1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "ExportTrie.h"
49 #include "InputSection.h"
50 #include "MachOStructs.h"
51 #include "ObjC.h"
52 #include "OutputSection.h"
53 #include "OutputSegment.h"
54 #include "SymbolTable.h"
55 #include "Symbols.h"
56 #include "SyntheticSections.h"
57 #include "Target.h"
58 
59 #include "lld/Common/DWARF.h"
60 #include "lld/Common/ErrorHandler.h"
61 #include "lld/Common/Memory.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/Path.h"
69 #include "llvm/Support/TarWriter.h"
70 #include "llvm/TextAPI/Architecture.h"
71 #include "llvm/TextAPI/InterfaceFile.h"
72 
73 using namespace llvm;
74 using namespace llvm::MachO;
75 using namespace llvm::support::endian;
76 using namespace llvm::sys;
77 using namespace lld;
78 using namespace lld::macho;
79 
80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
81 std::string lld::toString(const InputFile *f) {
82   if (!f)
83     return "<internal>";
84 
85   // Multiple dylibs can be defined in one .tbd file.
86   if (auto dylibFile = dyn_cast<DylibFile>(f))
87     if (f->getName().endswith(".tbd"))
88       return (f->getName() + "(" + dylibFile->installName + ")").str();
89 
90   if (f->archiveName.empty())
91     return std::string(f->getName());
92   return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
93 }
94 
95 SetVector<InputFile *> macho::inputFiles;
96 std::unique_ptr<TarWriter> macho::tar;
97 int InputFile::idCount = 0;
98 
99 static VersionTuple decodeVersion(uint32_t version) {
100   unsigned major = version >> 16;
101   unsigned minor = (version >> 8) & 0xffu;
102   unsigned subMinor = version & 0xffu;
103   return VersionTuple(major, minor, subMinor);
104 }
105 
106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
107   if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
108     return {};
109 
110   const char *hdr = input->mb.getBufferStart();
111 
112   std::vector<PlatformInfo> platformInfos;
113   for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
114     PlatformInfo info;
115     info.target.Platform = static_cast<PlatformKind>(cmd->platform);
116     info.minimum = decodeVersion(cmd->minos);
117     platformInfos.emplace_back(std::move(info));
118   }
119   for (auto *cmd : findCommands<version_min_command>(
120            hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
121            LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
122     PlatformInfo info;
123     switch (cmd->cmd) {
124     case LC_VERSION_MIN_MACOSX:
125       info.target.Platform = PlatformKind::macOS;
126       break;
127     case LC_VERSION_MIN_IPHONEOS:
128       info.target.Platform = PlatformKind::iOS;
129       break;
130     case LC_VERSION_MIN_TVOS:
131       info.target.Platform = PlatformKind::tvOS;
132       break;
133     case LC_VERSION_MIN_WATCHOS:
134       info.target.Platform = PlatformKind::watchOS;
135       break;
136     }
137     info.minimum = decodeVersion(cmd->version);
138     platformInfos.emplace_back(std::move(info));
139   }
140 
141   return platformInfos;
142 }
143 
144 static bool checkCompatibility(const InputFile *input) {
145   std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
146   if (platformInfos.empty())
147     return true;
148 
149   auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
150     return removeSimulator(info.target.Platform) ==
151            removeSimulator(config->platform());
152   });
153   if (it == platformInfos.end()) {
154     std::string platformNames;
155     raw_string_ostream os(platformNames);
156     interleave(
157         platformInfos, os,
158         [&](const PlatformInfo &info) {
159           os << getPlatformName(info.target.Platform);
160         },
161         "/");
162     error(toString(input) + " has platform " + platformNames +
163           Twine(", which is different from target platform ") +
164           getPlatformName(config->platform()));
165     return false;
166   }
167 
168   if (it->minimum > config->platformInfo.minimum)
169     warn(toString(input) + " has version " + it->minimum.getAsString() +
170          ", which is newer than target minimum of " +
171          config->platformInfo.minimum.getAsString());
172 
173   return true;
174 }
175 
176 // Open a given file path and return it as a memory-mapped file.
177 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
178   ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
179   if (std::error_code ec = mbOrErr.getError()) {
180     error("cannot open " + path + ": " + ec.message());
181     return None;
182   }
183 
184   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
185   MemoryBufferRef mbref = mb->getMemBufferRef();
186   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
187 
188   // If this is a regular non-fat file, return it.
189   const char *buf = mbref.getBufferStart();
190   const auto *hdr = reinterpret_cast<const fat_header *>(buf);
191   if (mbref.getBufferSize() < sizeof(uint32_t) ||
192       read32be(&hdr->magic) != FAT_MAGIC) {
193     if (tar)
194       tar->append(relativeToRoot(path), mbref.getBuffer());
195     return mbref;
196   }
197 
198   // Object files and archive files may be fat files, which contain multiple
199   // real files for different CPU ISAs. Here, we search for a file that matches
200   // with the current link target and returns it as a MemoryBufferRef.
