1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "Target.h" 57 58 #include "lld/Common/DWARF.h" 59 #include "lld/Common/ErrorHandler.h" 60 #include "lld/Common/Memory.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/Path.h" 68 #include "llvm/Support/TarWriter.h" 69 #include "llvm/TextAPI/MachO/Architecture.h" 70 71 using namespace llvm; 72 using namespace llvm::MachO; 73 using namespace llvm::support::endian; 74 using namespace llvm::sys; 75 using namespace lld; 76 using namespace lld::macho; 77 78 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 79 std::string lld::toString(const InputFile *f) { 80 if (!f) 81 return "<internal>"; 82 83 // Multiple dylibs can be defined in one .tbd file. 84 if (auto dylibFile = dyn_cast<DylibFile>(f)) 85 if (f->getName().endswith(".tbd")) 86 return (f->getName() + "(" + dylibFile->dylibName + ")").str(); 87 88 if (f->archiveName.empty()) 89 return std::string(f->getName()); 90 return (path::filename(f->archiveName) + "(" + path::filename(f->getName()) + 91 ")") 92 .str(); 93 } 94 95 SetVector<InputFile *> macho::inputFiles; 96 std::unique_ptr<TarWriter> macho::tar; 97 int InputFile::idCount = 0; 98 99 // Open a given file path and return it as a memory-mapped file. 100 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 101 // Open a file. 102 auto mbOrErr = MemoryBuffer::getFile(path); 103 if (auto ec = mbOrErr.getError()) { 104 error("cannot open " + path + ": " + ec.message()); 105 return None; 106 } 107 108 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 109 MemoryBufferRef mbref = mb->getMemBufferRef(); 110 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 111 112 // If this is a regular non-fat file, return it. 113 const char *buf = mbref.getBufferStart(); 114 auto *hdr = reinterpret_cast<const MachO::fat_header *>(buf); 115 if (mbref.getBufferSize() < sizeof(uint32_t) || 116 read32be(&hdr->magic) != MachO::FAT_MAGIC) { 117 if (tar) 118 tar->append(relativeToRoot(path), mbref.getBuffer()); 119 return mbref; 120 } 121 122 // Object files and archive files may be fat files, which contains 123 // multiple real files for different CPU ISAs. Here, we search for a 124 // file that matches with the current link target and returns it as 125 // a MemoryBufferRef. 126 auto *arch = reinterpret_cast<const MachO::fat_arch *>(buf + sizeof(*hdr)); 127 128 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 129 if (reinterpret_cast<const char *>(arch + i + 1) > 130 buf + mbref.getBufferSize()) { 131 error(path + ": fat_arch struct extends beyond end of file"); 132 return None; 133 } 134 135 if (read32be(&arch[i].cputype) != target->cpuType || 136 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 137 continue; 138 139 uint32_t offset = read32be(&arch[i].offset); 140 uint32_t size = read32be(&arch[i].size); 141 if (offset + size > mbref.getBufferSize()) 142 error(path + ": slice extends beyond end of file"); 143 if (tar) 144 tar->append(relativeToRoot(path), mbref.getBuffer()); 145 return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); 146 } 147 148 error("unable to find matching architecture in " + path); 149 return None; 150 } 151 152 void ObjFile::parseSections(ArrayRef<section_64> sections) { 153 subsections.reserve(sections.size()); 154 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 155 156 for (const section_64 &sec : sections) { 157 InputSection *isec = make<InputSection>(); 158 isec->file = this; 159 isec->name = 160 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 161 isec->segname = 162 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 163 isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, 164 static_cast<size_t>(sec.size)}; 165 if (sec.align >= 32) 166 error("alignment " + std::to_string(sec.align) + " of section " + 167 isec->name + " is too large"); 168 else 169 isec->align = 1 << sec.align; 170 isec->flags = sec.flags; 171 172 if (!(isDebugSection(isec->flags) && 173 isec->segname == segment_names::dwarf)) { 174 subsections.push_back({{0, isec}}); 175 } else { 176 // Instead of emitting DWARF sections, we emit STABS symbols to the 177 // object files that contain them. We filter them out early to avoid 178 // parsing their relocations unnecessarily. But we must still push an 179 // empty map to ensure the indices line up for the remaining sections. 