1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/TextAPI/Architecture.h" 71 #include "llvm/TextAPI/InterfaceFile.h" 72 73 using namespace llvm; 74 using namespace llvm::MachO; 75 using namespace llvm::support::endian; 76 using namespace llvm::sys; 77 using namespace lld; 78 using namespace lld::macho; 79 80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 81 std::string lld::toString(const InputFile *f) { 82 if (!f) 83 return "<internal>"; 84 85 // Multiple dylibs can be defined in one .tbd file. 86 if (auto dylibFile = dyn_cast<DylibFile>(f)) 87 if (f->getName().endswith(".tbd")) 88 return (f->getName() + "(" + dylibFile->installName + ")").str(); 89 90 if (f->archiveName.empty()) 91 return std::string(f->getName()); 92 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 93 } 94 95 SetVector<InputFile *> macho::inputFiles; 96 std::unique_ptr<TarWriter> macho::tar; 97 int InputFile::idCount = 0; 98 99 static VersionTuple decodeVersion(uint32_t version) { 100 unsigned major = version >> 16; 101 unsigned minor = (version >> 8) & 0xffu; 102 unsigned subMinor = version & 0xffu; 103 return VersionTuple(major, minor, subMinor); 104 } 105 106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 107 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 108 return {}; 109 110 const char *hdr = input->mb.getBufferStart(); 111 112 std::vector<PlatformInfo> platformInfos; 113 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 PlatformInfo info; 115 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 116 info.minimum = decodeVersion(cmd->minos); 117 platformInfos.emplace_back(std::move(info)); 118 } 119 for (auto *cmd : findCommands<version_min_command>( 120 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 121 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 122 PlatformInfo info; 123 switch (cmd->cmd) { 124 case LC_VERSION_MIN_MACOSX: 125 info.target.Platform = PlatformKind::macOS; 126 break; 127 case LC_VERSION_MIN_IPHONEOS: 128 info.target.Platform = PlatformKind::iOS; 129 break; 130 case LC_VERSION_MIN_TVOS: 131 info.target.Platform = PlatformKind::tvOS; 132 break; 133 case LC_VERSION_MIN_WATCHOS: 134 info.target.Platform = PlatformKind::watchOS; 135 break; 136 } 137 info.minimum = decodeVersion(cmd->version); 138 platformInfos.emplace_back(std::move(info)); 139 } 140 141 return platformInfos; 142 } 143 144 static PlatformKind removeSimulator(PlatformKind platform) { 145 // Mapping of platform to simulator and vice-versa. 146 static const std::map<PlatformKind, PlatformKind> platformMap = { 147 {PlatformKind::iOSSimulator, PlatformKind::iOS}, 148 {PlatformKind::tvOSSimulator, PlatformKind::tvOS}, 149 {PlatformKind::watchOSSimulator, PlatformKind::watchOS}}; 150 151 auto iter = platformMap.find(platform); 152 if (iter == platformMap.end()) 153 return platform; 154 return iter->second; 155 } 156 157 static bool checkCompatibility(const InputFile *input) { 158 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 159 if (platformInfos.empty()) 160 return true; 161 162 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 163 return removeSimulator(info.target.Platform) == 164 removeSimulator(config->platform()); 165 }); 166 if (it == platformInfos.end()) { 167 std::string platformNames; 168 raw_string_ostream os(platformNames); 169 interleave( 170 platformInfos, os, 171 [&](const PlatformInfo &info) { 172 os << getPlatformName(info.target.Platform); 173 }, 174 "/"); 175 error(toString(input) + " has platform " + platformNames + 176 Twine(", which is different from target platform ") + 177 getPlatformName(config->platform())); 178 return false; 179 } 180 181 if (it->minimum <= config->platformInfo.minimum) 182 return true; 183 184 error(toString(input) + " has version " + it->minimum.getAsString() + 185 ", which is newer than target minimum of " + 186 config->platformInfo.minimum.getAsString()); 187 return false; 188 } 189 190 // Open a given file path and return it as a memory-mapped file. 191 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 192 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 193 if (std::error_code ec = mbOrErr.getError()) { 194 error("cannot open " + path + ": " + ec.message()); 195 return None; 196 } 197 198 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 199 MemoryBufferRef mbref = mb->getMemBufferRef(); 200 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 201 202 // If this is a regular non-fat file, return it. 203 const char *buf = mbref.getBufferStart(); 204 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 205 if (mbref.getBufferSize() < sizeof(uint32_t) || 206 read32be(&hdr->magic) != FAT_MAGIC) { 207 if (tar) 208 tar->append(relativeToRoot(path), mbref.getBuffer()); 209 return mbref; 210 } 211 212 // Object files and archive files may be fat files, which contain multiple 213 // real files for different CPU ISAs. Here, we search for a file that matches 214 // with the current link target and returns it as a MemoryBufferRef. 