1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/DWARF.h" 60 #include "lld/Common/ErrorHandler.h" 61 #include "lld/Common/Memory.h" 62 #include "lld/Common/Reproduce.h" 63 #include "llvm/ADT/iterator.h" 64 #include "llvm/BinaryFormat/MachO.h" 65 #include "llvm/LTO/LTO.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/TextAPI/Architecture.h" 71 #include "llvm/TextAPI/InterfaceFile.h" 72 73 using namespace llvm; 74 using namespace llvm::MachO; 75 using namespace llvm::support::endian; 76 using namespace llvm::sys; 77 using namespace lld; 78 using namespace lld::macho; 79 80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 81 std::string lld::toString(const InputFile *f) { 82 if (!f) 83 return "<internal>"; 84 85 // Multiple dylibs can be defined in one .tbd file. 86 if (auto dylibFile = dyn_cast<DylibFile>(f)) 87 if (f->getName().endswith(".tbd")) 88 return (f->getName() + "(" + dylibFile->installName + ")").str(); 89 90 if (f->archiveName.empty()) 91 return std::string(f->getName()); 92 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 93 } 94 95 SetVector<InputFile *> macho::inputFiles; 96 std::unique_ptr<TarWriter> macho::tar; 97 int InputFile::idCount = 0; 98 99 static VersionTuple decodeVersion(uint32_t version) { 100 unsigned major = version >> 16; 101 unsigned minor = (version >> 8) & 0xffu; 102 unsigned subMinor = version & 0xffu; 103 return VersionTuple(major, minor, subMinor); 104 } 105 106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 107 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 108 return {}; 109 110 const char *hdr = input->mb.getBufferStart(); 111 112 std::vector<PlatformInfo> platformInfos; 113 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 114 PlatformInfo info; 115 info.target.Platform = static_cast<PlatformKind>(cmd->platform); 116 info.minimum = decodeVersion(cmd->minos); 117 platformInfos.emplace_back(std::move(info)); 118 } 119 for (auto *cmd : findCommands<version_min_command>( 120 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 121 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 122 PlatformInfo info; 123 switch (cmd->cmd) { 124 case LC_VERSION_MIN_MACOSX: 125 info.target.Platform = PlatformKind::macOS; 126 break; 127 case LC_VERSION_MIN_IPHONEOS: 128 info.target.Platform = PlatformKind::iOS; 129 break; 130 case LC_VERSION_MIN_TVOS: 131 info.target.Platform = PlatformKind::tvOS; 132 break; 133 case LC_VERSION_MIN_WATCHOS: 134 info.target.Platform = PlatformKind::watchOS; 135 break; 136 } 137 info.minimum = decodeVersion(cmd->version); 138 platformInfos.emplace_back(std::move(info)); 139 } 140 141 return platformInfos; 142 } 143 144 static PlatformKind removeSimulator(PlatformKind platform) { 145 // Mapping of platform to simulator and vice-versa. 146 static const std::map<PlatformKind, PlatformKind> platformMap = { 147 {PlatformKind::iOSSimulator, PlatformKind::iOS}, 148 {PlatformKind::tvOSSimulator, PlatformKind::tvOS}, 149 {PlatformKind::watchOSSimulator, PlatformKind::watchOS}}; 150 151 auto iter = platformMap.find(platform); 152 if (iter == platformMap.end()) 153 return platform; 154 return iter->second; 155 } 156 157 static bool checkCompatibility(const InputFile *input) { 158 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 159 if (platformInfos.empty()) 160 return true; 161 162 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 163 return removeSimulator(info.target.Platform) == 164 removeSimulator(config->platform()); 165 }); 166 if (it == platformInfos.end()) { 167 std::string platformNames; 168 raw_string_ostream os(platformNames); 169 interleave( 170 platformInfos, os, 171 [&](const PlatformInfo &info) { 172 os << getPlatformName(info.target.Platform); 173 }, 174 "/"); 175 error(toString(input) + " has platform " + platformNames + 176 Twine(", which is different from target platform ") + 177 getPlatformName(config->platform())); 178 return false; 179 } 180 181 if (it->minimum > config->platformInfo.minimum) 182 warn(toString(input) + " has version " + it->minimum.getAsString() + 183 ", which is newer than target minimum of " + 184 config->platformInfo.minimum.getAsString()); 185 186 return true; 187 } 188 189 // Open a given file path and return it as a memory-mapped file. 190 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 191 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 192 if (std::error_code ec = mbOrErr.getError()) { 193 error("cannot open " + path + ": " + ec.message()); 194 return None; 195 } 196 197 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 198 MemoryBufferRef mbref = mb->getMemBufferRef(); 199 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 200 201 // If this is a regular non-fat file, return it. 202 const char *buf = mbref.getBufferStart(); 203 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 204 if (mbref.getBufferSize() < sizeof(uint32_t) || 205 read32be(&hdr->magic) != FAT_MAGIC) { 206 if (tar) 207 tar->append(relativeToRoot(path), mbref.getBuffer()); 208 return mbref; 209 } 210 211 // Object files and archive files may be fat files, which contain multiple 212 // real files for different CPU ISAs. Here, we search for a file that matches 213 // with the current link target and returns it as a MemoryBufferRef. 