1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/CommonLinkerContext.h" 60 #include "lld/Common/DWARF.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/BinaryStreamReader.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/Support/TimeProfiler.h" 71 #include "llvm/TextAPI/Architecture.h" 72 #include "llvm/TextAPI/InterfaceFile.h" 73 74 #include <type_traits> 75 76 using namespace llvm; 77 using namespace llvm::MachO; 78 using namespace llvm::support::endian; 79 using namespace llvm::sys; 80 using namespace lld; 81 using namespace lld::macho; 82 83 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 84 std::string lld::toString(const InputFile *f) { 85 if (!f) 86 return "<internal>"; 87 88 // Multiple dylibs can be defined in one .tbd file. 89 if (auto dylibFile = dyn_cast<DylibFile>(f)) 90 if (f->getName().endswith(".tbd")) 91 return (f->getName() + "(" + dylibFile->installName + ")").str(); 92 93 if (f->archiveName.empty()) 94 return std::string(f->getName()); 95 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 96 } 97 98 SetVector<InputFile *> macho::inputFiles; 99 std::unique_ptr<TarWriter> macho::tar; 100 int InputFile::idCount = 0; 101 102 static VersionTuple decodeVersion(uint32_t version) { 103 unsigned major = version >> 16; 104 unsigned minor = (version >> 8) & 0xffu; 105 unsigned subMinor = version & 0xffu; 106 return VersionTuple(major, minor, subMinor); 107 } 108 109 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 110 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 111 return {}; 112 113 const char *hdr = input->mb.getBufferStart(); 114 115 std::vector<PlatformInfo> platformInfos; 116 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 117 PlatformInfo info; 118 info.target.Platform = static_cast<PlatformType>(cmd->platform); 119 info.minimum = decodeVersion(cmd->minos); 120 platformInfos.emplace_back(std::move(info)); 121 } 122 for (auto *cmd : findCommands<version_min_command>( 123 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 124 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 125 PlatformInfo info; 126 switch (cmd->cmd) { 127 case LC_VERSION_MIN_MACOSX: 128 info.target.Platform = PLATFORM_MACOS; 129 break; 130 case LC_VERSION_MIN_IPHONEOS: 131 info.target.Platform = PLATFORM_IOS; 132 break; 133 case LC_VERSION_MIN_TVOS: 134 info.target.Platform = PLATFORM_TVOS; 135 break; 136 case LC_VERSION_MIN_WATCHOS: 137 info.target.Platform = PLATFORM_WATCHOS; 138 break; 139 } 140 info.minimum = decodeVersion(cmd->version); 141 platformInfos.emplace_back(std::move(info)); 142 } 143 144 return platformInfos; 145 } 146 147 static bool checkCompatibility(const InputFile *input) { 148 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 149 if (platformInfos.empty()) 150 return true; 151 152 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 153 return removeSimulator(info.target.Platform) == 154 removeSimulator(config->platform()); 155 }); 156 if (it == platformInfos.end()) { 157 std::string platformNames; 158 raw_string_ostream os(platformNames); 159 interleave( 160 platformInfos, os, 161 [&](const PlatformInfo &info) { 162 os << getPlatformName(info.target.Platform); 163 }, 164 "/"); 165 error(toString(input) + " has platform " + platformNames + 166 Twine(", which is different from target platform ") + 167 getPlatformName(config->platform())); 168 return false; 169 } 170 171 if (it->minimum > config->platformInfo.minimum) 172 warn(toString(input) + " has version " + it->minimum.getAsString() + 173 ", which is newer than target minimum of " + 174 config->platformInfo.minimum.getAsString()); 175 176 return true; 177 } 178 179 // This cache mostly exists to store system libraries (and .tbds) as they're 180 // loaded, rather than the input archives, which are already cached at a higher 181 // level, and other files like the filelist that are only read once. 182 // Theoretically this caching could be more efficient by hoisting it, but that 183 // would require altering many callers to track the state. 184 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 185 // Open a given file path and return it as a memory-mapped file. 186 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 187 CachedHashStringRef key(path); 188 auto entry = cachedReads.find(key); 189 if (entry != cachedReads.end()) 190 return entry->second; 191 192 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 193 if (std::error_code ec = mbOrErr.getError()) { 194 error("cannot open " + path + ": " + ec.message()); 195 return None; 196 } 197 198 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 199 MemoryBufferRef mbref = mb->getMemBufferRef(); 200 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 201 202 // If this is a regular non-fat file, return it. 203 const char *buf = mbref.getBufferStart(); 204 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 205 if (mbref.getBufferSize() < sizeof(uint32_t) || 206 read32be(&hdr->magic) != FAT_MAGIC) { 207 if (tar) 208 tar->append(relativeToRoot(path), mbref.getBuffer()); 209 return cachedReads[key] = mbref; 210 } 211 212 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); 213 214 // Object files and archive files may be fat files, which contain multiple 215 // real files for different CPU ISAs. Here, we search for a file that matches 216 // with the current link target and returns it as a MemoryBufferRef. 217 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 218 219 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 220 if (reinterpret_cast<const char *>(arch + i + 1) > 221 buf + mbref.getBufferSize()) { 222 error(path + ": fat_arch struct extends beyond end of file"); 223 return None; 224 } 225 226 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 227 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 228 continue; 229 230 uint32_t offset = read32be(&arch[i].offset); 231 uint32_t size = read32be(&arch[i].size); 232 if (offset + size > mbref.getBufferSize()) 233 error(path + ": slice extends beyond end of file"); 234 if (tar) 235 tar->append(relativeToRoot(path), mbref.getBuffer()); 236 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 237 path.copy(bAlloc)); 238 } 239 240 error("unable to find matching architecture in " + path); 241 return None; 242 } 243 244 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 245 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} 246 247 // Some sections comprise of fixed-size records, so instead of splitting them at 248 // symbol boundaries, we split them based on size. Records are distinct from 249 // literals in that they may contain references to other sections, instead of 250 // being leaf nodes in the InputSection graph. 251 // 252 // Note that "record" is a term I came up with. In contrast, "literal" is a term 253 // used by the Mach-O format. 254 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 255 if (name == section_names::cfString) { 256 if (config->icfLevel != ICFLevel::none && segname == segment_names::data) 257 return target->wordSize == 8 ? 32 : 16; 258 } else if (name == section_names::compactUnwind) { 259 if (segname == segment_names::ld) 260 return target->wordSize == 8 ? 