180 subsections.push_back({}); 181 debugSections.push_back(isec); 182 } 183 } 184 } 185 186 // Find the subsection corresponding to the greatest section offset that is <= 187 // that of the given offset. 188 // 189 // offset: an offset relative to the start of the original InputSection (before 190 // any subsection splitting has occurred). It will be updated to represent the 191 // same location as an offset relative to the start of the containing 192 // subsection. 193 static InputSection *findContainingSubsection(SubsectionMap &map, 194 uint32_t *offset) { 195 auto it = std::prev(map.upper_bound(*offset)); 196 *offset -= it->first; 197 return it->second; 198 } 199 200 static bool validateRelocationInfo(InputFile *file, const section_64 &sec, 201 relocation_info rel) { 202 const TargetInfo::RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 203 bool valid = true; 204 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 205 valid = false; 206 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 207 std::to_string(rel.r_address) + " of " + sec.segname + "," + 208 sec.sectname + " in " + toString(file)) 209 .str(); 210 }; 211 212 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 213 error(message("must be extern")); 214 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 215 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 216 "be PC-relative")); 217 if (isThreadLocalVariables(sec.flags) && 218 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 219 error(message("not allowed in thread-local section, must be UNSIGNED")); 220 if (rel.r_length < 2 || rel.r_length > 3 || 221 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 222 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 223 error(message("has width " + std::to_string(1 << rel.r_length) + 224 " bytes, but must be " + 225 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 226 " bytes")); 227 } 228 return valid; 229 } 230 231 void ObjFile::parseRelocations(const section_64 &sec, 232 SubsectionMap &subsecMap) { 233 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 234 ArrayRef<relocation_info> relInfos( 235 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 236 237 for (size_t i = 0; i < relInfos.size(); i++) { 238 // Paired relocations serve as Mach-O's method for attaching a 239 // supplemental datum to a primary relocation record. ELF does not 240 // need them because the *_RELOC_RELA records contain the extra 241 // addend field, vs. *_RELOC_REL which omit the addend. 242 // 243 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 244 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 245 // datum for each is a symbolic address. The result is the offset 246 // between two addresses. 247 // 248 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 249 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 250 // base symbolic address. 251 // 252 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 253 // addend into the instruction stream. On X86, a relocatable address 254 // field always occupies an entire contiguous sequence of byte(s), 255 // so there is no need to merge opcode bits with address 256 // bits. Therefore, it's easy and convenient to store addends in the 257 // instruction-stream bytes that would otherwise contain zeroes. By 258 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 259 // address bits so that bitwise arithmetic is necessary to extract 260 // and insert them. Storing addends in the instruction stream is 261 // possible, but inconvenient and more costly at link time. 262 263 uint64_t pairedAddend = 0; 264 relocation_info relInfo = relInfos[i]; 265 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 266 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 267 relInfo = relInfos[++i]; 268 } 269 assert(i < relInfos.size()); 270 if (!validateRelocationInfo(this, sec, relInfo)) 271 continue; 272 if (relInfo.r_address & R_SCATTERED) 273 fatal("TODO: Scattered relocations not supported"); 274 275 Reloc p; 276 if (target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND)) { 277 p.type = relInfo.r_type; 278 p.referent = symbols[relInfo.r_symbolnum]; 279 relInfo = relInfos[++i]; 280 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 281 // indicating the minuend symbol. 