1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "ExportTrie.h"
49 #include "InputSection.h"
50 #include "MachOStructs.h"
51 #include "ObjC.h"
52 #include "OutputSection.h"
53 #include "OutputSegment.h"
54 #include "SymbolTable.h"
55 #include "Symbols.h"
56 #include "SyntheticSections.h"
57 #include "Target.h"
58 
59 #include "lld/Common/DWARF.h"
60 #include "lld/Common/ErrorHandler.h"
61 #include "lld/Common/Memory.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/Path.h"
69 #include "llvm/Support/TarWriter.h"
70 #include "llvm/TextAPI/Architecture.h"
71 #include "llvm/TextAPI/InterfaceFile.h"
72 
73 using namespace llvm;
74 using namespace llvm::MachO;
75 using namespace llvm::support::endian;
76 using namespace llvm::sys;
77 using namespace lld;
78 using namespace lld::macho;
79 
80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
81 std::string lld::toString(const InputFile *f) {
82   if (!f)
83     return "<internal>";
84 
85   // Multiple dylibs can be defined in one .tbd file.
86   if (auto dylibFile = dyn_cast<DylibFile>(f))
87     if (f->getName().endswith(".tbd"))
88       return (f->getName() + "(" + dylibFile->installName + ")").str();
89 
90   if (f->archiveName.empty())
91     return std::string(f->getName());
92   return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
93 }
94 
95 SetVector<InputFile *> macho::inputFiles;
96 std::unique_ptr<TarWriter> macho::tar;
97 int InputFile::idCount = 0;
98 
99 static VersionTuple decodeVersion(uint32_t version) {
100   unsigned major = version >> 16;
101   unsigned minor = (version >> 8) & 0xffu;
102   unsigned subMinor = version & 0xffu;
103   return VersionTuple(major, minor, subMinor);
104 }
105 
106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
107   if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
108     return {};
109 
110   const char *hdr = input->mb.getBufferStart();
111 
112   std::vector<PlatformInfo> platformInfos;
113   for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
114     PlatformInfo info;
115     info.target.Platform = static_cast<PlatformKind>(cmd->platform);
116     info.minimum = decodeVersion(cmd->minos);
117     platformInfos.emplace_back(std::move(info));
118   }
119   for (auto *cmd : findCommands<version_min_command>(
120            hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
121            LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
122     PlatformInfo info;
123     switch (cmd->cmd) {
124     case LC_VERSION_MIN_MACOSX:
125       info.target.Platform = PlatformKind::macOS;
126       break;
127     case LC_VERSION_MIN_IPHONEOS:
128       info.target.Platform = PlatformKind::iOS;
129       break;
130     case LC_VERSION_MIN_TVOS:
131       info.target.Platform = PlatformKind::tvOS;
132       break;
133     case LC_VERSION_MIN_WATCHOS:
134       info.target.Platform = PlatformKind::watchOS;
135       break;
136     }
137     info.minimum = decodeVersion(cmd->version);
138     platformInfos.emplace_back(std::move(info));
139   }
140 
141   return platformInfos;
142 }
143 
144 static PlatformKind removeSimulator(PlatformKind platform) {
145   // Mapping of platform to simulator and vice-versa.
146   static const std::map<PlatformKind, PlatformKind> platformMap = {
147       {PlatformKind::iOSSimulator, PlatformKind::iOS},
148       {PlatformKind::tvOSSimulator, PlatformKind::tvOS},
149       {PlatformKind::watchOSSimulator, PlatformKind::watchOS}};
150 
151   auto iter = platformMap.find(platform);
152   if (iter == platformMap.end())
153     return platform;
154   return iter->second;
155 }
156 
157 static bool checkCompatibility(const InputFile *input) {
158   std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
159   if (platformInfos.empty())
160     return true;
161 
162   auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
163     return removeSimulator(info.target.Platform) ==
164            removeSimulator(config->platform());
165   });
166   if (it == platformInfos.end()) {
167     std::string platformNames;
168     raw_string_ostream os(platformNames);
169     interleave(
170         platformInfos, os,
171         [&](const PlatformInfo &info) {
172           os << getPlatformName(info.target.Platform);
173         },
174         "/");
175     error(toString(input) + " has platform " + platformNames +
176           Twine(", which is different from target platform ") +
177           getPlatformName(config->platform()));
178     return false;
179   }
180 
181   if (it->minimum > config->platformInfo.minimum)
182     warn(toString(input) + " has version " + it->minimum.getAsString() +
183          ", which is newer than target minimum of " +
184          config->platformInfo.minimum.getAsString());
185 
186   return true;
187 }
188 
189 // Open a given file path and return it as a memory-mapped file.
190 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
191   ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
192   if (std::error_code ec = mbOrErr.getError()) {
193     error("cannot open " + path + ": " + ec.message());
194     return None;
195   }
196 
197   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
198   MemoryBufferRef mbref = mb->getMemBufferRef();
199   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
200 
201   // If this is a regular non-fat file, return it.
202   const char *buf = mbref.getBufferStart();
203   const auto *hdr = reinterpret_cast<const fat_header *>(buf);
204   if (mbref.getBufferSize() < sizeof(uint32_t) ||
205       read32be(&hdr->magic) != FAT_MAGIC) {
206     if (tar)
207       tar->append(relativeToRoot(path), mbref.getBuffer());
208     return mbref;
209   }
210 
211   // Object files and archive files may be fat files, which contain multiple
212   // real files for different CPU ISAs. Here, we search for a file that matches
213   // with the current link target and returns it as a MemoryBufferRef.