214 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 215 216 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 217 if (reinterpret_cast<const char *>(arch + i + 1) > 218 buf + mbref.getBufferSize()) { 219 error(path + ": fat_arch struct extends beyond end of file"); 220 return None; 221 } 222 223 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 224 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 225 continue; 226 227 uint32_t offset = read32be(&arch[i].offset); 228 uint32_t size = read32be(&arch[i].size); 229 if (offset + size > mbref.getBufferSize()) 230 error(path + ": slice extends beyond end of file"); 231 if (tar) 232 tar->append(relativeToRoot(path), mbref.getBuffer()); 233 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 234 } 235 236 error("unable to find matching architecture in " + path); 237 return None; 238 } 239 240 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 241 : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {} 242 243 template <class Section> 244 void ObjFile::parseSections(ArrayRef<Section> sections) { 245 subsections.reserve(sections.size()); 246 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 247 248 for (const Section &sec : sections) { 249 StringRef name = 250 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 251 StringRef segname = 252 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 253 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 254 : buf + sec.offset, 255 static_cast<size_t>(sec.size)}; 256 if (sec.align >= 32) { 257 error("alignment " + std::to_string(sec.align) + " of section " + name + 258 " is too large"); 259 subsections.push_back({}); 260 continue; 261 } 262 uint32_t align = 1 << sec.align; 263 uint32_t flags = sec.flags; 264 265 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 266 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 267 if (sec.nreloc && config->dedupLiterals) 268 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 269 sec.sectname + 270 ", so LLD cannot deduplicate literals. Try re-running without " 271 "--deduplicate-literals."); 272 273 InputSection *isec; 274 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 275 isec = 276 make<CStringInputSection>(segname, name, this, data, align, flags); 277 // FIXME: parallelize this? 278 cast<CStringInputSection>(isec)->splitIntoPieces(); 279 } else { 280 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 281 flags); 282 } 283 subsections.push_back({{0, isec}}); 284 } else if (config->icfLevel != ICFLevel::none && 285 (name == section_names::cfString && 286 segname == segment_names::data)) { 287 uint64_t literalSize = target->wordSize == 8 ? 32 : 16; 288 subsections.push_back({}); 289 SubsectionMap &subsecMap = subsections.back(); 290 for (uint64_t off = 0; off < data.size(); off += literalSize) 291 subsecMap.push_back( 292 {off, make<ConcatInputSection>(segname, name, this, 293 data.slice(off, literalSize), align, 294 flags)}); 295 } else { 296 auto *isec = 297 make<ConcatInputSection>(segname, name, this, data, align, flags); 298 if (!(isDebugSection(isec->getFlags()) && 299 isec->getSegName() == segment_names::dwarf)) { 300 subsections.push_back({{0, isec}}); 301 } else { 302 // Instead of emitting DWARF sections, we emit STABS symbols to the 303 // object files that contain them. We filter them out early to avoid 304 // parsing their relocations unnecessarily. But we must still push an 305 // empty map to ensure the indices line up for the remaining sections. 306 subsections.push_back({}); 307 debugSections.push_back(isec); 308 } 309 } 310 } 311 } 312 313 // Find the subsection corresponding to the greatest section offset that is <= 314 // that of the given offset. 315 // 316 // offset: an offset relative to the start of the original InputSection (before 317 // any subsection splitting has occurred). It will be updated to represent the 318 // same location as an offset relative to the start of the containing 319 // subsection. 320 static InputSection *findContainingSubsection(SubsectionMap &map, 321 uint64_t *offset) { 322 auto it = std::prev(llvm::upper_bound( 323 map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) { 324 return value < subsecEntry.offset; 325 })); 326 *offset -= it->offset; 327 return it->isec; 328 } 329 330 template <class Section> 331 static bool validateRelocationInfo(InputFile *file, const Section &sec, 332 relocation_info rel) { 333 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 334 bool valid = true; 335 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 336 valid = false; 337 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 338 std::to_string(rel.r_address) + " of " + sec.segname + "," + 339 sec.sectname + " in " + toString(file)) 340 .str(); 341 }; 342 343 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 344 error(message("must be extern")); 345 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 346 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 347 "be PC-relative")); 348 if (isThreadLocalVariables(sec.flags) && 349 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 350 error(message("not allowed in thread-local section, must be UNSIGNED")); 351 if (rel.r_length < 2 || rel.r_length > 3 || 352 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 353 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 354 error(message("has width " + std::to_string(1 << rel.r_length) + 355 " bytes, but must be " + 356 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 357 " bytes")); 358 } 359 return valid; 360 } 361 362 template <class Section> 363 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders, 364 const Section &sec, SubsectionMap &subsecMap) { 365 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 366 ArrayRef<relocation_info> relInfos( 367 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 368 369 for (size_t i = 0; i < relInfos.size(); i++) { 370 // Paired relocations serve as Mach-O's method for attaching a 371 // supplemental datum to a primary relocation record. ELF does not 372 // need them because the *_RELOC_RELA records contain the extra 373 // addend field, vs. *_RELOC_REL which omit the addend. 