215 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 216 217 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 218 if (reinterpret_cast<const char *>(arch + i + 1) > 219 buf + mbref.getBufferSize()) { 220 error(path + ": fat_arch struct extends beyond end of file"); 221 return None; 222 } 223 224 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 225 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 226 continue; 227 228 uint32_t offset = read32be(&arch[i].offset); 229 uint32_t size = read32be(&arch[i].size); 230 if (offset + size > mbref.getBufferSize()) 231 error(path + ": slice extends beyond end of file"); 232 if (tar) 233 tar->append(relativeToRoot(path), mbref.getBuffer()); 234 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 235 } 236 237 error("unable to find matching architecture in " + path); 238 return None; 239 } 240 241 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 242 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 243 244 template <class Section> 245 void ObjFile::parseSections(ArrayRef<Section> sections) { 246 subsections.reserve(sections.size()); 247 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 248 249 for (const Section &sec : sections) { 250 StringRef name = 251 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 252 StringRef segname = 253 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 254 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 255 : buf + sec.offset, 256 static_cast<size_t>(sec.size)}; 257 if (sec.align >= 32) { 258 error("alignment " + std::to_string(sec.align) + " of section " + name + 259 " is too large"); 260 subsections.push_back({}); 261 continue; 262 } 263 uint32_t align = 1 << sec.align; 264 uint32_t flags = sec.flags; 265 266 if (config->dedupLiterals && 267 (sectionType(sec.flags) == S_CSTRING_LITERALS || 268 isWordLiteralSection(sec.flags))) { 269 if (sec.nreloc) 270 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 271 sec.sectname + 272 ", so LLD cannot deduplicate literals. Try re-running without " 273 "--deduplicate-literals."); 274 275 InputSection *isec; 276 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 277 isec = 278 make<CStringInputSection>(segname, name, this, data, align, flags); 279 // FIXME: parallelize this? 280 cast<CStringInputSection>(isec)->splitIntoPieces(); 281 } else { 282 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 283 flags); 284 } 285 subsections.push_back({{0, isec}}); 286 } else { 287 auto *isec = 288 make<ConcatInputSection>(segname, name, this, data, align, flags); 289 if (!(isDebugSection(isec->flags) && 290 isec->segname == segment_names::dwarf)) { 291 subsections.push_back({{0, isec}}); 292 } else { 293 // Instead of emitting DWARF sections, we emit STABS symbols to the 294 // object files that contain them. We filter them out early to avoid 295 // parsing their relocations unnecessarily. But we must still push an 296 // empty map to ensure the indices line up for the remaining sections. 297 subsections.push_back({}); 298 debugSections.push_back(isec); 299 } 300 } 301 } 302 } 303 304 // Find the subsection corresponding to the greatest section offset that is <= 305 // that of the given offset. 306 // 307 // offset: an offset relative to the start of the original InputSection (before 308 // any subsection splitting has occurred). It will be updated to represent the 309 // same location as an offset relative to the start of the containing 310 // subsection. 311 static InputSection *findContainingSubsection(SubsectionMap &map, 312 uint64_t *offset) { 313 auto it = std::prev(llvm::upper_bound( 314 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 315 return value < subsecEntry.offset; 316 })); 317 *offset -= it->offset; 318 return it->isec; 319 } 320 321 template <class Section> 322 static bool validateRelocationInfo(InputFile *file, const Section &sec, 323 relocation_info rel) { 324 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 325 bool valid = true; 326 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 327 valid = false; 328 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 329 std::to_string(rel.r_address) + " of " + sec.segname + "," + 330 sec.sectname + " in " + toString(file)) 331 .str(); 332 }; 333 334 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 335 error(message("must be extern")); 336 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 337 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 338 "be PC-relative")); 339 if (isThreadLocalVariables(sec.flags) && 340 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 341 error(message("not allowed in thread-local section, must be UNSIGNED")); 342 if (rel.r_length < 2 || rel.r_length > 3 || 343 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 344 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 345 error(message("has width " + std::to_string(1 << rel.r_length) + 346 " bytes, but must be " + 347 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 348 " bytes")); 349 } 350 return valid; 351 } 352 353 template <class Section> 354 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 355 const Section &sec, SubsectionMap &subsecMap) { 356 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 357 ArrayRef<relocation_info> relInfos( 358 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 359 360 for (size_t i = 0; i < relInfos.size(); i++) { 361 // Paired relocations serve as Mach-O's method for attaching a 362 // supplemental datum to a primary relocation record. ELF does not 363 // need them because the *_RELOC_RELA records contain the extra 364 // addend field, vs. *_RELOC_REL which omit the addend. 