32 : 20; 261 } 262 return {}; 263 } 264 265 static Error parseCallGraph(ArrayRef<uint8_t> data, 266 std::vector<CallGraphEntry> &callGraph) { 267 TimeTraceScope timeScope("Parsing call graph section"); 268 BinaryStreamReader reader(data, support::little); 269 while (!reader.empty()) { 270 uint32_t fromIndex, toIndex; 271 uint64_t count; 272 if (Error err = reader.readInteger(fromIndex)) 273 return err; 274 if (Error err = reader.readInteger(toIndex)) 275 return err; 276 if (Error err = reader.readInteger(count)) 277 return err; 278 callGraph.emplace_back(fromIndex, toIndex, count); 279 } 280 return Error::success(); 281 } 282 283 // Parse the sequence of sections within a single LC_SEGMENT(_64). 284 // Split each section into subsections. 285 template <class SectionHeader> 286 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 287 sections.reserve(sectionHeaders.size()); 288 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 289 290 for (const SectionHeader &sec : sectionHeaders) { 291 StringRef name = 292 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 293 StringRef segname = 294 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 295 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 296 : buf + sec.offset, 297 static_cast<size_t>(sec.size)}; 298 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr)); 299 if (sec.align >= 32) { 300 error("alignment " + std::to_string(sec.align) + " of section " + name + 301 " is too large"); 302 continue; 303 } 304 const Section §ion = *sections.back(); 305 uint32_t align = 1 << sec.align; 306 307 auto splitRecords = [&](int recordSize) -> void { 308 if (data.empty()) 309 return; 310 Subsections &subsections = sections.back()->subsections; 311 subsections.reserve(data.size() / recordSize); 312 for (uint64_t off = 0; off < data.size(); off += recordSize) { 313 auto *isec = make<ConcatInputSection>( 314 section, data.slice(off, recordSize), align); 315 subsections.push_back({off, isec}); 316 } 317 }; 318 319 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 320 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 321 if (sec.nreloc && config->dedupLiterals) 322 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 323 sec.sectname + 324 ", so LLD cannot deduplicate literals. Try re-running without " 325 "--deduplicate-literals."); 326 327 InputSection *isec; 328 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 329 isec = make<CStringInputSection>(section, data, align); 330 // FIXME: parallelize this? 331 cast<CStringInputSection>(isec)->splitIntoPieces(); 332 } else { 333 isec = make<WordLiteralInputSection>(section, data, align); 334 } 335 sections.back()->subsections.push_back({0, isec}); 336 } else if (auto recordSize = getRecordSize(segname, name)) { 337 splitRecords(*recordSize); 338 if (name == section_names::compactUnwind) 339 compactUnwindSection = sections.back(); 340 } else if (segname == segment_names::llvm) { 341 if (config->callGraphProfileSort && name == section_names::cgProfile) 342 checkError(parseCallGraph(data, callGraph)); 343 // ld64 does not appear to emit contents from sections within the __LLVM 344 // segment. Symbols within those sections point to bitcode metadata 345 // instead of actual symbols. Global symbols within those sections could 346 // have the same name without causing duplicate symbol errors. To avoid 347 // spurious duplicate symbol errors, we do not parse these sections. 348 // TODO: Evaluate whether the bitcode metadata is needed. 349 } else { 350 auto *isec = make<ConcatInputSection>(section, data, align); 351 if (isDebugSection(isec->getFlags()) && 352 isec->getSegName() == segment_names::dwarf) { 353 // Instead of emitting DWARF sections, we emit STABS symbols to the 354 // object files that contain them. We filter them out early to avoid 355 // parsing their relocations unnecessarily. 356 debugSections.push_back(isec); 357 } else { 358 sections.back()->subsections.push_back({0, isec}); 359 } 360 } 361 } 362 } 363 364 // Find the subsection corresponding to the greatest section offset that is <= 365 // that of the given offset. 366 // 367 // offset: an offset relative to the start of the original InputSection (before 368 // any subsection splitting has occurred). It will be updated to represent the 369 // same location as an offset relative to the start of the containing 370 // subsection. 371 template <class T> 372 static InputSection *findContainingSubsection(const Subsections &subsections, 373 T *offset) { 374 static_assert(std::is_same<uint64_t, T>::value || 375 std::is_same<uint32_t, T>::value, 376 "unexpected type for offset"); 377 auto it = std::prev(llvm::upper_bound( 378 subsections, *offset, 379 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 380 *offset -= it->offset; 381 return it->isec; 382 } 383 384 template <class SectionHeader> 385 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 386 relocation_info rel) { 387 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 388 bool valid = true; 389 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 390 valid = false; 391 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 392 std::to_string(rel.r_address) + " of " + sec.segname + "," + 393 sec.sectname + " in " + toString(file)) 394 .str(); 395 }; 396 397 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 398 error(message("must be extern")); 399 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 400 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 401 "be PC-relative")); 402 if (isThreadLocalVariables(sec.flags) && 403 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 404 error(message("not allowed in thread-local section, must be UNSIGNED")); 405 if (rel.r_length < 2 || rel.r_length > 3 || 406 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 407 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 408 error(message("has width " + std::to_string(1 << rel.r_length) + 409 " bytes, but must be " + 410 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 411 " bytes")); 412 } 413 return valid; 414 } 415 416 template <class SectionHeader> 417 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 418 const SectionHeader &sec, 419 Subsections &subsections) { 420 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 421 ArrayRef<relocation_info> relInfos( 422 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 423 424 auto subsecIt = subsections.rbegin(); 425 for (size_t i = 0; i < relInfos.size(); i++) { 426 // Paired relocations serve as Mach-O's method for attaching a 427 // supplemental datum to a primary relocation record. ELF does not 428 // need them because the *_RELOC_RELA records contain the extra 429 // addend field, vs. *_RELOC_REL which omit the addend. 430 // 431 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 432 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 433 // datum for each is a symbolic address. The result is the offset 434 // between two addresses. 435 // 436 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 437 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 438 // base symbolic address. 