1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/CommonLinkerContext.h" 60 #include "lld/Common/DWARF.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/BinaryStreamReader.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/Support/TimeProfiler.h" 71 #include "llvm/TextAPI/Architecture.h" 72 #include "llvm/TextAPI/InterfaceFile.h" 73 74 #include <type_traits> 75 76 using namespace llvm; 77 using namespace llvm::MachO; 78 using namespace llvm::support::endian; 79 using namespace llvm::sys; 80 using namespace lld; 81 using namespace lld::macho; 82 83 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 84 std::string lld::toString(const InputFile *f) { 85 if (!f) 86 return "<internal>"; 87 88 // Multiple dylibs can be defined in one .tbd file. 89 if (auto dylibFile = dyn_cast<DylibFile>(f)) 90 if (f->getName().endswith(".tbd")) 91 return (f->getName() + "(" + dylibFile->installName + ")").str(); 92 93 if (f->archiveName.empty()) 94 return std::string(f->getName()); 95 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 96 } 97 98 std::string lld::toString(const Section &sec) { 99 return (toString(sec.file) + ":(" + sec.name + ")").str(); 100 } 101 102 SetVector<InputFile *> macho::inputFiles; 103 std::unique_ptr<TarWriter> macho::tar; 104 int InputFile::idCount = 0; 105 106 static VersionTuple decodeVersion(uint32_t version) { 107 unsigned major = version >> 16; 108 unsigned minor = (version >> 8) & 0xffu; 109 unsigned subMinor = version & 0xffu; 110 return VersionTuple(major, minor, subMinor); 111 } 112 113 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 114 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 115 return {}; 116 117 const char *hdr = input->mb.getBufferStart(); 118 119 // "Zippered" object files can have multiple LC_BUILD_VERSION load commands. 120 std::vector<PlatformInfo> platformInfos; 121 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 122 PlatformInfo info; 123 info.target.Platform = static_cast<PlatformType>(cmd->platform); 124 info.minimum = decodeVersion(cmd->minos); 125 platformInfos.emplace_back(std::move(info)); 126 } 127 for (auto *cmd : findCommands<version_min_command>( 128 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 129 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 130 PlatformInfo info; 131 switch (cmd->cmd) { 132 case LC_VERSION_MIN_MACOSX: 133 info.target.Platform = PLATFORM_MACOS; 134 break; 135 case LC_VERSION_MIN_IPHONEOS: 136 info.target.Platform = PLATFORM_IOS; 137 break; 138 case LC_VERSION_MIN_TVOS: 139 info.target.Platform = PLATFORM_TVOS; 140 break; 141 case LC_VERSION_MIN_WATCHOS: 142 info.target.Platform = PLATFORM_WATCHOS; 143 break; 144 } 145 info.minimum = decodeVersion(cmd->version); 146 platformInfos.emplace_back(std::move(info)); 147 } 148 149 return platformInfos; 150 } 151 152 static bool checkCompatibility(const InputFile *input) { 153 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 154 if (platformInfos.empty()) 155 return true; 156 157 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 158 return removeSimulator(info.target.Platform) == 159 removeSimulator(config->platform()); 160 }); 161 if (it == platformInfos.end()) { 162 std::string platformNames; 163 raw_string_ostream os(platformNames); 164 interleave( 165 platformInfos, os, 166 [&](const PlatformInfo &info) { 167 os << getPlatformName(info.target.Platform); 168 }, 169 "/"); 170 error(toString(input) + " has platform " + platformNames + 171 Twine(", which is different from target platform ") + 172 getPlatformName(config->platform())); 173 return false; 174 } 175 176 if (it->minimum > config->platformInfo.minimum) 177 warn(toString(input) + " has version " + it->minimum.getAsString() + 178 ", which is newer than target minimum of " + 179 config->platformInfo.minimum.getAsString()); 180 181 return true; 182 } 183 184 // This cache mostly exists to store system libraries (and .tbds) as they're 185 // loaded, rather than the input archives, which are already cached at a higher 186 // level, and other files like the filelist that are only read once. 187 // Theoretically this caching could be more efficient by hoisting it, but that 188 // would require altering many callers to track the state. 189 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 190 // Open a given file path and return it as a memory-mapped file. 191 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 192 CachedHashStringRef key(path); 193 auto entry = cachedReads.find(key); 194 if (entry != cachedReads.end()) 195 return entry->second; 196 197 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 198 if (std::error_code ec = mbOrErr.getError()) { 199 error("cannot open " + path + ": " + ec.message()); 200 return None; 201 } 202 203 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 204 MemoryBufferRef mbref = mb->getMemBufferRef(); 205 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 206 207 // If this is a regular non-fat file, return it. 208 const char *buf = mbref.getBufferStart(); 209 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 210 if (mbref.getBufferSize() < sizeof(uint32_t) || 211 read32be(&hdr->magic) != FAT_MAGIC) { 212 if (tar) 213 tar->append(relativeToRoot(path), mbref.getBuffer()); 214 return cachedReads[key] = mbref; 215 } 216 217 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); 218 219 // Object files and archive files may be fat files, which contain multiple 220 // real files for different CPU ISAs. Here, we search for a file that matches 221 // with the current link target and returns it as a MemoryBufferRef. 222 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 223 224 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 225 if (reinterpret_cast<const char *>(arch + i + 1) > 226 buf + mbref.getBufferSize()) { 227 error(path + ": fat_arch struct extends beyond end of file"); 228 return None; 229 } 230 231 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 232 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 233 continue; 234 235 uint32_t offset = read32be(&arch[i].offset); 236 uint32_t size = read32be(&arch[i].size); 237 if (offset + size > mbref.getBufferSize()) 238 error(path + ": slice extends beyond end of file"); 239 if (tar) 240 tar->append(relativeToRoot(path), mbref.getBuffer()); 241 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 242 path.copy(bAlloc)); 243 } 244 245 error("unable to find matching architecture in " + path); 246 return None; 247 } 248 249 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 250 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} 251 252 // Some sections comprise of fixed-size records, so instead of splitting them at 253 // symbol boundaries, we split them based on size. Records are distinct from 254 // literals in that they may contain references to other sections, instead of 255 // being leaf nodes in the InputSection graph. 256 // 257 // Note that "record" is a term I came up with. In contrast, "literal" is a term 258 // used by the Mach-O format. 259 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 260 if (name == section_names::compactUnwind) { 261 if (segname == segment_names::ld) 262 return target->wordSize == 8 ? 32 : 20; 263 } 264 if (config->icfLevel == ICFLevel::none) 265 return {}; 266 267 if (name == section_names::cfString && segname == segment_names::data) 268 return target->wordSize == 8 ? 