201   const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
202 
203   for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
204     if (reinterpret_cast<const char *>(arch + i + 1) >
205         buf + mbref.getBufferSize()) {
206       error(path + ": fat_arch struct extends beyond end of file");
207       return None;
208     }
209 
210     if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
211         read32be(&arch[i].cpusubtype) != target->cpuSubtype)
212       continue;
213 
214     uint32_t offset = read32be(&arch[i].offset);
215     uint32_t size = read32be(&arch[i].size);
216     if (offset + size > mbref.getBufferSize())
217       error(path + ": slice extends beyond end of file");
218     if (tar)
219       tar->append(relativeToRoot(path), mbref.getBuffer());
220     return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc));
221   }
222 
223   error("unable to find matching architecture in " + path);
224   return None;
225 }
226 
227 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
228     : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {}
229 
230 template <class Section>
231 void ObjFile::parseSections(ArrayRef<Section> sections) {
232   subsections.reserve(sections.size());
233   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
234 
235   for (const Section &sec : sections) {
236     StringRef name =
237         StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
238     StringRef segname =
239         StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
240     ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
241                                                     : buf + sec.offset,
242                               static_cast<size_t>(sec.size)};
243     if (sec.align >= 32) {
244       error("alignment " + std::to_string(sec.align) + " of section " + name +
245             " is too large");
246       subsections.push_back({});
247       continue;
248     }
249     uint32_t align = 1 << sec.align;
250     uint32_t flags = sec.flags;
251 
252     if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
253         (config->dedupLiterals && isWordLiteralSection(sec.flags))) {
254       if (sec.nreloc && config->dedupLiterals)
255         fatal(toString(this) + " contains relocations in " + sec.segname + "," +
256               sec.sectname +
257               ", so LLD cannot deduplicate literals. Try re-running without "
258               "--deduplicate-literals.");
259 
260       InputSection *isec;
261       if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
262         isec =
263             make<CStringInputSection>(segname, name, this, data, align, flags);
264         // FIXME: parallelize this?
265         cast<CStringInputSection>(isec)->splitIntoPieces();
266       } else {
267         isec = make<WordLiteralInputSection>(segname, name, this, data, align,
268                                              flags);
269       }
270       subsections.push_back({{0, isec}});
271     } else if (config->icfLevel != ICFLevel::none &&
272                (name == section_names::cfString &&
273                 segname == segment_names::data)) {
274       uint64_t literalSize = target->wordSize == 8 ? 32 : 16;
275       subsections.push_back({});
276       SubsectionMap &subsecMap = subsections.back();
277       for (uint64_t off = 0; off < data.size(); off += literalSize)
278         subsecMap.push_back(
279             {off, make<ConcatInputSection>(segname, name, this,
280                                            data.slice(off, literalSize), align,
281                                            flags)});
282     } else {
283       auto *isec =
284           make<ConcatInputSection>(segname, name, this, data, align, flags);
285       if (!(isDebugSection(isec->getFlags()) &&
286             isec->getSegName() == segment_names::dwarf)) {
287         subsections.push_back({{0, isec}});
288       } else {
289         // Instead of emitting DWARF sections, we emit STABS symbols to the
290         // object files that contain them. We filter them out early to avoid
291         // parsing their relocations unnecessarily. But we must still push an
292         // empty map to ensure the indices line up for the remaining sections.
293         subsections.push_back({});
294         debugSections.push_back(isec);
295       }
296     }
297   }
298 }
299 
300 // Find the subsection corresponding to the greatest section offset that is <=
301 // that of the given offset.
302 //
303 // offset: an offset relative to the start of the original InputSection (before
304 // any subsection splitting has occurred). It will be updated to represent the
305 // same location as an offset relative to the start of the containing
306 // subsection.
307 static InputSection *findContainingSubsection(SubsectionMap &map,
308                                               uint64_t *offset) {
309   auto it = std::prev(llvm::upper_bound(
310       map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) {
311         return value < subsecEntry.offset;
312       }));
313   *offset -= it->offset;
314   return it->isec;
315 }
316 
317 template <class Section>
318 static bool validateRelocationInfo(InputFile *file, const Section &sec,
319                                    relocation_info rel) {
320   const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
321   bool valid = true;
322   auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
323     valid = false;
324     return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
325             std::to_string(rel.r_address) + " of " + sec.segname + "," +
326             sec.sectname + " in " + toString(file))
327         .str();
328   };
329 
330   if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
331     error(message("must be extern"));
332   if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
333     error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
334                   "be PC-relative"));
335   if (isThreadLocalVariables(sec.flags) &&
336       !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
337     error(message("not allowed in thread-local section, must be UNSIGNED"));
338   if (rel.r_length < 2 || rel.r_length > 3 ||
339       !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
340     static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
341     error(message("has width " + std::to_string(1 << rel.r_length) +
342                   " bytes, but must be " +
343                   widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
344                   " bytes"));
345   }
346   return valid;
347 }
348 
349 template <class Section>
350 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders,
351                                const Section &sec, SubsectionMap &subsecMap) {
352   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
353   ArrayRef<relocation_info> relInfos(
354       reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
355 
356   auto subsecIt = subsecMap.rbegin();
357   for (size_t i = 0; i < relInfos.size(); i++) {
358     // Paired relocations serve as Mach-O's method for attaching a
359     // supplemental datum to a primary relocation record. ELF does not
360     // need them because the *_RELOC_RELA records contain the extra
361     // addend field, vs. *_RELOC_REL which omit the addend.
362     //
363     // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
364     // and the paired *_RELOC_UNSIGNED record holds the minuend. The
365     // datum for each is a symbolic address. The result is the offset
366     // between two addresses.
367     //
368     // The ARM64_RELOC_ADDEND record holds the addend, and the paired
369     // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
370     // base symbolic address.
