden = false; 586 else if (isWeakDefCanBeHidden) 587 isPrivateExtern = true; 588 return symtab->addDefined( 589 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 590 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 591 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 592 isWeakDefCanBeHidden); 593 } 594 assert(!isWeakDefCanBeHidden && 595 "weak_def_can_be_hidden on already-hidden symbol?"); 596 return make<Defined>( 597 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 598 /*isExternal=*/false, /*isPrivateExtern=*/false, 599 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 600 sym.n_desc & N_NO_DEAD_STRIP); 601 } 602 603 // Absolute symbols are defined symbols that do not have an associated 604 // InputSection. They cannot be weak. 605 template <class NList> 606 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 607 StringRef name) { 608 if (sym.n_type & N_EXT) { 609 return symtab->addDefined( 610 name, file, nullptr, sym.n_value, /*size=*/0, 611 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 612 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 613 /*isWeakDefCanBeHidden=*/false); 614 } 615 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 616 /*isWeakDef=*/false, 617 /*isExternal=*/false, /*isPrivateExtern=*/false, 618 sym.n_desc & N_ARM_THUMB_DEF, 619 /*isReferencedDynamically=*/false, 620 sym.n_desc & N_NO_DEAD_STRIP); 621 } 622 623 template <class NList> 624 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 625 StringRef name) { 626 uint8_t type = sym.n_type & N_TYPE; 627 switch (type) { 628 case N_UNDF: 629 return sym.n_value == 0 630 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 631 : symtab->addCommon(name, this, sym.n_value, 632 1 << GET_COMM_ALIGN(sym.n_desc), 633 sym.n_type & N_PEXT); 634 case N_ABS: 635 return createAbsolute(sym, this, name); 636 case N_PBUD: 637 case N_INDR: 638 error("TODO: support symbols of type " + std::to_string(type)); 639 return nullptr; 640 case N_SECT: 641 llvm_unreachable( 642 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 643 default: 644 llvm_unreachable("invalid symbol type"); 645 } 646 } 647 648 template <class NList> static bool isUndef(const NList &sym) { 649 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 650 } 651 652 template <class LP> 653 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 654 ArrayRef<typename LP::nlist> nList, 655 const char *strtab, bool subsectionsViaSymbols) { 656 using NList = typename LP::nlist; 657 658 // Groups indices of the symbols by the sections that contain them. 659 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 660 symbols.resize(nList.size()); 661 SmallVector<unsigned, 32> undefineds; 662 for (uint32_t i = 0; i < nList.size(); ++i) { 663 const NList &sym = nList[i]; 664 665 // Ignore debug symbols for now. 666 // FIXME: may need special handling. 667 if (sym.n_type & N_STAB) 668 continue; 669 670 StringRef name = strtab + sym.n_strx; 671 if ((sym.n_type & N_TYPE) == N_SECT) { 672 Subsections &subsections = sections[sym.n_sect - 1].subsections; 673 // parseSections() may have chosen not to parse this section. 674 if (subsections.empty()) 675 continue; 676 symbolsBySection[sym.n_sect - 1].push_back(i); 677 } else if (isUndef(sym)) { 678 undefineds.push_back(i); 679 } else { 680 symbols[i] = parseNonSectionSymbol(sym, name); 681 } 682 } 683 684 for (size_t i = 0; i < sections.size(); ++i) { 685 Subsections &subsections = sections[i].subsections; 686 if (subsections.empty()) 687 continue; 688 689 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 690 uint64_t sectionAddr = sectionHeaders[i].addr; 691 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 692 693 InputSection *lastIsec = subsections.back().isec; 694 // Record-based sections have already been split into subsections during 695 // parseSections(), so we simply need to match Symbols to the corresponding 696 // subsection here. 697 if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) { 698 for (size_t j = 0; j < symbolIndices.size(); ++j) { 699 uint32_t symIndex = symbolIndices[j]; 700 const NList &sym = nList[symIndex]; 701 StringRef name = strtab + sym.n_strx; 702 uint64_t symbolOffset = sym.n_value - sectionAddr; 703 InputSection *isec = 704 findContainingSubsection(subsections, &symbolOffset); 705 if (symbolOffset != 0) { 706 error(toString(lastIsec) + ": symbol " + name + 707 " at misaligned offset"); 708 continue; 709 } 710 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 711 } 712 continue; 713 } 714 715 // Calculate symbol sizes and create subsections by splitting the sections 716 // along symbol boundaries. 717 // We populate subsections by repeatedly splitting the last (highest 718 // address) subsection. 