439 // 440 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 441 // addend into the instruction stream. On X86, a relocatable address 442 // field always occupies an entire contiguous sequence of byte(s), 443 // so there is no need to merge opcode bits with address 444 // bits. Therefore, it's easy and convenient to store addends in the 445 // instruction-stream bytes that would otherwise contain zeroes. By 446 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 447 // address bits so that bitwise arithmetic is necessary to extract 448 // and insert them. Storing addends in the instruction stream is 449 // possible, but inconvenient and more costly at link time. 450 451 relocation_info relInfo = relInfos[i]; 452 bool isSubtrahend = 453 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 454 if (isSubtrahend && StringRef(sec.sectname) == section_names::ehFrame) { 455 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 456 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 457 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 458 ++i; 459 continue; 460 } 461 int64_t pairedAddend = 0; 462 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 463 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 464 relInfo = relInfos[++i]; 465 } 466 assert(i < relInfos.size()); 467 if (!validateRelocationInfo(this, sec, relInfo)) 468 continue; 469 if (relInfo.r_address & R_SCATTERED) 470 fatal("TODO: Scattered relocations not supported"); 471 472 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 473 assert(!(embeddedAddend && pairedAddend)); 474 int64_t totalAddend = pairedAddend + embeddedAddend; 475 Reloc r; 476 r.type = relInfo.r_type; 477 r.pcrel = relInfo.r_pcrel; 478 r.length = relInfo.r_length; 479 r.offset = relInfo.r_address; 480 if (relInfo.r_extern) { 481 r.referent = symbols[relInfo.r_symbolnum]; 482 r.addend = isSubtrahend ? 0 : totalAddend; 483 } else { 484 assert(!isSubtrahend); 485 const SectionHeader &referentSecHead = 486 sectionHeaders[relInfo.r_symbolnum - 1]; 487 uint64_t referentOffset; 488 if (relInfo.r_pcrel) { 489 // The implicit addend for pcrel section relocations is the pcrel offset 490 // in terms of the addresses in the input file. Here we adjust it so 491 // that it describes the offset from the start of the referent section. 492 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 493 // have pcrel section relocations. We may want to factor this out into 494 // the arch-specific .cpp file. 495 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 496 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 497 referentSecHead.addr; 498 } else { 499 // The addend for a non-pcrel relocation is its absolute address. 500 referentOffset = totalAddend - referentSecHead.addr; 501 } 502 Subsections &referentSubsections = 503 sections[relInfo.r_symbolnum - 1]->subsections; 504 r.referent = 505 findContainingSubsection(referentSubsections, &referentOffset); 506 r.addend = referentOffset; 507 } 508 509 // Find the subsection that this relocation belongs to. 510 // Though not required by the Mach-O format, clang and gcc seem to emit 511 // relocations in order, so let's take advantage of it. However, ld64 emits 512 // unsorted relocations (in `-r` mode), so we have a fallback for that 513 // uncommon case. 514 InputSection *subsec; 515 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 516 ++subsecIt; 517 if (subsecIt == subsections.rend() || 518 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 519 subsec = findContainingSubsection(subsections, &r.offset); 520 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 521 // for the other relocations. 522 subsecIt = subsections.rend(); 523 } else { 524 subsec = subsecIt->isec; 525 r.offset -= subsecIt->offset; 526 } 527 subsec->relocs.push_back(r); 528 529 if (isSubtrahend) { 530 relocation_info minuendInfo = relInfos[++i]; 531 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 532 // attached to the same address. 533 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 534 relInfo.r_address == minuendInfo.r_address); 535 Reloc p; 536 p.type = minuendInfo.r_type; 537 if (minuendInfo.r_extern) { 538 p.referent = symbols[minuendInfo.r_symbolnum]; 539 p.addend = totalAddend; 540 } else { 541 uint64_t referentOffset = 542 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 543 Subsections &referentSubsectVec = 544 sections[minuendInfo.r_symbolnum - 1]->subsections; 545 p.referent = 546 findContainingSubsection(referentSubsectVec, &referentOffset); 547 p.addend = referentOffset; 548 } 549 subsec->relocs.push_back(p); 550 } 551 } 552 } 553 554 template <class NList> 555 static macho::Symbol *createDefined(const NList &sym, StringRef name, 556 InputSection *isec, uint64_t value, 557 uint64_t size) { 558 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 559 // N_EXT: Global symbols. These go in the symbol table during the link, 560 // and also in the export table of the output so that the dynamic 561 // linker sees them. 562 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 563 // symbol table during the link so that duplicates are 564 // either reported (for non-weak symbols) or merged 565 // (for weak symbols), but they do not go in the export 566 // table of the output. 567 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 568 // object files) may produce them. LLD does not yet support -r. 569 // These are translation-unit scoped, identical to the `0` case. 570 // 0: Translation-unit scoped. These are not in the symbol table during 571 // link, and not in the export table of the output either. 572 bool isWeakDefCanBeHidden = 573 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 574 575 if (sym.n_type & N_EXT) { 576 bool isPrivateExtern = sym.n_type & N_PEXT; 577 // lld's behavior for merging symbols is slightly different from ld64: 578 // ld64 picks the winning symbol based on several criteria (see 579 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 580 // just merges metadata and keeps the contents of the first symbol 581 // with that name (see SymbolTable::addDefined). For: 582 // * inline function F in a TU built with -fvisibility-inlines-hidden 583 // * and inline function F in another TU built without that flag 584 // ld64 will pick the one from the file built without 585 // -fvisibility-inlines-hidden. 586 // lld will instead pick the one listed first on the link command line and 587 // give it visibility as if the function was built without 588 // -fvisibility-inlines-hidden. 589 // If both functions have the same contents, this will have the same 590 // behavior. If not, it won't, but the input had an ODR violation in 591 // that case. 592 // 593 // Similarly, merging a symbol 594 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 595 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 596 // should produce one 597 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 598 // with ld64's semantics, because it means the non-private-extern 599 // definition will continue to take priority if more private extern 600 // definitions are encountered. With lld's semantics there's no observable 601 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 602 // that's privateExtern -- neither makes it into the dynamic symbol table, 603 // unless the autohide symbol is explicitly exported. 604 // But if a symbol is both privateExtern and autohide then it can't 605 // be exported. 606 // So we nullify the autohide flag when privateExtern is present 607 // and promote the symbol to privateExtern when it is not already. 