371     //
372     // Note: X86 does not use *_RELOC_ADDEND because it can embed an
373     // addend into the instruction stream. On X86, a relocatable address
374     // field always occupies an entire contiguous sequence of byte(s),
375     // so there is no need to merge opcode bits with address
376     // bits. Therefore, it's easy and convenient to store addends in the
377     // instruction-stream bytes that would otherwise contain zeroes. By
378     // contrast, RISC ISAs such as ARM64 mix opcode bits with with
379     // address bits so that bitwise arithmetic is necessary to extract
380     // and insert them. Storing addends in the instruction stream is
381     // possible, but inconvenient and more costly at link time.
382 
383     int64_t pairedAddend = 0;
384     relocation_info relInfo = relInfos[i];
385     if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
386       pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
387       relInfo = relInfos[++i];
388     }
389     assert(i < relInfos.size());
390     if (!validateRelocationInfo(this, sec, relInfo))
391       continue;
392     if (relInfo.r_address & R_SCATTERED)
393       fatal("TODO: Scattered relocations not supported");
394 
395     bool isSubtrahend =
396         target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
397     int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
398     assert(!(embeddedAddend && pairedAddend));
399     int64_t totalAddend = pairedAddend + embeddedAddend;
400     Reloc r;
401     r.type = relInfo.r_type;
402     r.pcrel = relInfo.r_pcrel;
403     r.length = relInfo.r_length;
404     r.offset = relInfo.r_address;
405     if (relInfo.r_extern) {
406       r.referent = symbols[relInfo.r_symbolnum];
407       r.addend = isSubtrahend ? 0 : totalAddend;
408     } else {
409       assert(!isSubtrahend);
410       const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1];
411       uint64_t referentOffset;
412       if (relInfo.r_pcrel) {
413         // The implicit addend for pcrel section relocations is the pcrel offset
414         // in terms of the addresses in the input file. Here we adjust it so
415         // that it describes the offset from the start of the referent section.
416         // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
417         // have pcrel section relocations. We may want to factor this out into
418         // the arch-specific .cpp file.
419         assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
420         referentOffset =
421             sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr;
422       } else {
423         // The addend for a non-pcrel relocation is its absolute address.
424         referentOffset = totalAddend - referentSec.addr;
425       }
426       SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1];
427       r.referent = findContainingSubsection(referentSubsecMap, &referentOffset);
428       r.addend = referentOffset;
429     }
430 
431     // Find the subsection that this relocation belongs to.
432     // Though not required by the Mach-O format, clang and gcc seem to emit
433     // relocations in order, so let's take advantage of it. However, ld64 emits
434     // unsorted relocations (in `-r` mode), so we have a fallback for that
435     // uncommon case.
436     InputSection *subsec;
437     while (subsecIt != subsecMap.rend() && subsecIt->offset > r.offset)
438       ++subsecIt;
439     if (subsecIt == subsecMap.rend() ||
440         subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
441       subsec = findContainingSubsection(subsecMap, &r.offset);
442       // Now that we know the relocs are unsorted, avoid trying the 'fast path'
443       // for the other relocations.
444       subsecIt = subsecMap.rend();
445     } else {
446       subsec = subsecIt->isec;
447       r.offset -= subsecIt->offset;
448     }
449     subsec->relocs.push_back(r);
450 
451     if (isSubtrahend) {
452       relocation_info minuendInfo = relInfos[++i];
453       // SUBTRACTOR relocations should always be followed by an UNSIGNED one
454       // attached to the same address.
455       assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
456              relInfo.r_address == minuendInfo.r_address);
457       Reloc p;
458       p.type = minuendInfo.r_type;
459       if (minuendInfo.r_extern) {
460         p.referent = symbols[minuendInfo.r_symbolnum];
461         p.addend = totalAddend;
462       } else {
463         uint64_t referentOffset =
464             totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
465         SubsectionMap &referentSubsecMap =
466             subsections[minuendInfo.r_symbolnum - 1];
467         p.referent =
468             findContainingSubsection(referentSubsecMap, &referentOffset);
469         p.addend = referentOffset;
470       }
471       subsec->relocs.push_back(p);
472     }
473   }
474 }
475 
476 template <class NList>
477 static macho::Symbol *createDefined(const NList &sym, StringRef name,
478                                     InputSection *isec, uint64_t value,
479                                     uint64_t size) {
480   // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
481   // N_EXT: Global symbols. These go in the symbol table during the link,
482   //        and also in the export table of the output so that the dynamic
483   //        linker sees them.
484   // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
485   //                 symbol table during the link so that duplicates are
486   //                 either reported (for non-weak symbols) or merged
487   //                 (for weak symbols), but they do not go in the export
488   //                 table of the output.
489   // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
490   //         object files) may produce them. LLD does not yet support -r.
491   //         These are translation-unit scoped, identical to the `0` case.
492   // 0: Translation-unit scoped. These are not in the symbol table during
493   //    link, and not in the export table of the output either.
494   bool isWeakDefCanBeHidden =
495       (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
496 
497   if (sym.n_type & N_EXT) {
498     bool isPrivateExtern = sym.n_type & N_PEXT;
499     // lld's behavior for merging symbols is slightly different from ld64:
500     // ld64 picks the winning symbol based on several criteria (see
501     // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
502     // just merges metadata and keeps the contents of the first symbol
503     // with that name (see SymbolTable::addDefined). For:
504     // * inline function F in a TU built with -fvisibility-inlines-hidden
505     // * and inline function F in another TU built without that flag
506     // ld64 will pick the one from the file built without
507     // -fvisibility-inlines-hidden.