365 // 366 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 367 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 368 // datum for each is a symbolic address. The result is the offset 369 // between two addresses. 370 // 371 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 372 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 373 // base symbolic address. 374 // 375 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 376 // addend into the instruction stream. On X86, a relocatable address 377 // field always occupies an entire contiguous sequence of byte(s), 378 // so there is no need to merge opcode bits with address 379 // bits. Therefore, it's easy and convenient to store addends in the 380 // instruction-stream bytes that would otherwise contain zeroes. By 381 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 382 // address bits so that bitwise arithmetic is necessary to extract 383 // and insert them. Storing addends in the instruction stream is 384 // possible, but inconvenient and more costly at link time. 385 386 int64_t pairedAddend = 0; 387 relocation_info relInfo = relInfos[i]; 388 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 389 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 390 relInfo = relInfos[++i]; 391 } 392 assert(i < relInfos.size()); 393 if (!validateRelocationInfo(this, sec, relInfo)) 394 continue; 395 if (relInfo.r_address & R_SCATTERED) 396 fatal("TODO: Scattered relocations not supported"); 397 398 bool isSubtrahend = 399 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 400 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 401 assert(!(embeddedAddend && pairedAddend)); 402 int64_t totalAddend = pairedAddend + embeddedAddend; 403 Reloc r; 404 r.type = relInfo.r_type; 405 r.pcrel = relInfo.r_pcrel; 406 r.length = relInfo.r_length; 407 r.offset = relInfo.r_address; 408 if (relInfo.r_extern) { 409 r.referent = symbols[relInfo.r_symbolnum]; 410 r.addend = isSubtrahend ? 0 : totalAddend; 411 } else { 412 assert(!isSubtrahend); 413 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 414 uint64_t referentOffset; 415 if (relInfo.r_pcrel) { 416 // The implicit addend for pcrel section relocations is the pcrel offset 417 // in terms of the addresses in the input file. Here we adjust it so 418 // that it describes the offset from the start of the referent section. 419 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 420 // have pcrel section relocations. We may want to factor this out into 421 // the arch-specific .cpp file. 422 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 423 referentOffset = 424 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 425 } else { 426 // The addend for a non-pcrel relocation is its absolute address. 427 referentOffset = totalAddend - referentSec.addr; 428 } 429 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 430 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 431 r.addend = referentOffset; 432 } 433 434 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 435 subsec->relocs.push_back(r); 436 437 if (isSubtrahend) { 438 relocation_info minuendInfo = relInfos[++i]; 439 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 440 // attached to the same address. 441 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 442 relInfo.r_address == minuendInfo.r_address); 443 Reloc p; 444 p.type = minuendInfo.r_type; 445 if (minuendInfo.r_extern) { 446 p.referent = symbols[minuendInfo.r_symbolnum]; 447 p.addend = totalAddend; 448 } else { 449 uint64_t referentOffset = 450 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 451 SubsectionMap &referentSubsecMap = 452 subsections[minuendInfo.r_symbolnum - 1]; 453 p.referent = 454 findContainingSubsection(referentSubsecMap, &referentOffset); 455 p.addend = referentOffset; 456 } 457 subsec->relocs.push_back(p); 458 } 459 } 460 } 461 462 template <class NList> 463 static macho::Symbol *createDefined(const NList &sym, StringRef name, 464 InputSection *isec, uint64_t value, 465 uint64_t size) { 466 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 467 // N_EXT: Global symbols. These go in the symbol table during the link, 468 // and also in the export table of the output so that the dynamic 469 // linker sees them. 470 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 471 // symbol table during the link so that duplicates are 472 // either reported (for non-weak symbols) or merged 473 // (for weak symbols), but they do not go in the export 474 // table of the output. 475 // N_PEXT: Does not occur in input files in practice, 476 // a private extern must be external. 477 // 0: Translation-unit scoped. These are not in the symbol table during 478 // link, and not in the export table of the output either. 479 480 bool isWeakDefCanBeHidden = 481 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 482 483 if (sym.n_type & (N_EXT | N_PEXT)) { 484 assert((sym.n_type & N_EXT) && "invalid input"); 485 bool isPrivateExtern = sym.n_type & N_PEXT; 486 487 // lld's behavior for merging symbols is slightly different from ld64: 488 // ld64 picks the winning symbol based on several criteria (see 489 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 490 // just merges metadata and keeps the contents of the first symbol 491 // with that name (see SymbolTable::addDefined). For: 492 // * inline function F in a TU built with -fvisibility-inlines-hidden 493 // * and inline function F in another TU built without that flag 494 // ld64 will pick the one from the file built without 495 // -fvisibility-inlines-hidden. 