1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "ExportTrie.h"
47 #include "InputSection.h"
48 #include "MachOStructs.h"
49 #include "OutputSection.h"
50 #include "SymbolTable.h"
51 #include "Symbols.h"
52 #include "Target.h"
53 
54 #include "lld/Common/ErrorHandler.h"
55 #include "lld/Common/Memory.h"
56 #include "llvm/BinaryFormat/MachO.h"
57 #include "llvm/Support/Endian.h"
58 #include "llvm/Support/MemoryBuffer.h"
59 #include "llvm/Support/Path.h"
60 
61 using namespace llvm;
62 using namespace llvm::MachO;
63 using namespace llvm::support::endian;
64 using namespace llvm::sys;
65 using namespace lld;
66 using namespace lld::macho;
67 
68 std::vector<InputFile *> macho::inputFiles;
69 
70 // Open a given file path and return it as a memory-mapped file.
71 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
72   // Open a file.
73   auto mbOrErr = MemoryBuffer::getFile(path);
74   if (auto ec = mbOrErr.getError()) {
75     error("cannot open " + path + ": " + ec.message());
76     return None;
77   }
78 
79   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
80   MemoryBufferRef mbref = mb->getMemBufferRef();
81   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
82 
83   // If this is a regular non-fat file, return it.
84   const char *buf = mbref.getBufferStart();
85   auto *hdr = reinterpret_cast<const MachO::fat_header *>(buf);
86   if (read32be(&hdr->magic) != MachO::FAT_MAGIC)
87     return mbref;
88 
89   // Object files and archive files may be fat files, which contains
90   // multiple real files for different CPU ISAs. Here, we search for a
91   // file that matches with the current link target and returns it as
92   // a MemoryBufferRef.
93   auto *arch = reinterpret_cast<const MachO::fat_arch *>(buf + sizeof(*hdr));
94 
95   for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
96     if (reinterpret_cast<const char *>(arch + i + 1) >
97         buf + mbref.getBufferSize()) {
98       error(path + ": fat_arch struct extends beyond end of file");
99       return None;
100     }
101 
102     if (read32be(&arch[i].cputype) != target->cpuType ||
103         read32be(&arch[i].cpusubtype) != target->cpuSubtype)
104       continue;
105 
106     uint32_t offset = read32be(&arch[i].offset);
107     uint32_t size = read32be(&arch[i].size);
108     if (offset + size > mbref.getBufferSize())
109       error(path + ": slice extends beyond end of file");
110     return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc));
111   }
112 
113   error("unable to find matching architecture in " + path);
114   return None;
115 }
116 
117 static const load_command *findCommand(const mach_header_64 *hdr,
118                                        uint32_t type) {
119   const uint8_t *p =
120       reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64);
121 
122   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
123     auto *cmd = reinterpret_cast<const load_command *>(p);
124     if (cmd->cmd == type)
125       return cmd;
126     p += cmd->cmdsize;
127   }
128   return nullptr;
129 }
130 
131 void InputFile::parseSections(ArrayRef<section_64> sections) {
132   subsections.reserve(sections.size());
133   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
134 
135   for (const section_64 &sec : sections) {
136     InputSection *isec = make<InputSection>();
137     isec->file = this;
138     isec->name = StringRef(sec.sectname, strnlen(sec.sectname, 16));
139     isec->segname = StringRef(sec.segname, strnlen(sec.segname, 16));
140     isec->data = {buf + sec.offset, static_cast<size_t>(sec.size)};
141     if (sec.align >= 32)
142       error("alignment " + std::to_string(sec.align) + " of section " +
143             isec->name + " is too large");
144     else
145       isec->align = 1 << sec.align;
146     isec->flags = sec.flags;
147     subsections.push_back({{0, isec}});
148   }
149 }
150 
151 // Find the subsection corresponding to the greatest section offset that is <=
152 // that of the given offset.
153 //
154 // offset: an offset relative to the start of the original InputSection (before
155 // any subsection splitting has occurred). It will be updated to represent the
156 // same location as an offset relative to the start of the containing
157 // subsection.