608 if (isWeakDefCanBeHidden && isPrivateExtern) 609 isWeakDefCanBeHidden = false; 610 else if (isWeakDefCanBeHidden) 611 isPrivateExtern = true; 612 return symtab->addDefined( 613 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 614 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 615 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 616 isWeakDefCanBeHidden); 617 } 618 assert(!isWeakDefCanBeHidden && 619 "weak_def_can_be_hidden on already-hidden symbol?"); 620 return make<Defined>( 621 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 622 /*isExternal=*/false, /*isPrivateExtern=*/false, 623 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 624 sym.n_desc & N_NO_DEAD_STRIP); 625 } 626 627 // Absolute symbols are defined symbols that do not have an associated 628 // InputSection. They cannot be weak. 629 template <class NList> 630 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 631 StringRef name) { 632 if (sym.n_type & N_EXT) { 633 return symtab->addDefined( 634 name, file, nullptr, sym.n_value, /*size=*/0, 635 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 636 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 637 /*isWeakDefCanBeHidden=*/false); 638 } 639 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 640 /*isWeakDef=*/false, 641 /*isExternal=*/false, /*isPrivateExtern=*/false, 642 sym.n_desc & N_ARM_THUMB_DEF, 643 /*isReferencedDynamically=*/false, 644 sym.n_desc & N_NO_DEAD_STRIP); 645 } 646 647 template <class NList> 648 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 649 StringRef name) { 650 uint8_t type = sym.n_type & N_TYPE; 651 switch (type) { 652 case N_UNDF: 653 return sym.n_value == 0 654 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 655 : symtab->addCommon(name, this, sym.n_value, 656 1 << GET_COMM_ALIGN(sym.n_desc), 657 sym.n_type & N_PEXT); 658 case N_ABS: 659 return createAbsolute(sym, this, name); 660 case N_PBUD: 661 case N_INDR: 662 error("TODO: support symbols of type " + std::to_string(type)); 663 return nullptr; 664 case N_SECT: 665 llvm_unreachable( 666 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 667 default: 668 llvm_unreachable("invalid symbol type"); 669 } 670 } 671 672 template <class NList> static bool isUndef(const NList &sym) { 673 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 674 } 675 676 template <class LP> 677 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 678 ArrayRef<typename LP::nlist> nList, 679 const char *strtab, bool subsectionsViaSymbols) { 680 using NList = typename LP::nlist; 681 682 // Groups indices of the symbols by the sections that contain them. 683 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 684 symbols.resize(nList.size()); 685 SmallVector<unsigned, 32> undefineds; 686 for (uint32_t i = 0; i < nList.size(); ++i) { 687 const NList &sym = nList[i]; 688 689 // Ignore debug symbols for now. 690 // FIXME: may need special handling. 691 if (sym.n_type & N_STAB) 692 continue; 693 694 StringRef name = strtab + sym.n_strx; 695 if ((sym.n_type & N_TYPE) == N_SECT) { 696 Subsections &subsections = sections[sym.n_sect - 1]->subsections; 697 // parseSections() may have chosen not to parse this section. 698 if (subsections.empty()) 699 continue; 700 symbolsBySection[sym.n_sect - 1].push_back(i); 701 } else if (isUndef(sym)) { 702 undefineds.push_back(i); 703 } else { 704 symbols[i] = parseNonSectionSymbol(sym, name); 705 } 706 } 707 708 for (size_t i = 0; i < sections.size(); ++i) { 709 Subsections &subsections = sections[i]->subsections; 710 if (subsections.empty()) 711 continue; 712 InputSection *lastIsec = subsections.back().isec; 713 if (lastIsec->getName() == section_names::ehFrame) { 714 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 715 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 716 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 717 continue; 718 } 719 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 720 uint64_t sectionAddr = sectionHeaders[i].addr; 721 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 722 723 // Record-based sections have already been split into subsections during 724 // parseSections(), so we simply need to match Symbols to the corresponding 725 // subsection here. 726 if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) { 727 for (size_t j = 0; j < symbolIndices.size(); ++j) { 728 uint32_t symIndex = symbolIndices[j]; 729 const NList &sym = nList[symIndex]; 730 StringRef name = strtab + sym.n_strx; 731 uint64_t symbolOffset = sym.n_value - sectionAddr; 732 InputSection *isec = 733 findContainingSubsection(subsections, &symbolOffset); 734 if (symbolOffset != 0) { 735 error(toString(lastIsec) + ": symbol " + name + 736 " at misaligned offset"); 737 continue; 738 } 739 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 740 } 741 continue; 742 } 743 744 // Calculate symbol sizes and create subsections by splitting the sections 745 // along symbol boundaries. 746 // We populate subsections by repeatedly splitting the last (highest 747 // address) subsection. 748 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 749 return nList[lhs].n_value < nList[rhs].n_value; 750 }); 751 for (size_t j = 0; j < symbolIndices.size(); ++j) { 752 uint32_t symIndex = symbolIndices[j]; 753 const NList &sym = nList[symIndex]; 754 StringRef name = strtab + sym.n_strx; 755 Subsection &subsec = subsections.back(); 756 InputSection *isec = subsec.isec; 757 758 uint64_t subsecAddr = sectionAddr + subsec.offset; 759 size_t symbolOffset = sym.n_value - subsecAddr; 760 uint64_t symbolSize = 761 j + 1 < symbolIndices.size() 762 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 763 : isec->data.size() - symbolOffset; 764 // There are 4 cases where we do not need to create a new subsection: 765 // 1. If the input file does not use subsections-via-symbols. 766 // 2. Multiple symbols at the same address only induce one subsection. 767 // (The symbolOffset == 0 check covers both this case as well as 768 // the first loop iteration.) 769 // 3. Alternative entry points do not induce new subsections. 770 // 4. If we have a literal section (e.g. __cstring and __literal4). 771 if (!subsectionsViaSymbols || symbolOffset == 0 || 772 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 773 symbols[symIndex] = 774 createDefined(sym, name, isec, symbolOffset, symbolSize); 775 continue; 776 } 777 auto *concatIsec = cast<ConcatInputSection>(isec); 778 779 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 780 nextIsec->wasCoalesced = false; 781 if (isZeroFill(isec->getFlags())) { 782 // Zero-fill sections have NULL data.data() non-zero data.size() 783 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 784 isec->data = {nullptr, symbolOffset}; 785 } else { 786 nextIsec->data = isec->data.slice(symbolOffset); 787 isec->data = isec->data.slice(0, symbolOffset); 788 } 789 790 // By construction, the symbol will be at offset zero in the new 791 // subsection. 792 symbols[symIndex] = 793 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 794 // TODO: ld64 appears to preserve the original alignment as well as each 795 // subsection's offset from the last aligned address. We should consider 796 // emulating that behavior. 797 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 798 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 799 } 800 } 801 802 // Undefined symbols can trigger recursive fetch from Archives due to 803 // LazySymbols. Process defined symbols first so that the relative order 804 // between a defined symbol and an undefined symbol does not change the 805 // symbol resolution behavior. In addition, a set of interconnected symbols 806 // will all be resolved to the same file, instead of being resolved to 807 // different files. 