1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "ExportTrie.h"
49 #include "InputSection.h"
50 #include "MachOStructs.h"
51 #include "ObjC.h"
52 #include "OutputSection.h"
53 #include "OutputSegment.h"
54 #include "SymbolTable.h"
55 #include "Symbols.h"
56 #include "SyntheticSections.h"
57 #include "Target.h"
58 
59 #include "lld/Common/DWARF.h"
60 #include "lld/Common/ErrorHandler.h"
61 #include "lld/Common/Memory.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/Path.h"
69 #include "llvm/Support/TarWriter.h"
70 #include "llvm/TextAPI/Architecture.h"
71 #include "llvm/TextAPI/InterfaceFile.h"
72 
73 using namespace llvm;
74 using namespace llvm::MachO;
75 using namespace llvm::support::endian;
76 using namespace llvm::sys;
77 using namespace lld;
78 using namespace lld::macho;
79 
80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
81 std::string lld::toString(const InputFile *f) {
82   if (!f)
83     return "<internal>";
84 
85   // Multiple dylibs can be defined in one .tbd file.
86   if (auto dylibFile = dyn_cast<DylibFile>(f))
87     if (f->getName().endswith(".tbd"))
88       return (f->getName() + "(" + dylibFile->installName + ")").str();
89 
90   if (f->archiveName.empty())
91     return std::string(f->getName());
92   return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
93 }
94 
95 SetVector<InputFile *> macho::inputFiles;
96 std::unique_ptr<TarWriter> macho::tar;
97 int InputFile::idCount = 0;
98 
99 static VersionTuple decodeVersion(uint32_t version) {
100   unsigned major = version >> 16;
101   unsigned minor = (version >> 8) & 0xffu;
102   unsigned subMinor = version & 0xffu;
103   return VersionTuple(major, minor, subMinor);
104 }
105 
106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
107   if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
108     return {};
109 
110   const char *hdr = input->mb.getBufferStart();
111 
112   std::vector<PlatformInfo> platformInfos;
113   for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
114     PlatformInfo info;
115     info.target.Platform = static_cast<PlatformKind>(cmd->platform);
116     info.minimum = decodeVersion(cmd->minos);
117     platformInfos.emplace_back(std::move(info));
118   }
119   for (auto *cmd : findCommands<version_min_command>(
120            hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
121            LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
122     PlatformInfo info;
123     switch (cmd->cmd) {
124     case LC_VERSION_MIN_MACOSX:
125       info.target.Platform = PlatformKind::macOS;
126       break;
127     case LC_VERSION_MIN_IPHONEOS:
128       info.target.Platform = PlatformKind::iOS;
129       break;
130     case LC_VERSION_MIN_TVOS:
131       info.target.Platform = PlatformKind::tvOS;
132       break;
133     case LC_VERSION_MIN_WATCHOS:
134       info.target.Platform = PlatformKind::watchOS;
135       break;
136     }
137     info.minimum = decodeVersion(cmd->version);
138     platformInfos.emplace_back(std::move(info));
139   }
140 
141   return platformInfos;
142 }
143 
144 static bool checkCompatibility(const InputFile *input) {
145   std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
146   if (platformInfos.empty())
147     return true;
148 
149   auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
150     return removeSimulator(info.target.Platform) ==
151            removeSimulator(config->platform());
152   });
153   if (it == platformInfos.end()) {
154     std::string platformNames;
155     raw_string_ostream os(platformNames);
156     interleave(
157         platformInfos, os,
158         [&](const PlatformInfo &info) {
159           os << getPlatformName(info.target.Platform);
160         },
161         "/");
162     error(toString(input) + " has platform " + platformNames +
163           Twine(", which is different from target platform ") +
164           getPlatformName(config->platform()));
165     return false;
166   }
167 
168   if (it->minimum > config->platformInfo.minimum)
169     warn(toString(input) + " has version " + it->minimum.getAsString() +
170          ", which is newer than target minimum of " +
171          config->platformInfo.minimum.getAsString());
172 
173   return true;
174 }
175 
176 // This cache mostly exists to store system libraries (and .tbds) as they're
177 // loaded, rather than the input archives, which are already cached at a higher
178 // level, and other files like the filelist that are only read once.
179 // Theoretically this caching could be more efficient by hoisting it, but that
180 // would require altering many callers to track the state.
181 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
182 // Open a given file path and return it as a memory-mapped file.
183 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
184   CachedHashStringRef key(path);
185   auto entry = cachedReads.find(key);
186   if (entry != cachedReads.end())
187     return entry->second;
188 
189   ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
190   if (std::error_code ec = mbOrErr.getError()) {
191     error("cannot open " + path + ": " + ec.message());
192     return None;
193   }
194 
195   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
196   MemoryBufferRef mbref = mb->getMemBufferRef();
197   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
198 
199   // If this is a regular non-fat file, return it.
200   const char *buf = mbref.getBufferStart();
201   const auto *hdr = reinterpret_cast<const fat_header *>(buf);
202   if (mbref.getBufferSize() < sizeof(uint32_t) ||
203       read32be(&hdr->magic) != FAT_MAGIC) {
204     if (tar)
205       tar->append(relativeToRoot(path), mbref.getBuffer());
206     return cachedReads[key] = mbref;
207   }
208 
209   // Object files and archive files may be fat files, which contain multiple
210   // real files for different CPU ISAs. Here, we search for a file that matches
211   // with the current link target and returns it as a MemoryBufferRef.
212   const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
213 
214   for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
215     if (reinterpret_cast<const char *>(arch + i + 1) >
216         buf + mbref.getBufferSize()) {
217       error(path + ": fat_arch struct extends beyond end of file");
218       return None;
219     }
220 
221     if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
222         read32be(&arch[i].cpusubtype) != target->cpuSubtype)
223       continue;
224 
225     uint32_t offset = read32be(&arch[i].offset);
226     uint32_t size = read32be(&arch[i].size);
227     if (offset + size > mbref.getBufferSize())
228       error(path + ": slice extends beyond end of file");
229     if (tar)
230       tar->append(relativeToRoot(path), mbref.getBuffer());
231     return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
232                                               path.copy(bAlloc));
233   }
234 
235   error("unable to find matching architecture in " + path);
236   return None;
237 }
238 
239 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
240     : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {}
241 
242 // Some sections comprise of fixed-size records, so instead of splitting them at
243 // symbol boundaries, we split them based on size. Records are distinct from
244 // literals in that they may contain references to other sections, instead of
245 // being leaf nodes in the InputSection graph.