214   const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
215 
216   for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
217     if (reinterpret_cast<const char *>(arch + i + 1) >
218         buf + mbref.getBufferSize()) {
219       error(path + ": fat_arch struct extends beyond end of file");
220       return None;
221     }
222 
223     if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
224         read32be(&arch[i].cpusubtype) != target->cpuSubtype)
225       continue;
226 
227     uint32_t offset = read32be(&arch[i].offset);
228     uint32_t size = read32be(&arch[i].size);
229     if (offset + size > mbref.getBufferSize())
230       error(path + ": slice extends beyond end of file");
231     if (tar)
232       tar->append(relativeToRoot(path), mbref.getBuffer());
233     return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc));
234   }
235 
236   error("unable to find matching architecture in " + path);
237   return None;
238 }
239 
240 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
241     : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {}
242 
243 template <class Section>
244 void ObjFile::parseSections(ArrayRef<Section> sections) {
245   subsections.reserve(sections.size());
246   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
247 
248   for (const Section &sec : sections) {
249     StringRef name =
250         StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
251     StringRef segname =
252         StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
253     ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
254                                                     : buf + sec.offset,
255                               static_cast<size_t>(sec.size)};
256     if (sec.align >= 32) {
257       error("alignment " + std::to_string(sec.align) + " of section " + name +
258             " is too large");
259       subsections.push_back({});
260       continue;
261     }
262     uint32_t align = 1 << sec.align;
263     uint32_t flags = sec.flags;
264 
265     if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
266         (config->dedupLiterals && isWordLiteralSection(sec.flags))) {
267       if (sec.nreloc && config->dedupLiterals)
268         fatal(toString(this) + " contains relocations in " + sec.segname + "," +
269               sec.sectname +
270               ", so LLD cannot deduplicate literals. Try re-running without "
271               "--deduplicate-literals.");
272 
273       InputSection *isec;
274       if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
275         isec =
276             make<CStringInputSection>(segname, name, this, data, align, flags);
277         // FIXME: parallelize this?
278         cast<CStringInputSection>(isec)->splitIntoPieces();
279       } else {
280         isec = make<WordLiteralInputSection>(segname, name, this, data, align,
281                                              flags);
282       }
283       subsections.push_back({{0, isec}});
284     } else if (config->icfLevel != ICFLevel::none &&
285                (name == section_names::cfString &&
286                 segname == segment_names::data)) {
287       uint64_t literalSize = target->wordSize == 8 ? 32 : 16;
288       subsections.push_back({});
289       SubsectionMap &subsecMap = subsections.back();
290       for (uint64_t off = 0; off < data.size(); off += literalSize)
291         subsecMap.push_back(
292             {off, make<ConcatInputSection>(segname, name, this,
293                                            data.slice(off, literalSize), align,
294                                            flags)});
295     } else {
296       auto *isec =
297           make<ConcatInputSection>(segname, name, this, data, align, flags);
298       if (!(isDebugSection(isec->getFlags()) &&
299             isec->getSegName() == segment_names::dwarf)) {
300         subsections.push_back({{0, isec}});
301       } else {
302         // Instead of emitting DWARF sections, we emit STABS symbols to the
303         // object files that contain them. We filter them out early to avoid
304         // parsing their relocations unnecessarily. But we must still push an
305         // empty map to ensure the indices line up for the remaining sections.
306         subsections.push_back({});
307         debugSections.push_back(isec);
308       }
309     }
310   }
311 }
312 
313 // Find the subsection corresponding to the greatest section offset that is <=
314 // that of the given offset.
315 //
316 // offset: an offset relative to the start of the original InputSection (before
317 // any subsection splitting has occurred). It will be updated to represent the
318 // same location as an offset relative to the start of the containing
319 // subsection.
320 static InputSection *findContainingSubsection(SubsectionMap &map,
321                                               uint64_t *offset) {
322   auto it = std::prev(llvm::upper_bound(
323       map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) {
324         return value < subsecEntry.offset;
325       }));
326   *offset -= it->offset;
327   return it->isec;
328 }
329 
330 template <class Section>
331 static bool validateRelocationInfo(InputFile *file, const Section &sec,
332                                    relocation_info rel) {
333   const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
334   bool valid = true;
335   auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
336     valid = false;
337     return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
338             std::to_string(rel.r_address) + " of " + sec.segname + "," +
339             sec.sectname + " in " + toString(file))
340         .str();
341   };
342 
343   if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
344     error(message("must be extern"));
345   if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
346     error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
347                   "be PC-relative"));
348   if (isThreadLocalVariables(sec.flags) &&
349       !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
350     error(message("not allowed in thread-local section, must be UNSIGNED"));
351   if (rel.r_length < 2 || rel.r_length > 3 ||
352       !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
353     static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
354     error(message("has width " + std::to_string(1 << rel.r_length) +
355                   " bytes, but must be " +
356                   widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
357                   " bytes"));
358   }
359   return valid;
360 }
361 
362 template <class Section>
363 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders,
364                                const Section &sec, SubsectionMap &subsecMap) {
365   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
366   ArrayRef<relocation_info> relInfos(
367       reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
368 
369   for (size_t i = 0; i < relInfos.size(); i++) {
370     // Paired relocations serve as Mach-O's method for attaching a
371     // supplemental datum to a primary relocation record. ELF does not
372     // need them because the *_RELOC_RELA records contain the extra
373     // addend field, vs. *_RELOC_REL which omit the addend.