808 for (unsigned i : undefineds) { 809 const NList &sym = nList[i]; 810 StringRef name = strtab + sym.n_strx; 811 symbols[i] = parseNonSectionSymbol(sym, name); 812 } 813 } 814 815 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 816 StringRef sectName) 817 : InputFile(OpaqueKind, mb) { 818 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 819 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 820 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16), 821 sectName.take_front(16), 822 /*flags=*/0, /*addr=*/0)); 823 Section §ion = *sections.back(); 824 ConcatInputSection *isec = make<ConcatInputSection>(section, data); 825 isec->live = true; 826 section.subsections.push_back({0, isec}); 827 } 828 829 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 830 bool lazy) 831 : InputFile(ObjKind, mb, lazy), modTime(modTime) { 832 this->archiveName = std::string(archiveName); 833 if (lazy) { 834 if (target->wordSize == 8) 835 parseLazy<LP64>(); 836 else 837 parseLazy<ILP32>(); 838 } else { 839 if (target->wordSize == 8) 840 parse<LP64>(); 841 else 842 parse<ILP32>(); 843 } 844 } 845 846 template <class LP> void ObjFile::parse() { 847 using Header = typename LP::mach_header; 848 using SegmentCommand = typename LP::segment_command; 849 using SectionHeader = typename LP::section; 850 using NList = typename LP::nlist; 851 852 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 853 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 854 855 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 856 if (arch != config->arch()) { 857 auto msg = config->errorForArchMismatch 858 ? static_cast<void (*)(const Twine &)>(error) 859 : warn; 860 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 861 " which is incompatible with target architecture " + 862 getArchitectureName(config->arch())); 863 return; 864 } 865 866 if (!checkCompatibility(this)) 867 return; 868 869 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 870 StringRef data{reinterpret_cast<const char *>(cmd + 1), 871 cmd->cmdsize - sizeof(linker_option_command)}; 872 parseLCLinkerOption(this, cmd->count, data); 873 } 874 875 ArrayRef<SectionHeader> sectionHeaders; 876 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 877 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 878 sectionHeaders = ArrayRef<SectionHeader>{ 879 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 880 parseSections(sectionHeaders); 881 } 882 883 // TODO: Error on missing LC_SYMTAB? 884 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 885 auto *c = reinterpret_cast<const symtab_command *>(cmd); 886 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 887 c->nsyms); 888 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 889 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 890 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 891 } 892 893 // The relocations may refer to the symbols, so we parse them after we have 894 // parsed all the symbols. 895 for (size_t i = 0, n = sections.size(); i < n; ++i) 896 if (!sections[i]->subsections.empty()) 897 parseRelocations(sectionHeaders, sectionHeaders[i], 898 sections[i]->subsections); 899 900 parseDebugInfo(); 901 if (compactUnwindSection) 902 registerCompactUnwind(); 903 } 904 905 template <class LP> void ObjFile::parseLazy() { 906 using Header = typename LP::mach_header; 907 using NList = typename LP::nlist; 908 909 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 910 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 911 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 912 if (!cmd) 913 return; 914 auto *c = reinterpret_cast<const symtab_command *>(cmd); 915 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 916 c->nsyms); 917 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 918 symbols.resize(nList.size()); 919 for (auto it : llvm::enumerate(nList)) { 920 const NList &sym = it.value(); 921 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 922 // TODO: Bound checking 923 StringRef name = strtab + sym.n_strx; 924 symbols[it.index()] = symtab->addLazyObject(name, *this); 925 if (!lazy) 926 break; 927 } 928 } 929 } 930 931 void ObjFile::parseDebugInfo() { 932 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 933 if (!dObj) 934 return; 935 936 auto *ctx = make<DWARFContext>( 937 std::move(dObj), "", 938 [&](Error err) { 939 warn(toString(this) + ": " + toString(std::move(err))); 940 }, 941 [&](Error warning) { 942 warn(toString(this) + ": " + toString(std::move(warning))); 943 }); 944 945 // TODO: Since object files can contain a lot of DWARF info, we should verify 946 // that we are parsing just the info we need 947 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 948 // FIXME: There can be more than one compile unit per object file. See 949 // PR48637. 950 auto it = units.begin(); 951 compileUnit = it->get(); 952 } 953 954 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 955 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 956 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 957 if (!cmd) 958 return {}; 959 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 960 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 961 c->datasize / sizeof(data_in_code_entry)}; 962 } 963 964 // Create pointers from symbols to their associated compact unwind entries. 965 void ObjFile::registerCompactUnwind() { 966 for (const Subsection &subsection : compactUnwindSection->subsections) { 967 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 968 // Hack!! Since each CUE contains a different function address, if ICF 969 // operated naively and compared the entire contents of each CUE, entries 970 // with identical unwind info but belonging to different functions would 971 // never be considered equivalent. To work around this problem, we slice 972 // away the function address here. (Note that we do not adjust the offsets 973 // of the corresponding relocations.) We rely on `relocateCompactUnwind()` 974 // to correctly handle these truncated input sections. 975 isec->data = isec->data.slice(target->wordSize); 976 977 ConcatInputSection *referentIsec; 978 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 979 Reloc &r = *it; 980 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 981 if (r.offset != 0) { 982 ++it; 983 continue; 984 } 985 uint64_t add = r.addend; 986 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 987 // Check whether the symbol defined in this file is the prevailing one. 988 // Skip if it is e.g. a weak def that didn't prevail. 989 if (sym->getFile() != this) { 990 ++it; 991 continue; 992 } 993 add += sym->value; 994 referentIsec = cast<ConcatInputSection>(sym->isec); 995 } else { 996 referentIsec = 997 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 998 } 999 if (referentIsec->getSegName() != segment_names::text) 1000 error(isec->getLocation(r.offset) + " references section " + 1001 referentIsec->getName() + " which is not in segment __TEXT"); 1002 // The functionAddress relocations are typically section relocations. 1003 // However, unwind info operates on a per-symbol basis, so we search for 1004 // the function symbol here. 1005 auto symIt = llvm::lower_bound( 1006 referentIsec->symbols, add, 1007 [](Defined *d, uint64_t add) { return d->value < add; }); 1008 // The relocation should point at the exact address of a symbol (with no 1009 // addend). 