374 // 375 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 376 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 377 // datum for each is a symbolic address. The result is the offset 378 // between two addresses. 379 // 380 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 381 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 382 // base symbolic address. 383 // 384 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 385 // addend into the instruction stream. On X86, a relocatable address 386 // field always occupies an entire contiguous sequence of byte(s), 387 // so there is no need to merge opcode bits with address 388 // bits. Therefore, it's easy and convenient to store addends in the 389 // instruction-stream bytes that would otherwise contain zeroes. By 390 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 391 // address bits so that bitwise arithmetic is necessary to extract 392 // and insert them. Storing addends in the instruction stream is 393 // possible, but inconvenient and more costly at link time. 394 395 int64_t pairedAddend = 0; 396 relocation_info relInfo = relInfos[i]; 397 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 398 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 399 relInfo = relInfos[++i]; 400 } 401 assert(i < relInfos.size()); 402 if (!validateRelocationInfo(this, sec, relInfo)) 403 continue; 404 if (relInfo.r_address & R_SCATTERED) 405 fatal("TODO: Scattered relocations not supported"); 406 407 bool isSubtrahend = 408 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 409 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 410 assert(!(embeddedAddend && pairedAddend)); 411 int64_t totalAddend = pairedAddend + embeddedAddend; 412 Reloc r; 413 r.type = relInfo.r_type; 414 r.pcrel = relInfo.r_pcrel; 415 r.length = relInfo.r_length; 416 r.offset = relInfo.r_address; 417 if (relInfo.r_extern) { 418 r.referent = symbols[relInfo.r_symbolnum]; 419 r.addend = isSubtrahend ? 0 : totalAddend; 420 } else { 421 assert(!isSubtrahend); 422 const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 423 uint64_t referentOffset; 424 if (relInfo.r_pcrel) { 425 // The implicit addend for pcrel section relocations is the pcrel offset 426 // in terms of the addresses in the input file. Here we adjust it so 427 // that it describes the offset from the start of the referent section. 428 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 429 // have pcrel section relocations. We may want to factor this out into 430 // the arch-specific .cpp file. 431 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 432 referentOffset = 433 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 434 } else { 435 // The addend for a non-pcrel relocation is its absolute address. 436 referentOffset = totalAddend - referentSec.addr; 437 } 438 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 439 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 440 r.addend = referentOffset; 441 } 442 443 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 444 subsec->relocs.push_back(r); 445 446 if (isSubtrahend) { 447 relocation_info minuendInfo = relInfos[++i]; 448 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 449 // attached to the same address. 450 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 451 relInfo.r_address == minuendInfo.r_address); 452 Reloc p; 453 p.type = minuendInfo.r_type; 454 if (minuendInfo.r_extern) { 455 p.referent = symbols[minuendInfo.r_symbolnum]; 456 p.addend = totalAddend; 457 } else { 458 uint64_t referentOffset = 459 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 460 SubsectionMap &referentSubsecMap = 461 subsections[minuendInfo.r_symbolnum - 1]; 462 p.referent = 463 findContainingSubsection(referentSubsecMap, &referentOffset); 464 p.addend = referentOffset; 465 } 466 subsec->relocs.push_back(p); 467 } 468 } 469 } 470 471 template <class NList> 472 static macho::Symbol *createDefined(const NList &sym, StringRef name, 473 InputSection *isec, uint64_t value, 474 uint64_t size) { 475 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 476 // N_EXT: Global symbols. These go in the symbol table during the link, 477 // and also in the export table of the output so that the dynamic 478 // linker sees them. 479 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 480 // symbol table during the link so that duplicates are 481 // either reported (for non-weak symbols) or merged 482 // (for weak symbols), but they do not go in the export 483 // table of the output. 484 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 485 // object files) may produce them. LLD does not yet support -r. 486 // These are translation-unit scoped, identical to the `0` case. 487 // 0: Translation-unit scoped. These are not in the symbol table during 488 // link, and not in the export table of the output either. 