246 //
247 // Note that "record" is a term I came up with. In contrast, "literal" is a term
248 // used by the Mach-O format.
249 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) {
250   if (name == section_names::cfString) {
251     if (config->icfLevel != ICFLevel::none && segname == segment_names::data)
252       return target->wordSize == 8 ? 32 : 16;
253   } else if (name == section_names::compactUnwind) {
254     if (segname == segment_names::ld)
255       return target->wordSize == 8 ? 32 : 20;
256   }
257   return {};
258 }
259 
260 // Parse the sequence of sections within a single LC_SEGMENT(_64).
261 // Split each section into subsections.
262 template <class SectionHeader>
263 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
264   sections.reserve(sectionHeaders.size());
265   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
266 
267   for (const SectionHeader &sec : sectionHeaders) {
268     StringRef name =
269         StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
270     StringRef segname =
271         StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
272     ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
273                                                     : buf + sec.offset,
274                               static_cast<size_t>(sec.size)};
275     if (sec.align >= 32) {
276       error("alignment " + std::to_string(sec.align) + " of section " + name +
277             " is too large");
278       sections.push_back({});
279       continue;
280     }
281     uint32_t align = 1 << sec.align;
282     uint32_t flags = sec.flags;
283 
284     auto splitRecords = [&](int recordSize) -> void {
285       sections.push_back({});
286       if (data.empty())
287         return;
288 
289       Subsections &subsections = sections.back().subsections;
290       subsections.reserve(data.size() / recordSize);
291       auto *isec = make<ConcatInputSection>(
292           segname, name, this, data.slice(0, recordSize), align, flags);
293       subsections.push_back({0, isec});
294       for (uint64_t off = recordSize; off < data.size(); off += recordSize) {
295         // Copying requires less memory than constructing a fresh InputSection.
296         auto *copy = make<ConcatInputSection>(*isec);
297         copy->data = data.slice(off, recordSize);
298         subsections.push_back({off, copy});
299       }
300     };
301 
302     if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
303         (config->dedupLiterals && isWordLiteralSection(sec.flags))) {
304       if (sec.nreloc && config->dedupLiterals)
305         fatal(toString(this) + " contains relocations in " + sec.segname + "," +
306               sec.sectname +
307               ", so LLD cannot deduplicate literals. Try re-running without "
308               "--deduplicate-literals.");
309 
310       InputSection *isec;
311       if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
312         isec =
313             make<CStringInputSection>(segname, name, this, data, align, flags);
314         // FIXME: parallelize this?
315         cast<CStringInputSection>(isec)->splitIntoPieces();
316       } else {
317         isec = make<WordLiteralInputSection>(segname, name, this, data, align,
318                                              flags);
319       }
320       sections.push_back({});
321       sections.back().subsections.push_back({0, isec});
322     } else if (auto recordSize = getRecordSize(segname, name)) {
323       splitRecords(*recordSize);
324     } else if (segname == segment_names::llvm) {
325       // ld64 does not appear to emit contents from sections within the __LLVM
326       // segment. Symbols within those sections point to bitcode metadata
327       // instead of actual symbols. Global symbols within those sections could
328       // have the same name without causing duplicate symbol errors. Push an
329       // empty entry to ensure indices line up for the remaining sections.
330       // TODO: Evaluate whether the bitcode metadata is needed.
331       sections.push_back({});
332     } else {
333       auto *isec =
334           make<ConcatInputSection>(segname, name, this, data, align, flags);
335       if (isDebugSection(isec->getFlags()) &&
336           isec->getSegName() == segment_names::dwarf) {
337         // Instead of emitting DWARF sections, we emit STABS symbols to the
338         // object files that contain them. We filter them out early to avoid
339         // parsing their relocations unnecessarily. But we must still push an
340         // empty entry to ensure the indices line up for the remaining sections.
341         sections.push_back({});
342         debugSections.push_back(isec);
343       } else {
344         sections.push_back({});
345         sections.back().subsections.push_back({0, isec});
346       }
347     }
348   }
349 }
350 
351 // Find the subsection corresponding to the greatest section offset that is <=
352 // that of the given offset.
353 //
354 // offset: an offset relative to the start of the original InputSection (before
355 // any subsection splitting has occurred). It will be updated to represent the
356 // same location as an offset relative to the start of the containing
357 // subsection.
358 static InputSection *findContainingSubsection(Subsections &subsections,
359                                               uint64_t *offset) {
360   auto it = std::prev(llvm::upper_bound(
361       subsections, *offset,
362       [](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
363   *offset -= it->offset;
364   return it->isec;
365 }
366 
367 template <class SectionHeader>
368 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
369                                    relocation_info rel) {
370   const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
371   bool valid = true;
372   auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
373     valid = false;
374     return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
375             std::to_string(rel.r_address) + " of " + sec.segname + "," +
376             sec.sectname + " in " + toString(file))
377         .str();
378   };
379 
380   if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
381     error(message("must be extern"));
382   if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
383     error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
384                   "be PC-relative"));
385   if (isThreadLocalVariables(sec.flags) &&
386       !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
387     error(message("not allowed in thread-local section, must be UNSIGNED"));
388   if (rel.r_length < 2 || rel.r_length > 3 ||
389       !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
390     static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
391     error(message("has width " + std::to_string(1 << rel.r_length) +
392                   " bytes, but must be " +
393                   widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
394                   " bytes"));
395   }
396   return valid;
397 }
398 
399 template <class SectionHeader>
400 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
401                                const SectionHeader &sec,
402                                Subsections &subsections) {
403   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
404   ArrayRef<relocation_info> relInfos(
405       reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
406 
407   auto subsecIt = subsections.rbegin();
408   for (size_t i = 0; i < relInfos.size(); i++) {
409     // Paired relocations serve as Mach-O's method for attaching a
410     // supplemental datum to a primary relocation record. ELF does not
411     // need them because the *_RELOC_RELA records contain the extra
412     // addend field, vs. *_RELOC_REL which omit the addend.
413     //
414     // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
415     // and the paired *_RELOC_UNSIGNED record holds the minuend. The
416     // datum for each is a symbolic address. The result is the offset
417     // between two addresses.
418     //
419     // The ARM64_RELOC_ADDEND record holds the addend, and the paired
420     // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
421     // base symbolic address.