508     // lld will instead pick the one listed first on the link command line and
509     // give it visibility as if the function was built without
510     // -fvisibility-inlines-hidden.
511     // If both functions have the same contents, this will have the same
512     // behavior. If not, it won't, but the input had an ODR violation in
513     // that case.
514     //
515     // Similarly, merging a symbol
516     // that's isPrivateExtern and not isWeakDefCanBeHidden with one
517     // that's not isPrivateExtern but isWeakDefCanBeHidden technically
518     // should produce one
519     // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
520     // with ld64's semantics, because it means the non-private-extern
521     // definition will continue to take priority if more private extern
522     // definitions are encountered. With lld's semantics there's no observable
523     // difference between a symbol that's isWeakDefCanBeHidden or one that's
524     // privateExtern -- neither makes it into the dynamic symbol table. So just
525     // promote isWeakDefCanBeHidden to isPrivateExtern here.
526     if (isWeakDefCanBeHidden)
527       isPrivateExtern = true;
528 
529     return symtab->addDefined(
530         name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
531         isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
532         sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP);
533   }
534 
535   assert(!isWeakDefCanBeHidden &&
536          "weak_def_can_be_hidden on already-hidden symbol?");
537   return make<Defined>(
538       name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
539       /*isExternal=*/false, /*isPrivateExtern=*/false,
540       sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
541       sym.n_desc & N_NO_DEAD_STRIP);
542 }
543 
544 // Absolute symbols are defined symbols that do not have an associated
545 // InputSection. They cannot be weak.
546 template <class NList>
547 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
548                                      StringRef name) {
549   if (sym.n_type & N_EXT) {
550     return symtab->addDefined(
551         name, file, nullptr, sym.n_value, /*size=*/0,
552         /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF,
553         /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP);
554   }
555   return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
556                        /*isWeakDef=*/false,
557                        /*isExternal=*/false, /*isPrivateExtern=*/false,
558                        sym.n_desc & N_ARM_THUMB_DEF,
559                        /*isReferencedDynamically=*/false,
560                        sym.n_desc & N_NO_DEAD_STRIP);
561 }
562 
563 template <class NList>
564 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
565                                               StringRef name) {
566   uint8_t type = sym.n_type & N_TYPE;
567   switch (type) {
568   case N_UNDF:
569     return sym.n_value == 0
570                ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
571                : symtab->addCommon(name, this, sym.n_value,
572                                    1 << GET_COMM_ALIGN(sym.n_desc),
573                                    sym.n_type & N_PEXT);
574   case N_ABS:
575     return createAbsolute(sym, this, name);
576   case N_PBUD:
577   case N_INDR:
578     error("TODO: support symbols of type " + std::to_string(type));
579     return nullptr;
580   case N_SECT:
581     llvm_unreachable(
582         "N_SECT symbols should not be passed to parseNonSectionSymbol");
583   default:
584     llvm_unreachable("invalid symbol type");
585   }
586 }
587 
588 template <class LP>
589 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
590                            ArrayRef<typename LP::nlist> nList,
591                            const char *strtab, bool subsectionsViaSymbols) {
592   using NList = typename LP::nlist;
593 
594   // Groups indices of the symbols by the sections that contain them.
595   std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size());
596   symbols.resize(nList.size());
597   for (uint32_t i = 0; i < nList.size(); ++i) {
598     const NList &sym = nList[i];
599 
600     // Ignore debug symbols for now.
601     // FIXME: may need special handling.
602     if (sym.n_type & N_STAB)
603       continue;
604 
605     StringRef name = strtab + sym.n_strx;
606     if ((sym.n_type & N_TYPE) == N_SECT) {
607       SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
608       // parseSections() may have chosen not to parse this section.
609       if (subsecMap.empty())
610         continue;
611       symbolsBySection[sym.n_sect - 1].push_back(i);
612     } else {
613       symbols[i] = parseNonSectionSymbol(sym, name);
614     }
615   }
616 
617   for (size_t i = 0; i < subsections.size(); ++i) {
618     SubsectionMap &subsecMap = subsections[i];
619     if (subsecMap.empty())
620       continue;
621 
622     std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
623     uint64_t sectionAddr = sectionHeaders[i].addr;
624     uint32_t sectionAlign = 1u << sectionHeaders[i].align;
625 
626     InputSection *isec = subsecMap.back().isec;
627     // __cfstring has already been split into subsections during
628     // parseSections(), so we simply need to match Symbols to the corresponding
629     // subsection here.
630     if (config->icfLevel != ICFLevel::none && isCfStringSection(isec)) {
631       for (size_t j = 0; j < symbolIndices.size(); ++j) {
632         uint32_t symIndex = symbolIndices[j];
633         const NList &sym = nList[symIndex];
634         StringRef name = strtab + sym.n_strx;
635         uint64_t symbolOffset = sym.n_value - sectionAddr;
636         InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset);
637         if (symbolOffset != 0) {
638           error(toString(this) + ": __cfstring contains symbol " + name +
639                 " at misaligned offset");
640           continue;
641         }
642         symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize());
643       }
644       continue;
645     }
646 
647     // Calculate symbol sizes and create subsections by splitting the sections
648     // along symbol boundaries.