32 : 16; 269 if (name == section_names::objcClassRefs && segname == segment_names::data) 270 return target->wordSize; 271 return {}; 272 } 273 274 static Error parseCallGraph(ArrayRef<uint8_t> data, 275 std::vector<CallGraphEntry> &callGraph) { 276 TimeTraceScope timeScope("Parsing call graph section"); 277 BinaryStreamReader reader(data, support::little); 278 while (!reader.empty()) { 279 uint32_t fromIndex, toIndex; 280 uint64_t count; 281 if (Error err = reader.readInteger(fromIndex)) 282 return err; 283 if (Error err = reader.readInteger(toIndex)) 284 return err; 285 if (Error err = reader.readInteger(count)) 286 return err; 287 callGraph.emplace_back(fromIndex, toIndex, count); 288 } 289 return Error::success(); 290 } 291 292 // Parse the sequence of sections within a single LC_SEGMENT(_64). 293 // Split each section into subsections. 294 template <class SectionHeader> 295 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 296 sections.reserve(sectionHeaders.size()); 297 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 298 299 for (const SectionHeader &sec : sectionHeaders) { 300 StringRef name = 301 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 302 StringRef segname = 303 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 304 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr)); 305 if (sec.align >= 32) { 306 error("alignment " + std::to_string(sec.align) + " of section " + name + 307 " is too large"); 308 continue; 309 } 310 Section §ion = *sections.back(); 311 uint32_t align = 1 << sec.align; 312 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 313 : buf + sec.offset, 314 static_cast<size_t>(sec.size)}; 315 316 auto splitRecords = [&](int recordSize) -> void { 317 if (data.empty()) 318 return; 319 Subsections &subsections = section.subsections; 320 subsections.reserve(data.size() / recordSize); 321 for (uint64_t off = 0; off < data.size(); off += recordSize) { 322 auto *isec = make<ConcatInputSection>( 323 section, data.slice(off, recordSize), align); 324 subsections.push_back({off, isec}); 325 } 326 }; 327 328 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 329 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 330 if (sec.nreloc && config->dedupLiterals) 331 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 332 sec.sectname + 333 ", so LLD cannot deduplicate literals. Try re-running without " 334 "--deduplicate-literals."); 335 336 InputSection *isec; 337 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 338 isec = make<CStringInputSection>(section, data, align); 339 // FIXME: parallelize this? 340 cast<CStringInputSection>(isec)->splitIntoPieces(); 341 } else { 342 isec = make<WordLiteralInputSection>(section, data, align); 343 } 344 section.subsections.push_back({0, isec}); 345 } else if (auto recordSize = getRecordSize(segname, name)) { 346 splitRecords(*recordSize); 347 } else if (segname == segment_names::llvm) { 348 if (config->callGraphProfileSort && name == section_names::cgProfile) 349 checkError(parseCallGraph(data, callGraph)); 350 // ld64 does not appear to emit contents from sections within the __LLVM 351 // segment. Symbols within those sections point to bitcode metadata 352 // instead of actual symbols. Global symbols within those sections could 353 // have the same name without causing duplicate symbol errors. To avoid 354 // spurious duplicate symbol errors, we do not parse these sections. 355 // TODO: Evaluate whether the bitcode metadata is needed. 356 } else { 357 if (name == section_names::addrSig) 358 addrSigSection = sections.back(); 359 360 auto *isec = make<ConcatInputSection>(section, data, align); 361 if (isDebugSection(isec->getFlags()) && 362 isec->getSegName() == segment_names::dwarf) { 363 // Instead of emitting DWARF sections, we emit STABS symbols to the 364 // object files that contain them. We filter them out early to avoid 365 // parsing their relocations unnecessarily. 366 debugSections.push_back(isec); 367 } else { 368 section.subsections.push_back({0, isec}); 369 } 370 } 371 } 372 } 373 374 // Find the subsection corresponding to the greatest section offset that is <= 375 // that of the given offset. 376 // 377 // offset: an offset relative to the start of the original InputSection (before 378 // any subsection splitting has occurred). It will be updated to represent the 379 // same location as an offset relative to the start of the containing 380 // subsection. 381 template <class T> 382 static InputSection *findContainingSubsection(const Section §ion, 383 T *offset) { 384 static_assert(std::is_same<uint64_t, T>::value || 385 std::is_same<uint32_t, T>::value, 386 "unexpected type for offset"); 387 auto it = std::prev(llvm::upper_bound( 388 section.subsections, *offset, 389 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 390 *offset -= it->offset; 391 return it->isec; 392 } 393 394 // Find a symbol at offset `off` within `isec`. 395 static Defined *findSymbolAtOffset(const ConcatInputSection *isec, 396 uint64_t off) { 397 auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) { 398 return d->value < off; 399 }); 400 // The offset should point at the exact address of a symbol (with no addend.) 401 if (it == isec->symbols.end() || (*it)->value != off) { 402 assert(isec->wasCoalesced); 403 return nullptr; 404 } 405 return *it; 406 } 407 408 template <class SectionHeader> 409 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 410 relocation_info rel) { 411 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 412 bool valid = true; 413 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 414 valid = false; 415 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 416 std::to_string(rel.r_address) + " of " + sec.segname + "," + 417 sec.sectname + " in " + toString(file)) 418 .str(); 419 }; 420 421 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 422 error(message("must be extern")); 423 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 424 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 425 "be PC-relative")); 426 if (isThreadLocalVariables(sec.flags) && 427 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 428 error(message("not allowed in thread-local section, must be UNSIGNED")); 429 if (rel.r_length < 2 || rel.r_length > 3 || 430 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 431 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 432 error(message("has width " + std::to_string(1 << rel.r_length) + 433 " bytes, but must be " + 434 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 435 " bytes")); 436 } 437 return valid; 438 } 439 440 template <class SectionHeader> 441 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 442 const SectionHeader &sec, 443 Section §ion) { 444 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 445 ArrayRef<relocation_info> relInfos( 446 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 447 448 Subsections &subsections = section.subsections; 449 auto subsecIt = subsections.rbegin(); 450 for (size_t i = 0; i < relInfos.size(); i++) { 451 // Paired relocations serve as Mach-O's method for attaching a 452 // supplemental datum to a primary relocation record. ELF does not 453 // need them because the *_RELOC_RELA records contain the extra 454 // addend field, vs. *_RELOC_REL which omit the addend. 455 // 456 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 457 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 458 // datum for each is a symbolic address. The result is the offset 459 // between two addresses. 460 // 461 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 462 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 463 // base symbolic address. 