719 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 720 return nList[lhs].n_value < nList[rhs].n_value; 721 }); 722 Subsection subsec = subsections.back(); 723 for (size_t j = 0; j < symbolIndices.size(); ++j) { 724 uint32_t symIndex = symbolIndices[j]; 725 const NList &sym = nList[symIndex]; 726 StringRef name = strtab + sym.n_strx; 727 InputSection *isec = subsec.isec; 728 729 uint64_t subsecAddr = sectionAddr + subsec.offset; 730 size_t symbolOffset = sym.n_value - subsecAddr; 731 uint64_t symbolSize = 732 j + 1 < symbolIndices.size() 733 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 734 : isec->data.size() - symbolOffset; 735 // There are 4 cases where we do not need to create a new subsection: 736 // 1. If the input file does not use subsections-via-symbols. 737 // 2. Multiple symbols at the same address only induce one subsection. 738 // (The symbolOffset == 0 check covers both this case as well as 739 // the first loop iteration.) 740 // 3. Alternative entry points do not induce new subsections. 741 // 4. If we have a literal section (e.g. __cstring and __literal4). 742 if (!subsectionsViaSymbols || symbolOffset == 0 || 743 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 744 symbols[symIndex] = 745 createDefined(sym, name, isec, symbolOffset, symbolSize); 746 continue; 747 } 748 auto *concatIsec = cast<ConcatInputSection>(isec); 749 750 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 751 nextIsec->wasCoalesced = false; 752 if (isZeroFill(isec->getFlags())) { 753 // Zero-fill sections have NULL data.data() non-zero data.size() 754 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 755 isec->data = {nullptr, symbolOffset}; 756 } else { 757 nextIsec->data = isec->data.slice(symbolOffset); 758 isec->data = isec->data.slice(0, symbolOffset); 759 } 760 761 // By construction, the symbol will be at offset zero in the new 762 // subsection. 763 symbols[symIndex] = 764 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 765 // TODO: ld64 appears to preserve the original alignment as well as each 766 // subsection's offset from the last aligned address. We should consider 767 // emulating that behavior. 768 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 769 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 770 subsec = subsections.back(); 771 } 772 } 773 774 // Undefined symbols can trigger recursive fetch from Archives due to 775 // LazySymbols. Process defined symbols first so that the relative order 776 // between a defined symbol and an undefined symbol does not change the 777 // symbol resolution behavior. In addition, a set of interconnected symbols 778 // will all be resolved to the same file, instead of being resolved to 779 // different files. 780 for (unsigned i : undefineds) { 781 const NList &sym = nList[i]; 782 StringRef name = strtab + sym.n_strx; 783 symbols[i] = parseNonSectionSymbol(sym, name); 784 } 785 } 786 787 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 788 StringRef sectName) 789 : InputFile(OpaqueKind, mb) { 790 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 791 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 792 ConcatInputSection *isec = 793 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16), 794 /*file=*/this, data); 795 isec->live = true; 796 sections.push_back({}); 797 sections.back().subsections.push_back({0, isec}); 798 } 799 800 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 801 : InputFile(ObjKind, mb), modTime(modTime) { 802 this->archiveName = std::string(archiveName); 803 if (target->wordSize == 8) 804 parse<LP64>(); 805 else 806 parse<ILP32>(); 807 } 808 809 template <class LP> void ObjFile::parse() { 810 using Header = typename LP::mach_header; 811 using SegmentCommand = typename LP::segment_command; 812 using SectionHeader = typename LP::section; 813 using NList = typename LP::nlist; 814 815 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 816 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 817 818 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 819 if (arch != config->arch()) { 820 auto msg = config->errorForArchMismatch 821 ? static_cast<void (*)(const Twine &)>(error) 822 : warn; 823 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 824 " which is incompatible with target architecture " + 825 getArchitectureName(config->arch())); 826 return; 827 } 828 829 if (!checkCompatibility(this)) 830 return; 831 832 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 833 StringRef data{reinterpret_cast<const char *>(cmd + 1), 834 cmd->cmdsize - sizeof(linker_option_command)}; 835 parseLCLinkerOption(this, cmd->count, data); 836 } 837 838 ArrayRef<SectionHeader> sectionHeaders; 839 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 840 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 841 sectionHeaders = ArrayRef<SectionHeader>{ 842 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 843 parseSections(sectionHeaders); 844 } 845 846 // TODO: Error on missing LC_SYMTAB? 