158 static InputSection *findContainingSubsection(SubsectionMap &map,
159                                               uint32_t *offset) {
160   auto it = std::prev(map.upper_bound(*offset));
161   *offset -= it->first;
162   return it->second;
163 }
164 
165 void InputFile::parseRelocations(const section_64 &sec,
166                                  SubsectionMap &subsecMap) {
167   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
168   ArrayRef<any_relocation_info> relInfos(
169       reinterpret_cast<const any_relocation_info *>(buf + sec.reloff),
170       sec.nreloc);
171 
172   for (const any_relocation_info &anyRel : relInfos) {
173     if (anyRel.r_word0 & R_SCATTERED)
174       fatal("TODO: Scattered relocations not supported");
175 
176     auto rel = reinterpret_cast<const relocation_info &>(anyRel);
177 
178     Reloc r;
179     r.type = rel.r_type;
180     r.pcrel = rel.r_pcrel;
181     uint64_t rawAddend = target->getImplicitAddend(mb, sec, rel);
182 
183     if (rel.r_extern) {
184       r.target = symbols[rel.r_symbolnum];
185       r.addend = rawAddend;
186     } else {
187       if (!rel.r_pcrel)
188         fatal("TODO: Only pcrel section relocations are supported");
189 
190       if (rel.r_symbolnum == 0 || rel.r_symbolnum > subsections.size())
191         fatal("invalid section index in relocation for offset " +
192               std::to_string(r.offset) + " in section " + sec.sectname +
193               " of " + getName());
194 
195       SubsectionMap &targetSubsecMap = subsections[rel.r_symbolnum - 1];
196       const section_64 &targetSec = sectionHeaders[rel.r_symbolnum - 1];
197       // The implicit addend for pcrel section relocations is the pcrel offset
198       // in terms of the addresses in the input file. Here we adjust it so that
199       // it describes the offset from the start of the target section.
200       // TODO: Figure out what to do for non-pcrel section relocations.
201       // TODO: The offset of 4 is probably not right for ARM64, nor for
202       //       relocations with r_length != 2.
203       uint32_t targetOffset =
204           sec.addr + rel.r_address + 4 + rawAddend - targetSec.addr;
205       r.target = findContainingSubsection(targetSubsecMap, &targetOffset);
206       r.addend = targetOffset;
207     }
208 
209     r.offset = rel.r_address;
210     InputSection *subsec = findContainingSubsection(subsecMap, &r.offset);
211     subsec->relocs.push_back(r);
212   }
213 }
214 
215 void InputFile::parseSymbols(ArrayRef<structs::nlist_64> nList,
216                              const char *strtab, bool subsectionsViaSymbols) {
217   // resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols
218   // out-of-sequence.
219   symbols.resize(nList.size());
220   std::vector<size_t> altEntrySymIdxs;
221 
222   auto createDefined = [&](const structs::nlist_64 &sym, InputSection *isec,
223                            uint32_t value) -> Symbol * {
224     StringRef name = strtab + sym.n_strx;
225     if (sym.n_type & N_EXT)
226       // Global defined symbol
227       return symtab->addDefined(name, isec, value);
228     else
229       // Local defined symbol
230       return make<Defined>(name, isec, value);
231   };
232 
233   for (size_t i = 0, n = nList.size(); i < n; ++i) {
234     const structs::nlist_64 &sym = nList[i];
235 
236     // Undefined symbol
237     if (!sym.n_sect) {
238       StringRef name = strtab + sym.n_strx;
239       symbols[i] = symtab->addUndefined(name);
240       continue;
241     }
242 
243     const section_64 &sec = sectionHeaders[sym.n_sect - 1];
244     SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
245     uint64_t offset = sym.n_value - sec.addr;
246 
247     // If the input file does not use subsections-via-symbols, all symbols can
248     // use the same subsection. Otherwise, we must split the sections along
249     // symbol boundaries.
250     if (!subsectionsViaSymbols) {
251       symbols[i] = createDefined(sym, subsecMap[0], offset);
252       continue;
253     }
254 
255     // nList entries aren't necessarily arranged in address order. Therefore,
256     // we can't create alt-entry symbols at this point because a later symbol
257     // may split its section, which may affect which subsection the alt-entry
258     // symbol is assigned to. So we need to handle them in a second pass below.
259     if (sym.n_desc & N_ALT_ENTRY) {
260       altEntrySymIdxs.push_back(i);
261       continue;
262     }
263 
264     // Find the subsection corresponding to the greatest section offset that is
265     // <= that of the current symbol. The subsection that we find either needs
266     // to be used directly or split in two.
267     uint32_t firstSize = offset;
268     InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize);
269 
270     if (firstSize == 0) {
271       // Alias of an existing symbol, or the first symbol in the section. These
272       // are handled by reusing the existing section.
273       symbols[i] = createDefined(sym, firstIsec, 0);
274       continue;
275     }
276 
277     // We saw a symbol definition at a new offset. Split the section into two
278     // subsections. The new symbol uses the second subsection.
279     auto *secondIsec = make<InputSection>(*firstIsec);
280     secondIsec->data = firstIsec->data.slice(firstSize);
281     firstIsec->data = firstIsec->data.slice(0, firstSize);
282     // TODO: ld64 appears to preserve the original alignment as well as each
283     // subsection's offset from the last aligned address. We should consider
284     // emulating that behavior.
285     secondIsec->align = MinAlign(firstIsec->align, offset);
286 
287     subsecMap[offset] = secondIsec;
288     // By construction, the symbol will be at offset zero in the new section.