464 // 465 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 466 // addend into the instruction stream. On X86, a relocatable address 467 // field always occupies an entire contiguous sequence of byte(s), 468 // so there is no need to merge opcode bits with address 469 // bits. Therefore, it's easy and convenient to store addends in the 470 // instruction-stream bytes that would otherwise contain zeroes. By 471 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 472 // address bits so that bitwise arithmetic is necessary to extract 473 // and insert them. Storing addends in the instruction stream is 474 // possible, but inconvenient and more costly at link time. 475 476 relocation_info relInfo = relInfos[i]; 477 bool isSubtrahend = 478 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 479 if (isSubtrahend && StringRef(sec.sectname) == section_names::ehFrame) { 480 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 481 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 482 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 483 ++i; 484 continue; 485 } 486 int64_t pairedAddend = 0; 487 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 488 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 489 relInfo = relInfos[++i]; 490 } 491 assert(i < relInfos.size()); 492 if (!validateRelocationInfo(this, sec, relInfo)) 493 continue; 494 if (relInfo.r_address & R_SCATTERED) 495 fatal("TODO: Scattered relocations not supported"); 496 497 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 498 assert(!(embeddedAddend && pairedAddend)); 499 int64_t totalAddend = pairedAddend + embeddedAddend; 500 Reloc r; 501 r.type = relInfo.r_type; 502 r.pcrel = relInfo.r_pcrel; 503 r.length = relInfo.r_length; 504 r.offset = relInfo.r_address; 505 if (relInfo.r_extern) { 506 r.referent = symbols[relInfo.r_symbolnum]; 507 r.addend = isSubtrahend ? 0 : totalAddend; 508 } else { 509 assert(!isSubtrahend); 510 const SectionHeader &referentSecHead = 511 sectionHeaders[relInfo.r_symbolnum - 1]; 512 uint64_t referentOffset; 513 if (relInfo.r_pcrel) { 514 // The implicit addend for pcrel section relocations is the pcrel offset 515 // in terms of the addresses in the input file. Here we adjust it so 516 // that it describes the offset from the start of the referent section. 517 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 518 // have pcrel section relocations. We may want to factor this out into 519 // the arch-specific .cpp file. 520 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 521 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 522 referentSecHead.addr; 523 } else { 524 // The addend for a non-pcrel relocation is its absolute address. 525 referentOffset = totalAddend - referentSecHead.addr; 526 } 527 r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1], 528 &referentOffset); 529 r.addend = referentOffset; 530 } 531 532 // Find the subsection that this relocation belongs to. 533 // Though not required by the Mach-O format, clang and gcc seem to emit 534 // relocations in order, so let's take advantage of it. However, ld64 emits 535 // unsorted relocations (in `-r` mode), so we have a fallback for that 536 // uncommon case. 537 InputSection *subsec; 538 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 539 ++subsecIt; 540 if (subsecIt == subsections.rend() || 541 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 542 subsec = findContainingSubsection(section, &r.offset); 543 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 544 // for the other relocations. 545 subsecIt = subsections.rend(); 546 } else { 547 subsec = subsecIt->isec; 548 r.offset -= subsecIt->offset; 549 } 550 subsec->relocs.push_back(r); 551 552 if (isSubtrahend) { 553 relocation_info minuendInfo = relInfos[++i]; 554 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 555 // attached to the same address. 556 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 557 relInfo.r_address == minuendInfo.r_address); 558 Reloc p; 559 p.type = minuendInfo.r_type; 560 if (minuendInfo.r_extern) { 561 p.referent = symbols[minuendInfo.r_symbolnum]; 562 p.addend = totalAddend; 563 } else { 564 uint64_t referentOffset = 565 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 566 p.referent = findContainingSubsection( 567 *sections[minuendInfo.r_symbolnum - 1], &referentOffset); 568 p.addend = referentOffset; 569 } 570 subsec->relocs.push_back(p); 571 } 572 } 573 } 574 575 template <class NList> 576 static macho::Symbol *createDefined(const NList &sym, StringRef name, 577 InputSection *isec, uint64_t value, 578 uint64_t size) { 579 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 580 // N_EXT: Global symbols. These go in the symbol table during the link, 581 // and also in the export table of the output so that the dynamic 582 // linker sees them. 583 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 584 // symbol table during the link so that duplicates are 585 // either reported (for non-weak symbols) or merged 586 // (for weak symbols), but they do not go in the export 587 // table of the output. 588 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 589 // object files) may produce them. LLD does not yet support -r. 590 // These are translation-unit scoped, identical to the `0` case. 591 // 0: Translation-unit scoped. These are not in the symbol table during 592 // link, and not in the export table of the output either. 593 bool isWeakDefCanBeHidden = 594 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 595 596 if (sym.n_type & N_EXT) { 597 bool isPrivateExtern = sym.n_type & N_PEXT; 598 // lld's behavior for merging symbols is slightly different from ld64: 599 // ld64 picks the winning symbol based on several criteria (see 600 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 601 // just merges metadata and keeps the contents of the first symbol 602 // with that name (see SymbolTable::addDefined). For: 603 // * inline function F in a TU built with -fvisibility-inlines-hidden 604 // * and inline function F in another TU built without that flag 605 // ld64 will pick the one from the file built without 606 // -fvisibility-inlines-hidden. 607 // lld will instead pick the one listed first on the link command line and 608 // give it visibility as if the function was built without 609 // -fvisibility-inlines-hidden. 610 // If both functions have the same contents, this will have the same 611 // behavior. If not, it won't, but the input had an ODR violation in 612 // that case. 613 // 614 // Similarly, merging a symbol 615 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 616 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 617 // should produce one 618 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 619 // with ld64's semantics, because it means the non-private-extern 620 // definition will continue to take priority if more private extern 621 // definitions are encountered. With lld's semantics there's no observable 622 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 623 // that's privateExtern -- neither makes it into the dynamic symbol table, 624 // unless the autohide symbol is explicitly exported. 625 // But if a symbol is both privateExtern and autohide then it can't 626 // be exported. 627 // So we nullify the autohide flag when privateExtern is present 628 // and promote the symbol to privateExtern when it is not already. 