1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "Target.h" 57 58 #include "lld/Common/DWARF.h" 59 #include "lld/Common/ErrorHandler.h" 60 #include "lld/Common/Memory.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/Path.h" 68 #include "llvm/Support/TarWriter.h" 69 #include "llvm/TextAPI/Architecture.h" 70 #include "llvm/TextAPI/InterfaceFile.h" 71 72 using namespace llvm; 73 using namespace llvm::MachO; 74 using namespace llvm::support::endian; 75 using namespace llvm::sys; 76 using namespace lld; 77 using namespace lld::macho; 78 79 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 80 std::string lld::toString(const InputFile *f) { 81 if (!f) 82 return "<internal>"; 83 84 // Multiple dylibs can be defined in one .tbd file. 85 if (auto dylibFile = dyn_cast<DylibFile>(f)) 86 if (f->getName().endswith(".tbd")) 87 return (f->getName() + "(" + dylibFile->dylibName + ")").str(); 88 89 if (f->archiveName.empty()) 90 return std::string(f->getName()); 91 return (path::filename(f->archiveName) + "(" + path::filename(f->getName()) + 92 ")") 93 .str(); 94 } 95 96 SetVector<InputFile *> macho::inputFiles; 97 std::unique_ptr<TarWriter> macho::tar; 98 int InputFile::idCount = 0; 99 100 // Open a given file path and return it as a memory-mapped file. 101 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 102 // Open a file. 103 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 104 if (std::error_code ec = mbOrErr.getError()) { 105 error("cannot open " + path + ": " + ec.message()); 106 return None; 107 } 108 109 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 110 MemoryBufferRef mbref = mb->getMemBufferRef(); 111 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 112 113 // If this is a regular non-fat file, return it. 114 const char *buf = mbref.getBufferStart(); 115 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 116 if (mbref.getBufferSize() < sizeof(uint32_t) || 117 read32be(&hdr->magic) != FAT_MAGIC) { 118 if (tar) 119 tar->append(relativeToRoot(path), mbref.getBuffer()); 120 return mbref; 121 } 122 123 // Object files and archive files may be fat files, which contains 124 // multiple real files for different CPU ISAs. Here, we search for a 125 // file that matches with the current link target and returns it as 126 // a MemoryBufferRef. 127 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 128 129 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 130 if (reinterpret_cast<const char *>(arch + i + 1) > 131 buf + mbref.getBufferSize()) { 132 error(path + ": fat_arch struct extends beyond end of file"); 133 return None; 134 } 135 136 if (read32be(&arch[i].cputype) != target->cpuType || 137 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 138 continue; 139 140 uint32_t offset = read32be(&arch[i].offset); 141 uint32_t size = read32be(&arch[i].size); 142 if (offset + size > mbref.getBufferSize()) 143 error(path + ": slice extends beyond end of file"); 144 if (tar) 145 tar->append(relativeToRoot(path), mbref.getBuffer()); 146 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 147 } 148 149 error("unable to find matching architecture in " + path); 150 return None; 151 } 152 153 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 154 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 155 156 template <class Section> 157 void ObjFile::parseSections(ArrayRef<Section> sections) { 158 subsections.reserve(sections.size()); 159 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 160 161 for (const Section &sec : sections) { 162 InputSection *isec = make<InputSection>(); 163 isec->file = this; 164 isec->name = 165 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 166 isec->segname = 167 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 168 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 169 static_cast<size_t>(sec.size)}; 170 if (sec.align >= 32) 171 error("alignment " + std::to_string(sec.align) + " of section " + 172 isec->name + " is too large"); 173 else 174 isec->align = 1 << sec.align; 175 isec->flags = sec.flags; 176 177 if (!(isDebugSection(isec->flags) && 178 isec->segname == segment_names::dwarf)) { 179 subsections.push_back({{0, isec}}); 180 } else { 181 // Instead of emitting DWARF sections, we emit STABS symbols to the 182 // object files that contain them. We filter them out early to avoid 183 // parsing their relocations unnecessarily. But we must still push an 184 // empty map to ensure the indices line up for the remaining sections. 