496 // lld will instead pick the one listed first on the link command line and 497 // give it visibility as if the function was built without 498 // -fvisibility-inlines-hidden. 499 // If both functions have the same contents, this will have the same 500 // behavior. If not, it won't, but the input had an ODR violation in 501 // that case. 502 // 503 // Similarly, merging a symbol 504 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 505 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 506 // should produce one 507 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 508 // with ld64's semantics, because it means the non-private-extern 509 // definition will continue to take priority if more private extern 510 // definitions are encountered. With lld's semantics there's no observable 511 // difference between a symbol that's isWeakDefCanBeHidden or one that's 512 // privateExtern -- neither makes it into the dynamic symbol table. So just 513 // promote isWeakDefCanBeHidden to isPrivateExtern here. 514 if (isWeakDefCanBeHidden) 515 isPrivateExtern = true; 516 517 return symtab->addDefined( 518 name, isec->file, isec, value, size, sym.n_desc & N_WEAK_DEF, 519 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 520 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); 521 } 522 523 assert(!isWeakDefCanBeHidden && 524 "weak_def_can_be_hidden on already-hidden symbol?"); 525 return make<Defined>( 526 name, isec->file, isec, value, size, sym.n_desc & N_WEAK_DEF, 527 /*isExternal=*/false, /*isPrivateExtern=*/false, 528 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 529 sym.n_desc & N_NO_DEAD_STRIP); 530 } 531 532 // Absolute symbols are defined symbols that do not have an associated 533 // InputSection. They cannot be weak. 534 template <class NList> 535 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 536 StringRef name) { 537 if (sym.n_type & (N_EXT | N_PEXT)) { 538 assert((sym.n_type & N_EXT) && "invalid input"); 539 return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0, 540 /*isWeakDef=*/false, sym.n_type & N_PEXT, 541 sym.n_desc & N_ARM_THUMB_DEF, 542 /*isReferencedDynamically=*/false, 543 sym.n_desc & N_NO_DEAD_STRIP); 544 } 545 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 546 /*isWeakDef=*/false, 547 /*isExternal=*/false, /*isPrivateExtern=*/false, 548 sym.n_desc & N_ARM_THUMB_DEF, 549 /*isReferencedDynamically=*/false, 550 sym.n_desc & N_NO_DEAD_STRIP); 551 } 552 553 template <class NList> 554 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 555 StringRef name) { 556 uint8_t type = sym.n_type & N_TYPE; 557 switch (type) { 558 case N_UNDF: 559 return sym.n_value == 0 560 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 561 : symtab->addCommon(name, this, sym.n_value, 562 1 << GET_COMM_ALIGN(sym.n_desc), 563 sym.n_type & N_PEXT); 564 case N_ABS: 565 return createAbsolute(sym, this, name); 566 case N_PBUD: 567 case N_INDR: 568 error("TODO: support symbols of type " + std::to_string(type)); 569 return nullptr; 570 case N_SECT: 571 llvm_unreachable( 572 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 573 default: 574 llvm_unreachable("invalid symbol type"); 575 } 576 } 577 578 template <class LP> 579 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 580 ArrayRef<typename LP::nlist> nList, 581 const char *strtab, bool subsectionsViaSymbols) { 582 using NList = typename LP::nlist; 583 584 // Groups indices of the symbols by the sections that contain them. 585 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 586 symbols.resize(nList.size()); 587 for (uint32_t i = 0; i < nList.size(); ++i) { 588 const NList &sym = nList[i]; 589 StringRef name = strtab + sym.n_strx; 590 if ((sym.n_type & N_TYPE) == N_SECT) { 591 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 592 // parseSections() may have chosen not to parse this section. 593 if (subsecMap.empty()) 594 continue; 595 symbolsBySection[sym.n_sect - 1].push_back(i); 596 } else { 597 symbols[i] = parseNonSectionSymbol(sym, name); 598 } 599 } 600 601 // Calculate symbol sizes and create subsections by splitting the sections 602 // along symbol boundaries. 603 for (size_t i = 0; i < subsections.size(); ++i) { 604 SubsectionMap &subsecMap = subsections[i]; 605 if (subsecMap.empty()) 606 continue; 607 608 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 609 llvm::sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 610 return nList[lhs].n_value < nList[rhs].n_value; 611 }); 612 uint64_t sectionAddr = sectionHeaders[i].addr; 613 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 614 615 // We populate subsecMap by repeatedly splitting the last (highest address) 616 // subsection. 617 SubsectionEntry subsecEntry = subsecMap.back(); 618 for (size_t j = 0; j < symbolIndices.size(); ++j) { 619 uint32_t symIndex = symbolIndices[j]; 620 const NList &sym = nList[symIndex]; 621 StringRef name = strtab + sym.n_strx; 622 InputSection *isec = subsecEntry.isec; 623 624 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 625 uint64_t symbolOffset = sym.n_value - subsecAddr; 626 uint64_t symbolSize = 627 j + 1 < symbolIndices.size() 628 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 629 : isec->data.size() - symbolOffset; 630 // There are 4 cases where we do not need to create a new subsection: 631 // 1. If the input file does not use subsections-via-symbols. 