847 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 848 auto *c = reinterpret_cast<const symtab_command *>(cmd); 849 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 850 c->nsyms); 851 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 852 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 853 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 854 } 855 856 // The relocations may refer to the symbols, so we parse them after we have 857 // parsed all the symbols. 858 for (size_t i = 0, n = sections.size(); i < n; ++i) 859 if (!sections[i].subsections.empty()) 860 parseRelocations(sectionHeaders, sectionHeaders[i], 861 sections[i].subsections); 862 863 parseDebugInfo(); 864 if (config->emitDataInCodeInfo) 865 parseDataInCode(); 866 registerCompactUnwind(); 867 } 868 869 void ObjFile::parseDebugInfo() { 870 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 871 if (!dObj) 872 return; 873 874 auto *ctx = make<DWARFContext>( 875 std::move(dObj), "", 876 [&](Error err) { 877 warn(toString(this) + ": " + toString(std::move(err))); 878 }, 879 [&](Error warning) { 880 warn(toString(this) + ": " + toString(std::move(warning))); 881 }); 882 883 // TODO: Since object files can contain a lot of DWARF info, we should verify 884 // that we are parsing just the info we need 885 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 886 // FIXME: There can be more than one compile unit per object file. See 887 // PR48637. 888 auto it = units.begin(); 889 compileUnit = it->get(); 890 } 891 892 void ObjFile::parseDataInCode() { 893 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 894 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 895 if (!cmd) 896 return; 897 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 898 dataInCodeEntries = { 899 reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 900 c->datasize / sizeof(data_in_code_entry)}; 901 assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs, 902 const data_in_code_entry &rhs) { 903 return lhs.offset < rhs.offset; 904 })); 905 } 906 907 // Create pointers from symbols to their associated compact unwind entries. 908 void ObjFile::registerCompactUnwind() { 909 // First, locate the __compact_unwind section. 910 Section *cuSection = nullptr; 911 for (Section §ion : sections) { 912 if (section.subsections.empty()) 913 continue; 914 if (section.subsections[0].isec->getSegName() != segment_names::ld) 915 continue; 916 cuSection = §ion; 917 break; 918 } 919 if (!cuSection) 920 return; 921 922 for (Subsection &subsection : cuSection->subsections) { 923 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 924 // Hack!! Since each CUE contains a different function address, if ICF 925 // operated naively and compared the entire contents of each CUE, entries 926 // with identical unwind info but belonging to different functions would 927 // never be considered equivalent. To work around this problem, we slice 928 // away the function address here. (Note that we do not adjust the offsets 929 // of the corresponding relocations.) We rely on `relocateCompactUnwind()` 930 // to correctly handle these truncated input sections. 931 isec->data = isec->data.slice(target->wordSize); 932 933 ConcatInputSection *referentIsec; 934 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 935 Reloc &r = *it; 936 // We only wish to handle the relocation for CUE::functionAddress. 937 if (r.offset != 0) { 938 ++it; 939 continue; 940 } 941 uint64_t add = r.addend; 942 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 943 // Check whether the symbol defined in this file is the prevailing one. 944 // Skip if it is e.g. a weak def that didn't prevail. 945 if (sym->getFile() != this) { 946 ++it; 947 continue; 948 } 949 add += sym->value; 950 referentIsec = cast<ConcatInputSection>(sym->isec); 951 } else { 952 referentIsec = 953 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 954 } 955 if (referentIsec->getSegName() != segment_names::text) 956 error("compact unwind references address in " + toString(referentIsec) + 957 " which is not in segment __TEXT"); 958 // The functionAddress relocations are typically section relocations. 959 // However, unwind info operates on a per-symbol basis, so we search for 960 // the function symbol here. 961 auto symIt = llvm::lower_bound( 962 referentIsec->symbols, add, 963 [](Defined *d, uint64_t add) { return d->value < add; }); 964 // The relocation should point at the exact address of a symbol (with no 965 // addend). 