374     //
375     // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
376     // and the paired *_RELOC_UNSIGNED record holds the minuend. The
377     // datum for each is a symbolic address. The result is the offset
378     // between two addresses.
379     //
380     // The ARM64_RELOC_ADDEND record holds the addend, and the paired
381     // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
382     // base symbolic address.
383     //
384     // Note: X86 does not use *_RELOC_ADDEND because it can embed an
385     // addend into the instruction stream. On X86, a relocatable address
386     // field always occupies an entire contiguous sequence of byte(s),
387     // so there is no need to merge opcode bits with address
388     // bits. Therefore, it's easy and convenient to store addends in the
389     // instruction-stream bytes that would otherwise contain zeroes. By
390     // contrast, RISC ISAs such as ARM64 mix opcode bits with with
391     // address bits so that bitwise arithmetic is necessary to extract
392     // and insert them. Storing addends in the instruction stream is
393     // possible, but inconvenient and more costly at link time.
394 
395     int64_t pairedAddend = 0;
396     relocation_info relInfo = relInfos[i];
397     if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
398       pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
399       relInfo = relInfos[++i];
400     }
401     assert(i < relInfos.size());
402     if (!validateRelocationInfo(this, sec, relInfo))
403       continue;
404     if (relInfo.r_address & R_SCATTERED)
405       fatal("TODO: Scattered relocations not supported");
406 
407     bool isSubtrahend =
408         target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
409     int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
410     assert(!(embeddedAddend && pairedAddend));
411     int64_t totalAddend = pairedAddend + embeddedAddend;
412     Reloc r;
413     r.type = relInfo.r_type;
414     r.pcrel = relInfo.r_pcrel;
415     r.length = relInfo.r_length;
416     r.offset = relInfo.r_address;
417     if (relInfo.r_extern) {
418       r.referent = symbols[relInfo.r_symbolnum];
419       r.addend = isSubtrahend ? 0 : totalAddend;
420     } else {
421       assert(!isSubtrahend);
422       const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1];
423       uint64_t referentOffset;
424       if (relInfo.r_pcrel) {
425         // The implicit addend for pcrel section relocations is the pcrel offset
426         // in terms of the addresses in the input file. Here we adjust it so
427         // that it describes the offset from the start of the referent section.
428         // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
429         // have pcrel section relocations. We may want to factor this out into
430         // the arch-specific .cpp file.
431         assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
432         referentOffset =
433             sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr;
434       } else {
435         // The addend for a non-pcrel relocation is its absolute address.
436         referentOffset = totalAddend - referentSec.addr;
437       }
438       SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1];
439       r.referent = findContainingSubsection(referentSubsecMap, &referentOffset);
440       r.addend = referentOffset;
441     }
442 
443     InputSection *subsec = findContainingSubsection(subsecMap, &r.offset);
444     subsec->relocs.push_back(r);
445 
446     if (isSubtrahend) {
447       relocation_info minuendInfo = relInfos[++i];
448       // SUBTRACTOR relocations should always be followed by an UNSIGNED one
449       // attached to the same address.
450       assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
451              relInfo.r_address == minuendInfo.r_address);
452       Reloc p;
453       p.type = minuendInfo.r_type;
454       if (minuendInfo.r_extern) {
455         p.referent = symbols[minuendInfo.r_symbolnum];
456         p.addend = totalAddend;
457       } else {
458         uint64_t referentOffset =
459             totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
460         SubsectionMap &referentSubsecMap =
461             subsections[minuendInfo.r_symbolnum - 1];
462         p.referent =
463             findContainingSubsection(referentSubsecMap, &referentOffset);
464         p.addend = referentOffset;
465       }
466       subsec->relocs.push_back(p);
467     }
468   }
469 }
470 
471 template <class NList>
472 static macho::Symbol *createDefined(const NList &sym, StringRef name,
473                                     InputSection *isec, uint64_t value,
474                                     uint64_t size) {
475   // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
476   // N_EXT: Global symbols. These go in the symbol table during the link,
477   //        and also in the export table of the output so that the dynamic
478   //        linker sees them.
479   // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
480   //                 symbol table during the link so that duplicates are
481   //                 either reported (for non-weak symbols) or merged
482   //                 (for weak symbols), but they do not go in the export
483   //                 table of the output.
484   // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
485   //         object files) may produce them. LLD does not yet support -r.
486   //         These are translation-unit scoped, identical to the `0` case.
487   // 0: Translation-unit scoped. These are not in the symbol table during
488   //    link, and not in the export table of the output either.
489   bool isWeakDefCanBeHidden =
490       (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
491 
492   if (sym.n_type & N_EXT) {
493     bool isPrivateExtern = sym.n_type & N_PEXT;
494     // lld's behavior for merging symbols is slightly different from ld64:
495     // ld64 picks the winning symbol based on several criteria (see
496     // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
497     // just merges metadata and keeps the contents of the first symbol
498     // with that name (see SymbolTable::addDefined). For:
499     // * inline function F in a TU built with -fvisibility-inlines-hidden
500     // * and inline function F in another TU built without that flag
501     // ld64 will pick the one from the file built without
502     // -fvisibility-inlines-hidden.