185 subsections.push_back({}); 186 debugSections.push_back(isec); 187 } 188 } 189 } 190 191 // Find the subsection corresponding to the greatest section offset that is <= 192 // that of the given offset. 193 // 194 // offset: an offset relative to the start of the original InputSection (before 195 // any subsection splitting has occurred). It will be updated to represent the 196 // same location as an offset relative to the start of the containing 197 // subsection. 198 static InputSection *findContainingSubsection(SubsectionMap &map, 199 uint64_t *offset) { 200 auto it = std::prev(llvm::upper_bound( 201 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 202 return value < subsecEntry.offset; 203 })); 204 *offset -= it->offset; 205 return it->isec; 206 } 207 208 template <class Section> 209 static bool validateRelocationInfo(InputFile *file, const Section &sec, 210 relocation_info rel) { 211 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 212 bool valid = true; 213 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 214 valid = false; 215 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 216 std::to_string(rel.r_address) + " of " + sec.segname + "," + 217 sec.sectname + " in " + toString(file)) 218 .str(); 219 }; 220 221 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 222 error(message("must be extern")); 223 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 224 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 225 "be PC-relative")); 226 if (isThreadLocalVariables(sec.flags) && 227 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 228 error(message("not allowed in thread-local section, must be UNSIGNED")); 229 if (rel.r_length < 2 || rel.r_length > 3 || 230 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 231 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 232 error(message("has width " + std::to_string(1 << rel.r_length) + 233 " bytes, but must be " + 234 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 235 " bytes")); 236 } 237 return valid; 238 } 239 240 template <class Section> 241 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 242 const Section &sec, SubsectionMap &subsecMap) { 243 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 244 ArrayRef<relocation_info> relInfos( 245 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 246 247 for (size_t i = 0; i < relInfos.size(); i++) { 248 // Paired relocations serve as Mach-O's method for attaching a 249 // supplemental datum to a primary relocation record. ELF does not 250 // need them because the *_RELOC_RELA records contain the extra 251 // addend field, vs. *_RELOC_REL which omit the addend. 252 // 253 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 254 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 255 // datum for each is a symbolic address. The result is the offset 256 // between two addresses. 257 // 258 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 259 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 260 // base symbolic address. 261 // 262 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 263 // addend into the instruction stream. On X86, a relocatable address 264 // field always occupies an entire contiguous sequence of byte(s), 265 // so there is no need to merge opcode bits with address 266 // bits. Therefore, it's easy and convenient to store addends in the 267 // instruction-stream bytes that would otherwise contain zeroes. By 268 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 269 // address bits so that bitwise arithmetic is necessary to extract 270 // and insert them. Storing addends in the instruction stream is 271 // possible, but inconvenient and more costly at link time. 272 273 int64_t pairedAddend = 0; 274 relocation_info relInfo = relInfos[i]; 275 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 276 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 277 relInfo = relInfos[++i]; 278 } 279 assert(i < relInfos.size()); 280 if (!validateRelocationInfo(this, sec, relInfo)) 281 continue; 282 if (relInfo.r_address & R_SCATTERED) 283 fatal("TODO: Scattered relocations not supported"); 284 285 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 286 assert(!