1010 if (symIt == referentIsec->symbols.end() || (*symIt)->value != add) { 1011 assert(referentIsec->wasCoalesced); 1012 ++it; 1013 continue; 1014 } 1015 (*symIt)->unwindEntry = isec; 1016 // Since we've sliced away the functionAddress, we should remove the 1017 // corresponding relocation too. Given that clang emits relocations in 1018 // reverse order of address, this relocation should be at the end of the 1019 // vector for most of our input object files, so this is typically an O(1) 1020 // operation. 1021 it = isec->relocs.erase(it); 1022 } 1023 } 1024 } 1025 1026 // The path can point to either a dylib or a .tbd file. 1027 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1028 Optional<MemoryBufferRef> mbref = readFile(path); 1029 if (!mbref) { 1030 error("could not read dylib file at " + path); 1031 return nullptr; 1032 } 1033 return loadDylib(*mbref, umbrella); 1034 } 1035 1036 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1037 // the first document storing child pointers to the rest of them. When we are 1038 // processing a given TBD file, we store that top-level document in 1039 // currentTopLevelTapi. When processing re-exports, we search its children for 1040 // potentially matching documents in the same TBD file. Note that the children 1041 // themselves don't point to further documents, i.e. this is a two-level tree. 1042 // 1043 // Re-exports can either refer to on-disk files, or to documents within .tbd 1044 // files. 1045 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1046 const InterfaceFile *currentTopLevelTapi) { 1047 // Search order: 1048 // 1. Install name basename in -F / -L directories. 1049 { 1050 StringRef stem = path::stem(path); 1051 SmallString<128> frameworkName; 1052 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1053 bool isFramework = path.endswith(frameworkName); 1054 if (isFramework) { 1055 for (StringRef dir : config->frameworkSearchPaths) { 1056 SmallString<128> candidate = dir; 1057 path::append(candidate, frameworkName); 1058 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1059 return loadDylib(*dylibPath, umbrella); 1060 } 1061 } else if (Optional<StringRef> dylibPath = findPathCombination( 1062 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1063 return loadDylib(*dylibPath, umbrella); 1064 } 1065 1066 // 2. As absolute path. 1067 if (path::is_absolute(path, path::Style::posix)) 1068 for (StringRef root : config->systemLibraryRoots) 1069 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1070 return loadDylib(*dylibPath, umbrella); 1071 1072 // 3. As relative path. 1073 1074 // TODO: Handle -dylib_file 1075 1076 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1077 SmallString<128> newPath; 1078 if (config->outputType == MH_EXECUTE && 1079 path.consume_front("@executable_path/")) { 1080 // ld64 allows overriding this with the undocumented flag -executable_path. 1081 // lld doesn't currently implement that flag. 1082 // FIXME: Consider using finalOutput instead of outputFile. 1083 path::append(newPath, path::parent_path(config->outputFile), path); 1084 path = newPath; 1085 } else if (path.consume_front("@loader_path/")) { 1086 fs::real_path(umbrella->getName(), newPath); 1087 path::remove_filename(newPath); 1088 path::append(newPath, path); 1089 path = newPath; 1090 } else if (path.startswith("@rpath/")) { 1091 for (StringRef rpath : umbrella->rpaths) { 1092 newPath.clear(); 1093 if (rpath.consume_front("@loader_path/")) { 1094 fs::real_path(umbrella->getName(), newPath); 1095 path::remove_filename(newPath); 1096 } 1097 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1098 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1099 return loadDylib(*dylibPath, umbrella); 1100 } 1101 } 1102 1103 // FIXME: Should this be further up? 1104 if (currentTopLevelTapi) { 1105 for (InterfaceFile &child : 1106 make_pointee_range(currentTopLevelTapi->documents())) { 1107 assert(child.documents().empty()); 1108 if (path == child.getInstallName()) { 1109 auto file = make<DylibFile>(child, umbrella); 1110 file->parseReexports(child); 1111 return file; 1112 } 1113 } 1114 } 1115 1116 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1117 return loadDylib(*dylibPath, umbrella); 1118 1119 return nullptr; 1120 } 1121 1122 // If a re-exported dylib is public (lives in /usr/lib or 1123 // /System/Library/Frameworks), then it is considered implicitly linked: we 1124 // should bind to its symbols directly instead of via the re-exporting umbrella 1125 // library. 1126 static bool isImplicitlyLinked(StringRef path) { 1127 if (!config->implicitDylibs) 1128 return false; 1129 1130 if (path::parent_path(path) == "/usr/lib") 1131 return true; 1132 1133 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1134 if (path.consume_front("/System/Library/Frameworks/")) { 1135 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1136 return path::filename(path) == frameworkName; 1137 } 1138 1139 return false; 1140 } 1141 1142 static void loadReexport(StringRef path, DylibFile *umbrella, 1143 const InterfaceFile *currentTopLevelTapi) { 1144 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1145 if (!reexport) 1146 error("unable to locate re-export with install name " + path); 1147 } 1148 1149 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1150 bool isBundleLoader) 1151 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1152 isBundleLoader(isBundleLoader) { 1153 assert(!isBundleLoader || !umbrella); 1154 if (umbrella == nullptr) 1155 umbrella = this; 1156 this->umbrella = umbrella; 1157 1158 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1159 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1160 1161 // Initialize installName. 1162 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1163 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1164 currentVersion = read32le(&c->dylib.current_version); 1165 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1166 installName = 1167 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1168 } else if (!isBundleLoader) { 1169 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1170 // so it's OK. 1171 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1172 return; 1173 } 1174 1175 if (config->printEachFile) 1176 message(toString(this)); 1177 inputFiles.insert(this); 1178 1179 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1180 1181 if (!checkCompatibility(this)) 1182 return; 1183 1184 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1185 1186 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1187 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1188 rpaths.push_back(rpath); 1189 } 1190 1191 // Initialize symbols. 1192 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1193 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1194 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1195 struct TrieEntry { 1196 StringRef name; 1197 uint64_t flags; 1198 }; 1199 1200 std::vector<TrieEntry> entries; 1201 // Find all the $ld$* symbols to process first. 1202 parseTrie(buf + c->export_off, c->export_size, 1203 [&](const Twine &name, uint64_t flags) { 1204 StringRef savedName = saver().save(name); 1205 if (handleLDSymbol(savedName)) 1206 return; 1207 entries.push_back({savedName, flags}); 1208 }); 1209 1210 // Process the "normal" symbols. 