282 assert(target->hasAttr(relInfo.r_type, RelocAttrBits::UNSIGNED) && 283 relInfo.r_extern); 284 } 285 uint64_t embeddedAddend = target->getEmbeddedAddend(mb, sec, relInfo); 286 assert(!(embeddedAddend && pairedAddend)); 287 uint64_t totalAddend = pairedAddend + embeddedAddend; 288 Reloc r; 289 r.type = relInfo.r_type; 290 r.pcrel = relInfo.r_pcrel; 291 r.length = relInfo.r_length; 292 r.offset = relInfo.r_address; 293 if (relInfo.r_extern) { 294 r.referent = symbols[relInfo.r_symbolnum]; 295 r.addend = totalAddend; 296 } else { 297 SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1]; 298 const section_64 &referentSec = sectionHeaders[relInfo.r_symbolnum - 1]; 299 uint32_t referentOffset; 300 if (relInfo.r_pcrel) { 301 // The implicit addend for pcrel section relocations is the pcrel offset 302 // in terms of the addresses in the input file. Here we adjust it so 303 // that it describes the offset from the start of the referent section. 304 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 305 referentOffset = 306 sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr; 307 } else { 308 // The addend for a non-pcrel relocation is its absolute address. 309 referentOffset = totalAddend - referentSec.addr; 310 } 311 r.referent = findContainingSubsection(referentSubsecMap, &referentOffset); 312 r.addend = referentOffset; 313 } 314 315 InputSection *subsec = findContainingSubsection(subsecMap, &r.offset); 316 if (p.type != GENERIC_RELOC_INVALID) 317 subsec->relocs.push_back(p); 318 subsec->relocs.push_back(r); 319 } 320 } 321 322 static macho::Symbol *createDefined(const structs::nlist_64 &sym, 323 StringRef name, InputSection *isec, 324 uint32_t value) { 325 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 326 // N_EXT: Global symbols 327 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped 328 // N_PEXT: Does not occur in input files in practice, 329 // a private extern must be external. 330 // 0: Translation-unit scoped. These are not in the symbol table. 331 332 if (sym.n_type & (N_EXT | N_PEXT)) { 333 assert((sym.n_type & N_EXT) && "invalid input"); 334 return symtab->addDefined(name, isec->file, isec, value, 335 sym.n_desc & N_WEAK_DEF, sym.n_type & N_PEXT); 336 } 337 return make<Defined>(name, isec->file, isec, value, sym.n_desc & N_WEAK_DEF, 338 /*isExternal=*/false, /*isPrivateExtern=*/false); 339 } 340 341 // Checks if the version specified in `cmd` is compatible with target 342 // version. IOW, check if cmd's version >= config's version. 343 static bool hasCompatVersion(const InputFile *input, 344 const build_version_command *cmd) { 345 346 if (config->target.Platform != static_cast<PlatformKind>(cmd->platform)) { 347 error(toString(input) + " has platform " + 348 getPlatformName(static_cast<PlatformKind>(cmd->platform)) + 349 Twine(", which is different from target platform ") + 350 getPlatformName(config->target.Platform)); 351 return false; 352 } 353 354 unsigned major = cmd->minos >> 16; 355 unsigned minor = (cmd->minos >> 8) & 0xffu; 356 unsigned subMinor = cmd->minos & 0xffu; 357 VersionTuple version(major, minor, subMinor); 358 if (version >= config->platformInfo.minimum) 359 return true; 360 361 error(toString(input) + " has version " + version.getAsString() + 362 ", which is incompatible with target version of " + 363 config->platformInfo.minimum.getAsString()); 364 return false; 365 } 366 367 // Absolute symbols are defined symbols that do not have an associated 368 // InputSection. They cannot be weak. 369 static macho::Symbol *createAbsolute(const structs::nlist_64 &sym, 370 InputFile *file, StringRef name) { 371 if (sym.n_type & (N_EXT | N_PEXT)) { 372 assert((sym.n_type & N_EXT) && "invalid input"); 373 return symtab->addDefined(name, file, nullptr, sym.n_value, 374 /*isWeakDef=*/false, sym.n_type & N_PEXT); 375 } 376 return make<Defined>(name, file, nullptr, sym.n_value, /*isWeakDef=*/false, 377 /*isExternal=*/false, /*isPrivateExtern=*/false); 378 } 379 380 macho::Symbol *ObjFile::parseNonSectionSymbol(const structs::nlist_64 &sym, 381 StringRef name) { 382 uint8_t type = sym.n_type & N_TYPE; 383 switch (type) { 384 case N_UNDF: 385 return sym.n_value == 0 386 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 387 : symtab->addCommon(name, this, sym.n_value, 388 1 << GET_COMM_ALIGN(sym.n_desc), 389 sym.n_type & N_PEXT); 390 case N_ABS: 391 return createAbsolute(sym, this, name); 392 case N_PBUD: 393 case N_INDR: 394 error("TODO: support symbols of type " + std::to_string(type)); 395 return nullptr; 396 case N_SECT: 397 llvm_unreachable( 398 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 399 default: 400 llvm_unreachable("invalid symbol type"); 401 } 402 } 403 404 void ObjFile::parseSymbols(ArrayRef<structs::nlist_64> nList, 405 const char *strtab, bool subsectionsViaSymbols) { 406 // resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols 407 // out-of-sequence. 