(embeddedAddend && pairedAddend)); 287 int64_t totalAddend = pairedAddend + embeddedAddend; 288 Reloc r; 289 r.type = relInfo.r_type; 290 r.pcrel = relInfo.r_pcrel; 291 r.length = relInfo.r_length; 292 r.offset = relInfo.r_address; 293 if (relInfo.r_extern) { 294 r.referent = symbols[relInfo.r_symbolnum]; 295 r.addend = totalAddend; 296 } else { 297 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 298 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 299 uint64_t referentOffset; 300 if (relInfo.r_pcrel) { 301 // The implicit addend for pcrel section relocations is the pcrel offset 302 // in terms of the addresses in the input file. Here we adjust it so 303 // that it describes the offset from the start of the referent section. 304 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 305 // have pcrel section relocations. We may want to factor this out into 306 // the arch-specific .cpp file. 307 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 308 referentOffset = 309 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 310 } else { 311 // The addend for a non-pcrel relocation is its absolute address. 312 referentOffset = totalAddend - referentSec.addr; 313 } 314 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 315 r.addend = referentOffset; 316 } 317 318 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 319 subsec->relocs.push_back(r); 320 321 if (target->hasAttr(r.type, RelocAttrBits::SUBTRAHEND)) { 322 relInfo = relInfos[++i]; 323 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 324 // indicating the minuend symbol. 325 assert(target->hasAttr(relInfo.r_type, RelocAttrBits::UNSIGNED) && 326 relInfo.r_extern); 327 Reloc p; 328 p.type = relInfo.r_type; 329 p.referent = symbols[relInfo.r_symbolnum]; 330 subsec->relocs.push_back(p); 331 } 332 } 333 } 334 335 template <class NList> 336 static macho::Symbol *createDefined(const NList &sym, StringRef name, 337 InputSection *isec, uint64_t value, 338 uint64_t size) { 339 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 340 // N_EXT: Global symbols 341 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped 342 // N_PEXT: Does not occur in input files in practice, 343 // a private extern must be external. 344 // 0: Translation-unit scoped. These are not in the symbol table. 345 346 if (sym.n_type & (N_EXT | N_PEXT)) { 347 assert((sym.n_type & N_EXT) && "invalid input"); 348 return symtab->addDefined(name, isec->file, isec, value, size, 349 sym.n_desc & N_WEAK_DEF, sym.n_type & N_PEXT); 350 } 351 return make<Defined>(name, isec->file, isec, value, size, 352 sym.n_desc & N_WEAK_DEF, 353 /*isExternal=*/false, /*isPrivateExtern=*/false); 354 } 355 356 // Checks if the version specified in `cmd` is compatible with target 357 // version. IOW, check if cmd's version >= config's version. 358 static bool hasCompatVersion(const InputFile *input, 359 const build_version_command *cmd) { 360 361 if (config->target.Platform != static_cast<PlatformKind>(cmd->platform)) { 362 error(toString(input) + " has platform " + 363 getPlatformName(static_cast<PlatformKind>(cmd->platform)) + 364 Twine(", which is different from target platform ") + 365 getPlatformName(config->target.Platform)); 366 return false; 367 } 368 369 unsigned major = cmd->minos >> 16; 370 unsigned minor = (cmd->minos >> 8) & 0xffu; 371 unsigned subMinor = cmd->minos & 0xffu; 372 VersionTuple version(major, minor, subMinor); 373 if (version >= config->platformInfo.minimum) 374 return true; 375 376 error(toString(input) + " has version " + version.getAsString() + 377 ", which is incompatible with target version of " + 378 config->platformInfo.minimum.getAsString()); 379 return false; 380 } 381 382 // Absolute symbols are defined symbols that do not have an associated 383 // InputSection. They cannot be weak. 384 template <class NList> 385 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 386 StringRef name) { 387 if (sym.n_type & (N_EXT | N_PEXT)) { 388 assert((sym.n_type & N_EXT) && "invalid input"); 389 return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0, 390 /*isWeakDef=*/false, sym.n_type & N_PEXT); 391 } 392 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 393 /*isWeakDef=*/false, 394 /*isExternal=*/false, /*isPrivateExtern=*/false); 395 } 396 397 template <class NList> 398 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 399 StringRef name) { 400 uint8_t type = sym.n_type & N_TYPE; 401 switch (type) { 402 case N_UNDF: 403 return sym.n_value == 0 404 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 405 : symtab->addCommon(name, this, sym.n_value, 406 1 << GET_COMM_ALIGN(sym.n_desc), 407 sym.n_type & N_PEXT); 408 case N_ABS: 409 return createAbsolute(sym, this, name); 