1211 for (TrieEntry &entry : entries) { 1212 if (exportingFile->hiddenSymbols.contains( 1213 CachedHashStringRef(entry.name))) 1214 continue; 1215 1216 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1217 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1218 1219 symbols.push_back( 1220 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1221 } 1222 1223 } else { 1224 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1225 return; 1226 } 1227 } 1228 1229 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1230 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1231 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1232 target->headerSize; 1233 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1234 auto *cmd = reinterpret_cast<const load_command *>(p); 1235 p += cmd->cmdsize; 1236 1237 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1238 cmd->cmd == LC_REEXPORT_DYLIB) { 1239 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1240 StringRef reexportPath = 1241 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1242 loadReexport(reexportPath, exportingFile, nullptr); 1243 } 1244 1245 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1246 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1247 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1248 if (config->namespaceKind == NamespaceKind::flat && 1249 cmd->cmd == LC_LOAD_DYLIB) { 1250 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1251 StringRef dylibPath = 1252 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1253 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1254 if (!dylib) 1255 error(Twine("unable to locate library '") + dylibPath + 1256 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1257 } 1258 } 1259 } 1260 1261 // Some versions of XCode ship with .tbd files that don't have the right 1262 // platform settings. 1263 constexpr std::array<StringRef, 4> skipPlatformChecks{ 1264 "/usr/lib/system/libsystem_kernel.dylib", 1265 "/usr/lib/system/libsystem_platform.dylib", 1266 "/usr/lib/system/libsystem_pthread.dylib", 1267 "/usr/lib/system/libcompiler_rt.dylib"}; 1268 1269 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1270 bool isBundleLoader) 1271 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1272 isBundleLoader(isBundleLoader) { 1273 // FIXME: Add test for the missing TBD code path. 1274 1275 if (umbrella == nullptr) 1276 umbrella = this; 1277 this->umbrella = umbrella; 1278 1279 installName = saver().save(interface.getInstallName()); 1280 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1281 currentVersion = interface.getCurrentVersion().rawValue(); 1282 1283 if (config->printEachFile) 1284 message(toString(this)); 1285 inputFiles.insert(this); 1286 1287 if (!is_contained(skipPlatformChecks, installName) && 1288 !is_contained(interface.targets(), config->platformInfo.target)) { 1289 error(toString(this) + " is incompatible with " + 1290 std::string(config->platformInfo.target)); 1291 return; 1292 } 1293 1294 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1295 1296 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1297 auto addSymbol = [&](const Twine &name) -> void { 1298 StringRef savedName = saver().save(name); 1299 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1300 return; 1301 1302 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1303 /*isWeakDef=*/false, 1304 /*isTlv=*/false)); 1305 }; 1306 1307 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1308 normalSymbols.reserve(interface.symbolsCount()); 1309 for (const auto *symbol : interface.symbols()) { 1310 if (!symbol->getArchitectures().has(config->arch())) 1311 continue; 1312 if (handleLDSymbol(symbol->getName())) 1313 continue; 1314 1315 switch (symbol->getKind()) { 1316 case SymbolKind::GlobalSymbol: // Fallthrough 1317 case SymbolKind::ObjectiveCClass: // Fallthrough 1318 case SymbolKind::ObjectiveCClassEHType: // Fallthrough 1319 case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough 1320 normalSymbols.push_back(symbol); 1321 } 1322 } 1323 1324 // TODO(compnerd) filter out symbols based on the target platform 1325 // TODO: handle weak defs, thread locals 1326 for (const auto *symbol : normalSymbols) { 1327 switch (symbol->getKind()) { 1328 case SymbolKind::GlobalSymbol: 1329 addSymbol(symbol->getName()); 1330 break; 1331 case SymbolKind::ObjectiveCClass: 1332 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1333 // want to emulate that. 1334 addSymbol(objc::klass + symbol->getName()); 1335 addSymbol(objc::metaclass + symbol->getName()); 1336 break; 1337 case SymbolKind::ObjectiveCClassEHType: 1338 addSymbol(objc::ehtype + symbol->getName()); 1339 break; 1340 case SymbolKind::ObjectiveCInstanceVariable: 1341 addSymbol(objc::ivar + symbol->getName()); 1342 break; 1343 } 1344 } 1345 } 1346 1347 void DylibFile::parseReexports(const InterfaceFile &interface) { 1348 const InterfaceFile *topLevel = 1349 interface.getParent() == nullptr ? &interface : interface.getParent(); 1350 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1351 InterfaceFile::const_target_range targets = intfRef.targets(); 1352 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1353 is_contained(targets, config->platformInfo.target)) 1354 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1355 } 1356 } 1357 1358 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1359 // name, compatibility version or hide/add symbols) for specific target 1360 // versions. 1361 bool DylibFile::handleLDSymbol(StringRef originalName) { 1362 if (!originalName.startswith("$ld$")) 1363 return false; 1364 1365 StringRef action; 1366 StringRef name; 1367 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1368 if (action == "previous") 1369 handleLDPreviousSymbol(name, originalName); 1370 else if (action == "install_name") 1371 handleLDInstallNameSymbol(name, originalName); 1372 else if (action == "hide") 1373 handleLDHideSymbol(name, originalName); 1374 return true; 1375 } 1376 1377 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1378 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1379 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1380 StringRef installName; 1381 StringRef compatVersion; 1382 StringRef platformStr; 1383 StringRef startVersion; 1384 StringRef endVersion; 1385 StringRef symbolName; 1386 StringRef rest; 1387 1388 std::tie(installName, name) = name.split('$'); 1389 std::tie(compatVersion, name) = name.split('$'); 1390 std::tie(platformStr, name) = name.split('$'); 1391 std::tie(startVersion, name) = name.split('$'); 1392 std::tie(endVersion, name) = name.split('$'); 1393 std::tie(symbolName, rest) = name.split('$'); 1394 // TODO: ld64 contains some logic for non-empty symbolName as well. 1395 if (!symbolName.empty()) 1396 return; 1397 unsigned platform; 1398 if (platformStr.getAsInteger(10, platform) || 1399 platform != static_cast<unsigned>(config->platform())) 1400 return; 1401 1402 VersionTuple start; 1403 if (start.tryParse(startVersion)) { 1404 warn("failed to parse start version, symbol '" + originalName + 1405 "' ignored"); 1406 return; 1407 } 1408 VersionTuple end; 1409 if (end.tryParse(endVersion)) { 1410 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1411 return; 1412 } 1413 if (config->platformInfo.minimum < start || 1414 config->platformInfo.minimum >= end) 1415 return; 1416 1417 this->installName = saver().save(installName); 1418 1419 if (!compatVersion.empty()) { 1420 VersionTuple cVersion; 1421 if (cVersion.tryParse(compatVersion)) { 1422 warn("failed to parse compatibility version, symbol '" + originalName + 1423 "' ignored"); 1424 return; 1425 } 1426 compatibilityVersion = encodeVersion(cVersion); 1427 } 1428 } 1429 1430 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1431 StringRef originalName) { 1432 // originalName: $ld$ install_name $ os<version> $ install_name 1433 StringRef condition, installName; 1434 std::tie(condition, installName) = name.split('$'); 1435 VersionTuple version; 1436 if (!condition.consume_front("os") || version.tryParse(condition)) 1437 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1438 else if (version == config->platformInfo.minimum) 1439 this->installName = saver().save(installName); 1440 } 1441 1442 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 1443 StringRef symbolName; 1444 bool shouldHide = true; 1445 if (name.startswith("os")) { 1446 // If it's hidden based on versions. 