629 if (isWeakDefCanBeHidden && isPrivateExtern) 630 isWeakDefCanBeHidden = false; 631 else if (isWeakDefCanBeHidden) 632 isPrivateExtern = true; 633 return symtab->addDefined( 634 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 635 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 636 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 637 isWeakDefCanBeHidden); 638 } 639 assert(!isWeakDefCanBeHidden && 640 "weak_def_can_be_hidden on already-hidden symbol?"); 641 bool includeInSymtab = !name.startswith("l") && !name.startswith("L"); 642 return make<Defined>( 643 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 644 /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab, 645 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 646 sym.n_desc & N_NO_DEAD_STRIP); 647 } 648 649 // Absolute symbols are defined symbols that do not have an associated 650 // InputSection. They cannot be weak. 651 template <class NList> 652 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 653 StringRef name) { 654 if (sym.n_type & N_EXT) { 655 return symtab->addDefined( 656 name, file, nullptr, sym.n_value, /*size=*/0, 657 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 658 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 659 /*isWeakDefCanBeHidden=*/false); 660 } 661 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 662 /*isWeakDef=*/false, 663 /*isExternal=*/false, /*isPrivateExtern=*/false, 664 /*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF, 665 /*isReferencedDynamically=*/false, 666 sym.n_desc & N_NO_DEAD_STRIP); 667 } 668 669 template <class NList> 670 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 671 StringRef name) { 672 uint8_t type = sym.n_type & N_TYPE; 673 switch (type) { 674 case N_UNDF: 675 return sym.n_value == 0 676 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 677 : symtab->addCommon(name, this, sym.n_value, 678 1 << GET_COMM_ALIGN(sym.n_desc), 679 sym.n_type & N_PEXT); 680 case N_ABS: 681 return createAbsolute(sym, this, name); 682 case N_PBUD: 683 case N_INDR: 684 error("TODO: support symbols of type " + std::to_string(type)); 685 return nullptr; 686 case N_SECT: 687 llvm_unreachable( 688 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 689 default: 690 llvm_unreachable("invalid symbol type"); 691 } 692 } 693 694 template <class NList> static bool isUndef(const NList &sym) { 695 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 696 } 697 698 template <class LP> 699 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 700 ArrayRef<typename LP::nlist> nList, 701 const char *strtab, bool subsectionsViaSymbols) { 702 using NList = typename LP::nlist; 703 704 // Groups indices of the symbols by the sections that contain them. 705 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 706 symbols.resize(nList.size()); 707 SmallVector<unsigned, 32> undefineds; 708 for (uint32_t i = 0; i < nList.size(); ++i) { 709 const NList &sym = nList[i]; 710 711 // Ignore debug symbols for now. 712 // FIXME: may need special handling. 713 if (sym.n_type & N_STAB) 714 continue; 715 716 StringRef name = strtab + sym.n_strx; 717 if ((sym.n_type & N_TYPE) == N_SECT) { 718 Subsections &subsections = sections[sym.n_sect - 1]->subsections; 719 // parseSections() may have chosen not to parse this section. 720 if (subsections.empty()) 721 continue; 722 symbolsBySection[sym.n_sect - 1].push_back(i); 723 } else if (isUndef(sym)) { 724 undefineds.push_back(i); 725 } else { 726 symbols[i] = parseNonSectionSymbol(sym, name); 727 } 728 } 729 730 for (size_t i = 0; i < sections.size(); ++i) { 731 Subsections &subsections = sections[i]->subsections; 732 if (subsections.empty()) 733 continue; 734 if (sections[i]->name == section_names::ehFrame) { 735 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 736 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 737 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 738 continue; 739 } 740 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 741 uint64_t sectionAddr = sectionHeaders[i].addr; 742 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 743 744 // Record-based sections have already been split into subsections during 745 // parseSections(), so we simply need to match Symbols to the corresponding 746 // subsection here. 747 if (getRecordSize(sections[i]->segname, sections[i]->name)) { 748 for (size_t j = 0; j < symbolIndices.size(); ++j) { 749 uint32_t symIndex = symbolIndices[j]; 750 const NList &sym = nList[symIndex]; 751 StringRef name = strtab + sym.n_strx; 752 uint64_t symbolOffset = sym.n_value - sectionAddr; 753 InputSection *isec = 754 findContainingSubsection(*sections[i], &symbolOffset); 755 if (symbolOffset != 0) { 756 error(toString(*sections[i]) + ": symbol " + name + 757 " at misaligned offset"); 758 continue; 759 } 760 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 761 } 762 continue; 763 } 764 765 // Calculate symbol sizes and create subsections by splitting the sections 766 // along symbol boundaries. 767 // We populate subsections by repeatedly splitting the last (highest 768 // address) subsection. 769 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 770 return nList[lhs].n_value < nList[rhs].n_value; 771 }); 772 for (size_t j = 0; j < symbolIndices.size(); ++j) { 773 uint32_t symIndex = symbolIndices[j]; 774 const NList &sym = nList[symIndex]; 775 StringRef name = strtab + sym.n_strx; 776 Subsection &subsec = subsections.back(); 777 InputSection *isec = subsec.isec; 778 779 uint64_t subsecAddr = sectionAddr + subsec.offset; 780 size_t symbolOffset = sym.n_value - subsecAddr; 781 uint64_t symbolSize = 782 j + 1 < symbolIndices.size() 783 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 784 : isec->data.size() - symbolOffset; 785 // There are 4 cases where we do not need to create a new subsection: 786 // 1. If the input file does not use subsections-via-symbols. 787 // 2. Multiple symbols at the same address only induce one subsection. 788 // (The symbolOffset == 0 check covers both this case as well as 789 // the first loop iteration.) 790 // 3. Alternative entry points do not induce new subsections. 791 // 4. If we have a literal section (e.g. __cstring and __literal4). 792 if (!subsectionsViaSymbols || symbolOffset == 0 || 793 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 794 symbols[symIndex] = 795 createDefined(sym, name, isec, symbolOffset, symbolSize); 796 continue; 797 } 798 auto *concatIsec = cast<ConcatInputSection>(isec); 799 800 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 801 nextIsec->wasCoalesced = false; 802 if (isZeroFill(isec->getFlags())) { 803 // Zero-fill sections have NULL data.data() non-zero data.size() 804 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 805 isec->data = {nullptr, symbolOffset}; 806 } else { 807 nextIsec->data = isec->data.slice(symbolOffset); 808 isec->data = isec->data.slice(0, symbolOffset); 809 } 810 811 // By construction, the symbol will be at offset zero in the new 812 // subsection. 813 symbols[symIndex] = 814 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 815 // TODO: ld64 appears to preserve the original alignment as well as each 816 // subsection's offset from the last aligned address. We should consider 817 // emulating that behavior. 818 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 819 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 820 } 821 } 822 823 // Undefined symbols can trigger recursive fetch from Archives due to 824 // LazySymbols. Process defined symbols first so that the relative order 825 // between a defined symbol and an undefined symbol does not change the 826 // symbol resolution behavior. In addition, a set of interconnected symbols 827 // will all be resolved to the same file, instead of being resolved to 828 // different files. 