649     // We populate subsecMap by repeatedly splitting the last (highest address)
650     // subsection.
651     llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
652       return nList[lhs].n_value < nList[rhs].n_value;
653     });
654     SubsectionEntry subsecEntry = subsecMap.back();
655     for (size_t j = 0; j < symbolIndices.size(); ++j) {
656       uint32_t symIndex = symbolIndices[j];
657       const NList &sym = nList[symIndex];
658       StringRef name = strtab + sym.n_strx;
659       InputSection *isec = subsecEntry.isec;
660 
661       uint64_t subsecAddr = sectionAddr + subsecEntry.offset;
662       size_t symbolOffset = sym.n_value - subsecAddr;
663       uint64_t symbolSize =
664           j + 1 < symbolIndices.size()
665               ? nList[symbolIndices[j + 1]].n_value - sym.n_value
666               : isec->data.size() - symbolOffset;
667       // There are 4 cases where we do not need to create a new subsection:
668       //   1. If the input file does not use subsections-via-symbols.
669       //   2. Multiple symbols at the same address only induce one subsection.
670       //      (The symbolOffset == 0 check covers both this case as well as
671       //      the first loop iteration.)
672       //   3. Alternative entry points do not induce new subsections.
673       //   4. If we have a literal section (e.g. __cstring and __literal4).
674       if (!subsectionsViaSymbols || symbolOffset == 0 ||
675           sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
676         symbols[symIndex] =
677             createDefined(sym, name, isec, symbolOffset, symbolSize);
678         continue;
679       }
680       auto *concatIsec = cast<ConcatInputSection>(isec);
681 
682       auto *nextIsec = make<ConcatInputSection>(*concatIsec);
683       nextIsec->numRefs = 0;
684       nextIsec->wasCoalesced = false;
685       if (isZeroFill(isec->getFlags())) {
686         // Zero-fill sections have NULL data.data() non-zero data.size()
687         nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
688         isec->data = {nullptr, symbolOffset};
689       } else {
690         nextIsec->data = isec->data.slice(symbolOffset);
691         isec->data = isec->data.slice(0, symbolOffset);
692       }
693 
694       // By construction, the symbol will be at offset zero in the new
695       // subsection.
696       symbols[symIndex] =
697           createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
698       // TODO: ld64 appears to preserve the original alignment as well as each
699       // subsection's offset from the last aligned address. We should consider
700       // emulating that behavior.
701       nextIsec->align = MinAlign(sectionAlign, sym.n_value);
702       subsecMap.push_back({sym.n_value - sectionAddr, nextIsec});
703       subsecEntry = subsecMap.back();
704     }
705   }
706 }
707 
708 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
709                        StringRef sectName)
710     : InputFile(OpaqueKind, mb) {
711   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
712   ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
713   ConcatInputSection *isec =
714       make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16),
715                                /*file=*/this, data);
716   isec->live = true;
717   subsections.push_back({{0, isec}});
718 }
719 
720 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName)
721     : InputFile(ObjKind, mb), modTime(modTime) {
722   this->archiveName = std::string(archiveName);
723   if (target->wordSize == 8)
724     parse<LP64>();
725   else
726     parse<ILP32>();
727 }
728 
729 template <class LP> void ObjFile::parse() {
730   using Header = typename LP::mach_header;
731   using SegmentCommand = typename LP::segment_command;
732   using Section = typename LP::section;
733   using NList = typename LP::nlist;
734 
735   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
736   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
737 
738   Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
739   if (arch != config->arch()) {
740     error(toString(this) + " has architecture " + getArchitectureName(arch) +
741           " which is incompatible with target architecture " +
742           getArchitectureName(config->arch()));
743     return;
744   }
745 
746   if (!checkCompatibility(this))
747     return;
748 
749   for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
750     StringRef data{reinterpret_cast<const char *>(cmd + 1),
751                    cmd->cmdsize - sizeof(linker_option_command)};
752     parseLCLinkerOption(this, cmd->count, data);
753   }
754 
755   ArrayRef<Section> sectionHeaders;
756   if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
757     auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
758     sectionHeaders =
759         ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects};
760     parseSections(sectionHeaders);
761   }
762 
763   // TODO: Error on missing LC_SYMTAB?
764   if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
765     auto *c = reinterpret_cast<const symtab_command *>(cmd);
766     ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
767                           c->nsyms);
768     const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
769     bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
770     parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
771   }
772 
773   // The relocations may refer to the symbols, so we parse them after we have
774   // parsed all the symbols.
775   for (size_t i = 0, n = subsections.size(); i < n; ++i)
776     if (!subsections[i].empty())
777       parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]);
778 
779   parseDebugInfo();
780   if (config->emitDataInCodeInfo)
781     parseDataInCode();
782 }
783 
784 void ObjFile::parseDebugInfo() {
785   std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
786   if (!dObj)
787     return;
788 
789   auto *ctx = make<DWARFContext>(
790       std::move(dObj), "",
791       [&](Error err) {
792         warn(toString(this) + ": " + toString(std::move(err)));
793       },
794       [&](Error warning) {
795         warn(toString(this) + ": " + toString(std::move(warning)));
796       });
797 
798   // TODO: Since object files can contain a lot of DWARF info, we should verify
799   // that we are parsing just the info we need
800   const DWARFContext::compile_unit_range &units = ctx->compile_units();
801   // FIXME: There can be more than one compile unit per object file. See
802   // PR48637.