1447 name = name.drop_front(2); 1448 StringRef minVersion; 1449 std::tie(minVersion, symbolName) = name.split('$'); 1450 VersionTuple versionTup; 1451 if (versionTup.tryParse(minVersion)) { 1452 warn("Failed to parse hidden version, symbol `" + originalName + 1453 "` ignored."); 1454 return; 1455 } 1456 shouldHide = versionTup == config->platformInfo.minimum; 1457 } else { 1458 symbolName = name; 1459 } 1460 1461 if (shouldHide) 1462 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 1463 } 1464 1465 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1466 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1467 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1468 } 1469 1470 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1471 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1472 1473 void ArchiveFile::addLazySymbols() { 1474 for (const object::Archive::Symbol &sym : file->symbols()) 1475 symtab->addLazyArchive(sym.getName(), this, sym); 1476 } 1477 1478 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1479 uint32_t modTime, 1480 StringRef archiveName, 1481 uint64_t offsetInArchive) { 1482 if (config->zeroModTime) 1483 modTime = 0; 1484 1485 switch (identify_magic(mb.getBuffer())) { 1486 case file_magic::macho_object: 1487 return make<ObjFile>(mb, modTime, archiveName); 1488 case file_magic::bitcode: 1489 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1490 default: 1491 return createStringError(inconvertibleErrorCode(), 1492 mb.getBufferIdentifier() + 1493 " has unhandled file type"); 1494 } 1495 } 1496 1497 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1498 if (!seen.insert(c.getChildOffset()).second) 1499 return Error::success(); 1500 1501 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1502 if (!mb) 1503 return mb.takeError(); 1504 1505 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1506 if (tar && c.getParent()->isThin()) 1507 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1508 1509 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1510 if (!modTime) 1511 return modTime.takeError(); 1512 1513 Expected<InputFile *> file = 1514 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1515 1516 if (!file) 1517 return file.takeError(); 1518 1519 inputFiles.insert(*file); 1520 printArchiveMemberLoad(reason, *file); 1521 return Error::success(); 1522 } 1523 1524 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1525 object::Archive::Child c = 1526 CHECK(sym.getMember(), toString(this) + 1527 ": could not get the member defining symbol " + 1528 toMachOString(sym)); 1529 1530 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1531 // and become invalid after that call. Copy it to the stack so we can refer 1532 // to it later. 1533 const object::Archive::Symbol symCopy = sym; 1534 1535 // ld64 doesn't demangle sym here even with -demangle. 1536 // Match that: intentionally don't call toMachOString(). 1537 if (Error e = fetch(c, symCopy.getName())) 1538 error(toString(this) + ": could not get the member defining symbol " + 1539 toMachOString(symCopy) + ": " + toString(std::move(e))); 1540 } 1541 1542 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1543 BitcodeFile &file) { 1544 StringRef name = saver().save(objSym.getName()); 1545 1546 if (objSym.isUndefined()) 1547 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 1548 1549 // TODO: Write a test demonstrating why computing isPrivateExtern before 1550 // LTO compilation is important. 1551 bool isPrivateExtern = false; 1552 switch (objSym.getVisibility()) { 1553 case GlobalValue::HiddenVisibility: 1554 isPrivateExtern = true; 1555 break; 1556 case GlobalValue::ProtectedVisibility: 1557 error(name + " has protected visibility, which is not supported by Mach-O"); 1558 break; 1559 case GlobalValue::DefaultVisibility: 1560 break; 1561 } 1562 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable(); 1563 1564 if (objSym.isCommon()) 1565 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1566 objSym.getCommonAlignment(), isPrivateExtern); 1567 1568 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1569 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1570 /*isThumb=*/false, 1571 /*isReferencedDynamically=*/false, 1572 /*noDeadStrip=*/false, 1573 /*isWeakDefCanBeHidden=*/false); 1574 } 1575 1576 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1577 uint64_t offsetInArchive, bool lazy) 1578 : InputFile(BitcodeKind, mb, lazy) { 1579 this->archiveName = std::string(archiveName); 1580 std::string path = mb.getBufferIdentifier().str(); 1581 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1582 // name. If two members with the same name are provided, this causes a 1583 // collision and ThinLTO can't proceed. 1584 // So, we append the archive name to disambiguate two members with the same 1585 // name from multiple different archives, and offset within the archive to 1586 // disambiguate two members of the same name from a single archive. 1587 MemoryBufferRef mbref(mb.getBuffer(), 1588 saver().save(archiveName.empty() 1589 ? path 1590 : archiveName + 1591 sys::path::filename(path) + 1592 utostr(offsetInArchive))); 1593 1594 obj = check(lto::InputFile::create(mbref)); 1595 if (lazy) 1596 parseLazy(); 1597 else 1598 parse(); 1599 } 1600 1601 void BitcodeFile::parse() { 1602 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1603 // "winning" symbol will then be marked as Prevailing at LTO compilation 1604 // time. 1605 symbols.clear(); 1606 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1607 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1608 } 1609 1610 void BitcodeFile::parseLazy() { 1611 symbols.resize(obj->symbols().size()); 1612 for (auto it : llvm::enumerate(obj->symbols())) { 1613 const lto::InputFile::Symbol &objSym = it.value(); 1614 if (!objSym.isUndefined()) { 1615 symbols[it.index()] = 1616 symtab->addLazyObject(saver().save(objSym.getName()), *this); 1617 if (!lazy) 1618 break; 1619 } 1620 } 1621 } 1622 1623 void macho::extract(InputFile &file, StringRef reason) { 1624 assert(file.lazy); 1625 file.lazy = false; 1626 printArchiveMemberLoad(reason, &file); 1627 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 1628 bitcode->parse(); 1629 } else { 1630 auto &f = cast<ObjFile>(file); 1631 if (target->wordSize == 8) 1632 f.parse<LP64>(); 1633 else 1634 f.parse<ILP32>(); 1635 } 1636 } 1637 1638 template void ObjFile::parse<LP64>(); 1639