408 symbols.resize(nList.size()); 409 std::vector<size_t> altEntrySymIdxs; 410 411 for (size_t i = 0, n = nList.size(); i < n; ++i) { 412 const structs::nlist_64 &sym = nList[i]; 413 StringRef name = strtab + sym.n_strx; 414 415 if ((sym.n_type & N_TYPE) != N_SECT) { 416 symbols[i] = parseNonSectionSymbol(sym, name); 417 continue; 418 } 419 420 const section_64 &sec = sectionHeaders[sym.n_sect - 1]; 421 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 422 423 // parseSections() may have chosen not to parse this section. 424 if (subsecMap.empty()) 425 continue; 426 427 uint64_t offset = sym.n_value - sec.addr; 428 429 // If the input file does not use subsections-via-symbols, all symbols can 430 // use the same subsection. Otherwise, we must split the sections along 431 // symbol boundaries. 432 if (!subsectionsViaSymbols) { 433 symbols[i] = createDefined(sym, name, subsecMap[0], offset); 434 continue; 435 } 436 437 // nList entries aren't necessarily arranged in address order. Therefore, 438 // we can't create alt-entry symbols at this point because a later symbol 439 // may split its section, which may affect which subsection the alt-entry 440 // symbol is assigned to. So we need to handle them in a second pass below. 441 if (sym.n_desc & N_ALT_ENTRY) { 442 altEntrySymIdxs.push_back(i); 443 continue; 444 } 445 446 // Find the subsection corresponding to the greatest section offset that is 447 // <= that of the current symbol. The subsection that we find either needs 448 // to be used directly or split in two. 449 uint32_t firstSize = offset; 450 InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize); 451 452 if (firstSize == 0) { 453 // Alias of an existing symbol, or the first symbol in the section. These 454 // are handled by reusing the existing section. 455 symbols[i] = createDefined(sym, name, firstIsec, 0); 456 continue; 457 } 458 459 // We saw a symbol definition at a new offset. Split the section into two 460 // subsections. The new symbol uses the second subsection. 461 auto *secondIsec = make<InputSection>(*firstIsec); 462 secondIsec->data = firstIsec->data.slice(firstSize); 463 firstIsec->data = firstIsec->data.slice(0, firstSize); 464 // TODO: ld64 appears to preserve the original alignment as well as each 465 // subsection's offset from the last aligned address. We should consider 466 // emulating that behavior. 467 secondIsec->align = MinAlign(firstIsec->align, offset); 468 469 subsecMap[offset] = secondIsec; 470 // By construction, the symbol will be at offset zero in the new section. 471 symbols[i] = createDefined(sym, name, secondIsec, 0); 472 } 473 474 for (size_t idx : altEntrySymIdxs) { 475 const structs::nlist_64 &sym = nList[idx]; 476 StringRef name = strtab + sym.n_strx; 477 SubsectionMap &subsecMap = subsections[sym.n_sect - 1]; 478 uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr; 479 InputSection *subsec = findContainingSubsection(subsecMap, &off); 480 symbols[idx] = createDefined(sym, name, subsec, off); 481 } 482 } 483 484 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 485 StringRef sectName) 486 : InputFile(OpaqueKind, mb) { 487 InputSection *isec = make<InputSection>(); 488 isec->file = this; 489 isec->name = sectName.take_front(16); 490 isec->segname = segName.take_front(16); 491 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 492 isec->data = {buf, mb.getBufferSize()}; 493 subsections.push_back({{0, isec}}); 494 } 495 496 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName) 497 : InputFile(ObjKind, mb), modTime(modTime) { 498 this->archiveName = std::string(archiveName); 499 500 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 501 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 502 503 MachO::Architecture arch = 504 MachO::getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 505 if (arch != config->target.Arch) { 