803   auto it = units.begin();
804   compileUnit = it->get();
805 }
806 
807 void ObjFile::parseDataInCode() {
808   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
809   const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
810   if (!cmd)
811     return;
812   const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
813   dataInCodeEntries = {
814       reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
815       c->datasize / sizeof(data_in_code_entry)};
816   assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs,
817                                          const data_in_code_entry &rhs) {
818     return lhs.offset < rhs.offset;
819   }));
820 }
821 
822 // The path can point to either a dylib or a .tbd file.
823 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
824   Optional<MemoryBufferRef> mbref = readFile(path);
825   if (!mbref) {
826     error("could not read dylib file at " + path);
827     return nullptr;
828   }
829   return loadDylib(*mbref, umbrella);
830 }
831 
832 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
833 // the first document storing child pointers to the rest of them. When we are
834 // processing a given TBD file, we store that top-level document in
835 // currentTopLevelTapi. When processing re-exports, we search its children for
836 // potentially matching documents in the same TBD file. Note that the children
837 // themselves don't point to further documents, i.e. this is a two-level tree.
838 //
839 // Re-exports can either refer to on-disk files, or to documents within .tbd
840 // files.
841 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
842                             const InterfaceFile *currentTopLevelTapi) {
843   if (path::is_absolute(path, path::Style::posix))
844     for (StringRef root : config->systemLibraryRoots)
845       if (Optional<std::string> dylibPath =
846               resolveDylibPath((root + path).str()))
847         return loadDylib(*dylibPath, umbrella);
848 
849   // TODO: Handle -dylib_file
850 
851   SmallString<128> newPath;
852   if (config->outputType == MH_EXECUTE &&
853       path.consume_front("@executable_path/")) {
854     // ld64 allows overriding this with the undocumented flag -executable_path.
855     // lld doesn't currently implement that flag.
856     // FIXME: Consider using finalOutput instead of outputFile.
857     path::append(newPath, path::parent_path(config->outputFile), path);
858     path = newPath;
859   } else if (path.consume_front("@loader_path/")) {
860     fs::real_path(umbrella->getName(), newPath);
861     path::remove_filename(newPath);
862     path::append(newPath, path);
863     path = newPath;
864   } else if (path.startswith("@rpath/")) {
865     for (StringRef rpath : umbrella->rpaths) {
866       newPath.clear();
867       if (rpath.consume_front("@loader_path/")) {
868         fs::real_path(umbrella->getName(), newPath);
869         path::remove_filename(newPath);
870       }
871       path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
872       if (Optional<std::string> dylibPath = resolveDylibPath(newPath))
873         return loadDylib(*dylibPath, umbrella);
874     }
875   }
876 
877   if (currentTopLevelTapi) {
878     for (InterfaceFile &child :
879          make_pointee_range(currentTopLevelTapi->documents())) {
880       assert(child.documents().empty());
881       if (path == child.getInstallName()) {
882         auto file = make<DylibFile>(child, umbrella);
883         file->parseReexports(child);
884         return file;
885       }
886     }
887   }
888 
889   if (Optional<std::string> dylibPath = resolveDylibPath(path))
890     return loadDylib(*dylibPath, umbrella);
891 
892   return nullptr;
893 }
894 
895 // If a re-exported dylib is public (lives in /usr/lib or
896 // /System/Library/Frameworks), then it is considered implicitly linked: we
897 // should bind to its symbols directly instead of via the re-exporting umbrella
898 // library.
899 static bool isImplicitlyLinked(StringRef path) {
900   if (!config->implicitDylibs)
901     return false;
902 
903   if (path::parent_path(path) == "/usr/lib")
904     return true;
905 
906   // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
907   if (path.consume_front("/System/Library/Frameworks/")) {
908     StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
909     return path::filename(path) == frameworkName;
910   }
911 
912   return false;
913 }
914 
915 static void loadReexport(StringRef path, DylibFile *umbrella,
916                          const InterfaceFile *currentTopLevelTapi) {
917   DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
918   if (!reexport)
919     error("unable to locate re-export with install name " + path);
920 }
921 
922 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
923                      bool isBundleLoader)
924     : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
925       isBundleLoader(isBundleLoader) {
926   assert(!isBundleLoader || !umbrella);
927   if (umbrella == nullptr)
928     umbrella = this;
929   this->umbrella = umbrella;
930 
931   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
932   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
933 
934   // Initialize installName.
935   if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
936     auto *c = reinterpret_cast<const dylib_command *>(cmd);
937     currentVersion = read32le(&c->dylib.current_version);
938     compatibilityVersion = read32le(&c->dylib.compatibility_version);
939     installName =
940         reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
941   } else if (!isBundleLoader) {
942     // macho_executable and macho_bundle don't have LC_ID_DYLIB,
943     // so it's OK.
944     error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
945     return;
946   }
947 
948   if (config->printEachFile)
949     message(toString(this));
950   inputFiles.insert(this);
951 
952   deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
953 
954   if (!checkCompatibility(this))
955     return;
956 
957   checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
958 
959   for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
960     StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
961     rpaths.push_back(rpath);
962   }
963 
964   // Initialize symbols.