489 bool isWeakDefCanBeHidden = 490 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 491 492 if (sym.n_type & N_EXT) { 493 bool isPrivateExtern = sym.n_type & N_PEXT; 494 // lld's behavior for merging symbols is slightly different from ld64: 495 // ld64 picks the winning symbol based on several criteria (see 496 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 497 // just merges metadata and keeps the contents of the first symbol 498 // with that name (see SymbolTable::addDefined). For: 499 // * inline function F in a TU built with -fvisibility-inlines-hidden 500 // * and inline function F in another TU built without that flag 501 // ld64 will pick the one from the file built without 502 // -fvisibility-inlines-hidden. 503 // lld will instead pick the one listed first on the link command line and 504 // give it visibility as if the function was built without 505 // -fvisibility-inlines-hidden. 506 // If both functions have the same contents, this will have the same 507 // behavior. If not, it won't, but the input had an ODR violation in 508 // that case. 509 // 510 // Similarly, merging a symbol 511 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 512 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 513 // should produce one 514 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 515 // with ld64's semantics, because it means the non-private-extern 516 // definition will continue to take priority if more private extern 517 // definitions are encountered. With lld's semantics there's no observable 518 // difference between a symbol that's isWeakDefCanBeHidden or one that's 519 // privateExtern -- neither makes it into the dynamic symbol table. So just 520 // promote isWeakDefCanBeHidden to isPrivateExtern here. 521 if (isWeakDefCanBeHidden) 522 isPrivateExtern = true; 523 524 return symtab->addDefined( 525 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 526 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 527 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); 528 } 529 530 assert(!isWeakDefCanBeHidden && 531 "weak_def_can_be_hidden on already-hidden symbol?"); 532 return make<Defined>( 533 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 534 /*isExternal=*/false, /*isPrivateExtern=*/false, 535 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 536 sym.n_desc & N_NO_DEAD_STRIP); 537 } 538 539 // Absolute symbols are defined symbols that do not have an associated 540 // InputSection. They cannot be weak. 541 template <class NList> 542 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 543 StringRef name) { 544 if (sym.n_type & N_EXT) { 545 return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0, 546 /*isWeakDef=*/false, sym.n_type & N_PEXT, 547 sym.n_desc & N_ARM_THUMB_DEF, 548 /*isReferencedDynamically=*/false, 549 sym.n_desc & N_NO_DEAD_STRIP); 550 } 551 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 552 /*isWeakDef=*/false, 553 /*isExternal=*/false, /*isPrivateExtern=*/false, 554 sym.n_desc & N_ARM_THUMB_DEF, 555 /*isReferencedDynamically=*/false, 556 sym.n_desc & N_NO_DEAD_STRIP); 557 } 558 559 template <class NList> 560 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 561 StringRef name) { 562 uint8_t type = sym.n_type & N_TYPE; 563 switch (type) { 564 case N_UNDF: 565 return sym.n_value == 0 566 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 567 : symtab->addCommon(name, this, sym.n_value, 568 1 << GET_COMM_ALIGN(sym.n_desc), 569 sym.n_type & N_PEXT); 570 case N_ABS: 571 return createAbsolute(sym, this, name); 572 case N_PBUD: 573 case N_INDR: 574 error("TODO: support symbols of type " + std::to_string(type)); 575 return nullptr; 576 case N_SECT: 577 llvm_unreachable( 578 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 579 default: 580 llvm_unreachable("invalid symbol type"); 581 } 582 } 583 584 template <class LP> 585 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 586 ArrayRef<typename LP::nlist> nList, 587 const char *strtab, bool subsectionsViaSymbols) { 588 using NList = typename LP::nlist; 589 590 // Groups indices of the symbols by the sections that contain them. 591 std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size()); 592 symbols.resize(nList.size()); 593 for (uint32_t i = 0; i < nList.size(); ++i) { 594 const NList &sym = nList[i]; 595 StringRef name = strtab + sym.n_strx; 596 if ((sym.n_type & N_TYPE) == N_SECT) { 597 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 598 // parseSections() may have chosen not to parse this section. 599 if (subsecMap.empty()) 600 continue; 601 symbolsBySection[sym.n_sect - 1].push_back(i); 602 } else { 603 symbols[i] = parseNonSectionSymbol(sym, name); 604 } 605 } 606 607 for (size_t i = 0; i < subsections.size(); ++i) { 608 SubsectionMap &subsecMap = subsections[i]; 609 if (subsecMap.empty()) 610 continue; 611 612 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 613 uint64_t sectionAddr = sectionHeaders[i].addr; 614 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 615 616 InputSection *isec = subsecMap.back().isec; 617 // __cfstring has already been split into subsections during 618 // parseSections(), so we simply need to match Symbols to the corresponding 619 // subsection here. 620 if (config->icfLevel != ICFLevel::none && isCfStringSection(isec)) { 621 for (size_t j = 0; j < symbolIndices.size(); ++j) { 622 uint32_t symIndex = symbolIndices[j]; 623 const NList &sym = nList[symIndex]; 624 StringRef name = strtab + sym.n_strx; 625 uint64_t symbolOffset = sym.n_value - sectionAddr; 626 InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset); 627 if (symbolOffset != 0) { 628 error(toString(this) + ": __cfstring contains symbol " + name + 629 " at misaligned offset"); 630 continue; 631 } 632 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 633 } 634 continue; 635 } 636 637 // Calculate symbol sizes and create subsections by splitting the sections 638 // along symbol boundaries. 