632 // 2. Multiple symbols at the same address only induce one subsection. 633 // (The symbolOffset == 0 check covers both this case as well as 634 // the first loop iteration.) 635 // 3. Alternative entry points do not induce new subsections. 636 // 4. If we have a literal section (e.g. __cstring and __literal4). 637 if (!subsectionsViaSymbols || symbolOffset == 0 || 638 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 639 symbols[symIndex] = 640 createDefined(sym, name, isec, symbolOffset, symbolSize); 641 continue; 642 } 643 auto *concatIsec = cast<ConcatInputSection>(isec); 644 645 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 646 nextIsec->data = isec->data.slice(symbolOffset); 647 nextIsec->numRefs = 0; 648 nextIsec->wasCoalesced = false; 649 isec->data = isec->data.slice(0, symbolOffset); 650 651 // By construction, the symbol will be at offset zero in the new 652 // subsection. 653 symbols[symIndex] = 654 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 655 // TODO: ld64 appears to preserve the original alignment as well as each 656 // subsection's offset from the last aligned address. We should consider 657 // emulating that behavior. 658 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 659 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 660 subsecEntry = subsecMap.back(); 661 } 662 } 663 } 664 665 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 666 StringRef sectName) 667 : InputFile(OpaqueKind, mb) { 668 ConcatInputSection *isec = 669 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16)); 670 isec->file = this; 671 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 672 isec->data = {buf, mb.getBufferSize()}; 673 isec->live = true; 674 subsections.push_back({{0, isec}}); 675 } 676 677 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 678 : InputFile(ObjKind, mb), modTime(modTime) { 679 this->archiveName = std::string(archiveName); 680 if (target->wordSize == 8) 681 parse<LP64>(); 682 else 683 parse<ILP32>(); 684 } 685 686 template <class LP> void ObjFile::parse() { 687 using Header = typename LP::mach_header; 688 using SegmentCommand = typename LP::segment_command; 689 using Section = typename LP::section; 690 using NList = typename LP::nlist; 691 692 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 693 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 694 695 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 696 if (arch != config->arch()) { 697 error(toString(this) + " has architecture " + getArchitectureName(arch) + 698 " which is incompatible with target architecture " + 699 getArchitectureName(config->arch())); 700 return; 701 } 702 703 if (!checkCompatibility(this)) 704 return; 705 706 if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { 707 auto *c = reinterpret_cast<const linker_option_command *>(cmd); 708 StringRef data{reinterpret_cast<const char *>(c + 1), 709 c->cmdsize - sizeof(linker_option_command)}; 710 parseLCLinkerOption(this, c->count, data); 711 } 712 713 ArrayRef<Section> sectionHeaders; 714 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 715 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 716 sectionHeaders = 717 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 718 parseSections(sectionHeaders); 719 } 720 721 // TODO: Error on missing LC_SYMTAB? 722 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 723 auto *c = reinterpret_cast<const symtab_command *>(cmd); 724 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 725 c->nsyms); 726 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 727 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 728 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 729 } 730 731 // The relocations may refer to the symbols, so we parse them after we have 732 // parsed all the symbols. 733 for (size_t i = 0, n = subsections.size(); i < n; ++i) 734 if (!subsections[i].empty()) 735 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 736 737 parseDebugInfo(); 738 parseDataInCode(); 739 } 740 741 void ObjFile::parseDebugInfo() { 742 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 743 if (!dObj) 744 return; 745 746 auto *ctx = make<DWARFContext>( 747 std::move(dObj), "", 748 [&](Error err) { 749 warn(toString(this) + ": " + toString(std::move(err))); 750 }, 751 [&](Error warning) { 752 warn(toString(this) + ": " + toString(std::move(warning))); 753 }); 754 755 // TODO: Since object files can contain a lot of DWARF info, we should verify 756 // that we are parsing just the info we need 757 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 758 // FIXME: There can be more than one compile unit per object file. See 759 // PR48637. 