422     //
423     // Note: X86 does not use *_RELOC_ADDEND because it can embed an
424     // addend into the instruction stream. On X86, a relocatable address
425     // field always occupies an entire contiguous sequence of byte(s),
426     // so there is no need to merge opcode bits with address
427     // bits. Therefore, it's easy and convenient to store addends in the
428     // instruction-stream bytes that would otherwise contain zeroes. By
429     // contrast, RISC ISAs such as ARM64 mix opcode bits with with
430     // address bits so that bitwise arithmetic is necessary to extract
431     // and insert them. Storing addends in the instruction stream is
432     // possible, but inconvenient and more costly at link time.
433 
434     int64_t pairedAddend = 0;
435     relocation_info relInfo = relInfos[i];
436     if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
437       pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
438       relInfo = relInfos[++i];
439     }
440     assert(i < relInfos.size());
441     if (!validateRelocationInfo(this, sec, relInfo))
442       continue;
443     if (relInfo.r_address & R_SCATTERED)
444       fatal("TODO: Scattered relocations not supported");
445 
446     bool isSubtrahend =
447         target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
448     int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
449     assert(!(embeddedAddend && pairedAddend));
450     int64_t totalAddend = pairedAddend + embeddedAddend;
451     Reloc r;
452     r.type = relInfo.r_type;
453     r.pcrel = relInfo.r_pcrel;
454     r.length = relInfo.r_length;
455     r.offset = relInfo.r_address;
456     if (relInfo.r_extern) {
457       r.referent = symbols[relInfo.r_symbolnum];
458       r.addend = isSubtrahend ? 0 : totalAddend;
459     } else {
460       assert(!isSubtrahend);
461       const SectionHeader &referentSecHead =
462           sectionHeaders[relInfo.r_symbolnum - 1];
463       uint64_t referentOffset;
464       if (relInfo.r_pcrel) {
465         // The implicit addend for pcrel section relocations is the pcrel offset
466         // in terms of the addresses in the input file. Here we adjust it so
467         // that it describes the offset from the start of the referent section.
468         // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
469         // have pcrel section relocations. We may want to factor this out into
470         // the arch-specific .cpp file.
471         assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
472         referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
473                          referentSecHead.addr;
474       } else {
475         // The addend for a non-pcrel relocation is its absolute address.
476         referentOffset = totalAddend - referentSecHead.addr;
477       }
478       Subsections &referentSubsections =
479           sections[relInfo.r_symbolnum - 1].subsections;
480       r.referent =
481           findContainingSubsection(referentSubsections, &referentOffset);
482       r.addend = referentOffset;
483     }
484 
485     // Find the subsection that this relocation belongs to.
486     // Though not required by the Mach-O format, clang and gcc seem to emit
487     // relocations in order, so let's take advantage of it. However, ld64 emits
488     // unsorted relocations (in `-r` mode), so we have a fallback for that
489     // uncommon case.
490     InputSection *subsec;
491     while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
492       ++subsecIt;
493     if (subsecIt == subsections.rend() ||
494         subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
495       subsec = findContainingSubsection(subsections, &r.offset);
496       // Now that we know the relocs are unsorted, avoid trying the 'fast path'
497       // for the other relocations.
498       subsecIt = subsections.rend();
499     } else {
500       subsec = subsecIt->isec;
501       r.offset -= subsecIt->offset;
502     }
503     subsec->relocs.push_back(r);
504 
505     if (isSubtrahend) {
506       relocation_info minuendInfo = relInfos[++i];
507       // SUBTRACTOR relocations should always be followed by an UNSIGNED one
508       // attached to the same address.
509       assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
510              relInfo.r_address == minuendInfo.r_address);
511       Reloc p;
512       p.type = minuendInfo.r_type;
513       if (minuendInfo.r_extern) {
514         p.referent = symbols[minuendInfo.r_symbolnum];
515         p.addend = totalAddend;
516       } else {
517         uint64_t referentOffset =
518             totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
519         Subsections &referentSubsectVec =
520             sections[minuendInfo.r_symbolnum - 1].subsections;
521         p.referent =
522             findContainingSubsection(referentSubsectVec, &referentOffset);
523         p.addend = referentOffset;
524       }
525       subsec->relocs.push_back(p);
526     }
527   }
528 }
529 
530 template <class NList>
531 static macho::Symbol *createDefined(const NList &sym, StringRef name,
532                                     InputSection *isec, uint64_t value,
533                                     uint64_t size) {
534   // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
535   // N_EXT: Global symbols. These go in the symbol table during the link,
536   //        and also in the export table of the output so that the dynamic
537   //        linker sees them.
538   // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
539   //                 symbol table during the link so that duplicates are
540   //                 either reported (for non-weak symbols) or merged
541   //                 (for weak symbols), but they do not go in the export
542   //                 table of the output.
543   // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
544   //         object files) may produce them. LLD does not yet support -r.
545   //         These are translation-unit scoped, identical to the `0` case.
546   // 0: Translation-unit scoped. These are not in the symbol table during
547   //    link, and not in the export table of the output either.
548   bool isWeakDefCanBeHidden =
549       (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
550 
551   if (sym.n_type & N_EXT) {
552     bool isPrivateExtern = sym.n_type & N_PEXT;
553     // lld's behavior for merging symbols is slightly different from ld64:
554     // ld64 picks the winning symbol based on several criteria (see
555     // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
556     // just merges metadata and keeps the contents of the first symbol
557     // with that name (see SymbolTable::addDefined). For:
558     // * inline function F in a TU built with -fvisibility-inlines-hidden
559     // * and inline function F in another TU built without that flag
560     // ld64 will pick the one from the file built without
561     // -fvisibility-inlines-hidden.
562     // lld will instead pick the one listed first on the link command line and
563     // give it visibility as if the function was built without
564     // -fvisibility-inlines-hidden.
565     // If both functions have the same contents, this will have the same
566     // behavior. If not, it won't, but the input had an ODR violation in
567     // that case.
568     //
569     // Similarly, merging a symbol
570     // that's isPrivateExtern and not isWeakDefCanBeHidden with one
571     // that's not isPrivateExtern but isWeakDefCanBeHidden technically
572     // should produce one
573     // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
574     // with ld64's semantics, because it means the non-private-extern
575     // definition will continue to take priority if more private extern
576     // definitions are encountered. With lld's semantics there's no observable
577     // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
578     // that's privateExtern -- neither makes it into the dynamic symbol table,
579     // unless the autohide symbol is explicitly exported.
580     // But if a symbol is both privateExtern and autohide then it can't
581     // be exported.