503     // lld will instead pick the one listed first on the link command line and
504     // give it visibility as if the function was built without
505     // -fvisibility-inlines-hidden.
506     // If both functions have the same contents, this will have the same
507     // behavior. If not, it won't, but the input had an ODR violation in
508     // that case.
509     //
510     // Similarly, merging a symbol
511     // that's isPrivateExtern and not isWeakDefCanBeHidden with one
512     // that's not isPrivateExtern but isWeakDefCanBeHidden technically
513     // should produce one
514     // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
515     // with ld64's semantics, because it means the non-private-extern
516     // definition will continue to take priority if more private extern
517     // definitions are encountered. With lld's semantics there's no observable
518     // difference between a symbol that's isWeakDefCanBeHidden or one that's
519     // privateExtern -- neither makes it into the dynamic symbol table. So just
520     // promote isWeakDefCanBeHidden to isPrivateExtern here.
521     if (isWeakDefCanBeHidden)
522       isPrivateExtern = true;
523 
524     return symtab->addDefined(
525         name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
526         isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
527         sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP);
528   }
529 
530   assert(!isWeakDefCanBeHidden &&
531          "weak_def_can_be_hidden on already-hidden symbol?");
532   return make<Defined>(
533       name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
534       /*isExternal=*/false, /*isPrivateExtern=*/false,
535       sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
536       sym.n_desc & N_NO_DEAD_STRIP);
537 }
538 
539 // Absolute symbols are defined symbols that do not have an associated
540 // InputSection. They cannot be weak.
541 template <class NList>
542 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
543                                      StringRef name) {
544   if (sym.n_type & N_EXT) {
545     return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0,
546                               /*isWeakDef=*/false, sym.n_type & N_PEXT,
547                               sym.n_desc & N_ARM_THUMB_DEF,
548                               /*isReferencedDynamically=*/false,
549                               sym.n_desc & N_NO_DEAD_STRIP);
550   }
551   return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
552                        /*isWeakDef=*/false,
553                        /*isExternal=*/false, /*isPrivateExtern=*/false,
554                        sym.n_desc & N_ARM_THUMB_DEF,
555                        /*isReferencedDynamically=*/false,
556                        sym.n_desc & N_NO_DEAD_STRIP);
557 }
558 
559 template <class NList>
560 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
561                                               StringRef name) {
562   uint8_t type = sym.n_type & N_TYPE;
563   switch (type) {
564   case N_UNDF:
565     return sym.n_value == 0
566                ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
567                : symtab->addCommon(name, this, sym.n_value,
568                                    1 << GET_COMM_ALIGN(sym.n_desc),
569                                    sym.n_type & N_PEXT);
570   case N_ABS:
571     return createAbsolute(sym, this, name);
572   case N_PBUD:
573   case N_INDR:
574     error("TODO: support symbols of type " + std::to_string(type));
575     return nullptr;
576   case N_SECT:
577     llvm_unreachable(
578         "N_SECT symbols should not be passed to parseNonSectionSymbol");
579   default:
580     llvm_unreachable("invalid symbol type");
581   }
582 }
583 
584 template <class LP>
585 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
586                            ArrayRef<typename LP::nlist> nList,
587                            const char *strtab, bool subsectionsViaSymbols) {
588   using NList = typename LP::nlist;
589 
590   // Groups indices of the symbols by the sections that contain them.
591   std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size());
592   symbols.resize(nList.size());
593   for (uint32_t i = 0; i < nList.size(); ++i) {
594     const NList &sym = nList[i];
595 
596     // Ignore debug symbols for now.
597     // FIXME: may need special handling.
598     if (sym.n_type & N_STAB)
599       continue;
600 
601     StringRef name = strtab + sym.n_strx;
602     if ((sym.n_type & N_TYPE) == N_SECT) {
603       SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
604       // parseSections() may have chosen not to parse this section.
605       if (subsecMap.empty())
606         continue;
607       symbolsBySection[sym.n_sect - 1].push_back(i);
608     } else {
609       symbols[i] = parseNonSectionSymbol(sym, name);
610     }
611   }
612 
613   for (size_t i = 0; i < subsections.size(); ++i) {
614     SubsectionMap &subsecMap = subsections[i];
615     if (subsecMap.empty())
616       continue;
617 
618     std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
619     uint64_t sectionAddr = sectionHeaders[i].addr;
620     uint32_t sectionAlign = 1u << sectionHeaders[i].align;
621 
622     InputSection *isec = subsecMap.back().isec;
623     // __cfstring has already been split into subsections during
624     // parseSections(), so we simply need to match Symbols to the corresponding
625     // subsection here.
626     if (config->icfLevel != ICFLevel::none && isCfStringSection(isec)) {
627       for (size_t j = 0; j < symbolIndices.size(); ++j) {
628         uint32_t symIndex = symbolIndices[j];
629         const NList &sym = nList[symIndex];
630         StringRef name = strtab + sym.n_strx;
631         uint64_t symbolOffset = sym.n_value - sectionAddr;
632         InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset);
633         if (symbolOffset != 0) {
634           error(toString(this) + ": __cfstring contains symbol " + name +
635                 " at misaligned offset");
636           continue;
637         }
638         symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize());
639       }
640       continue;
641     }
642 
643     // Calculate symbol sizes and create subsections by splitting the sections
644     // along symbol boundaries.