965   exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
966   if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
967     auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
968     parseTrie(buf + c->export_off, c->export_size,
969               [&](const Twine &name, uint64_t flags) {
970                 StringRef savedName = saver.save(name);
971                 if (handleLDSymbol(savedName))
972                   return;
973                 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
974                 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
975                 symbols.push_back(symtab->addDylib(savedName, exportingFile,
976                                                    isWeakDef, isTlv));
977               });
978   } else {
979     error("LC_DYLD_INFO_ONLY not found in " + toString(this));
980     return;
981   }
982 }
983 
984 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
985   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
986   const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
987                      target->headerSize;
988   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
989     auto *cmd = reinterpret_cast<const load_command *>(p);
990     p += cmd->cmdsize;
991 
992     if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
993         cmd->cmd == LC_REEXPORT_DYLIB) {
994       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
995       StringRef reexportPath =
996           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
997       loadReexport(reexportPath, exportingFile, nullptr);
998     }
999 
1000     // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1001     // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1002     // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1003     if (config->namespaceKind == NamespaceKind::flat &&
1004         cmd->cmd == LC_LOAD_DYLIB) {
1005       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1006       StringRef dylibPath =
1007           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1008       DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1009       if (!dylib)
1010         error(Twine("unable to locate library '") + dylibPath +
1011               "' loaded from '" + toString(this) + "' for -flat_namespace");
1012     }
1013   }
1014 }
1015 
1016 // Some versions of XCode ship with .tbd files that don't have the right
1017 // platform settings.
1018 static constexpr std::array<StringRef, 3> skipPlatformChecks{
1019     "/usr/lib/system/libsystem_kernel.dylib",
1020     "/usr/lib/system/libsystem_platform.dylib",
1021     "/usr/lib/system/libsystem_pthread.dylib"};
1022 
1023 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1024                      bool isBundleLoader)
1025     : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1026       isBundleLoader(isBundleLoader) {
1027   // FIXME: Add test for the missing TBD code path.
1028 
1029   if (umbrella == nullptr)
1030     umbrella = this;
1031   this->umbrella = umbrella;
1032 
1033   installName = saver.save(interface.getInstallName());
1034   compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1035   currentVersion = interface.getCurrentVersion().rawValue();
1036 
1037   if (config->printEachFile)
1038     message(toString(this));
1039   inputFiles.insert(this);
1040 
1041   if (!is_contained(skipPlatformChecks, installName) &&
1042       !is_contained(interface.targets(), config->platformInfo.target)) {
1043     error(toString(this) + " is incompatible with " +
1044           std::string(config->platformInfo.target));
1045     return;
1046   }
1047 
1048   checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1049 
1050   exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1051   auto addSymbol = [&](const Twine &name) -> void {
1052     symbols.push_back(symtab->addDylib(saver.save(name), exportingFile,
1053                                        /*isWeakDef=*/false,
1054                                        /*isTlv=*/false));
1055   };
1056   // TODO(compnerd) filter out symbols based on the target platform
1057   // TODO: handle weak defs, thread locals
1058   for (const auto *symbol : interface.symbols()) {
1059     if (!symbol->getArchitectures().has(config->arch()))
1060       continue;
1061 
1062     if (handleLDSymbol(symbol->getName()))
1063       continue;
1064 
1065     switch (symbol->getKind()) {
1066     case SymbolKind::GlobalSymbol:
1067       addSymbol(symbol->getName());
1068       break;
1069     case SymbolKind::ObjectiveCClass:
1070       // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1071       // want to emulate that.
1072       addSymbol(objc::klass + symbol->getName());
1073       addSymbol(objc::metaclass + symbol->getName());
1074       break;
1075     case SymbolKind::ObjectiveCClassEHType:
1076       addSymbol(objc::ehtype + symbol->getName());
1077       break;
1078     case SymbolKind::ObjectiveCInstanceVariable:
1079       addSymbol(objc::ivar + symbol->getName());
1080       break;
1081     }
1082   }
1083 }
1084 
1085 void DylibFile::parseReexports(const InterfaceFile &interface) {
1086   const InterfaceFile *topLevel =
1087       interface.getParent() == nullptr ? &interface : interface.getParent();
1088   for (InterfaceFileRef intfRef : interface.reexportedLibraries()) {
1089     InterfaceFile::const_target_range targets = intfRef.targets();
1090     if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1091         is_contained(targets, config->platformInfo.target))
1092       loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1093   }
1094 }
1095 
1096 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1097 // name, compatibility version or hide/add symbols) for specific target
1098 // versions.
1099 bool DylibFile::handleLDSymbol(StringRef originalName) {
1100   if (!originalName.startswith("$ld$"))
1101     return false;
1102 
1103   StringRef action;
1104   StringRef name;
1105   std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1106   if (action == "previous")
1107     handleLDPreviousSymbol(name, originalName);
1108   else if (action == "install_name")
1109     handleLDInstallNameSymbol(name, originalName);
1110   return true;
1111 }
1112 
1113 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1114   // originalName: $ld$ previous $ <installname> $ <compatversion> $
1115   // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1116   StringRef installName;
1117   StringRef compatVersion;
1118   StringRef platformStr;
1119   StringRef startVersion;
1120   StringRef endVersion;
1121   StringRef symbolName;
1122   StringRef rest;
1123 
1124   std::tie(installName, name) = name.split('$');
1125   std::tie(compatVersion, name) = name.split('$');
1126   std::tie(platformStr, name) = name.split('$');
1127   std::tie(startVersion, name) = name.split('$');
1128   std::tie(endVersion, name) = name.split('$');
1129   std::tie(symbolName, rest) = name.split('$');
1130   // TODO: ld64 contains some logic for non-empty symbolName as well.
