1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "ExportTrie.h"
49 #include "InputSection.h"
50 #include "MachOStructs.h"
51 #include "ObjC.h"
52 #include "OutputSection.h"
53 #include "OutputSegment.h"
54 #include "SymbolTable.h"
55 #include "Symbols.h"
56 #include "SyntheticSections.h"
57 #include "Target.h"
58 
59 #include "lld/Common/DWARF.h"
60 #include "lld/Common/ErrorHandler.h"
61 #include "lld/Common/Memory.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/Path.h"
69 #include "llvm/Support/TarWriter.h"
70 #include "llvm/TextAPI/Architecture.h"
71 #include "llvm/TextAPI/InterfaceFile.h"
72 
73 using namespace llvm;
74 using namespace llvm::MachO;
75 using namespace llvm::support::endian;
76 using namespace llvm::sys;
77 using namespace lld;
78 using namespace lld::macho;
79 
80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
81 std::string lld::toString(const InputFile *f) {
82   if (!f)
83     return "<internal>";
84 
85   // Multiple dylibs can be defined in one .tbd file.
86   if (auto dylibFile = dyn_cast<DylibFile>(f))
87     if (f->getName().endswith(".tbd"))
88       return (f->getName() + "(" + dylibFile->installName + ")").str();
89 
90   if (f->archiveName.empty())
91     return std::string(f->getName());
92   return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
93 }
94 
95 SetVector<InputFile *> macho::inputFiles;
96 std::unique_ptr<TarWriter> macho::tar;
97 int InputFile::idCount = 0;
98 
99 static VersionTuple decodeVersion(uint32_t version) {
100   unsigned major = version >> 16;
101   unsigned minor = (version >> 8) & 0xffu;
102   unsigned subMinor = version & 0xffu;
103   return VersionTuple(major, minor, subMinor);
104 }
105 
106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
107   if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
108     return {};
109 
110   const char *hdr = input->mb.getBufferStart();
111 
112   std::vector<PlatformInfo> platformInfos;
113   for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
114     PlatformInfo info;
115     info.target.Platform = static_cast<PlatformKind>(cmd->platform);
116     info.minimum = decodeVersion(cmd->minos);
117     platformInfos.emplace_back(std::move(info));
118   }
119   for (auto *cmd : findCommands<version_min_command>(
120            hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
121            LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
122     PlatformInfo info;
123     switch (cmd->cmd) {
124     case LC_VERSION_MIN_MACOSX:
125       info.target.Platform = PlatformKind::macOS;
126       break;
127     case LC_VERSION_MIN_IPHONEOS:
128       info.target.Platform = PlatformKind::iOS;
129       break;
130     case LC_VERSION_MIN_TVOS:
131       info.target.Platform = PlatformKind::tvOS;
132       break;
133     case LC_VERSION_MIN_WATCHOS:
134       info.target.Platform = PlatformKind::watchOS;
135       break;
136     }
137     info.minimum = decodeVersion(cmd->version);
138     platformInfos.emplace_back(std::move(info));
139   }
140 
141   return platformInfos;
142 }
143 
144 static bool checkCompatibility(const InputFile *input) {
145   std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
146   if (platformInfos.empty())
147     return true;
148 
149   auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
150     return removeSimulator(info.target.Platform) ==
151            removeSimulator(config->platform());
152   });
153   if (it == platformInfos.end()) {
154     std::string platformNames;
155     raw_string_ostream os(platformNames);
156     interleave(
157         platformInfos, os,
158         [&](const PlatformInfo &info) {
159           os << getPlatformName(info.target.Platform);
160         },
161         "/");
162     error(toString(input) + " has platform " + platformNames +
163           Twine(", which is different from target platform ") +
164           getPlatformName(config->platform()));
165     return false;
166   }
167 
168   if (it->minimum > config->platformInfo.minimum)
169     warn(toString(input) + " has version " + it->minimum.getAsString() +
170          ", which is newer than target minimum of " +
171          config->platformInfo.minimum.getAsString());
172 
173   return true;
174 }
175 
176 // Open a given file path and return it as a memory-mapped file.
177 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
178   ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
179   if (std::error_code ec = mbOrErr.getError()) {
180     error("cannot open " + path + ": " + ec.message());
181     return None;
182   }
183 
184   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
185   MemoryBufferRef mbref = mb->getMemBufferRef();
186   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
187 
188   // If this is a regular non-fat file, return it.