645     // We populate subsecMap by repeatedly splitting the last (highest address)
646     // subsection.
647     llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
648       return nList[lhs].n_value < nList[rhs].n_value;
649     });
650     SubsectionEntry subsecEntry = subsecMap.back();
651     for (size_t j = 0; j < symbolIndices.size(); ++j) {
652       uint32_t symIndex = symbolIndices[j];
653       const NList &sym = nList[symIndex];
654       StringRef name = strtab + sym.n_strx;
655       InputSection *isec = subsecEntry.isec;
656 
657       uint64_t subsecAddr = sectionAddr + subsecEntry.offset;
658       size_t symbolOffset = sym.n_value - subsecAddr;
659       uint64_t symbolSize =
660           j + 1 < symbolIndices.size()
661               ? nList[symbolIndices[j + 1]].n_value - sym.n_value
662               : isec->data.size() - symbolOffset;
663       // There are 4 cases where we do not need to create a new subsection:
664       //   1. If the input file does not use subsections-via-symbols.
665       //   2. Multiple symbols at the same address only induce one subsection.
666       //      (The symbolOffset == 0 check covers both this case as well as
667       //      the first loop iteration.)
668       //   3. Alternative entry points do not induce new subsections.
669       //   4. If we have a literal section (e.g. __cstring and __literal4).
670       if (!subsectionsViaSymbols || symbolOffset == 0 ||
671           sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
672         symbols[symIndex] =
673             createDefined(sym, name, isec, symbolOffset, symbolSize);
674         continue;
675       }
676       auto *concatIsec = cast<ConcatInputSection>(isec);
677 
678       auto *nextIsec = make<ConcatInputSection>(*concatIsec);
679       nextIsec->numRefs = 0;
680       nextIsec->wasCoalesced = false;
681       if (isZeroFill(isec->getFlags())) {
682         // Zero-fill sections have NULL data.data() non-zero data.size()
683         nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
684         isec->data = {nullptr, symbolOffset};
685       } else {
686         nextIsec->data = isec->data.slice(symbolOffset);
687         isec->data = isec->data.slice(0, symbolOffset);
688       }
689 
690       // By construction, the symbol will be at offset zero in the new
691       // subsection.
692       symbols[symIndex] =
693           createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
694       // TODO: ld64 appears to preserve the original alignment as well as each
695       // subsection's offset from the last aligned address. We should consider
696       // emulating that behavior.
697       nextIsec->align = MinAlign(sectionAlign, sym.n_value);
698       subsecMap.push_back({sym.n_value - sectionAddr, nextIsec});
699       subsecEntry = subsecMap.back();
700     }
701   }
702 }
703 
704 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
705                        StringRef sectName)
706     : InputFile(OpaqueKind, mb) {
707   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
708   ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
709   ConcatInputSection *isec =
710       make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16),
711                                /*file=*/this, data);
712   isec->live = true;
713   subsections.push_back({{0, isec}});
714 }
715 
716 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName)
717     : InputFile(ObjKind, mb), modTime(modTime) {
718   this->archiveName = std::string(archiveName);
719   if (target->wordSize == 8)
720     parse<LP64>();
721   else
722     parse<ILP32>();
723 }
724 
725 template <class LP> void ObjFile::parse() {
726   using Header = typename LP::mach_header;
727   using SegmentCommand = typename LP::segment_command;
728   using Section = typename LP::section;
729   using NList = typename LP::nlist;
730 
731   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
732   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
733 
734   Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
735   if (arch != config->arch()) {
736     error(toString(this) + " has architecture " + getArchitectureName(arch) +
737           " which is incompatible with target architecture " +
738           getArchitectureName(config->arch()));
739     return;
740   }
741 
742   if (!checkCompatibility(this))
743     return;
744 
745   for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
746     StringRef data{reinterpret_cast<const char *>(cmd + 1),
747                    cmd->cmdsize - sizeof(linker_option_command)};
748     parseLCLinkerOption(this, cmd->count, data);
749   }
750 
751   ArrayRef<Section> sectionHeaders;
752   if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
753     auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
754     sectionHeaders =
755         ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects};
756     parseSections(sectionHeaders);
757   }
758 
759   // TODO: Error on missing LC_SYMTAB?
760   if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
761     auto *c = reinterpret_cast<const symtab_command *>(cmd);
762     ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
763                           c->nsyms);
764     const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
765     bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
766     parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
767   }
768 
769   // The relocations may refer to the symbols, so we parse them after we have
770   // parsed all the symbols.
771   for (size_t i = 0, n = subsections.size(); i < n; ++i)
772     if (!subsections[i].empty())
773       parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]);
774 
775   parseDebugInfo();
776   if (config->emitDataInCodeInfo)
777     parseDataInCode();
778 }
779 
780 void ObjFile::parseDebugInfo() {
781   std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
782   if (!dObj)
783     return;
784 
785   auto *ctx = make<DWARFContext>(
786       std::move(dObj), "",
787       [&](Error err) {
788         warn(toString(this) + ": " + toString(std::move(err)));
789       },
790       [&](Error warning) {
791         warn(toString(this) + ": " + toString(std::move(warning)));
792       });
793 
794   // TODO: Since object files can contain a lot of DWARF info, we should verify
795   // that we are parsing just the info we need
796   const DWARFContext::compile_unit_range &units = ctx->compile_units();
797   // FIXME: There can be more than one compile unit per object file. See
798   // PR48637.