582     // So we nullify the autohide flag when privateExtern is present
583     // and promote the symbol to privateExtern when it is not already.
584     if (isWeakDefCanBeHidden && isPrivateExtern)
585       isWeakDefCanBeHidden = false;
586     else if (isWeakDefCanBeHidden)
587       isPrivateExtern = true;
588     return symtab->addDefined(
589         name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
590         isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
591         sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP,
592         isWeakDefCanBeHidden);
593   }
594   assert(!isWeakDefCanBeHidden &&
595          "weak_def_can_be_hidden on already-hidden symbol?");
596   return make<Defined>(
597       name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
598       /*isExternal=*/false, /*isPrivateExtern=*/false,
599       sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
600       sym.n_desc & N_NO_DEAD_STRIP);
601 }
602 
603 // Absolute symbols are defined symbols that do not have an associated
604 // InputSection. They cannot be weak.
605 template <class NList>
606 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
607                                      StringRef name) {
608   if (sym.n_type & N_EXT) {
609     return symtab->addDefined(
610         name, file, nullptr, sym.n_value, /*size=*/0,
611         /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF,
612         /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP,
613         /*isWeakDefCanBeHidden=*/false);
614   }
615   return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
616                        /*isWeakDef=*/false,
617                        /*isExternal=*/false, /*isPrivateExtern=*/false,
618                        sym.n_desc & N_ARM_THUMB_DEF,
619                        /*isReferencedDynamically=*/false,
620                        sym.n_desc & N_NO_DEAD_STRIP);
621 }
622 
623 template <class NList>
624 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
625                                               StringRef name) {
626   uint8_t type = sym.n_type & N_TYPE;
627   switch (type) {
628   case N_UNDF:
629     return sym.n_value == 0
630                ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
631                : symtab->addCommon(name, this, sym.n_value,
632                                    1 << GET_COMM_ALIGN(sym.n_desc),
633                                    sym.n_type & N_PEXT);
634   case N_ABS:
635     return createAbsolute(sym, this, name);
636   case N_PBUD:
637   case N_INDR:
638     error("TODO: support symbols of type " + std::to_string(type));
639     return nullptr;
640   case N_SECT:
641     llvm_unreachable(
642         "N_SECT symbols should not be passed to parseNonSectionSymbol");
643   default:
644     llvm_unreachable("invalid symbol type");
645   }
646 }
647 
648 template <class NList> static bool isUndef(const NList &sym) {
649   return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
650 }
651 
652 template <class LP>
653 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
654                            ArrayRef<typename LP::nlist> nList,
655                            const char *strtab, bool subsectionsViaSymbols) {
656   using NList = typename LP::nlist;
657 
658   // Groups indices of the symbols by the sections that contain them.
659   std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
660   symbols.resize(nList.size());
661   SmallVector<unsigned, 32> undefineds;
662   for (uint32_t i = 0; i < nList.size(); ++i) {
663     const NList &sym = nList[i];
664 
665     // Ignore debug symbols for now.
666     // FIXME: may need special handling.
667     if (sym.n_type & N_STAB)
668       continue;
669 
670     StringRef name = strtab + sym.n_strx;
671     if ((sym.n_type & N_TYPE) == N_SECT) {
672       Subsections &subsections = sections[sym.n_sect - 1].subsections;
673       // parseSections() may have chosen not to parse this section.
674       if (subsections.empty())
675         continue;
676       symbolsBySection[sym.n_sect - 1].push_back(i);
677     } else if (isUndef(sym)) {
678       undefineds.push_back(i);
679     } else {
680       symbols[i] = parseNonSectionSymbol(sym, name);
681     }
682   }
683 
684   for (size_t i = 0; i < sections.size(); ++i) {
685     Subsections &subsections = sections[i].subsections;
686     if (subsections.empty())
687       continue;
688 
689     std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
690     uint64_t sectionAddr = sectionHeaders[i].addr;
691     uint32_t sectionAlign = 1u << sectionHeaders[i].align;
692 
693     InputSection *lastIsec = subsections.back().isec;
694     // Record-based sections have already been split into subsections during
695     // parseSections(), so we simply need to match Symbols to the corresponding
696     // subsection here.
697     if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) {
698       for (size_t j = 0; j < symbolIndices.size(); ++j) {
699         uint32_t symIndex = symbolIndices[j];
700         const NList &sym = nList[symIndex];
701         StringRef name = strtab + sym.n_strx;
702         uint64_t symbolOffset = sym.n_value - sectionAddr;
703         InputSection *isec =
704             findContainingSubsection(subsections, &symbolOffset);
705         if (symbolOffset != 0) {
706           error(toString(lastIsec) + ":  symbol " + name +
707                 " at misaligned offset");
708           continue;
709         }
710         symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize());
711       }
712       continue;
713     }
714 
715     // Calculate symbol sizes and create subsections by splitting the sections
716     // along symbol boundaries.
717     // We populate subsections by repeatedly splitting the last (highest
718     // address) subsection.
719     llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
720       return nList[lhs].n_value < nList[rhs].n_value;
721     });
722     Subsection subsec = subsections.back();
723     for (size_t j = 0; j < symbolIndices.size(); ++j) {
724       uint32_t symIndex = symbolIndices[j];
725       const NList &sym = nList[symIndex];
726       StringRef name = strtab + sym.n_strx;
727       InputSection *isec = subsec.isec;
728 
729       uint64_t subsecAddr = sectionAddr + subsec.offset;
730       size_t symbolOffset = sym.n_value - subsecAddr;
731       uint64_t symbolSize =
732           j + 1 < symbolIndices.size()
733               ? nList[symbolIndices[j + 1]].n_value - sym.n_value
734               : isec->data.size() - symbolOffset;
735       // There are 4 cases where we do not need to create a new subsection:
736       //   1. If the input file does not use subsections-via-symbols.
737       //   2. Multiple symbols at the same address only induce one subsection.
738       //      (The symbolOffset == 0 check covers both this case as well as
739       //      the first loop iteration.)
740       //   3. Alternative entry points do not induce new subsections.
741       //   4. If we have a literal section (e.g. __cstring and __literal4).