189   const char *buf = mbref.getBufferStart();
190   const auto *hdr = reinterpret_cast<const fat_header *>(buf);
191   if (mbref.getBufferSize() < sizeof(uint32_t) ||
192       read32be(&hdr->magic) != FAT_MAGIC) {
193     if (tar)
194       tar->append(relativeToRoot(path), mbref.getBuffer());
195     return mbref;
196   }
197 
198   // Object files and archive files may be fat files, which contain multiple
199   // real files for different CPU ISAs. Here, we search for a file that matches
200   // with the current link target and returns it as a MemoryBufferRef.
201   const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
202 
203   for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
204     if (reinterpret_cast<const char *>(arch + i + 1) >
205         buf + mbref.getBufferSize()) {
206       error(path + ": fat_arch struct extends beyond end of file");
207       return None;
208     }
209 
210     if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
211         read32be(&arch[i].cpusubtype) != target->cpuSubtype)
212       continue;
213 
214     uint32_t offset = read32be(&arch[i].offset);
215     uint32_t size = read32be(&arch[i].size);
216     if (offset + size > mbref.getBufferSize())
217       error(path + ": slice extends beyond end of file");
218     if (tar)
219       tar->append(relativeToRoot(path), mbref.getBuffer());
220     return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc));
221   }
222 
223   error("unable to find matching architecture in " + path);
224   return None;
225 }
226 
227 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
228     : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {}
229 
230 // Some sections comprise of fixed-size records, so instead of splitting them at
231 // symbol boundaries, we split them based on size. Records are distinct from
232 // literals in that they may contain references to other sections, instead of
233 // being leaf nodes in the InputSection graph.
234 //
235 // Note that "record" is a term I came up with. In contrast, "literal" is a term
236 // used by the Mach-O format.
237 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) {
238   if (name == section_names::cfString) {
239     if (config->icfLevel != ICFLevel::none && segname == segment_names::data)
240       return target->wordSize == 8 ? 32 : 16;
241   } else if (name == section_names::compactUnwind) {
242     if (segname == segment_names::ld)
243       return target->wordSize == 8 ? 32 : 20;
244   }
245   return {};
246 }
247 
248 template <class Section>
249 void ObjFile::parseSections(ArrayRef<Section> sections) {
250   subsections.reserve(sections.size());
251   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
252 
253   for (const Section &sec : sections) {
254     StringRef name =
255         StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
256     StringRef segname =
257         StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
258     ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
259                                                     : buf + sec.offset,
260                               static_cast<size_t>(sec.size)};
261     if (sec.align >= 32) {
262       error("alignment " + std::to_string(sec.align) + " of section " + name +
263             " is too large");
264       subsections.push_back({});
265       continue;
266     }
267     uint32_t align = 1 << sec.align;
268     uint32_t flags = sec.flags;
269 
270     auto splitRecords = [&](int recordSize) -> void {
271       subsections.push_back({});
272       if (data.size() == 0)
273         return;
274 
275       SubsectionMap &subsecMap = subsections.back();
276       subsecMap.reserve(data.size() / recordSize);
277       auto *isec = make<ConcatInputSection>(
278           segname, name, this, data.slice(0, recordSize), align, flags);
279       subsecMap.push_back({0, isec});
280       for (uint64_t off = recordSize; off < data.size(); off += recordSize) {
281         // Copying requires less memory than constructing a fresh InputSection.
282         auto *copy = make<ConcatInputSection>(*isec);
283         copy->data = data.slice(off, recordSize);
284         subsecMap.push_back({off, copy});
285       }
286     };
287 
288     if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
289         (config->dedupLiterals && isWordLiteralSection(sec.flags))) {
290       if (sec.nreloc && config->dedupLiterals)
291         fatal(toString(this) + " contains relocations in " + sec.segname + "," +
292               sec.sectname +
293               ", so LLD cannot deduplicate literals. Try re-running without "
294               "--deduplicate-literals.");
295 
296       InputSection *isec;
297       if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
298         isec =
299             make<CStringInputSection>(segname, name, this, data, align, flags);
300         // FIXME: parallelize this?
301         cast<CStringInputSection>(isec)->splitIntoPieces();
302       } else {
303         isec = make<WordLiteralInputSection>(segname, name, this, data, align,
304                                              flags);
305       }
306       subsections.push_back({{0, isec}});
307     } else if (auto recordSize = getRecordSize(segname, name)) {
308       splitRecords(*recordSize);
309     } else if (segname == segment_names::llvm) {
310       // ld64 does not appear to emit contents from sections within the __LLVM
311       // segment. Symbols within those sections point to bitcode metadata
312       // instead of actual symbols. Global symbols within those sections could
313       // have the same name without causing duplicate symbol errors. Push an
314       // empty map to ensure indices line up for the remaining sections.
315       // TODO: Evaluate whether the bitcode metadata is needed.