799   auto it = units.begin();
800   compileUnit = it->get();
801 }
802 
803 void ObjFile::parseDataInCode() {
804   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
805   const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
806   if (!cmd)
807     return;
808   const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
809   dataInCodeEntries = {
810       reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
811       c->datasize / sizeof(data_in_code_entry)};
812   assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs,
813                                          const data_in_code_entry &rhs) {
814     return lhs.offset < rhs.offset;
815   }));
816 }
817 
818 // The path can point to either a dylib or a .tbd file.
819 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
820   Optional<MemoryBufferRef> mbref = readFile(path);
821   if (!mbref) {
822     error("could not read dylib file at " + path);
823     return nullptr;
824   }
825   return loadDylib(*mbref, umbrella);
826 }
827 
828 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
829 // the first document storing child pointers to the rest of them. When we are
830 // processing a given TBD file, we store that top-level document in
831 // currentTopLevelTapi. When processing re-exports, we search its children for
832 // potentially matching documents in the same TBD file. Note that the children
833 // themselves don't point to further documents, i.e. this is a two-level tree.
834 //
835 // Re-exports can either refer to on-disk files, or to documents within .tbd
836 // files.
837 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
838                             const InterfaceFile *currentTopLevelTapi) {
839   if (path::is_absolute(path, path::Style::posix))
840     for (StringRef root : config->systemLibraryRoots)
841       if (Optional<std::string> dylibPath =
842               resolveDylibPath((root + path).str()))
843         return loadDylib(*dylibPath, umbrella);
844 
845   // TODO: Handle -dylib_file
846 
847   SmallString<128> newPath;
848   if (config->outputType == MH_EXECUTE &&
849       path.consume_front("@executable_path/")) {
850     // ld64 allows overriding this with the undocumented flag -executable_path.
851     // lld doesn't currently implement that flag.
852     path::append(newPath, path::parent_path(config->outputFile), path);
853     path = newPath;
854   } else if (path.consume_front("@loader_path/")) {
855     fs::real_path(umbrella->getName(), newPath);
856     path::remove_filename(newPath);
857     path::append(newPath, path);
858     path = newPath;
859   } else if (path.startswith("@rpath/")) {
860     for (StringRef rpath : umbrella->rpaths) {
861       newPath.clear();
862       if (rpath.consume_front("@loader_path/")) {
863         fs::real_path(umbrella->getName(), newPath);
864         path::remove_filename(newPath);
865       }
866       path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
867       if (Optional<std::string> dylibPath = resolveDylibPath(newPath))
868         return loadDylib(*dylibPath, umbrella);
869     }
870   }
871 
872   if (currentTopLevelTapi) {
873     for (InterfaceFile &child :
874          make_pointee_range(currentTopLevelTapi->documents())) {
875       assert(child.documents().empty());
876       if (path == child.getInstallName()) {
877         auto file = make<DylibFile>(child, umbrella);
878         file->parseReexports(child);
879         return file;
880       }
881     }
882   }
883 
884   if (Optional<std::string> dylibPath = resolveDylibPath(path))
885     return loadDylib(*dylibPath, umbrella);
886 
887   return nullptr;
888 }
889 
890 // If a re-exported dylib is public (lives in /usr/lib or
891 // /System/Library/Frameworks), then it is considered implicitly linked: we
892 // should bind to its symbols directly instead of via the re-exporting umbrella
893 // library.
894 static bool isImplicitlyLinked(StringRef path) {
895   if (!config->implicitDylibs)
896     return false;
897 
898   if (path::parent_path(path) == "/usr/lib")
899     return true;
900 
901   // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
902   if (path.consume_front("/System/Library/Frameworks/")) {
903     StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
904     return path::filename(path) == frameworkName;
905   }
906 
907   return false;
908 }
909 
910 static void loadReexport(StringRef path, DylibFile *umbrella,
911                          const InterfaceFile *currentTopLevelTapi) {
912   DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
913   if (!reexport)
914     error("unable to locate re-export with install name " + path);
915 }
916 
917 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
918                      bool isBundleLoader)
919     : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
920       isBundleLoader(isBundleLoader) {
921   assert(!isBundleLoader || !umbrella);
922   if (umbrella == nullptr)
923     umbrella = this;
924   this->umbrella = umbrella;
925 
926   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
927   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
928 
929   // Initialize installName.
930   if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
931     auto *c = reinterpret_cast<const dylib_command *>(cmd);
932     currentVersion = read32le(&c->dylib.current_version);
933     compatibilityVersion = read32le(&c->dylib.compatibility_version);
934     installName =
935         reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
936   } else if (!isBundleLoader) {
937     // macho_executable and macho_bundle don't have LC_ID_DYLIB,
938     // so it's OK.
939     error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
940     return;
941   }
942 
943   if (config->printEachFile)
944     message(toString(this));
945   inputFiles.insert(this);
946 
947   deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
948 
949   if (!checkCompatibility(this))
950     return;
951 
952   for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
953     StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
954     rpaths.push_back(rpath);
955   }
956 
957   // Initialize symbols.