506 error(toString(this) + " has architecture " + getArchitectureName(arch) + 507 " which is incompatible with target architecture " + 508 getArchitectureName(config->target.Arch)); 509 return; 510 } 511 512 if (const auto *cmd = 513 findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) { 514 if (!hasCompatVersion(this, cmd)) 515 return; 516 } 517 518 if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) { 519 auto *c = reinterpret_cast<const linker_option_command *>(cmd); 520 StringRef data{reinterpret_cast<const char *>(c + 1), 521 c->cmdsize - sizeof(linker_option_command)}; 522 parseLCLinkerOption(this, c->count, data); 523 } 524 525 if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) { 526 auto *c = reinterpret_cast<const segment_command_64 *>(cmd); 527 sectionHeaders = ArrayRef<section_64>{ 528 reinterpret_cast<const section_64 *>(c + 1), c->nsects}; 529 parseSections(sectionHeaders); 530 } 531 532 // TODO: Error on missing LC_SYMTAB? 533 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 534 auto *c = reinterpret_cast<const symtab_command *>(cmd); 535 ArrayRef<structs::nlist_64> nList( 536 reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms); 537 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 538 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 539 parseSymbols(nList, strtab, subsectionsViaSymbols); 540 } 541 542 // The relocations may refer to the symbols, so we parse them after we have 543 // parsed all the symbols. 544 for (size_t i = 0, n = subsections.size(); i < n; ++i) 545 if (!subsections[i].empty()) 546 parseRelocations(sectionHeaders[i], subsections[i]); 547 548 parseDebugInfo(); 549 } 550 551 void ObjFile::parseDebugInfo() { 552 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 553 if (!dObj) 554 return; 555 556 auto *ctx = make<DWARFContext>( 557 std::move(dObj), "", 558 [&](Error err) { 559 warn(toString(this) + ": " + toString(std::move(err))); 560 }, 561 [&](Error warning) { 562 warn(toString(this) + ": " + toString(std::move(warning))); 563 }); 564 565 // TODO: Since object files can contain a lot of DWARF info, we should verify 566 // that we are parsing just the info we need 567 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 568 // FIXME: There can be more than one compile unit per object file. See 569 // PR48637. 570 auto it = units.begin(); 571 compileUnit = it->get(); 572 } 573 574 // The path can point to either a dylib or a .tbd file. 575 static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) { 576 Optional<MemoryBufferRef> mbref = readFile(path); 577 if (!mbref) { 578 error("could not read dylib file at " + path); 579 return {}; 580 } 581 return loadDylib(*mbref, umbrella); 582 } 583 584 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 585 // the first document storing child pointers to the rest of them. When we are 586 // processing a given TBD file, we store that top-level document in 587 // currentTopLevelTapi. When processing re-exports, we search its children for 588 // potentially matching documents in the same TBD file. Note that the children 589 // themselves don't point to further documents, i.e. this is a two-level tree. 590 // 591 // Re-exports can either refer to on-disk files, or to documents within .tbd 592 // files. 593 static Optional<DylibFile *> 594 findDylib(StringRef path, DylibFile *umbrella, 595 const InterfaceFile *currentTopLevelTapi) { 596 if (path::is_absolute(path, path::Style::posix)) 597 for (StringRef root : config->systemLibraryRoots) 598 if (Optional<std::string> dylibPath = 599 resolveDylibPath((root + path).str())) 600 return loadDylib(*dylibPath, umbrella); 601 602 // TODO: Expand @loader_path, @executable_path, @rpath etc, handle -dylib_path 603 604 if (currentTopLevelTapi) { 605 for (InterfaceFile &child : 606 make_pointee_range(currentTopLevelTapi->documents())) { 607 assert(child.documents().empty()); 608 if (path == child.getInstallName()) 609 return make<DylibFile>(child, umbrella); 610 } 611 } 612 613 if (Optional<std::string> dylibPath = resolveDylibPath(path)) 614 return loadDylib(*dylibPath, umbrella); 615 616 return {}; 617 } 618 619 // If a re-exported dylib is public (lives in /usr/lib or 620 // /System/Library/Frameworks), then it is considered implicitly linked: we 621 // should bind to its symbols directly instead of via the re-exporting umbrella 622 // library. 