316       subsections.push_back({});
317     } else {
318       auto *isec =
319           make<ConcatInputSection>(segname, name, this, data, align, flags);
320       if (isDebugSection(isec->getFlags()) &&
321           isec->getSegName() == segment_names::dwarf) {
322         // Instead of emitting DWARF sections, we emit STABS symbols to the
323         // object files that contain them. We filter them out early to avoid
324         // parsing their relocations unnecessarily. But we must still push an
325         // empty map to ensure the indices line up for the remaining sections.
326         subsections.push_back({});
327         debugSections.push_back(isec);
328       } else {
329         subsections.push_back({{0, isec}});
330       }
331     }
332   }
333 }
334 
335 // Find the subsection corresponding to the greatest section offset that is <=
336 // that of the given offset.
337 //
338 // offset: an offset relative to the start of the original InputSection (before
339 // any subsection splitting has occurred). It will be updated to represent the
340 // same location as an offset relative to the start of the containing
341 // subsection.
342 static InputSection *findContainingSubsection(SubsectionMap &map,
343                                               uint64_t *offset) {
344   auto it = std::prev(llvm::upper_bound(
345       map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) {
346         return value < subsecEntry.offset;
347       }));
348   *offset -= it->offset;
349   return it->isec;
350 }
351 
352 template <class Section>
353 static bool validateRelocationInfo(InputFile *file, const Section &sec,
354                                    relocation_info rel) {
355   const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
356   bool valid = true;
357   auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
358     valid = false;
359     return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
360             std::to_string(rel.r_address) + " of " + sec.segname + "," +
361             sec.sectname + " in " + toString(file))
362         .str();
363   };
364 
365   if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
366     error(message("must be extern"));
367   if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
368     error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
369                   "be PC-relative"));
370   if (isThreadLocalVariables(sec.flags) &&
371       !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
372     error(message("not allowed in thread-local section, must be UNSIGNED"));
373   if (rel.r_length < 2 || rel.r_length > 3 ||
374       !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
375     static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
376     error(message("has width " + std::to_string(1 << rel.r_length) +
377                   " bytes, but must be " +
378                   widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
379                   " bytes"));
380   }
381   return valid;
382 }
383 
384 template <class Section>
385 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders,
386                                const Section &sec, SubsectionMap &subsecMap) {
387   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
388   ArrayRef<relocation_info> relInfos(
389       reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
390 
391   auto subsecIt = subsecMap.rbegin();
392   for (size_t i = 0; i < relInfos.size(); i++) {
393     // Paired relocations serve as Mach-O's method for attaching a
394     // supplemental datum to a primary relocation record. ELF does not
395     // need them because the *_RELOC_RELA records contain the extra
396     // addend field, vs. *_RELOC_REL which omit the addend.
397     //
398     // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
399     // and the paired *_RELOC_UNSIGNED record holds the minuend. The
400     // datum for each is a symbolic address. The result is the offset
401     // between two addresses.
402     //
403     // The ARM64_RELOC_ADDEND record holds the addend, and the paired
404     // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
405     // base symbolic address.
406     //
407     // Note: X86 does not use *_RELOC_ADDEND because it can embed an
408     // addend into the instruction stream. On X86, a relocatable address
409     // field always occupies an entire contiguous sequence of byte(s),
410     // so there is no need to merge opcode bits with address
411     // bits. Therefore, it's easy and convenient to store addends in the
412     // instruction-stream bytes that would otherwise contain zeroes. By
413     // contrast, RISC ISAs such as ARM64 mix opcode bits with with
414     // address bits so that bitwise arithmetic is necessary to extract
415     // and insert them. Storing addends in the instruction stream is
416     // possible, but inconvenient and more costly at link time.
417 
418     int64_t pairedAddend = 0;
419     relocation_info relInfo = relInfos[i];
420     if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
421       pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
422       relInfo = relInfos[++i];
423     }
424     assert(i < relInfos.size());
425     if (!validateRelocationInfo(this, sec, relInfo))
426       continue;
427     if (relInfo.r_address & R_SCATTERED)
428       fatal("TODO: Scattered relocations not supported");
429 
430     bool isSubtrahend =
431         target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
432     int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
433     assert(!(embeddedAddend && pairedAddend));
434     int64_t totalAddend = pairedAddend + embeddedAddend;
435     Reloc r;
436     r.type = relInfo.r_type;
437     r.pcrel = relInfo.r_pcrel;
438     r.length = relInfo.r_length;
439     r.offset = relInfo.r_address;
440     if (relInfo.r_extern) {
441       r.referent = symbols[relInfo.r_symbolnum];
442       r.addend = isSubtrahend ? 0 : totalAddend;
443     } else {
444       assert(!isSubtrahend);
445       const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1];
446       uint64_t referentOffset;
447       if (relInfo.r_pcrel) {
448         // The implicit addend for pcrel section relocations is the pcrel offset
449         // in terms of the addresses in the input file. Here we adjust it so
450         // that it describes the offset from the start of the referent section.