958   exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
959   if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
960     auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
961     parseTrie(buf + c->export_off, c->export_size,
962               [&](const Twine &name, uint64_t flags) {
963                 StringRef savedName = saver.save(name);
964                 if (handleLDSymbol(savedName))
965                   return;
966                 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
967                 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
968                 symbols.push_back(symtab->addDylib(savedName, exportingFile,
969                                                    isWeakDef, isTlv));
970               });
971   } else {
972     error("LC_DYLD_INFO_ONLY not found in " + toString(this));
973     return;
974   }
975 }
976 
977 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
978   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
979   const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
980                      target->headerSize;
981   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
982     auto *cmd = reinterpret_cast<const load_command *>(p);
983     p += cmd->cmdsize;
984 
985     if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
986         cmd->cmd == LC_REEXPORT_DYLIB) {
987       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
988       StringRef reexportPath =
989           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
990       loadReexport(reexportPath, exportingFile, nullptr);
991     }
992 
993     // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
994     // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
995     // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
996     if (config->namespaceKind == NamespaceKind::flat &&
997         cmd->cmd == LC_LOAD_DYLIB) {
998       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
999       StringRef dylibPath =
1000           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1001       DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1002       if (!dylib)
1003         error(Twine("unable to locate library '") + dylibPath +
1004               "' loaded from '" + toString(this) + "' for -flat_namespace");
1005     }
1006   }
1007 }
1008 
1009 // Some versions of XCode ship with .tbd files that don't have the right
1010 // platform settings.
1011 static constexpr std::array<StringRef, 3> skipPlatformChecks{
1012     "/usr/lib/system/libsystem_kernel.dylib",
1013     "/usr/lib/system/libsystem_platform.dylib",
1014     "/usr/lib/system/libsystem_pthread.dylib"};
1015 
1016 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1017                      bool isBundleLoader)
1018     : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1019       isBundleLoader(isBundleLoader) {
1020   // FIXME: Add test for the missing TBD code path.
1021 
1022   if (umbrella == nullptr)
1023     umbrella = this;
1024   this->umbrella = umbrella;
1025 
1026   installName = saver.save(interface.getInstallName());
1027   compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1028   currentVersion = interface.getCurrentVersion().rawValue();
1029 
1030   if (config->printEachFile)
1031     message(toString(this));
1032   inputFiles.insert(this);
1033 
1034   if (!is_contained(skipPlatformChecks, installName) &&
1035       !is_contained(interface.targets(), config->platformInfo.target)) {
1036     error(toString(this) + " is incompatible with " +
1037           std::string(config->platformInfo.target));
1038     return;
1039   }
1040 
1041   exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1042   auto addSymbol = [&](const Twine &name) -> void {
1043     symbols.push_back(symtab->addDylib(saver.save(name), exportingFile,
1044                                        /*isWeakDef=*/false,
1045                                        /*isTlv=*/false));
1046   };
1047   // TODO(compnerd) filter out symbols based on the target platform
1048   // TODO: handle weak defs, thread locals
1049   for (const auto *symbol : interface.symbols()) {
1050     if (!symbol->getArchitectures().has(config->arch()))
1051       continue;
1052 
1053     if (handleLDSymbol(symbol->getName()))
1054       continue;
1055 
1056     switch (symbol->getKind()) {
1057     case SymbolKind::GlobalSymbol:
1058       addSymbol(symbol->getName());
1059       break;
1060     case SymbolKind::ObjectiveCClass:
1061       // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1062       // want to emulate that.
1063       addSymbol(objc::klass + symbol->getName());
1064       addSymbol(objc::metaclass + symbol->getName());
1065       break;
1066     case SymbolKind::ObjectiveCClassEHType:
1067       addSymbol(objc::ehtype + symbol->getName());
1068       break;
1069     case SymbolKind::ObjectiveCInstanceVariable:
1070       addSymbol(objc::ivar + symbol->getName());
1071       break;
1072     }
1073   }
1074 }
1075 
1076 void DylibFile::parseReexports(const InterfaceFile &interface) {
1077   const InterfaceFile *topLevel =
1078       interface.getParent() == nullptr ? &interface : interface.getParent();
1079   for (InterfaceFileRef intfRef : interface.reexportedLibraries()) {
1080     InterfaceFile::const_target_range targets = intfRef.targets();
1081     if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1082         is_contained(targets, config->platformInfo.target))
1083       loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1084   }
1085 }
1086 
1087 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1088 // name, compatibility version or hide/add symbols) for specific target
1089 // versions.
1090 bool DylibFile::handleLDSymbol(StringRef originalName) {
1091   if (!originalName.startswith("$ld$"))
1092     return false;
1093 
1094   StringRef action;
1095   StringRef name;
1096   std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1097   if (action == "previous")
1098     handleLDPreviousSymbol(name, originalName);
1099   else if (action == "install_name")
1100     handleLDInstallNameSymbol(name, originalName);
1101   return true;
1102 }
1103 
1104 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1105   // originalName: $ld$ previous $ <installname> $ <compatversion> $
1106   // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1107   StringRef installName;
1108   StringRef compatVersion;
1109   StringRef platformStr;
1110   StringRef startVersion;
1111   StringRef endVersion;
1112   StringRef symbolName;
1113   StringRef rest;
1114 
1115   std::tie(installName, name) = name.split('$');
1116   std::tie(compatVersion, name) = name.split('$');
1117   std::tie(platformStr, name) = name.split('$');
1118   std::tie(startVersion, name) = name.split('$');
1119   std::tie(endVersion, name) = name.split('$');
1120   std::tie(symbolName, rest) = name.split('$');
1121   // TODO: ld64 contains some logic for non-empty symbolName as well.