623 static bool isImplicitlyLinked(StringRef path) { 624 if (!config->implicitDylibs) 625 return false; 626 627 if (path::parent_path(path) == "/usr/lib") 628 return true; 629 630 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 631 if (path.consume_front("/System/Library/Frameworks/")) { 632 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 633 return path::filename(path) == frameworkName; 634 } 635 636 return false; 637 } 638 639 void loadReexport(StringRef path, DylibFile *umbrella, 640 const InterfaceFile *currentTopLevelTapi) { 641 Optional<DylibFile *> reexport = 642 findDylib(path, umbrella, currentTopLevelTapi); 643 if (!reexport) 644 error("unable to locate re-export with install name " + path); 645 else if (isImplicitlyLinked(path)) 646 inputFiles.insert(*reexport); 647 } 648 649 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 650 bool isBundleLoader) 651 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 652 isBundleLoader(isBundleLoader) { 653 assert(!isBundleLoader || !umbrella); 654 if (umbrella == nullptr) 655 umbrella = this; 656 657 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 658 auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart()); 659 660 // Initialize dylibName. 661 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 662 auto *c = reinterpret_cast<const dylib_command *>(cmd); 663 currentVersion = read32le(&c->dylib.current_version); 664 compatibilityVersion = read32le(&c->dylib.compatibility_version); 665 dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 666 } else if (!isBundleLoader) { 667 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 668 // so it's OK. 669 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 670 return; 671 } 672 673 if (const build_version_command *cmd = 674 findCommand<build_version_command>(hdr, LC_BUILD_VERSION)) { 675 if (!hasCompatVersion(this, cmd)) 676 return; 677 } 678 679 // Initialize symbols. 680 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 681 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 682 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 683 parseTrie(buf + c->export_off, c->export_size, 684 [&](const Twine &name, uint64_t flags) { 685 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 686 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 687 symbols.push_back(symtab->addDylib( 688 saver.save(name), exportingFile, isWeakDef, isTlv)); 689 }); 690 } else { 691 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 692 return; 693 } 694 695 const uint8_t *p = 696 reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64); 697 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 698 auto *cmd = reinterpret_cast<const load_command *>(p); 699 p += cmd->cmdsize; 700 701 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 702 cmd->cmd == LC_REEXPORT_DYLIB) { 703 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 704 StringRef reexportPath = 705 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 706 loadReexport(reexportPath, exportingFile, nullptr); 707 } 708 709 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 710 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 711 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 712 if (config->namespaceKind == NamespaceKind::flat && 713 cmd->cmd == LC_LOAD_DYLIB) { 714 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 715 StringRef dylibPath = 716 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 717 Optional<DylibFile *> dylib = findDylib(dylibPath, umbrella, nullptr); 718 if (!dylib) 719 error(Twine("unable to locate library '") + dylibPath + 720 "' loaded from '" + toString(this) + "' for -flat_namespace"); 721 } 722 } 723 } 724 725 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 726 bool isBundleLoader) 727 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 728 isBundleLoader(isBundleLoader) { 729 // FIXME: Add test for the missing TBD code path. 730 731 if (umbrella == nullptr) 732 umbrella = this; 733 734 dylibName = saver.save(interface.getInstallName()); 735 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 736 currentVersion = interface.getCurrentVersion().rawValue(); 737 738 if (!is_contained(interface.targets(), config->target)) { 739 error(toString(this) + " is incompatible with " + 740 