829 for (unsigned i : undefineds) { 830 const NList &sym = nList[i]; 831 StringRef name = strtab + sym.n_strx; 832 symbols[i] = parseNonSectionSymbol(sym, name); 833 } 834 } 835 836 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 837 StringRef sectName) 838 : InputFile(OpaqueKind, mb) { 839 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 840 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 841 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16), 842 sectName.take_front(16), 843 /*flags=*/0, /*addr=*/0)); 844 Section §ion = *sections.back(); 845 ConcatInputSection *isec = make<ConcatInputSection>(section, data); 846 isec->live = true; 847 section.subsections.push_back({0, isec}); 848 } 849 850 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 851 bool lazy) 852 : InputFile(ObjKind, mb, lazy), modTime(modTime) { 853 this->archiveName = std::string(archiveName); 854 if (lazy) { 855 if (target->wordSize == 8) 856 parseLazy<LP64>(); 857 else 858 parseLazy<ILP32>(); 859 } else { 860 if (target->wordSize == 8) 861 parse<LP64>(); 862 else 863 parse<ILP32>(); 864 } 865 } 866 867 template <class LP> void ObjFile::parse() { 868 using Header = typename LP::mach_header; 869 using SegmentCommand = typename LP::segment_command; 870 using SectionHeader = typename LP::section; 871 using NList = typename LP::nlist; 872 873 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 874 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 875 876 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 877 if (arch != config->arch()) { 878 auto msg = config->errorForArchMismatch 879 ? static_cast<void (*)(const Twine &)>(error) 880 : warn; 881 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 882 " which is incompatible with target architecture " + 883 getArchitectureName(config->arch())); 884 return; 885 } 886 887 if (!checkCompatibility(this)) 888 return; 889 890 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 891 StringRef data{reinterpret_cast<const char *>(cmd + 1), 892 cmd->cmdsize - sizeof(linker_option_command)}; 893 parseLCLinkerOption(this, cmd->count, data); 894 } 895 896 ArrayRef<SectionHeader> sectionHeaders; 897 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 898 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 899 sectionHeaders = ArrayRef<SectionHeader>{ 900 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 901 parseSections(sectionHeaders); 902 } 903 904 // TODO: Error on missing LC_SYMTAB? 905 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 906 auto *c = reinterpret_cast<const symtab_command *>(cmd); 907 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 908 c->nsyms); 909 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 910 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 911 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 912 } 913 914 // The relocations may refer to the symbols, so we parse them after we have 915 // parsed all the symbols. 916 for (size_t i = 0, n = sections.size(); i < n; ++i) 917 if (!sections[i]->subsections.empty()) 918 parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]); 919 920 parseDebugInfo(); 921 922 Section *ehFrameSection = nullptr; 923 Section *compactUnwindSection = nullptr; 924 for (Section *sec : sections) { 925 Section **s = StringSwitch<Section **>(sec->name) 926 .Case(section_names::compactUnwind, &compactUnwindSection) 927 .Case(section_names::ehFrame, &ehFrameSection) 928 .Default(nullptr); 929 if (s) 930 *s = sec; 931 } 932 if (compactUnwindSection) 933 registerCompactUnwind(*compactUnwindSection); 934 } 935 936 template <class LP> void ObjFile::parseLazy() { 937 using Header = typename LP::mach_header; 938 using NList = typename LP::nlist; 939 940 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 941 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 942 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 943 if (!cmd) 944 return; 945 auto *c = reinterpret_cast<const symtab_command *>(cmd); 946 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 947 c->nsyms); 948 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 949 symbols.resize(nList.size()); 950 for (auto it : llvm::enumerate(nList)) { 951 const NList &sym = it.value(); 952 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 953 // TODO: Bound checking 954 StringRef name = strtab + sym.n_strx; 955 symbols[it.index()] = symtab->addLazyObject(name, *this); 956 if (!lazy) 957 break; 958 } 959 } 960 } 961 962 void ObjFile::parseDebugInfo() { 963 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 964 if (!dObj) 965 return; 966 967 auto *ctx = make<DWARFContext>( 968 std::move(dObj), "", 969 [&](Error err) { 970 warn(toString(this) + ": " + toString(std::move(err))); 971 }, 972 [&](Error warning) { 973 warn(toString(this) + ": " + toString(std::move(warning))); 974 }); 975 976 // TODO: Since object files can contain a lot of DWARF info, we should verify 977 // that we are parsing just the info we need 978 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 979 // FIXME: There can be more than one compile unit per object file. See 980 // PR48637. 981 auto it = units.begin(); 982 compileUnit = it->get(); 983 } 984 985 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 986 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 987 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 988 if (!cmd) 989 return {}; 990 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 991 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 992 c->datasize / sizeof(data_in_code_entry)}; 993 } 994 995 // Create pointers from symbols to their associated compact unwind entries. 996 void ObjFile::registerCompactUnwind(Section &compactUnwindSection) { 997 for (const Subsection &subsection : compactUnwindSection.subsections) { 998 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 999 // Hack!! Since each CUE contains a different function address, if ICF 1000 // operated naively and compared the entire contents of each CUE, entries 1001 // with identical unwind info but belonging to different functions would 1002 // never be considered equivalent. To work around this problem, we slice 1003 // away the function address here. (Note that we do not adjust the offsets 1004 // of the corresponding relocations.) We rely on `relocateCompactUnwind()` 1005 // to correctly handle these truncated input sections. 1006 isec->data = isec->data.slice(target->wordSize); 1007 1008 ConcatInputSection *referentIsec; 1009 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 1010 Reloc &r = *it; 1011 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 1012 if (r.offset != 0) { 1013 ++it; 1014 continue; 1015 } 1016 uint64_t add = r.addend; 1017 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 1018 // Check whether the symbol defined in this file is the prevailing one. 1019 // Skip if it is e.g. a weak def that didn't prevail. 1020 if (sym->getFile() != this) { 1021 ++it; 1022 continue; 1023 } 1024 add += sym->value; 1025 referentIsec = cast<ConcatInputSection>(sym->isec); 1026 } else { 1027 referentIsec = 1028 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 1029 } 1030 // Unwind info lives in __DATA, and finalization of __TEXT will occur 1031 // before finalization of __DATA. Moreover, the finalization of unwind 1032 // info depends on the exact addresses that it references. So it is safe 1033 // for compact unwind to reference addresses in __TEXT, but not addresses 1034 // in any other segment. 1035 if (referentIsec->getSegName() != segment_names::text) 1036 error(isec->getLocation(r.offset) + " references section " + 1037 referentIsec->getName() + " which is not in segment __TEXT"); 1038 // The functionAddress relocations are typically section relocations. 