966 if (symIt == referentIsec->symbols.end() || (*symIt)->value != add) { 967 assert(referentIsec->wasCoalesced); 968 ++it; 969 continue; 970 } 971 (*symIt)->compactUnwind = isec; 972 // Since we've sliced away the functionAddress, we should remove the 973 // corresponding relocation too. Given that clang emits relocations in 974 // reverse order of address, this relocation should be at the end of the 975 // vector for most of our input object files, so this is typically an O(1) 976 // operation. 977 it = isec->relocs.erase(it); 978 } 979 } 980 } 981 982 // The path can point to either a dylib or a .tbd file. 983 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 984 Optional<MemoryBufferRef> mbref = readFile(path); 985 if (!mbref) { 986 error("could not read dylib file at " + path); 987 return nullptr; 988 } 989 return loadDylib(*mbref, umbrella); 990 } 991 992 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 993 // the first document storing child pointers to the rest of them. When we are 994 // processing a given TBD file, we store that top-level document in 995 // currentTopLevelTapi. When processing re-exports, we search its children for 996 // potentially matching documents in the same TBD file. Note that the children 997 // themselves don't point to further documents, i.e. this is a two-level tree. 998 // 999 // Re-exports can either refer to on-disk files, or to documents within .tbd 1000 // files. 1001 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1002 const InterfaceFile *currentTopLevelTapi) { 1003 // Search order: 1004 // 1. Install name basename in -F / -L directories. 1005 { 1006 StringRef stem = path::stem(path); 1007 SmallString<128> frameworkName; 1008 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1009 bool isFramework = path.endswith(frameworkName); 1010 if (isFramework) { 1011 for (StringRef dir : config->frameworkSearchPaths) { 1012 SmallString<128> candidate = dir; 1013 path::append(candidate, frameworkName); 1014 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1015 return loadDylib(*dylibPath, umbrella); 1016 } 1017 } else if (Optional<StringRef> dylibPath = findPathCombination( 1018 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1019 return loadDylib(*dylibPath, umbrella); 1020 } 1021 1022 // 2. As absolute path. 1023 if (path::is_absolute(path, path::Style::posix)) 1024 for (StringRef root : config->systemLibraryRoots) 1025 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1026 return loadDylib(*dylibPath, umbrella); 1027 1028 // 3. As relative path. 1029 1030 // TODO: Handle -dylib_file 1031 1032 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1033 SmallString<128> newPath; 1034 if (config->outputType == MH_EXECUTE && 1035 path.consume_front("@executable_path/")) { 1036 // ld64 allows overriding this with the undocumented flag -executable_path. 1037 // lld doesn't currently implement that flag. 1038 // FIXME: Consider using finalOutput instead of outputFile. 1039 path::append(newPath, path::parent_path(config->outputFile), path); 1040 path = newPath; 1041 } else if (path.consume_front("@loader_path/")) { 1042 fs::real_path(umbrella->getName(), newPath); 1043 path::remove_filename(newPath); 1044 path::append(newPath, path); 1045 path = newPath; 1046 } else if (path.startswith("@rpath/")) { 1047 for (StringRef rpath : umbrella->rpaths) { 1048 newPath.clear(); 1049 if (rpath.consume_front("@loader_path/")) { 1050 fs::real_path(umbrella->getName(), newPath); 1051 path::remove_filename(newPath); 1052 } 1053 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1054 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1055 return loadDylib(*dylibPath, umbrella); 1056 } 1057 } 1058 1059 // FIXME: Should this be further up? 1060 if (currentTopLevelTapi) { 1061 for (InterfaceFile &child : 1062 make_pointee_range(currentTopLevelTapi->documents())) { 1063 assert(child.documents().empty()); 1064 if (path == child.getInstallName()) { 1065 auto file = make<DylibFile>(child, umbrella); 1066 file->parseReexports(child); 1067 return file; 1068 } 1069 } 1070 } 1071 1072 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1073 return loadDylib(*dylibPath, umbrella); 1074 1075 return nullptr; 1076 } 1077 1078 // If a re-exported dylib is public (lives in /usr/lib or 1079 // /System/Library/Frameworks), then it is considered implicitly linked: we 1080 // should bind to its symbols directly instead of via the re-exporting umbrella 1081 // library. 