639 // We populate subsecMap by repeatedly splitting the last (highest address) 640 // subsection. 641 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 642 return nList[lhs].n_value < nList[rhs].n_value; 643 }); 644 SubsectionEntry subsecEntry = subsecMap.back(); 645 for (size_t j = 0; j < symbolIndices.size(); ++j) { 646 uint32_t symIndex = symbolIndices[j]; 647 const NList &sym = nList[symIndex]; 648 StringRef name = strtab + sym.n_strx; 649 InputSection *isec = subsecEntry.isec; 650 651 uint64_t subsecAddr = sectionAddr + subsecEntry.offset; 652 size_t symbolOffset = sym.n_value - subsecAddr; 653 uint64_t symbolSize = 654 j + 1 < symbolIndices.size() 655 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 656 : isec->data.size() - symbolOffset; 657 // There are 4 cases where we do not need to create a new subsection: 658 // 1. If the input file does not use subsections-via-symbols. 659 // 2. Multiple symbols at the same address only induce one subsection. 660 // (The symbolOffset == 0 check covers both this case as well as 661 // the first loop iteration.) 662 // 3. Alternative entry points do not induce new subsections. 663 // 4. If we have a literal section (e.g. __cstring and __literal4). 664 if (!subsectionsViaSymbols || symbolOffset == 0 || 665 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 666 symbols[symIndex] = 667 createDefined(sym, name, isec, symbolOffset, symbolSize); 668 continue; 669 } 670 auto *concatIsec = cast<ConcatInputSection>(isec); 671 672 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 673 nextIsec->numRefs = 0; 674 nextIsec->wasCoalesced = false; 675 if (isZeroFill(isec->getFlags())) { 676 // Zero-fill sections have NULL data.data() non-zero data.size() 677 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 678 isec->data = {nullptr, symbolOffset}; 679 } else { 680 nextIsec->data = isec->data.slice(symbolOffset); 681 isec->data = isec->data.slice(0, symbolOffset); 682 } 683 684 // By construction, the symbol will be at offset zero in the new 685 // subsection. 686 symbols[symIndex] = 687 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 688 // TODO: ld64 appears to preserve the original alignment as well as each 689 // subsection's offset from the last aligned address. We should consider 690 // emulating that behavior. 691 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 692 subsecMap.push_back({sym.n_value - sectionAddr, nextIsec}); 693 subsecEntry = subsecMap.back(); 694 } 695 } 696 } 697 698 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 699 StringRef sectName) 700 : InputFile(OpaqueKind, mb) { 701 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 702 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 703 ConcatInputSection *isec = 704 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16), 705 /*file=*/this, data); 706 isec->live = true; 707 subsections.push_back({{0, isec}}); 708 } 709 710 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 711 : InputFile(ObjKind, mb), modTime(modTime) { 712 this->archiveName = std::string(archiveName); 713 if (target->wordSize == 8) 714 parse<LP64>(); 715 else 716 parse<ILP32>(); 717 } 718 719 template <class LP> void ObjFile::parse() { 720 using Header = typename LP::mach_header; 721 using SegmentCommand = typename LP::segment_command; 722 using Section = typename LP::section; 723 using NList = typename LP::nlist; 724 725 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 726 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 727 728 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 729 if (arch != config->arch()) { 730 error(toString(this) + " has architecture " + getArchitectureName(arch) + 731 " which is incompatible with target architecture " + 732 getArchitectureName(config->arch())); 733 return; 734 } 735 736 if (!checkCompatibility(this)) 737 return; 738 739 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 740 StringRef data{reinterpret_cast<const char *>(cmd + 1), 741 cmd->cmdsize - sizeof(linker_option_command)}; 742 parseLCLinkerOption(this, cmd->count, data); 743 } 744 745 ArrayRef<Section> sectionHeaders; 746 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 747 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 748 sectionHeaders = 749 ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects}; 750 parseSections(sectionHeaders); 751 } 752 753 // TODO: Error on missing LC_SYMTAB? 754 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 755 auto *c = reinterpret_cast<const symtab_command *>(cmd); 756 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 757 c->nsyms); 758 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 759 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 760 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 761 } 762 763 // The relocations may refer to the symbols, so we parse them after we have 764 // parsed all the symbols. 765 for (size_t i = 0, n = subsections.size(); i < n; ++i) 766 if (!subsections[i].empty()) 767 parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]); 768 769 parseDebugInfo(); 770 if (config->emitDataInCodeInfo) 771 parseDataInCode(); 772 } 773 774 void ObjFile::parseDebugInfo() { 775 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 776 if (!dObj) 777 return; 778 779 auto *ctx = make<DWARFContext>( 780 std::move(dObj), "", 781 [&](Error err) { 782 warn(toString(this) + ": " + toString(std::move(err))); 783 }, 784 [&](Error warning) { 785 warn(toString(this) + ": " + toString(std::move(warning))); 786 }); 787 788 // TODO: Since object files can contain a lot of DWARF info, we should verify 789 // that we are parsing just the info we need 790 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 791 // FIXME: There can be more than one compile unit per object file. See 792 // PR48637. 