1039 // However, unwind info operates on a per-symbol basis, so we search for 1040 // the function symbol here. 1041 Defined *d = findSymbolAtOffset(referentIsec, add); 1042 if (!d) { 1043 ++it; 1044 continue; 1045 } 1046 d->unwindEntry = isec; 1047 // Since we've sliced away the functionAddress, we should remove the 1048 // corresponding relocation too. Given that clang emits relocations in 1049 // reverse order of address, this relocation should be at the end of the 1050 // vector for most of our input object files, so this is typically an O(1) 1051 // operation. 1052 it = isec->relocs.erase(it); 1053 } 1054 } 1055 } 1056 1057 // The path can point to either a dylib or a .tbd file. 1058 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1059 Optional<MemoryBufferRef> mbref = readFile(path); 1060 if (!mbref) { 1061 error("could not read dylib file at " + path); 1062 return nullptr; 1063 } 1064 return loadDylib(*mbref, umbrella); 1065 } 1066 1067 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1068 // the first document storing child pointers to the rest of them. When we are 1069 // processing a given TBD file, we store that top-level document in 1070 // currentTopLevelTapi. When processing re-exports, we search its children for 1071 // potentially matching documents in the same TBD file. Note that the children 1072 // themselves don't point to further documents, i.e. this is a two-level tree. 1073 // 1074 // Re-exports can either refer to on-disk files, or to documents within .tbd 1075 // files. 1076 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1077 const InterfaceFile *currentTopLevelTapi) { 1078 // Search order: 1079 // 1. Install name basename in -F / -L directories. 1080 { 1081 StringRef stem = path::stem(path); 1082 SmallString<128> frameworkName; 1083 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1084 bool isFramework = path.endswith(frameworkName); 1085 if (isFramework) { 1086 for (StringRef dir : config->frameworkSearchPaths) { 1087 SmallString<128> candidate = dir; 1088 path::append(candidate, frameworkName); 1089 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1090 return loadDylib(*dylibPath, umbrella); 1091 } 1092 } else if (Optional<StringRef> dylibPath = findPathCombination( 1093 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1094 return loadDylib(*dylibPath, umbrella); 1095 } 1096 1097 // 2. As absolute path. 1098 if (path::is_absolute(path, path::Style::posix)) 1099 for (StringRef root : config->systemLibraryRoots) 1100 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1101 return loadDylib(*dylibPath, umbrella); 1102 1103 // 3. As relative path. 1104 1105 // TODO: Handle -dylib_file 1106 1107 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1108 SmallString<128> newPath; 1109 if (config->outputType == MH_EXECUTE && 1110 path.consume_front("@executable_path/")) { 1111 // ld64 allows overriding this with the undocumented flag -executable_path. 1112 // lld doesn't currently implement that flag. 1113 // FIXME: Consider using finalOutput instead of outputFile. 1114 path::append(newPath, path::parent_path(config->outputFile), path); 1115 path = newPath; 1116 } else if (path.consume_front("@loader_path/")) { 1117 fs::real_path(umbrella->getName(), newPath); 1118 path::remove_filename(newPath); 1119 path::append(newPath, path); 1120 path = newPath; 1121 } else if (path.startswith("@rpath/")) { 1122 for (StringRef rpath : umbrella->rpaths) { 1123 newPath.clear(); 1124 if (rpath.consume_front("@loader_path/")) { 1125 fs::real_path(umbrella->getName(), newPath); 1126 path::remove_filename(newPath); 1127 } 1128 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1129 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1130 return loadDylib(*dylibPath, umbrella); 1131 } 1132 } 1133 1134 // FIXME: Should this be further up? 1135 if (currentTopLevelTapi) { 1136 for (InterfaceFile &child : 1137 make_pointee_range(currentTopLevelTapi->documents())) { 1138 assert(child.documents().empty()); 1139 if (path == child.getInstallName()) { 1140 auto file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false, 1141 /*explicitlyLinked=*/false); 1142 file->parseReexports(child); 1143 return file; 1144 } 1145 } 1146 } 1147 1148 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1149 return loadDylib(*dylibPath, umbrella); 1150 1151 return nullptr; 1152 } 1153 1154 // If a re-exported dylib is public (lives in /usr/lib or 1155 // /System/Library/Frameworks), then it is considered implicitly linked: we 1156 // should bind to its symbols directly instead of via the re-exporting umbrella 1157 // library. 1158 static bool isImplicitlyLinked(StringRef path) { 1159 if (!config->implicitDylibs) 1160 return false; 1161 1162 if (path::parent_path(path) == "/usr/lib") 1163 return true; 1164 1165 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1166 if (path.consume_front("/System/Library/Frameworks/")) { 1167 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1168 return path::filename(path) == frameworkName; 1169 } 1170 1171 return false; 1172 } 1173 1174 static void loadReexport(StringRef path, DylibFile *umbrella, 1175 const InterfaceFile *currentTopLevelTapi) { 1176 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1177 if (!reexport) 1178 error("unable to locate re-export with install name " + path); 1179 } 1180 1181 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1182 bool isBundleLoader, bool explicitlyLinked) 1183 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1184 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1185 assert(!isBundleLoader || !umbrella); 1186 if (umbrella == nullptr) 1187 umbrella = this; 1188 this->umbrella = umbrella; 1189 1190 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1191 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1192 1193 // Initialize installName. 1194 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1195 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1196 currentVersion = read32le(&c->dylib.current_version); 1197 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1198 installName = 1199 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1200 } else if (!isBundleLoader) { 1201 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1202 // so it's OK. 1203 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1204 return; 1205 } 1206 1207 if (config->printEachFile) 1208 message(toString(this)); 1209 inputFiles.insert(this); 1210 1211 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1212 1213 if (!checkCompatibility(this)) 1214 return; 1215 1216 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1217 1218 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1219 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1220 rpaths.push_back(rpath); 1221 } 1222 1223 // Initialize symbols. 1224 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1225 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1226 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1227 struct TrieEntry { 1228 StringRef name; 1229 uint64_t flags; 1230 }; 1231 1232 std::vector<TrieEntry> entries; 1233 // Find all the $ld$* symbols to process first. 1234 parseTrie(buf + c->export_off, c->export_size, 1235 [&](const Twine &name, uint64_t flags) { 1236 StringRef savedName = saver().save(name); 1237 if (handleLDSymbol(savedName)) 1238 return; 1239 entries.push_back({savedName, flags}); 1240 }); 1241 1242 // Process the "normal" symbols. 