410 case N_PBUD: 411 case N_INDR: 412 error("TODO: support symbols of type " + std::to_string(type)); 413 return nullptr; 414 case N_SECT: 415 llvm_unreachable( 416 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 417 default: 418 llvm_unreachable("invalid symbol type"); 419 } 420 } 421 422 template <class LP> 423 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 424 ArrayRef<typename LP::nlist> nList, 425 const char *strtab, bool subsectionsViaSymbols) { 426 using NList = typename LP::nlist; 427 428 // Groups indices of the symbols by the sections that contain them. 429 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 430 symbols.resize(nList.size()); 431 for (uint32_t i = 0; i < nList.size(); ++i) { 432 const NList &sym = nList[i]; 433 StringRef name = strtab + sym.n_strx; 434 if ((sym.n_type & N_TYPE) == N_SECT) { 435 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 436 // parseSections() may have chosen not to parse this section. 437 if (subsecMap.empty()) 438 continue; 439 symbolsBySection[sym.n_sect - 1].push_back(i); 440 } else { 441 symbols[i] = parseNonSectionSymbol(sym, name); 442 } 443 } 444 445 // Calculate symbol sizes and create subsections by splitting the sections 446 // along symbol boundaries. 447 for (size_t i = 0; i < subsections.size(); ++i) { 448 SubsectionMap &subsecMap = subsections[i]; 449 if (subsecMap.empty()) 450 continue; 451 452 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 453 llvm::sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 454 return nList[lhs].n_value < nList[rhs].n_value; 455 }); 456 uint64_t sectionAddr = sectionHeaders[i].addr; 457 458 // We populate subsecMap by repeatedly splitting the last (highest address) 459 // subsection. 460 SubsectionEntry subsecEntry = subsecMap.back(); 461 for (size_t j = 0; j < symbolIndices.size(); ++j) { 462 uint32_t symIndex = symbolIndices[j]; 463 const NList &sym = nList[symIndex]; 464 StringRef name = strtab + sym.n_strx; 465 InputSection *isec = subsecEntry.isec; 466 467 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 468 uint64_t symbolOffset = sym.n_value - subsecAddr; 469 uint64_t symbolSize = 470 j + 1 < symbolIndices.size() 471 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 472 : isec->data.size() - symbolOffset; 473 // There are 3 cases where we do not need to create a new subsection: 474 // 1. If the input file does not use subsections-via-symbols. 475 // 2. Multiple symbols at the same address only induce one subsection. 476 // 3. Alternative entry points do not induce new subsections. 477 if (!subsectionsViaSymbols || symbolOffset == 0 || 478 sym.n_desc & N_ALT_ENTRY) { 479 symbols[symIndex] = 480 createDefined(sym, name, isec, symbolOffset, symbolSize); 481 continue; 482 } 483 484 auto *nextIsec = make<InputSection>(*isec); 485 nextIsec->data = isec->data.slice(symbolOffset); 486 isec->data = isec->data.slice(0, symbolOffset); 487 488 // By construction, the symbol will be at offset zero in the new 489 // subsection. 490 symbols[symIndex] = 491 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 492 // TODO: ld64 appears to preserve the original alignment as well as each 493 // subsection's offset from the last aligned address. We should consider 494 // emulating that behavior. 495 nextIsec->align = MinAlign(isec->align, sym.n_value); 496 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 497 subsecEntry = subsecMap.back(); 498 } 499 } 500 } 501 502 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 503 StringRef sectName) 504 : InputFile(OpaqueKind, mb) { 505 InputSection *isec = make<InputSection>(); 506 isec->file = this; 507 isec->name = sectName.take_front(16); 508 isec->segname = segName.take_front(16); 509 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 510 isec->data = {buf, mb.getBufferSize()}; 511 subsections.push_back({{0, isec}}); 512 } 513 514 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 515 : InputFile(ObjKind, mb), modTime(modTime) { 516 this->archiveName = std::string(archiveName); 517 if (target->wordSize == 8) 518 parse<LP64>(); 519 else 520 parse<ILP32>(); 521 } 522 523 template <class LP> void ObjFile::parse() { 524 using Header = typename LP::mach_header; 525 using SegmentCommand = typename LP::segment_command; 526 using Section = typename LP::section; 527 using NList = typename LP::nlist; 528 529 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 530 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 