1122   if (!symbolName.empty())
1123     return;
1124   unsigned platform;
1125   if (platformStr.getAsInteger(10, platform) ||
1126       platform != static_cast<unsigned>(config->platform()))
1127     return;
1128 
1129   VersionTuple start;
1130   if (start.tryParse(startVersion)) {
1131     warn("failed to parse start version, symbol '" + originalName +
1132          "' ignored");
1133     return;
1134   }
1135   VersionTuple end;
1136   if (end.tryParse(endVersion)) {
1137     warn("failed to parse end version, symbol '" + originalName + "' ignored");
1138     return;
1139   }
1140   if (config->platformInfo.minimum < start ||
1141       config->platformInfo.minimum >= end)
1142     return;
1143 
1144   this->installName = saver.save(installName);
1145 
1146   if (!compatVersion.empty()) {
1147     VersionTuple cVersion;
1148     if (cVersion.tryParse(compatVersion)) {
1149       warn("failed to parse compatibility version, symbol '" + originalName +
1150            "' ignored");
1151       return;
1152     }
1153     compatibilityVersion = encodeVersion(cVersion);
1154   }
1155 }
1156 
1157 void DylibFile::handleLDInstallNameSymbol(StringRef name,
1158                                           StringRef originalName) {
1159   // originalName: $ld$ install_name $ os<version> $ install_name
1160   StringRef condition, installName;
1161   std::tie(condition, installName) = name.split('$');
1162   VersionTuple version;
1163   if (!condition.consume_front("os") || version.tryParse(condition))
1164     warn("failed to parse os version, symbol '" + originalName + "' ignored");
1165   else if (version == config->platformInfo.minimum)
1166     this->installName = saver.save(installName);
1167 }
1168 
1169 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
1170     : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {
1171   for (const object::Archive::Symbol &sym : file->symbols())
1172     symtab->addLazy(sym.getName(), this, sym);
1173 }
1174 
1175 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
1176   object::Archive::Child c =
1177       CHECK(sym.getMember(), toString(this) +
1178                                  ": could not get the member for symbol " +
1179                                  toMachOString(sym));
1180 
1181   if (!seen.insert(c.getChildOffset()).second)
1182     return;
1183 
1184   MemoryBufferRef mb =
1185       CHECK(c.getMemoryBufferRef(),
1186             toString(this) +
1187                 ": could not get the buffer for the member defining symbol " +
1188                 toMachOString(sym));
1189 
1190   if (tar && c.getParent()->isThin())
1191     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1192 
1193   uint32_t modTime = toTimeT(
1194       CHECK(c.getLastModified(), toString(this) +
1195                                      ": could not get the modification time "
1196                                      "for the member defining symbol " +
1197                                      toMachOString(sym)));
1198 
1199   // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
1200   // and become invalid after that call. Copy it to the stack so we can refer
1201   // to it later.
1202   const object::Archive::Symbol symCopy = sym;
1203 
1204   if (Optional<InputFile *> file =
1205           loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) {
1206     inputFiles.insert(*file);
1207     // ld64 doesn't demangle sym here even with -demangle.
1208     // Match that: intentionally don't call toMachOString().
1209     printArchiveMemberLoad(symCopy.getName(), *file);
1210   }
1211 }
1212 
1213 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
1214                                           BitcodeFile &file) {
1215   StringRef name = saver.save(objSym.getName());
1216 
1217   // TODO: support weak references
1218   if (objSym.isUndefined())
1219     return symtab->addUndefined(name, &file, /*isWeakRef=*/false);
1220 
1221   assert(!objSym.isCommon() && "TODO: support common symbols in LTO");
1222 
1223   // TODO: Write a test demonstrating why computing isPrivateExtern before
1224   // LTO compilation is important.
1225   bool isPrivateExtern = false;
1226   switch (objSym.getVisibility()) {
1227   case GlobalValue::HiddenVisibility:
1228     isPrivateExtern = true;
1229     break;
1230   case GlobalValue::ProtectedVisibility:
1231     error(name + " has protected visibility, which is not supported by Mach-O");
1232     break;
1233   case GlobalValue::DefaultVisibility:
1234     break;
1235   }
1236 
1237   return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
1238                             /*size=*/0, objSym.isWeak(), isPrivateExtern,
1239                             /*isThumb=*/false,
1240                             /*isReferencedDynamically=*/false,
1241                             /*noDeadStrip=*/false);
1242 }
1243 
1244 BitcodeFile::BitcodeFile(MemoryBufferRef mbref)
1245     : InputFile(BitcodeKind, mbref) {
1246   obj = check(lto::InputFile::create(mbref));
1247 
1248   // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
1249   // "winning" symbol will then be marked as Prevailing at LTO compilation
1250   // time.
1251   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1252     symbols.push_back(createBitcodeSymbol(objSym, *this));
1253 }
1254 
1255 template void ObjFile::parse<LP64>();
1256