793 auto it = units.begin(); 794 compileUnit = it->get(); 795 } 796 797 void ObjFile::parseDataInCode() { 798 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 799 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 800 if (!cmd) 801 return; 802 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 803 dataInCodeEntries = { 804 reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 805 c->datasize / sizeof(data_in_code_entry)}; 806 assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs, 807 const data_in_code_entry &rhs) { 808 return lhs.offset < rhs.offset; 809 })); 810 } 811 812 // The path can point to either a dylib or a .tbd file. 813 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 814 Optional<MemoryBufferRef> mbref = readFile(path); 815 if (!mbref) { 816 error("could not read dylib file at " + path); 817 return nullptr; 818 } 819 return loadDylib(*mbref, umbrella); 820 } 821 822 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 823 // the first document storing child pointers to the rest of them. When we are 824 // processing a given TBD file, we store that top-level document in 825 // currentTopLevelTapi. When processing re-exports, we search its children for 826 // potentially matching documents in the same TBD file. Note that the children 827 // themselves don't point to further documents, i.e. this is a two-level tree. 828 // 829 // Re-exports can either refer to on-disk files, or to documents within .tbd 830 // files. 831 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 832 const InterfaceFile *currentTopLevelTapi) { 833 if (path::is_absolute(path, path::Style::posix)) 834 for (StringRef root : config->systemLibraryRoots) 835 if (Optional<std::string> dylibPath = 836 resolveDylibPath((root + path).str())) 837 return loadDylib(*dylibPath, umbrella); 838 839 // TODO: Handle -dylib_file 840 841 SmallString<128> newPath; 842 if (config->outputType == MH_EXECUTE && 843 path.consume_front("@executable_path/")) { 844 // ld64 allows overriding this with the undocumented flag -executable_path. 845 // lld doesn't currently implement that flag. 846 path::append(newPath, path::parent_path(config->outputFile), path); 847 path = newPath; 848 } else if (path.consume_front("@loader_path/")) { 849 fs::real_path(umbrella->getName(), newPath); 850 path::remove_filename(newPath); 851 path::append(newPath, path); 852 path = newPath; 853 } else if (path.startswith("@rpath/")) { 854 for (StringRef rpath : umbrella->rpaths) { 855 newPath.clear(); 856 if (rpath.consume_front("@loader_path/")) { 857 fs::real_path(umbrella->getName(), newPath); 858 path::remove_filename(newPath); 859 } 860 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 861 if (Optional<std::string> dylibPath = resolveDylibPath(newPath)) 862 return loadDylib(*dylibPath, umbrella); 863 } 864 } 865 866 if (currentTopLevelTapi) { 867 for (InterfaceFile &child : 868 make_pointee_range(currentTopLevelTapi->documents())) { 869 assert(child.documents().empty()); 870 if (path == child.getInstallName()) { 871 auto file = make<DylibFile>(child, umbrella); 872 file->parseReexports(child); 873 return file; 874 } 875 } 876 } 877 878 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 879 return loadDylib(*dylibPath, umbrella); 880 881 return nullptr; 882 } 883 884 // If a re-exported dylib is public (lives in /usr/lib or 885 // /System/Library/Frameworks), then it is considered implicitly linked: we 886 // should bind to its symbols directly instead of via the re-exporting umbrella 887 // library. 888 static bool isImplicitlyLinked(StringRef path) { 889 if (!config->implicitDylibs) 890 return false; 891 892 if (path::parent_path(path) == "/usr/lib") 893 return true; 894 895 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 896 if (path.consume_front("/System/Library/Frameworks/")) { 897 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 898 return path::filename(path) == frameworkName; 899 } 900 901 return false; 902 } 903 904 static void loadReexport(StringRef path, DylibFile *umbrella, 905 const InterfaceFile *currentTopLevelTapi) { 906 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 907 if (!reexport) 908 error("unable to locate re-export with install name " + path); 909 } 910 911 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 912 bool isBundleLoader) 913 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 914 isBundleLoader(isBundleLoader) { 915 assert(!isBundleLoader || !umbrella); 916 if (umbrella == nullptr) 917 umbrella = this; 918 this->umbrella = umbrella; 919 920 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 921 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 922 923 // Initialize installName. 924 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 925 auto *c = reinterpret_cast<const dylib_command *>(cmd); 926 currentVersion = read32le(&c->dylib.current_version); 927 compatibilityVersion = read32le(&c->dylib.compatibility_version); 928 installName = 929 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 930 } else if (!isBundleLoader) { 931 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 932 // so it's OK. 933 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 934 return; 935 } 936 937 if (config->printEachFile) 938 message(toString(this)); 939 inputFiles.insert(this); 940 941 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 942 943 if (!checkCompatibility(this)) 944 return; 945 946 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 947 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 948 rpaths.push_back(rpath); 949 } 950 951 // Initialize symbols. 