742       if (!subsectionsViaSymbols || symbolOffset == 0 ||
743           sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
744         symbols[symIndex] =
745             createDefined(sym, name, isec, symbolOffset, symbolSize);
746         continue;
747       }
748       auto *concatIsec = cast<ConcatInputSection>(isec);
749 
750       auto *nextIsec = make<ConcatInputSection>(*concatIsec);
751       nextIsec->wasCoalesced = false;
752       if (isZeroFill(isec->getFlags())) {
753         // Zero-fill sections have NULL data.data() non-zero data.size()
754         nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
755         isec->data = {nullptr, symbolOffset};
756       } else {
757         nextIsec->data = isec->data.slice(symbolOffset);
758         isec->data = isec->data.slice(0, symbolOffset);
759       }
760 
761       // By construction, the symbol will be at offset zero in the new
762       // subsection.
763       symbols[symIndex] =
764           createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
765       // TODO: ld64 appears to preserve the original alignment as well as each
766       // subsection's offset from the last aligned address. We should consider
767       // emulating that behavior.
768       nextIsec->align = MinAlign(sectionAlign, sym.n_value);
769       subsections.push_back({sym.n_value - sectionAddr, nextIsec});
770       subsec = subsections.back();
771     }
772   }
773 
774   // Undefined symbols can trigger recursive fetch from Archives due to
775   // LazySymbols. Process defined symbols first so that the relative order
776   // between a defined symbol and an undefined symbol does not change the
777   // symbol resolution behavior. In addition, a set of interconnected symbols
778   // will all be resolved to the same file, instead of being resolved to
779   // different files.
780   for (unsigned i : undefineds) {
781     const NList &sym = nList[i];
782     StringRef name = strtab + sym.n_strx;
783     symbols[i] = parseNonSectionSymbol(sym, name);
784   }
785 }
786 
787 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
788                        StringRef sectName)
789     : InputFile(OpaqueKind, mb) {
790   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
791   ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
792   ConcatInputSection *isec =
793       make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16),
794                                /*file=*/this, data);
795   isec->live = true;
796   sections.push_back({});
797   sections.back().subsections.push_back({0, isec});
798 }
799 
800 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName)
801     : InputFile(ObjKind, mb), modTime(modTime) {
802   this->archiveName = std::string(archiveName);
803   if (target->wordSize == 8)
804     parse<LP64>();
805   else
806     parse<ILP32>();
807 }
808 
809 template <class LP> void ObjFile::parse() {
810   using Header = typename LP::mach_header;
811   using SegmentCommand = typename LP::segment_command;
812   using SectionHeader = typename LP::section;
813   using NList = typename LP::nlist;
814 
815   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
816   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
817 
818   Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
819   if (arch != config->arch()) {
820     auto msg = config->errorForArchMismatch
821                    ? static_cast<void (*)(const Twine &)>(error)
822                    : warn;
823     msg(toString(this) + " has architecture " + getArchitectureName(arch) +
824         " which is incompatible with target architecture " +
825         getArchitectureName(config->arch()));
826     return;
827   }
828 
829   if (!checkCompatibility(this))
830     return;
831 
832   for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
833     StringRef data{reinterpret_cast<const char *>(cmd + 1),
834                    cmd->cmdsize - sizeof(linker_option_command)};
835     parseLCLinkerOption(this, cmd->count, data);
836   }
837 
838   ArrayRef<SectionHeader> sectionHeaders;
839   if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
840     auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
841     sectionHeaders = ArrayRef<SectionHeader>{
842         reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
843     parseSections(sectionHeaders);
844   }
845 
846   // TODO: Error on missing LC_SYMTAB?
847   if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
848     auto *c = reinterpret_cast<const symtab_command *>(cmd);
849     ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
850                           c->nsyms);
851     const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
852     bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
853     parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
854   }
855 
856   // The relocations may refer to the symbols, so we parse them after we have
857   // parsed all the symbols.
858   for (size_t i = 0, n = sections.size(); i < n; ++i)
859     if (!sections[i].subsections.empty())
860       parseRelocations(sectionHeaders, sectionHeaders[i],
861                        sections[i].subsections);
862 
863   parseDebugInfo();
864   if (config->emitDataInCodeInfo)
865     parseDataInCode();
866   registerCompactUnwind();
867 }
868 
869 void ObjFile::parseDebugInfo() {
870   std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
871   if (!dObj)
872     return;
873 
874   auto *ctx = make<DWARFContext>(
875       std::move(dObj), "",
876       [&](Error err) {
877         warn(toString(this) + ": " + toString(std::move(err)));
878       },
879       [&](Error warning) {
880         warn(toString(this) + ": " + toString(std::move(warning)));
881       });
882 
883   // TODO: Since object files can contain a lot of DWARF info, we should verify
884   // that we are parsing just the info we need
885   const DWARFContext::compile_unit_range &units = ctx->compile_units();
886   // FIXME: There can be more than one compile unit per object file. See
887   // PR48637.
888   auto it = units.begin();
889   compileUnit = it->get();
890 }
891 
892 void ObjFile::parseDataInCode() {
893   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
894   const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
895   if (!cmd)
896     return;
897   const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
898   dataInCodeEntries = {
899       reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
900       c->datasize / sizeof(data_in_code_entry)};
901   assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs,
902                                          const data_in_code_entry &rhs) {
903     return lhs.offset < rhs.offset;
904   }));
905 }
906 
907 // Create pointers from symbols to their associated compact unwind entries.
908 void ObjFile::registerCompactUnwind() {
909   // First, locate the __compact_unwind section.
910   Section *cuSection = nullptr;
911   for (Section &section : sections) {
912     if (section.subsections.empty())
913       continue;
914     if (section.subsections[0].isec->getSegName() != segment_names::ld)
915       continue;
916     cuSection = &section;
917     break;
918   }
919   if (!cuSection)
920     return;
921 
922   for (Subsection &subsection : cuSection->subsections) {
923     ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
924     // Hack!! Since each CUE contains a different function address, if ICF
925     // operated naively and compared the entire contents of each CUE, entries
926     // with identical unwind info but belonging to different functions would
927     // never be considered equivalent. To work around this problem, we slice
928     // away the function address here. (Note that we do not adjust the offsets
929     // of the corresponding relocations.) We rely on `relocateCompactUnwind()`
930     // to correctly handle these truncated input sections.
931     isec->data = isec->data.slice(target->wordSize);
932 
933     ConcatInputSection *referentIsec;
934     for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
935       Reloc &r = *it;
936       // We only wish to handle the relocation for CUE::functionAddress.
937       if (r.offset != 0) {
938         ++it;
939         continue;
940       }
941       uint64_t add = r.addend;
942       if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
943         // Check whether the symbol defined in this file is the prevailing one.