1131   if (!symbolName.empty())
1132     return;
1133   unsigned platform;
1134   if (platformStr.getAsInteger(10, platform) ||
1135       platform != static_cast<unsigned>(config->platform()))
1136     return;
1137 
1138   VersionTuple start;
1139   if (start.tryParse(startVersion)) {
1140     warn("failed to parse start version, symbol '" + originalName +
1141          "' ignored");
1142     return;
1143   }
1144   VersionTuple end;
1145   if (end.tryParse(endVersion)) {
1146     warn("failed to parse end version, symbol '" + originalName + "' ignored");
1147     return;
1148   }
1149   if (config->platformInfo.minimum < start ||
1150       config->platformInfo.minimum >= end)
1151     return;
1152 
1153   this->installName = saver.save(installName);
1154 
1155   if (!compatVersion.empty()) {
1156     VersionTuple cVersion;
1157     if (cVersion.tryParse(compatVersion)) {
1158       warn("failed to parse compatibility version, symbol '" + originalName +
1159            "' ignored");
1160       return;
1161     }
1162     compatibilityVersion = encodeVersion(cVersion);
1163   }
1164 }
1165 
1166 void DylibFile::handleLDInstallNameSymbol(StringRef name,
1167                                           StringRef originalName) {
1168   // originalName: $ld$ install_name $ os<version> $ install_name
1169   StringRef condition, installName;
1170   std::tie(condition, installName) = name.split('$');
1171   VersionTuple version;
1172   if (!condition.consume_front("os") || version.tryParse(condition))
1173     warn("failed to parse os version, symbol '" + originalName + "' ignored");
1174   else if (version == config->platformInfo.minimum)
1175     this->installName = saver.save(installName);
1176 }
1177 
1178 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
1179   if (config->applicationExtension && !dylibIsAppExtensionSafe)
1180     warn("using '-application_extension' with unsafe dylib: " + toString(this));
1181 }
1182 
1183 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
1184     : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {
1185   for (const object::Archive::Symbol &sym : file->symbols())
1186     symtab->addLazy(sym.getName(), this, sym);
1187 }
1188 
1189 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
1190   object::Archive::Child c =
1191       CHECK(sym.getMember(), toString(this) +
1192                                  ": could not get the member for symbol " +
1193                                  toMachOString(sym));
1194 
1195   if (!seen.insert(c.getChildOffset()).second)
1196     return;
1197 
1198   MemoryBufferRef mb =
1199       CHECK(c.getMemoryBufferRef(),
1200             toString(this) +
1201                 ": could not get the buffer for the member defining symbol " +
1202                 toMachOString(sym));
1203 
1204   if (tar && c.getParent()->isThin())
1205     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1206 
1207   uint32_t modTime = toTimeT(
1208       CHECK(c.getLastModified(), toString(this) +
1209                                      ": could not get the modification time "
1210                                      "for the member defining symbol " +
1211                                      toMachOString(sym)));
1212 
1213   // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
1214   // and become invalid after that call. Copy it to the stack so we can refer
1215   // to it later.
1216   const object::Archive::Symbol symCopy = sym;
1217 
1218   if (Optional<InputFile *> file =
1219           loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) {
1220     inputFiles.insert(*file);
1221     // ld64 doesn't demangle sym here even with -demangle.
1222     // Match that: intentionally don't call toMachOString().
1223     printArchiveMemberLoad(symCopy.getName(), *file);
1224   }
1225 }
1226 
1227 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
1228                                           BitcodeFile &file) {
1229   StringRef name = saver.save(objSym.getName());
1230 
1231   // TODO: support weak references
1232   if (objSym.isUndefined())
1233     return symtab->addUndefined(name, &file, /*isWeakRef=*/false);
1234 
1235   assert(!objSym.isCommon() && "TODO: support common symbols in LTO");
1236 
1237   // TODO: Write a test demonstrating why computing isPrivateExtern before
1238   // LTO compilation is important.
1239   bool isPrivateExtern = false;
1240   switch (objSym.getVisibility()) {
1241   case GlobalValue::HiddenVisibility:
1242     isPrivateExtern = true;
1243     break;
1244   case GlobalValue::ProtectedVisibility:
1245     error(name + " has protected visibility, which is not supported by Mach-O");
1246     break;
1247   case GlobalValue::DefaultVisibility:
1248     break;
1249   }
1250 
1251   return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
1252                             /*size=*/0, objSym.isWeak(), isPrivateExtern,
1253                             /*isThumb=*/false,
1254                             /*isReferencedDynamically=*/false,
1255                             /*noDeadStrip=*/false);
1256 }
1257 
1258 BitcodeFile::BitcodeFile(MemoryBufferRef mbref)
1259     : InputFile(BitcodeKind, mbref) {
1260   obj = check(lto::InputFile::create(mbref));
1261 
1262   // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
1263   // "winning" symbol will then be marked as Prevailing at LTO compilation
1264   // time.
1265   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1266     symbols.push_back(createBitcodeSymbol(objSym, *this));
1267 }
1268 
1269 template void ObjFile::parse<LP64>();
1270