531 532 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 533 if (arch != config->target.Arch) { 534 error(toString(this) + " has architecture " + getArchitectureName(arch) + 535 " which is incompatible with target architecture " + 536 getArchitectureName(config->target.Arch)); 537 return; 538 } 539 540 if (const auto *cmd = 541 findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) { 542 if (!hasCompatVersion(this, cmd)) 543 return; 544 } 545 546 if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { 547 auto *c = reinterpret_cast<const linker_option_command *>(cmd); 548 StringRef data{reinterpret_cast<const char *>(c + 1), 549 c->cmdsize - sizeof(linker_option_command)}; 550 parseLCLinkerOption(this, c->count, data); 551 } 552 553 ArrayRef<Section> sectionHeaders; 554 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 555 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 556 sectionHeaders = 557 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 558 parseSections(sectionHeaders); 559 } 560 561 // TODO: Error on missing LC_SYMTAB? 562 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 563 auto *c = reinterpret_cast<const symtab_command *>(cmd); 564 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 565 c->nsyms); 566 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 567 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 568 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 569 } 570 571 // The relocations may refer to the symbols, so we parse them after we have 572 // parsed all the symbols. 573 for (size_t i = 0, n = subsections.size(); i < n; ++i) 574 if (!subsections[i].empty()) 575 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 576 577 parseDebugInfo(); 578 } 579 580 void ObjFile::parseDebugInfo() { 581 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 582 if (!dObj) 583 return; 584 585 auto *ctx = make<DWARFContext>( 586 std::move(dObj), "", 587 [&](Error err) { 588 warn(toString(this) + ": " + toString(std::move(err))); 589 }, 590 [&](Error warning) { 591 warn(toString(this) + ": " + toString(std::move(warning))); 592 }); 593 594 // TODO: Since object files can contain a lot of DWARF info, we should verify 595 // that we are parsing just the info we need 596 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 597 // FIXME: There can be more than one compile unit per object file. See 598 // PR48637. 599 auto it = units.begin(); 600 compileUnit = it->get(); 601 } 602 603 // The path can point to either a dylib or a .tbd file. 604 static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) { 605 Optional<MemoryBufferRef> mbref = readFile(path); 606 if (!mbref) { 607 error("could not read dylib file at " + path); 608 return {}; 609 } 610 return loadDylib(*mbref, umbrella); 611 } 612 613 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 614 // the first document storing child pointers to the rest of them. When we are 615 // processing a given TBD file, we store that top-level document in 616 // currentTopLevelTapi. When processing re-exports, we search its children for 617 // potentially matching documents in the same TBD file. Note that the children 618 // themselves don't point to further documents, i.e. this is a two-level tree. 619 // 620 // Re-exports can either refer to on-disk files, or to documents within .tbd 621 // files. 622 static Optional<DylibFile *> 623 findDylib(StringRef path, DylibFile *umbrella, 624 const InterfaceFile *currentTopLevelTapi) { 625 if (path::is_absolute(path, path::Style::posix)) 626 for (StringRef root : config->systemLibraryRoots) 627 if (Optional<std::string> dylibPath = 628 resolveDylibPath((root + path).str())) 629 return loadDylib(*dylibPath, umbrella); 630 631 // TODO: Expand @loader_path, @executable_path, @rpath etc, handle -dylib_path 632 633 if (currentTopLevelTapi) { 634 for (InterfaceFile &child : 635 make_pointee_range(currentTopLevelTapi->documents())) { 636 assert(child.documents().empty()); 637 if (path == child.getInstallName()) 638 return make<DylibFile>(child, umbrella); 639 } 640 } 641 642 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 643 return loadDylib(*dylibPath, umbrella); 644 645 return {}; 646 } 647 648 // If a re-exported dylib is public (lives in /usr/lib or 649 // /System/Library/Frameworks), then it is considered implicitly linked: we 650 // should bind to its symbols directly instead of via the re-exporting umbrella 651 // library. 