944         // Skip if it is e.g. a weak def that didn't prevail.
945         if (sym->getFile() != this) {
946           ++it;
947           continue;
948         }
949         add += sym->value;
950         referentIsec = cast<ConcatInputSection>(sym->isec);
951       } else {
952         referentIsec =
953             cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
954       }
955       if (referentIsec->getSegName() != segment_names::text)
956         error("compact unwind references address in " + toString(referentIsec) +
957               " which is not in segment __TEXT");
958       // The functionAddress relocations are typically section relocations.
959       // However, unwind info operates on a per-symbol basis, so we search for
960       // the function symbol here.
961       auto symIt = llvm::lower_bound(
962           referentIsec->symbols, add,
963           [](Defined *d, uint64_t add) { return d->value < add; });
964       // The relocation should point at the exact address of a symbol (with no
965       // addend).
966       if (symIt == referentIsec->symbols.end() || (*symIt)->value != add) {
967         assert(referentIsec->wasCoalesced);
968         ++it;
969         continue;
970       }
971       (*symIt)->compactUnwind = isec;
972       // Since we've sliced away the functionAddress, we should remove the
973       // corresponding relocation too. Given that clang emits relocations in
974       // reverse order of address, this relocation should be at the end of the
975       // vector for most of our input object files, so this is typically an O(1)
976       // operation.
977       it = isec->relocs.erase(it);
978     }
979   }
980 }
981 
982 // The path can point to either a dylib or a .tbd file.
983 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
984   Optional<MemoryBufferRef> mbref = readFile(path);
985   if (!mbref) {
986     error("could not read dylib file at " + path);
987     return nullptr;
988   }
989   return loadDylib(*mbref, umbrella);
990 }
991 
992 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
993 // the first document storing child pointers to the rest of them. When we are
994 // processing a given TBD file, we store that top-level document in
995 // currentTopLevelTapi. When processing re-exports, we search its children for
996 // potentially matching documents in the same TBD file. Note that the children
997 // themselves don't point to further documents, i.e. this is a two-level tree.
998 //
999 // Re-exports can either refer to on-disk files, or to documents within .tbd
1000 // files.
1001 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
1002                             const InterfaceFile *currentTopLevelTapi) {
1003   // Search order:
1004   // 1. Install name basename in -F / -L directories.
1005   {
1006     StringRef stem = path::stem(path);
1007     SmallString<128> frameworkName;
1008     path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
1009     bool isFramework = path.endswith(frameworkName);
1010     if (isFramework) {
1011       for (StringRef dir : config->frameworkSearchPaths) {
1012         SmallString<128> candidate = dir;
1013         path::append(candidate, frameworkName);
1014         if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str()))
1015           return loadDylib(*dylibPath, umbrella);
1016       }
1017     } else if (Optional<StringRef> dylibPath = findPathCombination(
1018                    stem, config->librarySearchPaths, {".tbd", ".dylib"}))
1019       return loadDylib(*dylibPath, umbrella);
1020   }
1021 
1022   // 2. As absolute path.
1023   if (path::is_absolute(path, path::Style::posix))
1024     for (StringRef root : config->systemLibraryRoots)
1025       if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str()))
1026         return loadDylib(*dylibPath, umbrella);
1027 
1028   // 3. As relative path.
1029 
1030   // TODO: Handle -dylib_file
1031 
1032   // Replace @executable_path, @loader_path, @rpath prefixes in install name.
1033   SmallString<128> newPath;
1034   if (config->outputType == MH_EXECUTE &&
1035       path.consume_front("@executable_path/")) {
1036     // ld64 allows overriding this with the undocumented flag -executable_path.
1037     // lld doesn't currently implement that flag.
1038     // FIXME: Consider using finalOutput instead of outputFile.
1039     path::append(newPath, path::parent_path(config->outputFile), path);
1040     path = newPath;
1041   } else if (path.consume_front("@loader_path/")) {
1042     fs::real_path(umbrella->getName(), newPath);
1043     path::remove_filename(newPath);
1044     path::append(newPath, path);
1045     path = newPath;
1046   } else if (path.startswith("@rpath/")) {
1047     for (StringRef rpath : umbrella->rpaths) {
1048       newPath.clear();
1049       if (rpath.consume_front("@loader_path/")) {
1050         fs::real_path(umbrella->getName(), newPath);
1051         path::remove_filename(newPath);
1052       }
1053       path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1054       if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1055         return loadDylib(*dylibPath, umbrella);
1056     }
1057   }
1058 
1059   // FIXME: Should this be further up?
1060   if (currentTopLevelTapi) {
1061     for (InterfaceFile &child :
1062          make_pointee_range(currentTopLevelTapi->documents())) {
1063       assert(child.documents().empty());
1064       if (path == child.getInstallName()) {
1065         auto file = make<DylibFile>(child, umbrella);
1066         file->parseReexports(child);
1067         return file;
1068       }
1069     }
1070   }
1071 
1072   if (Optional<StringRef> dylibPath = resolveDylibPath(path))
1073     return loadDylib(*dylibPath, umbrella);
1074 
1075   return nullptr;
1076 }
1077 
1078 // If a re-exported dylib is public (lives in /usr/lib or
1079 // /System/Library/Frameworks), then it is considered implicitly linked: we
1080 // should bind to its symbols directly instead of via the re-exporting umbrella
1081 // library.
1082 static bool isImplicitlyLinked(StringRef path) {
1083   if (!config->implicitDylibs)
1084     return false;
1085 
1086   if (path::parent_path(path) == "/usr/lib")
1087     return true;
1088 
1089   // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1090   if (path.consume_front("/System/Library/Frameworks/")) {
1091     StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1092     return path::filename(path) == frameworkName;
1093   }
1094 
1095   return false;
1096 }
1097 
1098 static void loadReexport(StringRef path, DylibFile *umbrella,
1099                          const InterfaceFile *currentTopLevelTapi) {
1100   DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1101   if (!reexport)
1102     error("unable to locate re-export with install name " + path);
1103 }
1104 
1105 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1106                      bool isBundleLoader)
1107     : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1108       isBundleLoader(isBundleLoader) {
1109   assert(!isBundleLoader || !umbrella);
1110   if (umbrella == nullptr)
1111     umbrella = this;
1112   this->umbrella = umbrella;
1113 
1114   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1115   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1116 
1117   // Initialize installName.