760 auto it = units.begin(); 761 compileUnit = it->get(); 762 } 763 764 void ObjFile::parseDataInCode() { 765 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 766 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 767 if (!cmd) 768 return; 769 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 770 dataInCodeEntries = { 771 reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 772 c->datasize / sizeof(data_in_code_entry)}; 773 assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs, 774 const data_in_code_entry &rhs) { 775 return lhs.offset < rhs.offset; 776 })); 777 } 778 779 // The path can point to either a dylib or a .tbd file. 780 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 781 Optional<MemoryBufferRef> mbref = readFile(path); 782 if (!mbref) { 783 error("could not read dylib file at " + path); 784 return nullptr; 785 } 786 return loadDylib(*mbref, umbrella); 787 } 788 789 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 790 // the first document storing child pointers to the rest of them. When we are 791 // processing a given TBD file, we store that top-level document in 792 // currentTopLevelTapi. When processing re-exports, we search its children for 793 // potentially matching documents in the same TBD file. Note that the children 794 // themselves don't point to further documents, i.e. this is a two-level tree. 795 // 796 // Re-exports can either refer to on-disk files, or to documents within .tbd 797 // files. 798 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 799 const InterfaceFile *currentTopLevelTapi) { 800 if (path::is_absolute(path, path::Style::posix)) 801 for (StringRef root : config->systemLibraryRoots) 802 if (Optional<std::string> dylibPath = 803 resolveDylibPath((root + path).str())) 804 return loadDylib(*dylibPath, umbrella); 805 806 // TODO: Handle -dylib_file 807 808 SmallString<128> newPath; 809 if (config->outputType == MH_EXECUTE && 810 path.consume_front("@executable_path/")) { 811 // ld64 allows overriding this with the undocumented flag -executable_path. 812 // lld doesn't currently implement that flag. 813 path::append(newPath, path::parent_path(config->outputFile), path); 814 path = newPath; 815 } else if (path.consume_front("@loader_path/")) { 816 fs::real_path(umbrella->getName(), newPath); 817 path::remove_filename(newPath); 818 path::append(newPath, path); 819 path = newPath; 820 } else if (path.startswith("@rpath/")) { 821 for (StringRef rpath : umbrella->rpaths) { 822 newPath.clear(); 823 if (rpath.consume_front("@loader_path/")) { 824 fs::real_path(umbrella->getName(), newPath); 825 path::remove_filename(newPath); 826 } 827 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 828 if (Optional<std::string> dylibPath = resolveDylibPath(newPath)) 829 return loadDylib(*dylibPath, umbrella); 830 } 831 } 832 833 if (currentTopLevelTapi) { 834 for (InterfaceFile &child : 835 make_pointee_range(currentTopLevelTapi->documents())) { 836 assert(child.documents().empty()); 837 if (path == child.getInstallName()) { 838 auto file = make<DylibFile>(child, umbrella); 839 file->parseReexports(child); 840 return file; 841 } 842 } 843 } 844 845 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 846 return loadDylib(*dylibPath, umbrella); 847 848 return nullptr; 849 } 850 851 // If a re-exported dylib is public (lives in /usr/lib or 852 // /System/Library/Frameworks), then it is considered implicitly linked: we 853 // should bind to its symbols directly instead of via the re-exporting umbrella 854 // library. 855 static bool isImplicitlyLinked(StringRef path) { 856 if (!config->implicitDylibs) 857 return false; 858 859 if (path::parent_path(path) == "/usr/lib") 860 return true; 861 862 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 863 if (path.consume_front("/System/Library/Frameworks/")) { 864 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 865 return path::filename(path) == frameworkName; 866 } 867 868 return false; 869 } 870 871 static void loadReexport(StringRef path, DylibFile *umbrella, 872 const InterfaceFile *currentTopLevelTapi) { 873 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 874 if (!reexport) 875 error("unable to locate re-export with install name " + path); 876 } 877 878 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 879 bool isBundleLoader) 880 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 881 isBundleLoader(isBundleLoader) { 882 assert(!isBundleLoader || !umbrella); 883 if (umbrella == nullptr) 884 umbrella = this; 885 this->umbrella = umbrella; 886 887 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 888 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 889 890 // Initialize installName. 891 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 892 auto *c = reinterpret_cast<const dylib_command *>(cmd); 893 currentVersion = read32le(&c->dylib.current_version); 894 compatibilityVersion = read32le(&c->dylib.compatibility_version); 895 installName = 896 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 897 } else if (!isBundleLoader) { 898 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 899 // so it's OK. 900 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 901 return; 902 } 903 904 if (config->printEachFile) 905 message(toString(this)); 906 inputFiles.insert(this); 907 908 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 909 910 if (!checkCompatibility(this)) 911 return; 912 913 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 914 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 915 rpaths.push_back(rpath); 916 } 917 918 // Initialize symbols. 