1082 static bool isImplicitlyLinked(StringRef path) { 1083 if (!config->implicitDylibs) 1084 return false; 1085 1086 if (path::parent_path(path) == "/usr/lib") 1087 return true; 1088 1089 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1090 if (path.consume_front("/System/Library/Frameworks/")) { 1091 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1092 return path::filename(path) == frameworkName; 1093 } 1094 1095 return false; 1096 } 1097 1098 static void loadReexport(StringRef path, DylibFile *umbrella, 1099 const InterfaceFile *currentTopLevelTapi) { 1100 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1101 if (!reexport) 1102 error("unable to locate re-export with install name " + path); 1103 } 1104 1105 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1106 bool isBundleLoader) 1107 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1108 isBundleLoader(isBundleLoader) { 1109 assert(!isBundleLoader || !umbrella); 1110 if (umbrella == nullptr) 1111 umbrella = this; 1112 this->umbrella = umbrella; 1113 1114 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1115 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1116 1117 // Initialize installName. 1118 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1119 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1120 currentVersion = read32le(&c->dylib.current_version); 1121 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1122 installName = 1123 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1124 } else if (!isBundleLoader) { 1125 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1126 // so it's OK. 1127 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1128 return; 1129 } 1130 1131 if (config->printEachFile) 1132 message(toString(this)); 1133 inputFiles.insert(this); 1134 1135 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1136 1137 if (!checkCompatibility(this)) 1138 return; 1139 1140 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1141 1142 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1143 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1144 rpaths.push_back(rpath); 1145 } 1146 1147 // Initialize symbols. 1148 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1149 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1150 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1151 parseTrie(buf + c->export_off, c->export_size, 1152 [&](const Twine &name, uint64_t flags) { 1153 StringRef savedName = saver.save(name); 1154 if (handleLDSymbol(savedName)) 1155 return; 1156 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1157 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1158 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1159 isWeakDef, isTlv)); 1160 }); 1161 } else { 1162 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1163 return; 1164 } 1165 } 1166 1167 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1168 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1169 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1170 target->headerSize; 1171 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1172 auto *cmd = reinterpret_cast<const load_command *>(p); 1173 p += cmd->cmdsize; 1174 1175 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1176 cmd->cmd == LC_REEXPORT_DYLIB) { 1177 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1178 StringRef reexportPath = 1179 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1180 loadReexport(reexportPath, exportingFile, nullptr); 1181 } 1182 1183 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1184 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1185 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1186 if (config->namespaceKind == NamespaceKind::flat && 1187 cmd->cmd == LC_LOAD_DYLIB) { 1188 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1189 StringRef dylibPath = 1190 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1191 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1192 if (!dylib) 1193 error(Twine("unable to locate library '") + dylibPath + 1194 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1195 } 1196 } 1197 } 1198 1199 // Some versions of XCode ship with .tbd files that don't have the right 1200 // platform settings. 1201 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 1202 "/usr/lib/system/libsystem_kernel.dylib", 1203 "/usr/lib/system/libsystem_platform.dylib", 1204 "/usr/lib/system/libsystem_pthread.dylib"}; 1205 1206 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1207 bool isBundleLoader) 1208 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1209 isBundleLoader(isBundleLoader) { 1210 // FIXME: Add test for the missing TBD code path. 1211 1212 if (umbrella == nullptr) 1213 umbrella = this; 1214 this->umbrella = umbrella; 1215 1216 installName = saver.save(interface.getInstallName()); 1217 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1218 currentVersion = interface.getCurrentVersion().rawValue(); 1219 1220 if (config->printEachFile) 1221 message(toString(this)); 1222 inputFiles.insert(this); 1223 1224 if (!is_contained(skipPlatformChecks, installName) && 1225 !is_contained(interface.targets(), config->platformInfo.target)) { 1226 