std::string(config->target)); 741 return; 742 } 743 744 DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella; 745 auto addSymbol = [&](const Twine &name) -> void { 746 symbols.push_back(symtab->addDylib(saver.save(name), exportingFile, 747 /*isWeakDef=*/false, 748 /*isTlv=*/false)); 749 }; 750 // TODO(compnerd) filter out symbols based on the target platform 751 // TODO: handle weak defs, thread locals 752 for (const auto symbol : interface.symbols()) { 753 if (!symbol->getArchitectures().has(config->target.Arch)) 754 continue; 755 756 switch (symbol->getKind()) { 757 case SymbolKind::GlobalSymbol: 758 addSymbol(symbol->getName()); 759 break; 760 case SymbolKind::ObjectiveCClass: 761 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 762 // want to emulate that. 763 addSymbol(objc::klass + symbol->getName()); 764 addSymbol(objc::metaclass + symbol->getName()); 765 break; 766 case SymbolKind::ObjectiveCClassEHType: 767 addSymbol(objc::ehtype + symbol->getName()); 768 break; 769 case SymbolKind::ObjectiveCInstanceVariable: 770 addSymbol(objc::ivar + symbol->getName()); 771 break; 772 } 773 } 774 775 const InterfaceFile *topLevel = 776 interface.getParent() == nullptr ? &interface : interface.getParent(); 777 778 for (InterfaceFileRef intfRef : interface.reexportedLibraries()) { 779 auto targets = intfRef.targets(); 780 if (is_contained(targets, config->target)) 781 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 782 } 783 } 784 785 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 786 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) { 787 for (const object::Archive::Symbol &sym : file->symbols()) 788 symtab->addLazy(sym.getName(), this, sym); 789 } 790 791 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 792 object::Archive::Child c = 793 CHECK(sym.getMember(), toString(this) + 794 ": could not get the member for symbol " + 795 toMachOString(sym)); 796 797 if (!seen.insert(c.getChildOffset()).second) 798 return; 799 800 MemoryBufferRef mb = 801 CHECK(c.getMemoryBufferRef(), 802 toString(this) + 803 ": could not get the buffer for the member defining symbol " + 804 toMachOString(sym)); 805 806 if (tar && c.getParent()->isThin()) 807 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 808 809 uint32_t modTime = toTimeT( 810 CHECK(c.getLastModified(), toString(this) + 811 ": could not get the modification time " 812 "for the member defining symbol " + 813 toMachOString(sym))); 814 815 // `sym` is owned by a LazySym, which will be replace<>() by make<ObjFile> 816 // and become invalid after that call. Copy it to the stack so we can refer 817 // to it later. 818 const object::Archive::Symbol sym_copy = sym; 819 820 if (Optional<InputFile *> file = 821 loadArchiveMember(mb, modTime, getName(), /*objCOnly=*/false)) { 822 inputFiles.insert(*file); 823 // ld64 doesn't demangle sym here even with -demangle. Match that, so 824 // intentionally no call to toMachOString() here. 825 printArchiveMemberLoad(sym_copy.getName(), *file); 826 } 827 } 828 829 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 830 BitcodeFile &file) { 831 StringRef name = saver.save(objSym.getName()); 832 833 // TODO: support weak references 834 if (objSym.isUndefined()) 835 return symtab->addUndefined(name, &file, /*isWeakRef=*/false); 836 837 assert(!objSym.isCommon() && "TODO: support common symbols in LTO"); 838 839 // TODO: Write a test demonstrating why computing isPrivateExtern before 840 // LTO compilation is important. 841 bool isPrivateExtern = false; 842 switch (objSym.getVisibility()) { 843 case GlobalValue::HiddenVisibility: 844 isPrivateExtern = true; 845 break; 846 case GlobalValue::ProtectedVisibility: 847 error(name + " has protected visibility, which is not supported by Mach-O"); 848 break; 849 case GlobalValue::DefaultVisibility: 850 break; 851 } 852 853 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 854 objSym.isWeak(), isPrivateExtern); 855 } 856 857 BitcodeFile::BitcodeFile(MemoryBufferRef mbref) 858 : InputFile(BitcodeKind, mbref) { 859 obj = check(lto::InputFile::create(mbref)); 860 861 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 862 // "winning" symbol will then be marked as Prevailing at LTO compilation 863 // time. 864 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 865 symbols.push_back(createBitcodeSymbol(objSym, *this)); 866 } 867