652 static bool isImplicitlyLinked(StringRef path) { 653 if (!config->implicitDylibs) 654 return false; 655 656 if (path::parent_path(path) == "/usr/lib") 657 return true; 658 659 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 660 if (path.consume_front("/System/Library/Frameworks/")) { 661 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 662 return path::filename(path) == frameworkName; 663 } 664 665 return false; 666 } 667 668 void loadReexport(StringRef path, DylibFile *umbrella, 669 const InterfaceFile *currentTopLevelTapi) { 670 Optional<DylibFile *> reexport = 671 findDylib(path, umbrella, currentTopLevelTapi); 672 if (!reexport) 673 error("unable to locate re-export with install name " + path); 674 else if (isImplicitlyLinked(path)) 675 inputFiles.insert(*reexport); 676 } 677 678 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 679 bool isBundleLoader) 680 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 681 isBundleLoader(isBundleLoader) { 682 assert(!isBundleLoader || !umbrella); 683 if (umbrella == nullptr) 684 umbrella = this; 685 686 if (target->wordSize == 8) 687 parse<LP64>(umbrella); 688 else 689 parse<ILP32>(umbrella); 690 } 691 692 template <class LP> void DylibFile::parse(DylibFile *umbrella) { 693 using Header = typename LP::mach_header; 694 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 695 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 696 697 // Initialize dylibName. 698 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 699 auto *c = reinterpret_cast<const dylib_command *>(cmd); 700 currentVersion = read32le(&c->dylib.current_version); 701 compatibilityVersion = read32le(&c->dylib.compatibility_version); 702 dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 703 } else if (!isBundleLoader) { 704 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 705 // so it's OK. 706 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 707 return; 708 } 709 710 if (const build_version_command *cmd = 711 findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) { 712 if (!hasCompatVersion(this, cmd)) 713 return; 714 } 715 716 // Initialize symbols. 717 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 718 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 719 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 720 parseTrie(buf + c->export_off, c->export_size, 721 [&](const Twine &name, uint64_t flags) { 722 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 723 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 724 symbols.push_back(symtab->addDylib( 725 saver.save(name), exportingFile, isWeakDef, isTlv)); 726 }); 727 } else { 728 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 729 return; 730 } 731 732 const uint8_t *p = reinterpret_cast<const uint8_t *>(hdr) + sizeof(Header); 733 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 734 auto *cmd = reinterpret_cast<const load_command *>(p); 735 p += cmd->cmdsize; 736 737 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 738 cmd->cmd == LC_REEXPORT_DYLIB) { 739 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 740 StringRef reexportPath = 741 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 742 loadReexport(reexportPath, exportingFile, nullptr); 743 } 744 745 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 746 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 747 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 748 if (config->namespaceKind == NamespaceKind::flat && 749 cmd->cmd == LC_LOAD_DYLIB) { 750 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 751 StringRef dylibPath = 752 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 753 Optional<DylibFile *> dylib = findDylib(dylibPath, umbrella, nullptr); 754 if (!dylib) 755 error(Twine("unable to locate library '") + dylibPath + 756 "' loaded from '" + toString(this) + "' for -flat_namespace"); 757 } 758 } 759 } 760 761 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 762 bool isBundleLoader) 763 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 764 isBundleLoader(isBundleLoader) { 765 // FIXME: Add test for the missing TBD code path. 766 767 if (umbrella == nullptr) 768 umbrella = this; 769 770 dylibName = saver.save(interface.getInstallName()); 771 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 772 currentVersion = interface.getCurrentVersion().rawValue(); 773 774 if (!is_contained(interface.targets(), config->target)) { 775 error(toString(this) + " is