error(toString(this) + " is incompatible with " + 1227 std::string(config->platformInfo.target)); 1228 return; 1229 } 1230 1231 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1232 1233 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1234 auto addSymbol = [&](const Twine &name) -> void { 1235 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 1236 /*isWeakDef=*/false, 1237 /*isTlv=*/false)); 1238 }; 1239 // TODO(compnerd) filter out symbols based on the target platform 1240 // TODO: handle weak defs, thread locals 1241 for (const auto *symbol : interface.symbols()) { 1242 if (!symbol->getArchitectures().has(config->arch())) 1243 continue; 1244 1245 if (handleLDSymbol(symbol->getName())) 1246 continue; 1247 1248 switch (symbol->getKind()) { 1249 case SymbolKind::GlobalSymbol: 1250 addSymbol(symbol->getName()); 1251 break; 1252 case SymbolKind::ObjectiveCClass: 1253 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1254 // want to emulate that. 1255 addSymbol(objc::klass + symbol->getName()); 1256 addSymbol(objc::metaclass + symbol->getName()); 1257 break; 1258 case SymbolKind::ObjectiveCClassEHType: 1259 addSymbol(objc::ehtype + symbol->getName()); 1260 break; 1261 case SymbolKind::ObjectiveCInstanceVariable: 1262 addSymbol(objc::ivar + symbol->getName()); 1263 break; 1264 } 1265 } 1266 } 1267 1268 void DylibFile::parseReexports(const InterfaceFile &interface) { 1269 const InterfaceFile *topLevel = 1270 interface.getParent() == nullptr ? &interface : interface.getParent(); 1271 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1272 InterfaceFile::const_target_range targets = intfRef.targets(); 1273 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1274 is_contained(targets, config->platformInfo.target)) 1275 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1276 } 1277 } 1278 1279 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1280 // name, compatibility version or hide/add symbols) for specific target 1281 // versions. 1282 bool DylibFile::handleLDSymbol(StringRef originalName) { 1283 if (!originalName.startswith("$ld$")) 1284 return false; 1285 1286 StringRef action; 1287 StringRef name; 1288 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1289 if (action == "previous") 1290 handleLDPreviousSymbol(name, originalName); 1291 else if (action == "install_name") 1292 handleLDInstallNameSymbol(name, originalName); 1293 return true; 1294 } 1295 1296 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1297 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1298 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1299 StringRef installName; 1300 StringRef compatVersion; 1301 StringRef platformStr; 1302 StringRef startVersion; 1303 StringRef endVersion; 1304 StringRef symbolName; 1305 StringRef rest; 1306 1307 std::tie(installName, name) = name.split('$'); 1308 std::tie(compatVersion, name) = name.split('$'); 1309 std::tie(platformStr, name) = name.split('$'); 1310 std::tie(startVersion, name) = name.split('$'); 1311 std::tie(endVersion, name) = name.split('$'); 1312 std::tie(symbolName, rest) = name.split('$'); 1313 // TODO: ld64 contains some logic for non-empty symbolName as well. 1314 if (!symbolName.empty()) 1315 return; 1316 unsigned platform; 1317 if (platformStr.getAsInteger(10, platform) || 1318 platform != static_cast<unsigned>(config->platform())) 1319 return; 1320 1321 VersionTuple start; 1322 if (start.tryParse(startVersion)) { 1323 warn("failed to parse start version, symbol '" + originalName + 1324 "' ignored"); 1325 return; 1326 } 1327 VersionTuple end; 1328 if (end.tryParse(endVersion)) { 1329 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1330 return; 1331 } 1332 if (config->platformInfo.minimum < start || 1333 config->platformInfo.minimum >= end) 1334 return; 1335 1336 this->installName = saver.save(installName); 1337 1338 if (!compatVersion.empty()) { 1339 VersionTuple cVersion; 1340 if (cVersion.tryParse(compatVersion)) { 1341 warn("failed to parse compatibility version, symbol '" + originalName + 1342 "' ignored"); 1343 return; 1344 } 1345 compatibilityVersion = encodeVersion(cVersion); 1346 } 1347 } 1348 1349 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1350 StringRef originalName) { 1351 // originalName: $ld$ install_name $ os<version> $ install_name 1352 StringRef condition, installName; 1353 std::tie(condition, installName) = name.split('$'); 1354 VersionTuple version; 1355 if (!condition.consume_front("os") || version.tryParse(condition)) 1356 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1357 else if (version == config->platformInfo.minimum) 1358 this->installName = saver.save(installName); 1359 } 1360 1361 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1362 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1363 