1243 for (TrieEntry &entry : entries) { 1244 if (exportingFile->hiddenSymbols.contains( 1245 CachedHashStringRef(entry.name))) 1246 continue; 1247 1248 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1249 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1250 1251 symbols.push_back( 1252 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1253 } 1254 1255 } else { 1256 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1257 return; 1258 } 1259 } 1260 1261 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1262 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1263 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1264 target->headerSize; 1265 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1266 auto *cmd = reinterpret_cast<const load_command *>(p); 1267 p += cmd->cmdsize; 1268 1269 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1270 cmd->cmd == LC_REEXPORT_DYLIB) { 1271 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1272 StringRef reexportPath = 1273 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1274 loadReexport(reexportPath, exportingFile, nullptr); 1275 } 1276 1277 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1278 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1279 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1280 if (config->namespaceKind == NamespaceKind::flat && 1281 cmd->cmd == LC_LOAD_DYLIB) { 1282 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1283 StringRef dylibPath = 1284 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1285 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1286 if (!dylib) 1287 error(Twine("unable to locate library '") + dylibPath + 1288 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1289 } 1290 } 1291 } 1292 1293 // Some versions of Xcode ship with .tbd files that don't have the right 1294 // platform settings. 1295 constexpr std::array<StringRef, 3> skipPlatformChecks{ 1296 "/usr/lib/system/libsystem_kernel.dylib", 1297 "/usr/lib/system/libsystem_platform.dylib", 1298 "/usr/lib/system/libsystem_pthread.dylib"}; 1299 1300 static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface, 1301 bool explicitlyLinked) { 1302 // Catalyst outputs can link against implicitly linked macOS-only libraries. 1303 if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked) 1304 return false; 1305 return is_contained(interface.targets(), 1306 MachO::Target(config->arch(), PLATFORM_MACOS)); 1307 } 1308 1309 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1310 bool isBundleLoader, bool explicitlyLinked) 1311 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1312 explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) { 1313 // FIXME: Add test for the missing TBD code path. 1314 1315 if (umbrella == nullptr) 1316 umbrella = this; 1317 this->umbrella = umbrella; 1318 1319 installName = saver().save(interface.getInstallName()); 1320 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1321 currentVersion = interface.getCurrentVersion().rawValue(); 1322 1323 if (config->printEachFile) 1324 message(toString(this)); 1325 inputFiles.insert(this); 1326 1327 if (!is_contained(skipPlatformChecks, installName) && 1328 !is_contained(interface.targets(), config->platformInfo.target) && 1329 !skipPlatformCheckForCatalyst(interface, explicitlyLinked)) { 1330 error(toString(this) + " is incompatible with " + 1331 std::string(config->platformInfo.target)); 1332 return; 1333 } 1334 1335 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1336 1337 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1338 auto addSymbol = [&](const Twine &name) -> void { 1339 StringRef savedName = saver().save(name); 1340 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1341 return; 1342 1343 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1344 /*isWeakDef=*/false, 1345 /*isTlv=*/false)); 1346 }; 1347 1348 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1349 normalSymbols.reserve(interface.symbolsCount()); 1350 for (const auto *symbol : interface.symbols()) { 1351 if (!symbol->getArchitectures().has(config->arch())) 1352 continue; 1353 if (handleLDSymbol(symbol->getName())) 1354 continue; 1355 1356 switch (symbol->getKind()) { 1357 case SymbolKind::GlobalSymbol: // Fallthrough 1358 case SymbolKind::ObjectiveCClass: // Fallthrough 1359 case SymbolKind::ObjectiveCClassEHType: // Fallthrough 1360 case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough 1361 normalSymbols.push_back(symbol); 1362 } 1363 } 1364 1365 // TODO(compnerd) filter out symbols based on the target platform 1366 // TODO: handle weak defs, thread locals 1367 for (const auto *symbol : normalSymbols) { 1368 switch (symbol->getKind()) { 1369 case SymbolKind::GlobalSymbol: 1370 addSymbol(symbol->getName()); 1371 break; 1372 case SymbolKind::ObjectiveCClass: 1373 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1374 // want to emulate that. 1375 addSymbol(objc::klass + symbol->getName()); 1376 addSymbol(objc::metaclass + symbol->getName()); 1377 break; 1378 case SymbolKind::ObjectiveCClassEHType: 1379 addSymbol(objc::ehtype + symbol->getName()); 1380 break; 1381 case SymbolKind::ObjectiveCInstanceVariable: 1382 addSymbol(objc::ivar + symbol->getName()); 1383 break; 1384 } 1385 } 1386 } 1387 1388 void DylibFile::parseReexports(const InterfaceFile &interface) { 1389 const InterfaceFile *topLevel = 1390 interface.getParent() == nullptr ? &interface : interface.getParent(); 1391 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1392 InterfaceFile::const_target_range targets = intfRef.targets(); 1393 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1394 is_contained(targets, config->platformInfo.target)) 1395 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1396 } 1397 } 1398 1399 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1400 // name, compatibility version or hide/add symbols) for specific target 1401 // versions. 1402 bool DylibFile::handleLDSymbol(StringRef originalName) { 1403 if (!originalName.startswith("$ld$")) 1404 return false; 1405 1406 StringRef action; 1407 StringRef name; 1408 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1409 if (action == "previous") 1410 handleLDPreviousSymbol(name, originalName); 1411 else if (action == "install_name") 1412 handleLDInstallNameSymbol(name, originalName); 1413 else if (action == "hide") 1414 handleLDHideSymbol(name, originalName); 1415 return true; 1416 } 1417 1418 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1419 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1420 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1421 StringRef installName; 1422 StringRef compatVersion; 1423 StringRef platformStr; 1424 StringRef startVersion; 1425 StringRef endVersion; 1426 StringRef symbolName; 1427 StringRef rest; 1428 1429 std::tie(installName, name) = name.split('$'); 1430 std::tie(compatVersion, name) = name.split('$'); 1431 std::tie(platformStr, name) = name.split('$'); 1432 std::tie(startVersion, name) = name.split('$'); 1433 std::tie(endVersion, name) = name.split('$'); 1434 std::tie(symbolName, rest) = name.split('$'); 1435 // TODO: ld64 contains some logic for non-empty symbolName as well. 1436 if (!symbolName.empty()) 1437 return; 1438 unsigned platform; 1439 if (platformStr.getAsInteger(10, platform) || 1440 platform != static_cast<unsigned>(config->platform())) 1441 return; 1442 1443 VersionTuple start; 1444 if (start.tryParse(startVersion)) { 1445 warn("failed to parse start version, symbol '" + originalName + 1446 "' ignored"); 1447 return; 1448 } 1449 VersionTuple end; 1450 if (end.tryParse(endVersion)) { 1451 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1452 