1118   if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1119     auto *c = reinterpret_cast<const dylib_command *>(cmd);
1120     currentVersion = read32le(&c->dylib.current_version);
1121     compatibilityVersion = read32le(&c->dylib.compatibility_version);
1122     installName =
1123         reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1124   } else if (!isBundleLoader) {
1125     // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1126     // so it's OK.
1127     error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
1128     return;
1129   }
1130 
1131   if (config->printEachFile)
1132     message(toString(this));
1133   inputFiles.insert(this);
1134 
1135   deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1136 
1137   if (!checkCompatibility(this))
1138     return;
1139 
1140   checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1141 
1142   for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1143     StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1144     rpaths.push_back(rpath);
1145   }
1146 
1147   // Initialize symbols.
1148   exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
1149   if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
1150     auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
1151     parseTrie(buf + c->export_off, c->export_size,
1152               [&](const Twine &name, uint64_t flags) {
1153                 StringRef savedName = saver.save(name);
1154                 if (handleLDSymbol(savedName))
1155                   return;
1156                 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1157                 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1158                 symbols.push_back(symtab->addDylib(savedName, exportingFile,
1159                                                    isWeakDef, isTlv));
1160               });
1161   } else {
1162     error("LC_DYLD_INFO_ONLY not found in " + toString(this));
1163     return;
1164   }
1165 }
1166 
1167 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1168   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1169   const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1170                      target->headerSize;
1171   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1172     auto *cmd = reinterpret_cast<const load_command *>(p);
1173     p += cmd->cmdsize;
1174 
1175     if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1176         cmd->cmd == LC_REEXPORT_DYLIB) {
1177       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1178       StringRef reexportPath =
1179           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1180       loadReexport(reexportPath, exportingFile, nullptr);
1181     }
1182 
1183     // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1184     // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1185     // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1186     if (config->namespaceKind == NamespaceKind::flat &&
1187         cmd->cmd == LC_LOAD_DYLIB) {
1188       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1189       StringRef dylibPath =
1190           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1191       DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1192       if (!dylib)
1193         error(Twine("unable to locate library '") + dylibPath +
1194               "' loaded from '" + toString(this) + "' for -flat_namespace");
1195     }
1196   }
1197 }
1198 
1199 // Some versions of XCode ship with .tbd files that don't have the right
1200 // platform settings.
1201 static constexpr std::array<StringRef, 3> skipPlatformChecks{
1202     "/usr/lib/system/libsystem_kernel.dylib",
1203     "/usr/lib/system/libsystem_platform.dylib",
1204     "/usr/lib/system/libsystem_pthread.dylib"};
1205 
1206 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1207                      bool isBundleLoader)
1208     : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1209       isBundleLoader(isBundleLoader) {
1210   // FIXME: Add test for the missing TBD code path.
1211 
1212   if (umbrella == nullptr)
1213     umbrella = this;
1214   this->umbrella = umbrella;
1215 
1216   installName = saver.save(interface.getInstallName());
1217   compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1218   currentVersion = interface.getCurrentVersion().rawValue();
1219 
1220   if (config->printEachFile)
1221     message(toString(this));
1222   inputFiles.insert(this);
1223 
1224   if (!is_contained(skipPlatformChecks, installName) &&
1225       !is_contained(interface.targets(), config->platformInfo.target)) {
1226     error(toString(this) + " is incompatible with " +
1227           std::string(config->platformInfo.target));
1228     return;
1229   }
1230 
1231   checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1232 
1233   exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1234   auto addSymbol = [&](const Twine &name) -> void {
1235     symbols.push_back(symtab->addDylib(saver.save(name), exportingFile,
1236                                        /*isWeakDef=*/false,
1237                                        /*isTlv=*/false));
1238   };
1239   // TODO(compnerd) filter out symbols based on the target platform
1240   // TODO: handle weak defs, thread locals
1241   for (const auto *symbol : interface.symbols()) {
1242     if (!symbol->getArchitectures().has(config->arch()))
1243       continue;
1244 
1245     if (handleLDSymbol(symbol->getName()))
1246       continue;
1247 
1248     switch (symbol->getKind()) {
1249     case SymbolKind::GlobalSymbol:
1250       addSymbol(symbol->getName());
1251       break;
1252     case SymbolKind::ObjectiveCClass:
1253       // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1254       // want to emulate that.
1255       addSymbol(objc::klass + symbol->getName());
1256       addSymbol(objc::metaclass + symbol->getName());
1257       break;
1258     case SymbolKind::ObjectiveCClassEHType:
1259       addSymbol(objc::ehtype + symbol->getName());
1260       break;
1261     case SymbolKind::ObjectiveCInstanceVariable:
1262       addSymbol(objc::ivar + symbol->getName());
1263       break;
1264     }
1265   }
1266 }
1267 
1268 void DylibFile::parseReexports(const InterfaceFile &interface) {
1269   const InterfaceFile *topLevel =
1270       interface.getParent() == nullptr ? &interface : interface.getParent();
1271   for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1272     InterfaceFile::const_target_range targets = intfRef.targets();
1273     if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1274         is_contained(targets, config->platformInfo.target))
1275       loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1276   }
1277 }
1278 
1279 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1280 // name, compatibility version or hide/add symbols) for specific target
1281 // versions.
1282 bool DylibFile::handleLDSymbol(StringRef originalName) {
1283   if (!originalName.startswith("$ld$"))
1284     return false;
1285 
1286   StringRef action;
1287   StringRef name;
1288   std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1289   if (action == "previous")
1290     handleLDPreviousSymbol(name, originalName);
1291   else if (action == "install_name")
1292     handleLDInstallNameSymbol(name, originalName);
1293   return true;
1294 }
1295 
1296 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1297   // originalName: $ld$ previous $ <installname> $ <compatversion> $
1298   // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1299   StringRef installName;
1300   StringRef compatVersion;
1301   StringRef platformStr;
1302   StringRef startVersion;
1303   StringRef endVersion;
1304   StringRef symbolName;
1305   StringRef rest;
1306 
1307   std::tie(installName, name) = name.split('$');
1308   std::tie(compatVersion, name) = name.split('$');
1309   std::tie(platformStr, name) = name.split('$');
1310   std::tie(startVersion, name) = name.split('$');
1311   std::tie(endVersion, name) = name.split('$');
1312   std::tie(symbolName, rest) = name.split('$');
1313   // TODO: ld64 contains some logic for non-empty symbolName as well.