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1364 } 1365 1366 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1367 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1368 1369 void ArchiveFile::addLazySymbols() { 1370 for (const object::Archive::Symbol &sym : file->symbols()) 1371 symtab->addLazy(sym.getName(), this, sym); 1372 } 1373 1374 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1375 uint32_t modTime, 1376 StringRef archiveName, 1377 uint64_t offsetInArchive) { 1378 if (config->zeroModTime) 1379 modTime = 0; 1380 1381 switch (identify_magic(mb.getBuffer())) { 1382 case file_magic::macho_object: 1383 return make<ObjFile>(mb, modTime, archiveName); 1384 case file_magic::bitcode: 1385 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1386 default: 1387 return createStringError(inconvertibleErrorCode(), 1388 mb.getBufferIdentifier() + 1389 " has unhandled file type"); 1390 } 1391 } 1392 1393 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1394 if (!seen.insert(c.getChildOffset()).second) 1395 return Error::success(); 1396 1397 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1398 if (!mb) 1399 return mb.takeError(); 1400 1401 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1402 if (tar && c.getParent()->isThin()) 1403 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1404 1405 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1406 if (!modTime) 1407 return modTime.takeError(); 1408 1409 Expected<InputFile *> file = 1410 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1411 1412 if (!file) 1413 return file.takeError(); 1414 1415 inputFiles.insert(*file); 1416 printArchiveMemberLoad(reason, *file); 1417 return Error::success(); 1418 } 1419 1420 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1421 object::Archive::Child c = 1422 CHECK(sym.getMember(), toString(this) + 1423 ": could not get the member defining symbol " + 1424 toMachOString(sym)); 1425 1426 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1427 // and become invalid after that call. Copy it to the stack so we can refer 1428 // to it later. 1429 const object::Archive::Symbol symCopy = sym; 1430 1431 // ld64 doesn't demangle sym here even with -demangle. 1432 // Match that: intentionally don't call toMachOString(). 1433 if (Error e = fetch(c, symCopy.getName())) 1434 error(toString(this) + ": could not get the member defining symbol " + 1435 toMachOString(symCopy) + ": " + toString(std::move(e))); 1436 } 1437 1438 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1439 BitcodeFile &file) { 1440 StringRef name = saver.save(objSym.getName()); 1441 1442 // TODO: support weak references 1443 if (objSym.isUndefined()) 1444 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1445 1446 // TODO: Write a test demonstrating why computing isPrivateExtern before 1447 // LTO compilation is important. 1448 bool isPrivateExtern = false; 1449 switch (objSym.getVisibility()) { 1450 case GlobalValue::HiddenVisibility: 1451 isPrivateExtern = true; 1452 break; 1453 case GlobalValue::ProtectedVisibility: 1454 error(name + " has protected visibility, which is not supported by Mach-O"); 1455 break; 1456 case GlobalValue::DefaultVisibility: 1457 break; 1458 } 1459 1460 if (objSym.isCommon()) 1461 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1462 objSym.getCommonAlignment(), isPrivateExtern); 1463 1464 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1465 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1466 /*isThumb=*/false, 1467 /*isReferencedDynamically=*/false, 1468 /*noDeadStrip=*/false, 1469 /*isWeakDefCanBeHidden=*/false); 1470 } 1471 1472 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1473 uint64_t offsetInArchive) 1474 : InputFile(BitcodeKind, mb) { 1475 std::string path = mb.getBufferIdentifier().str(); 1476 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1477 // name. If two members with the same name are provided, this causes a 1478 // collision and ThinLTO can't proceed. 1479 // So, we append the archive name to disambiguate two members with the same 1480 // name from multiple different archives, and offset within the archive to 1481 // disambiguate two members of the same name from a single archive. 1482 MemoryBufferRef mbref( 1483 mb.getBuffer(), 1484 saver.save(archiveName.empty() ? path 1485 : archiveName + sys::path::filename(path) + 1486 utostr(offsetInArchive))); 1487 1488 obj = check(lto::InputFile::create(mbref)); 1489 1490 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1491 // "winning" symbol will then be marked as Prevailing at LTO compilation 1492 // time. 1493 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1494 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1495 } 1496 1497 template void ObjFile::parse<LP64>(); 1498