952 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 953 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 954 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 955 parseTrie(buf + c->export_off, c->export_size, 956 [&](const Twine &name, uint64_t flags) { 957 StringRef savedName = saver.save(name); 958 if (handleLDSymbol(savedName)) 959 return; 960 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 961 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 962 symbols.push_back(symtab->addDylib(savedName, exportingFile, 963 isWeakDef, isTlv)); 964 }); 965 } else { 966 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 967 return; 968 } 969 } 970 971 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 972 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 973 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 974 target->headerSize; 975 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 976 auto *cmd = reinterpret_cast<const load_command *>(p); 977 p += cmd->cmdsize; 978 979 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 980 cmd->cmd == LC_REEXPORT_DYLIB) { 981 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 982 StringRef reexportPath = 983 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 984 loadReexport(reexportPath, exportingFile, nullptr); 985 } 986 987 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 988 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 989 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 990 if (config->namespaceKind == NamespaceKind::flat && 991 cmd->cmd == LC_LOAD_DYLIB) { 992 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 993 StringRef dylibPath = 994 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 995 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 996 if (!dylib) 997 error(Twine("unable to locate library '") + dylibPath + 998 "' loaded from '" + toString(this) + "' for -flat_namespace"); 999 } 1000 } 1001 } 1002 1003 // Some versions of XCode ship with .tbd files that don't have the right 1004 // platform settings. 1005 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 1006 "/usr/lib/system/libsystem_kernel.dylib", 1007 "/usr/lib/system/libsystem_platform.dylib", 1008 "/usr/lib/system/libsystem_pthread.dylib"}; 1009 1010 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1011 bool isBundleLoader) 1012 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1013 isBundleLoader(isBundleLoader) { 1014 // FIXME: Add test for the missing TBD code path. 1015 1016 if (umbrella == nullptr) 1017 umbrella = this; 1018 this->umbrella = umbrella; 1019 1020 installName = saver.save(interface.getInstallName()); 1021 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1022 currentVersion = interface.getCurrentVersion().rawValue(); 1023 1024 if (config->printEachFile) 1025 message(toString(this)); 1026 inputFiles.insert(this); 1027 1028 if (!is_contained(skipPlatformChecks, installName) && 1029 !is_contained(interface.targets(), config->platformInfo.target)) { 1030 error(toString(this) + " is incompatible with " + 1031 std::string(config->platformInfo.target)); 1032 return; 1033 } 1034 1035 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1036 auto addSymbol = [&](const Twine &name) -> void { 1037 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 1038 /*isWeakDef=*/false, 1039 /*isTlv=*/false)); 1040 }; 1041 // TODO(compnerd) filter out symbols based on the target platform 1042 // TODO: handle weak defs, thread locals 1043 for (const auto *symbol : interface.symbols()) { 1044 if (!symbol->getArchitectures().has(config->arch())) 1045 continue; 1046 1047 if (handleLDSymbol(symbol->getName())) 1048 continue; 1049 1050 switch (symbol->getKind()) { 1051 case SymbolKind::GlobalSymbol: 1052 addSymbol(symbol->getName()); 1053 break; 1054 case SymbolKind::ObjectiveCClass: 1055 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1056 // want to emulate that. 1057 addSymbol(objc::klass + symbol->getName()); 1058 addSymbol(objc::metaclass + symbol->getName()); 1059 break; 1060 case SymbolKind::ObjectiveCClassEHType: 1061 addSymbol(objc::ehtype + symbol->getName()); 1062 break; 1063 case SymbolKind::ObjectiveCInstanceVariable: 1064 addSymbol(objc::ivar + symbol->getName()); 1065 break; 1066 } 1067 } 1068 } 1069 1070 void DylibFile::parseReexports(const InterfaceFile &interface) { 1071 const InterfaceFile *topLevel = 1072 interface.getParent() == nullptr ? &interface : interface.getParent(); 1073 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 1074 InterfaceFile::const_target_range targets = intfRef.targets(); 1075 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1076 is_contained(targets, config->platformInfo.target)) 1077 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1078 } 1079 } 1080 1081 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1082 // name, compatibility version or hide/add symbols) for specific target 1083 // versions. 