return; 1453 } 1454 if (config->platformInfo.minimum < start || 1455 config->platformInfo.minimum >= end) 1456 return; 1457 1458 this->installName = saver().save(installName); 1459 1460 if (!compatVersion.empty()) { 1461 VersionTuple cVersion; 1462 if (cVersion.tryParse(compatVersion)) { 1463 warn("failed to parse compatibility version, symbol '" + originalName + 1464 "' ignored"); 1465 return; 1466 } 1467 compatibilityVersion = encodeVersion(cVersion); 1468 } 1469 } 1470 1471 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1472 StringRef originalName) { 1473 // originalName: $ld$ install_name $ os<version> $ install_name 1474 StringRef condition, installName; 1475 std::tie(condition, installName) = name.split('$'); 1476 VersionTuple version; 1477 if (!condition.consume_front("os") || version.tryParse(condition)) 1478 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1479 else if (version == config->platformInfo.minimum) 1480 this->installName = saver().save(installName); 1481 } 1482 1483 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 1484 StringRef symbolName; 1485 bool shouldHide = true; 1486 if (name.startswith("os")) { 1487 // If it's hidden based on versions. 1488 name = name.drop_front(2); 1489 StringRef minVersion; 1490 std::tie(minVersion, symbolName) = name.split('$'); 1491 VersionTuple versionTup; 1492 if (versionTup.tryParse(minVersion)) { 1493 warn("Failed to parse hidden version, symbol `" + originalName + 1494 "` ignored."); 1495 return; 1496 } 1497 shouldHide = versionTup == config->platformInfo.minimum; 1498 } else { 1499 symbolName = name; 1500 } 1501 1502 if (shouldHide) 1503 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 1504 } 1505 1506 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1507 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1508 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1509 } 1510 1511 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1512 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1513 1514 void ArchiveFile::addLazySymbols() { 1515 for (const object::Archive::Symbol &sym : file->symbols()) 1516 symtab->addLazyArchive(sym.getName(), this, sym); 1517 } 1518 1519 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1520 uint32_t modTime, 1521 StringRef archiveName, 1522 uint64_t offsetInArchive) { 1523 if (config->zeroModTime) 1524 modTime = 0; 1525 1526 switch (identify_magic(mb.getBuffer())) { 1527 case file_magic::macho_object: 1528 return make<ObjFile>(mb, modTime, archiveName); 1529 case file_magic::bitcode: 1530 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1531 default: 1532 return createStringError(inconvertibleErrorCode(), 1533 mb.getBufferIdentifier() + 1534 " has unhandled file type"); 1535 } 1536 } 1537 1538 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1539 if (!seen.insert(c.getChildOffset()).second) 1540 return Error::success(); 1541 1542 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1543 if (!mb) 1544 return mb.takeError(); 1545 1546 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1547 if (tar && c.getParent()->isThin()) 1548 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1549 1550 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1551 if (!modTime) 1552 return modTime.takeError(); 1553 1554 Expected<InputFile *> file = 1555 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1556 1557 if (!file) 1558 return file.takeError(); 1559 1560 inputFiles.insert(*file); 1561 printArchiveMemberLoad(reason, *file); 1562 return Error::success(); 1563 } 1564 1565 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1566 object::Archive::Child c = 1567 CHECK(sym.getMember(), toString(this) + 1568 ": could not get the member defining symbol " + 1569 toMachOString(sym)); 1570 1571 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1572 // and become invalid after that call. Copy it to the stack so we can refer 1573 // to it later. 1574 const object::Archive::Symbol symCopy = sym; 1575 1576 // ld64 doesn't demangle sym here even with -demangle. 1577 // Match that: intentionally don't call toMachOString(). 1578 if (Error e = fetch(c, symCopy.getName())) 1579 error(toString(this) + ": could not get the member defining symbol " + 1580 toMachOString(symCopy) + ": " + toString(std::move(e))); 1581 } 1582 1583 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1584 BitcodeFile &file) { 1585 StringRef name = saver().save(objSym.getName()); 1586 1587 if (objSym.isUndefined()) 1588 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 1589 1590 // TODO: Write a test demonstrating why computing isPrivateExtern before 1591 // LTO compilation is important. 1592 bool isPrivateExtern = false; 1593 switch (objSym.getVisibility()) { 1594 case GlobalValue::HiddenVisibility: 1595 isPrivateExtern = true; 1596 break; 1597 case GlobalValue::ProtectedVisibility: 1598 error(name + " has protected visibility, which is not supported by Mach-O"); 1599 break; 1600 case GlobalValue::DefaultVisibility: 1601 break; 1602 } 1603 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable(); 1604 1605 if (objSym.isCommon()) 1606 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1607 objSym.getCommonAlignment(), isPrivateExtern); 1608 1609 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1610 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1611 /*isThumb=*/false, 1612 /*isReferencedDynamically=*/false, 1613 /*noDeadStrip=*/false, 1614 /*isWeakDefCanBeHidden=*/false); 1615 } 1616 1617 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1618 uint64_t offsetInArchive, bool lazy) 1619 : InputFile(BitcodeKind, mb, lazy) { 1620 this->archiveName = std::string(archiveName); 1621 std::string path = mb.getBufferIdentifier().str(); 1622 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1623 // name. If two members with the same name are provided, this causes a 1624 // collision and ThinLTO can't proceed. 1625 // So, we append the archive name to disambiguate two members with the same 1626 // name from multiple different archives, and offset within the archive to 1627 // disambiguate two members of the same name from a single archive. 1628 MemoryBufferRef mbref(mb.getBuffer(), 1629 saver().save(archiveName.empty() 1630 ? path 1631 : archiveName + 1632 sys::path::filename(path) + 1633 utostr(offsetInArchive))); 1634 1635 obj = check(lto::InputFile::create(mbref)); 1636 if (lazy) 1637 parseLazy(); 1638 else 1639 parse(); 1640 } 1641 1642 void BitcodeFile::parse() { 1643 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1644 // "winning" symbol will then be marked as Prevailing at LTO compilation 1645 // time. 1646 symbols.clear(); 1647 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1648 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1649 } 1650 1651 void BitcodeFile::parseLazy() { 1652 symbols.resize(obj->symbols().size()); 1653 for (auto it : llvm::enumerate(obj->symbols())) { 1654 const lto::InputFile::Symbol &objSym = it.value(); 1655 if (!objSym.isUndefined()) { 1656 symbols[it.index()] = 1657 symtab->addLazyObject(saver().save(objSym.getName()), *this); 1658 if (!lazy) 1659 break; 1660 } 1661 } 1662 } 1663 1664 void macho::extract(InputFile &file, StringRef reason) { 1665 assert(file.lazy); 1666 file.lazy = false; 1667 printArchiveMemberLoad(reason, &file); 1668 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 1669 bitcode->parse(); 1670 } else { 1671 auto &f = cast<ObjFile>(file); 1672 if (target->wordSize == 8) 1673 f.parse<LP64>(); 1674 else 1675 f.parse<ILP32>(); 1676 } 1677 } 1678 1679 template void ObjFile::parse<LP64>(); 1680