incompatible with " + 776 std::string(config->target)); 777 return; 778 } 779 780 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 781 auto addSymbol = [&](const Twine &name) -> void { 782 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 783 /*isWeakDef=*/false, 784 /*isTlv=*/false)); 785 }; 786 // TODO(compnerd) filter out symbols based on the target platform 787 // TODO: handle weak defs, thread locals 788 for (const auto *symbol : interface.symbols()) { 789 if (!symbol->getArchitectures().has(config->target.Arch)) 790 continue; 791 792 switch (symbol->getKind()) { 793 case SymbolKind::GlobalSymbol: 794 addSymbol(symbol->getName()); 795 break; 796 case SymbolKind::ObjectiveCClass: 797 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 798 // want to emulate that. 799 addSymbol(objc::klass + symbol->getName()); 800 addSymbol(objc::metaclass + symbol->getName()); 801 break; 802 case SymbolKind::ObjectiveCClassEHType: 803 addSymbol(objc::ehtype + symbol->getName()); 804 break; 805 case SymbolKind::ObjectiveCInstanceVariable: 806 addSymbol(objc::ivar + symbol->getName()); 807 break; 808 } 809 } 810 811 const InterfaceFile *topLevel = 812 interface.getParent() == nullptr ? &interface : interface.getParent(); 813 814 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 815 InterfaceFile::const_target_range targets = intfRef.targets(); 816 if (is_contained(targets, config->target)) 817 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 818 } 819 } 820 821 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 822 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 823 for (const object::Archive::Symbol &sym : file->symbols()) 824 symtab->addLazy(sym.getName(), this, sym); 825 } 826 827 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 828 object::Archive::Child c = 829 CHECK(sym.getMember(), toString(this) + 830 ": could not get the member for symbol " + 831 toMachOString(sym)); 832 833 if (!seen.insert(c.getChildOffset()).second) 834 return; 835 836 MemoryBufferRef mb = 837 CHECK(c.getMemoryBufferRef(), 838 toString(this) + 839 ": could not get the buffer for the member defining symbol " + 840 toMachOString(sym)); 841 842 if (tar && c.getParent()->isThin()) 843 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 844 845 uint32_t modTime = toTimeT( 846 CHECK(c.getLastModified(), toString(this) + 847 ": could not get the modification time " 848 "for the member defining symbol " + 849 toMachOString(sym))); 850 851 // `sym` is owned by a LazySym, which will be replace<>() by make<ObjFile> 852 // and become invalid after that call. Copy it to the stack so we can refer 853 // to it later. 854 const object::Archive::Symbol sym_copy = sym; 855 856 if (Optional<InputFile *> file = 857 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 858 inputFiles.insert(*file); 859 // ld64 doesn't demangle sym here even with -demangle. Match that, so 860 // intentionally no call to toMachOString() here. 861 printArchiveMemberLoad(sym_copy.getName(), *file); 862 } 863 } 864 865 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 866 BitcodeFile &file) { 867 StringRef name = saver.save(objSym.getName()); 868 869 // TODO: support weak references 870 if (objSym.isUndefined()) 871 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 872 873 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 874 875 // TODO: Write a test demonstrating why computing isPrivateExtern before 876 // LTO compilation is important. 877 bool isPrivateExtern = false; 878 switch (objSym.getVisibility()) { 879 case GlobalValue::HiddenVisibility: 880 isPrivateExtern = true; 881 break; 882 case GlobalValue::ProtectedVisibility: 883 error(name + " has protected visibility, which is not supported by Mach-O"); 884 break; 885 case GlobalValue::DefaultVisibility: 886 break; 887 } 888 889 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 890 /*size=*/0, objSym.isWeak(), isPrivateExtern); 891 } 892 893 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 894 : InputFile(BitcodeKind, mbref) { 895 obj = check(lto::InputFile::create(mbref)); 896 897 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 898 // "winning" symbol will then be marked as Prevailing at LTO compilation 899 // time. 900 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 901 symbols.push_back(createBitcodeSymbol(objSym, *this)); 902 } 903 904 template void ObjFile::parse<LP64>(); 905 template void DylibFile::parse<LP64>(DylibFile *umbrella); 906