1084 bool DylibFile::handleLDSymbol(StringRef originalName) { 1085 if (!originalName.startswith("$ld$")) 1086 return false; 1087 1088 StringRef action; 1089 StringRef name; 1090 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1091 if (action == "previous") 1092 handleLDPreviousSymbol(name, originalName); 1093 else if (action == "install_name") 1094 handleLDInstallNameSymbol(name, originalName); 1095 return true; 1096 } 1097 1098 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1099 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1100 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1101 StringRef installName; 1102 StringRef compatVersion; 1103 StringRef platformStr; 1104 StringRef startVersion; 1105 StringRef endVersion; 1106 StringRef symbolName; 1107 StringRef rest; 1108 1109 std::tie(installName, name) = name.split('$'); 1110 std::tie(compatVersion, name) = name.split('$'); 1111 std::tie(platformStr, name) = name.split('$'); 1112 std::tie(startVersion, name) = name.split('$'); 1113 std::tie(endVersion, name) = name.split('$'); 1114 std::tie(symbolName, rest) = name.split('$'); 1115 // TODO: ld64 contains some logic for non-empty symbolName as well. 1116 if (!symbolName.empty()) 1117 return; 1118 unsigned platform; 1119 if (platformStr.getAsInteger(10, platform) || 1120 platform != static_cast<unsigned>(config->platform())) 1121 return; 1122 1123 VersionTuple start; 1124 if (start.tryParse(startVersion)) { 1125 warn("failed to parse start version, symbol '" + originalName + 1126 "' ignored"); 1127 return; 1128 } 1129 VersionTuple end; 1130 if (end.tryParse(endVersion)) { 1131 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1132 return; 1133 } 1134 if (config->platformInfo.minimum < start || 1135 config->platformInfo.minimum >= end) 1136 return; 1137 1138 this->installName = saver.save(installName); 1139 1140 if (!compatVersion.empty()) { 1141 VersionTuple cVersion; 1142 if (cVersion.tryParse(compatVersion)) { 1143 warn("failed to parse compatibility version, symbol '" + originalName + 1144 "' ignored"); 1145 return; 1146 } 1147 compatibilityVersion = encodeVersion(cVersion); 1148 } 1149 } 1150 1151 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1152 StringRef originalName) { 1153 // originalName: $ld$ install_name $ os<version> $ install_name 1154 StringRef condition, installName; 1155 std::tie(condition, installName) = name.split('$'); 1156 VersionTuple version; 1157 if (!condition.consume_front("os") || version.tryParse(condition)) 1158 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1159 else if (version == config->platformInfo.minimum) 1160 this->installName = saver.save(installName); 1161 } 1162 1163 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1164 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 1165 for (const object::Archive::Symbol &sym : file->symbols()) 1166 symtab->addLazy(sym.getName(), this, sym); 1167 } 1168 1169 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1170 object::Archive::Child c = 1171 CHECK(sym.getMember(), toString(this) + 1172 ": could not get the member for symbol " + 1173 toMachOString(sym)); 1174 1175 if (!seen.insert(c.getChildOffset()).second) 1176 return; 1177 1178 MemoryBufferRef mb = 1179 CHECK(c.getMemoryBufferRef(), 1180 toString(this) + 1181 ": could not get the buffer for the member defining symbol " + 1182 toMachOString(sym)); 1183 1184 if (tar && c.getParent()->isThin()) 1185 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1186 1187 uint32_t modTime = toTimeT( 1188 CHECK(c.getLastModified(), toString(this) + 1189 ": could not get the modification time " 1190 "for the member defining symbol " + 1191 toMachOString(sym))); 1192 1193 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1194 // and become invalid after that call. Copy it to the stack so we can refer 1195 // to it later. 1196 const object::Archive::Symbol symCopy = sym; 1197 1198 if (Optional<InputFile *> file = 1199 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 1200 inputFiles.insert(*file); 1201 // ld64 doesn't demangle sym here even with -demangle. 1202 // Match that: intentionally don't call toMachOString(). 1203 printArchiveMemberLoad(symCopy.getName(), *file); 1204 } 1205 } 1206 1207 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1208 BitcodeFile &file) { 1209 StringRef name = saver.save(objSym.getName()); 1210 1211 // TODO: support weak references 1212 if (objSym.isUndefined()) 1213 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 1214 1215 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 1216 1217 // TODO: Write a test demonstrating why computing isPrivateExtern before 1218 // LTO compilation is important. 1219 bool isPrivateExtern = false; 1220 switch (objSym.getVisibility()) { 1221 case GlobalValue::HiddenVisibility: 1222 isPrivateExtern = true; 1223 break; 1224 case GlobalValue::ProtectedVisibility: 1225 error(name + " has protected visibility, which is not supported by Mach-O"); 1226 break; 1227 case GlobalValue::DefaultVisibility: 1228 break; 1229 } 1230 1231 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1232 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1233 /*isThumb=*/false, 1234 /*isReferencedDynamically=*/false, 1235 /*noDeadStrip=*/false); 1236 } 1237 1238 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 1239 : InputFile(BitcodeKind, mbref) { 1240 obj = check(lto::InputFile::create(mbref)); 1241 1242 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1243 // "winning" symbol will then be marked as Prevailing at LTO compilation 1244 // time. 1245 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1246 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1247 } 1248 1249 template void ObjFile::parse<LP64>(); 1250