289     symbols[i] = createDefined(sym, secondIsec, 0);
290   }
291 
292   for (size_t idx : altEntrySymIdxs) {
293     const structs::nlist_64 &sym = nList[idx];
294     SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
295     uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr;
296     InputSection *subsec = findContainingSubsection(subsecMap, &off);
297     symbols[idx] = createDefined(sym, subsec, off);
298   }
299 }
300 
301 ObjFile::ObjFile(MemoryBufferRef mb) : InputFile(ObjKind, mb) {
302   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
303   auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart());
304 
305   if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) {
306     auto *c = reinterpret_cast<const segment_command_64 *>(cmd);
307     sectionHeaders = ArrayRef<section_64>{
308         reinterpret_cast<const section_64 *>(c + 1), c->nsects};
309     parseSections(sectionHeaders);
310   }
311 
312   // TODO: Error on missing LC_SYMTAB?
313   if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
314     auto *c = reinterpret_cast<const symtab_command *>(cmd);
315     ArrayRef<structs::nlist_64> nList(
316         reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms);
317     const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
318     bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
319     parseSymbols(nList, strtab, subsectionsViaSymbols);
320   }
321 
322   // The relocations may refer to the symbols, so we parse them after we have
323   // parsed all the symbols.
324   for (size_t i = 0, n = subsections.size(); i < n; ++i)
325     parseRelocations(sectionHeaders[i], subsections[i]);
326 }
327 
328 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella)
329     : InputFile(DylibKind, mb) {
330   if (umbrella == nullptr)
331     umbrella = this;
332 
333   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
334   auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart());
335 
336   // Initialize dylibName.
337   if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
338     auto *c = reinterpret_cast<const dylib_command *>(cmd);
339     dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
340   } else {
341     error("dylib " + getName() + " missing LC_ID_DYLIB load command");
342     return;
343   }
344 
345   // Initialize symbols.
346   if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
347     auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
348     parseTrie(buf + c->export_off, c->export_size,
349               [&](const Twine &name, uint64_t flags) {
350                 symbols.push_back(symtab->addDylib(saver.save(name), umbrella));
351               });
352   } else {
353     error("LC_DYLD_INFO_ONLY not found in " + getName());
354     return;
355   }
356 
357   if (hdr->flags & MH_NO_REEXPORTED_DYLIBS)
358     return;
359 
360   const uint8_t *p =
361       reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64);
362   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
363     auto *cmd = reinterpret_cast<const load_command *>(p);
364     p += cmd->cmdsize;
365     if (cmd->cmd != LC_REEXPORT_DYLIB)
366       continue;
367 
368     auto *c = reinterpret_cast<const dylib_command *>(cmd);
369     StringRef reexportPath =
370         reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
371     // TODO: Expand @loader_path, @executable_path etc in reexportPath
372     Optional<MemoryBufferRef> buffer = readFile(reexportPath);
373     if (!buffer) {
374       error("unable to read re-exported dylib at " + reexportPath);
375       return;
376     }
377     reexported.push_back(make<DylibFile>(*buffer, umbrella));
378   }
379 }
380 
381 DylibFile::DylibFile() : InputFile(DylibKind, MemoryBufferRef()) {}
382 
383 DylibFile *DylibFile::createLibSystemMock() {
384   auto *file = make<DylibFile>();
385   file->mb = MemoryBufferRef("", "/usr/lib/libSystem.B.dylib");
386   file->dylibName = "/usr/lib/libSystem.B.dylib";
387   file->symbols.push_back(symtab->addDylib("dyld_stub_binder", file));
388   return file;
389 }
390 
391 ArchiveFile::ArchiveFile(std::unique_ptr<llvm::object::Archive> &&f)
392     : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {
393   for (const object::Archive::Symbol &sym : file->symbols())
394     symtab->addLazy(sym.getName(), this, sym);
395 }
396 
397 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
398   object::Archive::Child c =
399       CHECK(sym.getMember(), toString(this) +
400                                  ": could not get the member for symbol " +
401                                  sym.getName());
402 
403   if (!seen.insert(c.getChildOffset()).second)
404     return;
405 
406   MemoryBufferRef mb =
407       CHECK(c.getMemoryBufferRef(),
408             toString(this) +
409                 ": could not get the buffer for the member defining symbol " +
410                 sym.getName());
411   auto file = make<ObjFile>(mb);
412   symbols.insert(symbols.end(), file->symbols.begin(), file->symbols.end());
413   subsections.insert(subsections.end(), file->subsections.begin(),
414                      file->subsections.end());
415 }
416 
417 // Returns "<internal>" or "baz.o".
418 std::string lld::toString(const InputFile *file) {
419   return file ? std::string(file->getName()) : "<internal>";
420 }
421