919 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 920 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 921 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 922 parseTrie(buf + c->export_off, c->export_size, 923 [&](const Twine &name, uint64_t flags) { 924 StringRef savedName = saver.save(name); 925 if (handleLDSymbol(savedName)) 926 return; 927 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 928 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 929 symbols.push_back(symtab->addDylib(savedName, exportingFile, 930 isWeakDef, isTlv)); 931 }); 932 } else { 933 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 934 return; 935 } 936 } 937 938 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 939 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 940 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 941 target->headerSize; 942 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 943 auto *cmd = reinterpret_cast<const load_command *>(p); 944 p += cmd->cmdsize; 945 946 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 947 cmd->cmd == LC_REEXPORT_DYLIB) { 948 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 949 StringRef reexportPath = 950 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 951 loadReexport(reexportPath, exportingFile, nullptr); 952 } 953 954 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 955 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 956 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 957 if (config->namespaceKind == NamespaceKind::flat && 958 cmd->cmd == LC_LOAD_DYLIB) { 959 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 960 StringRef dylibPath = 961 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 962 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 963 if (!dylib) 964 error(Twine("unable to locate library '") + dylibPath + 965 "' loaded from '" + toString(this) + "' for -flat_namespace"); 966 } 967 } 968 } 969 970 // Some versions of XCode ship with .tbd files that don't have the right 971 // platform settings. 972 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 973 "/usr/lib/system/libsystem_kernel.dylib", 974 "/usr/lib/system/libsystem_platform.dylib", 975 "/usr/lib/system/libsystem_pthread.dylib"}; 976 977 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 978 bool isBundleLoader) 979 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 980 isBundleLoader(isBundleLoader) { 981 // FIXME: Add test for the missing TBD code path. 982 983 if (umbrella == nullptr) 984 umbrella = this; 985 this->umbrella = umbrella; 986 987 installName = saver.save(interface.getInstallName()); 988 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 989 currentVersion = interface.getCurrentVersion().rawValue(); 990 991 if (config->printEachFile) 992 message(toString(this)); 993 inputFiles.insert(this); 994 995 if (!is_contained(skipPlatformChecks, installName) && 996 !is_contained(interface.targets(), config->platformInfo.target)) { 997 error(toString(this) + " is incompatible with " + 998 std::string(config->platformInfo.target)); 999 return; 1000 } 1001 1002 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1003 auto addSymbol = [&](const Twine &name) -> void { 1004 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 1005 /*isWeakDef=*/false, 1006 /*isTlv=*/false)); 1007 }; 1008 // TODO(compnerd) filter out symbols based on the target platform 1009 // TODO: handle weak defs, thread locals 1010 for (const auto *symbol : interface.symbols()) { 1011 if (!symbol->getArchitectures().has(config->arch())) 1012 continue; 1013 1014 if (handleLDSymbol(symbol->getName())) 1015 continue; 1016 1017 switch (symbol->getKind()) { 1018 case SymbolKind::GlobalSymbol: 1019 addSymbol(symbol->getName()); 1020 break; 1021 case SymbolKind::ObjectiveCClass: 1022 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1023 // want to emulate that. 1024 addSymbol(objc::klass + symbol->getName()); 1025 addSymbol(objc::metaclass + symbol->getName()); 1026 break; 1027 case SymbolKind::ObjectiveCClassEHType: 1028 addSymbol(objc::ehtype + symbol->getName()); 1029 break; 1030 case SymbolKind::ObjectiveCInstanceVariable: 1031 addSymbol(objc::ivar + symbol->getName()); 1032 break; 1033 } 1034 } 1035 } 1036 1037 void DylibFile::parseReexports(const InterfaceFile &interface) { 1038 const InterfaceFile *topLevel = 1039 interface.getParent() == nullptr ? &interface : interface.getParent(); 1040 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 1041 InterfaceFile::const_target_range targets = intfRef.targets(); 1042 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1043 is_contained(targets, config->platformInfo.target)) 1044 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1045 } 1046 } 1047 1048 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1049 // name, compatibility version or hide/add symbols) for specific target 1050 // versions. 