1314   if (!symbolName.empty())
1315     return;
1316   unsigned platform;
1317   if (platformStr.getAsInteger(10, platform) ||
1318       platform != static_cast<unsigned>(config->platform()))
1319     return;
1320 
1321   VersionTuple start;
1322   if (start.tryParse(startVersion)) {
1323     warn("failed to parse start version, symbol '" + originalName +
1324          "' ignored");
1325     return;
1326   }
1327   VersionTuple end;
1328   if (end.tryParse(endVersion)) {
1329     warn("failed to parse end version, symbol '" + originalName + "' ignored");
1330     return;
1331   }
1332   if (config->platformInfo.minimum < start ||
1333       config->platformInfo.minimum >= end)
1334     return;
1335 
1336   this->installName = saver.save(installName);
1337 
1338   if (!compatVersion.empty()) {
1339     VersionTuple cVersion;
1340     if (cVersion.tryParse(compatVersion)) {
1341       warn("failed to parse compatibility version, symbol '" + originalName +
1342            "' ignored");
1343       return;
1344     }
1345     compatibilityVersion = encodeVersion(cVersion);
1346   }
1347 }
1348 
1349 void DylibFile::handleLDInstallNameSymbol(StringRef name,
1350                                           StringRef originalName) {
1351   // originalName: $ld$ install_name $ os<version> $ install_name
1352   StringRef condition, installName;
1353   std::tie(condition, installName) = name.split('$');
1354   VersionTuple version;
1355   if (!condition.consume_front("os") || version.tryParse(condition))
1356     warn("failed to parse os version, symbol '" + originalName + "' ignored");
1357   else if (version == config->platformInfo.minimum)
1358     this->installName = saver.save(installName);
1359 }
1360 
1361 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
1362   if (config->applicationExtension && !dylibIsAppExtensionSafe)
1363     warn("using '-application_extension' with unsafe dylib: " + toString(this));
1364 }
1365 
1366 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
1367     : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {}
1368 
1369 void ArchiveFile::addLazySymbols() {
1370   for (const object::Archive::Symbol &sym : file->symbols())
1371     symtab->addLazy(sym.getName(), this, sym);
1372 }
1373 
1374 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb,
1375                                                uint32_t modTime,
1376                                                StringRef archiveName,
1377                                                uint64_t offsetInArchive) {
1378   if (config->zeroModTime)
1379     modTime = 0;
1380 
1381   switch (identify_magic(mb.getBuffer())) {
1382   case file_magic::macho_object:
1383     return make<ObjFile>(mb, modTime, archiveName);
1384   case file_magic::bitcode:
1385     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1386   default:
1387     return createStringError(inconvertibleErrorCode(),
1388                              mb.getBufferIdentifier() +
1389                                  " has unhandled file type");
1390   }
1391 }
1392 
1393 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
1394   if (!seen.insert(c.getChildOffset()).second)
1395     return Error::success();
1396 
1397   Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
1398   if (!mb)
1399     return mb.takeError();
1400 
1401   // Thin archives refer to .o files, so --reproduce needs the .o files too.
1402   if (tar && c.getParent()->isThin())
1403     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
1404 
1405   Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
1406   if (!modTime)
1407     return modTime.takeError();
1408 
1409   Expected<InputFile *> file =
1410       loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset());
1411 
1412   if (!file)
1413     return file.takeError();
1414 
1415   inputFiles.insert(*file);
1416   printArchiveMemberLoad(reason, *file);
1417   return Error::success();
1418 }
1419 
1420 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
1421   object::Archive::Child c =
1422       CHECK(sym.getMember(), toString(this) +
1423                                  ": could not get the member defining symbol " +
1424                                  toMachOString(sym));
1425 
1426   // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
1427   // and become invalid after that call. Copy it to the stack so we can refer
1428   // to it later.
1429   const object::Archive::Symbol symCopy = sym;
1430 
1431   // ld64 doesn't demangle sym here even with -demangle.
1432   // Match that: intentionally don't call toMachOString().
1433   if (Error e = fetch(c, symCopy.getName()))
1434     error(toString(this) + ": could not get the member defining symbol " +
1435           toMachOString(symCopy) + ": " + toString(std::move(e)));
1436 }
1437 
1438 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
1439                                           BitcodeFile &file) {
1440   StringRef name = saver.save(objSym.getName());
1441 
1442   // TODO: support weak references
1443   if (objSym.isUndefined())
1444     return symtab->addUndefined(name, &file, /*isWeakRef=*/false);
1445 
1446   // TODO: Write a test demonstrating why computing isPrivateExtern before
1447   // LTO compilation is important.
1448   bool isPrivateExtern = false;
1449   switch (objSym.getVisibility()) {
1450   case GlobalValue::HiddenVisibility:
1451     isPrivateExtern = true;
1452     break;
1453   case GlobalValue::ProtectedVisibility:
1454     error(name + " has protected visibility, which is not supported by Mach-O");
1455     break;
1456   case GlobalValue::DefaultVisibility:
1457     break;
1458   }
1459 
1460   if (objSym.isCommon())
1461     return symtab->addCommon(name, &file, objSym.getCommonSize(),
1462                              objSym.getCommonAlignment(), isPrivateExtern);
1463 
1464   return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
1465                             /*size=*/0, objSym.isWeak(), isPrivateExtern,
1466                             /*isThumb=*/false,
1467                             /*isReferencedDynamically=*/false,
1468                             /*noDeadStrip=*/false,
1469                             /*isWeakDefCanBeHidden=*/false);
1470 }
1471 
1472 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1473                          uint64_t offsetInArchive)
1474     : InputFile(BitcodeKind, mb) {
1475   std::string path = mb.getBufferIdentifier().str();
1476   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1477   // name. If two members with the same name are provided, this causes a
1478   // collision and ThinLTO can't proceed.
1479   // So, we append the archive name to disambiguate two members with the same
1480   // name from multiple different archives, and offset within the archive to
1481   // disambiguate two members of the same name from a single archive.
1482   MemoryBufferRef mbref(
1483       mb.getBuffer(),
1484       saver.save(archiveName.empty() ? path
1485                                      : archiveName + sys::path::filename(path) +
1486                                            utostr(offsetInArchive)));
1487 
1488   obj = check(lto::InputFile::create(mbref));
1489 
1490   // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
1491   // "winning" symbol will then be marked as Prevailing at LTO compilation
1492   // time.
1493   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1494     symbols.push_back(createBitcodeSymbol(objSym, *this));
1495 }
1496 
1497 template void ObjFile::parse<LP64>();
1498