1051 bool DylibFile::handleLDSymbol(StringRef originalName) { 1052 if (!originalName.startswith("$ld$")) 1053 return false; 1054 1055 StringRef action; 1056 StringRef name; 1057 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1058 if (action == "previous") 1059 handleLDPreviousSymbol(name, originalName); 1060 else if (action == "install_name") 1061 handleLDInstallNameSymbol(name, originalName); 1062 return true; 1063 } 1064 1065 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1066 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1067 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1068 StringRef installName; 1069 StringRef compatVersion; 1070 StringRef platformStr; 1071 StringRef startVersion; 1072 StringRef endVersion; 1073 StringRef symbolName; 1074 StringRef rest; 1075 1076 std::tie(installName, name) = name.split('$'); 1077 std::tie(compatVersion, name) = name.split('$'); 1078 std::tie(platformStr, name) = name.split('$'); 1079 std::tie(startVersion, name) = name.split('$'); 1080 std::tie(endVersion, name) = name.split('$'); 1081 std::tie(symbolName, rest) = name.split('$'); 1082 // TODO: ld64 contains some logic for non-empty symbolName as well. 1083 if (!symbolName.empty()) 1084 return; 1085 unsigned platform; 1086 if (platformStr.getAsInteger(10, platform) || 1087 platform != static_cast<unsigned>(config->platform())) 1088 return; 1089 1090 VersionTuple start; 1091 if (start.tryParse(startVersion)) { 1092 warn("failed to parse start version, symbol '" + originalName + 1093 "' ignored"); 1094 return; 1095 } 1096 VersionTuple end; 1097 if (end.tryParse(endVersion)) { 1098 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1099 return; 1100 } 1101 if (config->platformInfo.minimum < start || 1102 config->platformInfo.minimum >= end) 1103 return; 1104 1105 this->installName = saver.save(installName); 1106 1107 if (!compatVersion.empty()) { 1108 VersionTuple cVersion; 1109 if (cVersion.tryParse(compatVersion)) { 1110 warn("failed to parse compatibility version, symbol '" + originalName + 1111 "' ignored"); 1112 return; 1113 } 1114 compatibilityVersion = encodeVersion(cVersion); 1115 } 1116 } 1117 1118 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1119 StringRef originalName) { 1120 // originalName: $ld$ install_name $ os<version> $ install_name 1121 StringRef condition, installName; 1122 std::tie(condition, installName) = name.split('$'); 1123 VersionTuple version; 1124 if (!condition.consume_front("os") || version.tryParse(condition)) 1125 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1126 else if (version == config->platformInfo.minimum) 1127 this->installName = saver.save(installName); 1128 } 1129 1130 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1131 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 1132 for (const object::Archive::Symbol &sym : file->symbols()) 1133 symtab->addLazy(sym.getName(), this, sym); 1134 } 1135 1136 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1137 object::Archive::Child c = 1138 CHECK(sym.getMember(), toString(this) + 1139 ": could not get the member for symbol " + 1140 toMachOString(sym)); 1141 1142 if (!seen.insert(c.getChildOffset()).second) 1143 return; 1144 1145 MemoryBufferRef mb = 1146 CHECK(c.getMemoryBufferRef(), 1147 toString(this) + 1148 ": could not get the buffer for the member defining symbol " + 1149 toMachOString(sym)); 1150 1151 if (tar && c.getParent()->isThin()) 1152 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1153 1154 uint32_t modTime = toTimeT( 1155 CHECK(c.getLastModified(), toString(this) + 1156 ": could not get the modification time " 1157 "for the member defining symbol " + 1158 toMachOString(sym))); 1159 1160 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1161 // and become invalid after that call. Copy it to the stack so we can refer 1162 // to it later. 1163 const object::Archive::Symbol symCopy = sym; 1164 1165 if (Optional<InputFile *> file = 1166 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 1167 inputFiles.insert(*file); 1168 // ld64 doesn't demangle sym here even with -demangle. 1169 // Match that: intentionally don't call toMachOString(). 1170 printArchiveMemberLoad(symCopy.getName(), *file); 1171 } 1172 } 1173 1174 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1175 BitcodeFile &file) { 1176 StringRef name = saver.save(objSym.getName()); 1177 1178 // TODO: support weak references 1179 if (objSym.isUndefined()) 1180 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1181 1182 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 1183 1184 // TODO: Write a test demonstrating why computing isPrivateExtern before 1185 // LTO compilation is important. 1186 bool isPrivateExtern = false; 1187 switch (objSym.getVisibility()) { 1188 case GlobalValue::HiddenVisibility: 1189 isPrivateExtern = true; 1190 break; 1191 case GlobalValue::ProtectedVisibility: 1192 error(name + " has protected visibility, which is not supported by Mach-O"); 1193 break; 1194 case GlobalValue::DefaultVisibility: 1195 break; 1196 } 1197 1198 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1199 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1200 /*isThumb=*/false, 1201 /*isReferencedDynamically=*/false, 1202 /*noDeadStrip=*/false); 1203 } 1204 1205 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 1206 : InputFile(BitcodeKind, mbref) { 1207 obj = check(lto::InputFile::create(mbref)); 1208 1209 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1210 // "winning" symbol will then be marked as Prevailing at LTO compilation 1211 // time. 1212 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1213 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1214 } 1215 1216 template void ObjFile::parse<LP64>(); 1217