451         // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
452         // have pcrel section relocations. We may want to factor this out into
453         // the arch-specific .cpp file.
454         assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
455         referentOffset =
456             sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr;
457       } else {
458         // The addend for a non-pcrel relocation is its absolute address.
459         referentOffset = totalAddend - referentSec.addr;
460       }
461       SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1];
462       r.referent = findContainingSubsection(referentSubsecMap, &referentOffset);
463       r.addend = referentOffset;
464     }
465 
466     // Find the subsection that this relocation belongs to.
467     // Though not required by the Mach-O format, clang and gcc seem to emit
468     // relocations in order, so let's take advantage of it. However, ld64 emits
469     // unsorted relocations (in `-r` mode), so we have a fallback for that
470     // uncommon case.
471     InputSection *subsec;
472     while (subsecIt != subsecMap.rend() && subsecIt->offset > r.offset)
473       ++subsecIt;
474     if (subsecIt == subsecMap.rend() ||
475         subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
476       subsec = findContainingSubsection(subsecMap, &r.offset);
477       // Now that we know the relocs are unsorted, avoid trying the 'fast path'
478       // for the other relocations.
479       subsecIt = subsecMap.rend();
480     } else {
481       subsec = subsecIt->isec;
482       r.offset -= subsecIt->offset;
483     }
484     subsec->relocs.push_back(r);
485 
486     if (isSubtrahend) {
487       relocation_info minuendInfo = relInfos[++i];
488       // SUBTRACTOR relocations should always be followed by an UNSIGNED one
489       // attached to the same address.
490       assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
491              relInfo.r_address == minuendInfo.r_address);
492       Reloc p;
493       p.type = minuendInfo.r_type;
494       if (minuendInfo.r_extern) {
495         p.referent = symbols[minuendInfo.r_symbolnum];
496         p.addend = totalAddend;
497       } else {
498         uint64_t referentOffset =
499             totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
500         SubsectionMap &referentSubsecMap =
501             subsections[minuendInfo.r_symbolnum - 1];
502         p.referent =
503             findContainingSubsection(referentSubsecMap, &referentOffset);
504         p.addend = referentOffset;
505       }
506       subsec->relocs.push_back(p);
507     }
508   }
509 }
510 
511 template <class NList>
512 static macho::Symbol *createDefined(const NList &sym, StringRef name,
513                                     InputSection *isec, uint64_t value,
514                                     uint64_t size) {
515   // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
516   // N_EXT: Global symbols. These go in the symbol table during the link,
517   //        and also in the export table of the output so that the dynamic
518   //        linker sees them.
519   // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
520   //                 symbol table during the link so that duplicates are
521   //                 either reported (for non-weak symbols) or merged
522   //                 (for weak symbols), but they do not go in the export
523   //                 table of the output.
524   // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
525   //         object files) may produce them. LLD does not yet support -r.
526   //         These are translation-unit scoped, identical to the `0` case.
527   // 0: Translation-unit scoped. These are not in the symbol table during
528   //    link, and not in the export table of the output either.
529   bool isWeakDefCanBeHidden =
530       (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
531 
532   if (sym.n_type & N_EXT) {
533     bool isPrivateExtern = sym.n_type & N_PEXT;
534     // lld's behavior for merging symbols is slightly different from ld64:
535     // ld64 picks the winning symbol based on several criteria (see
536     // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
537     // just merges metadata and keeps the contents of the first symbol
538     // with that name (see SymbolTable::addDefined). For:
539     // * inline function F in a TU built with -fvisibility-inlines-hidden
540     // * and inline function F in another TU built without that flag
541     // ld64 will pick the one from the file built without
542     // -fvisibility-inlines-hidden.
543     // lld will instead pick the one listed first on the link command line and
544     // give it visibility as if the function was built without
545     // -fvisibility-inlines-hidden.
546     // If both functions have the same contents, this will have the same
547     // behavior. If not, it won't, but the input had an ODR violation in
548     // that case.
549     //
550     // Similarly, merging a symbol
551     // that's isPrivateExtern and not isWeakDefCanBeHidden with one
552     // that's not isPrivateExtern but isWeakDefCanBeHidden technically
553     // should produce one
554     // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
555     // with ld64's semantics, because it means the non-private-extern
556     // definition will continue to take priority if more private extern
557     // definitions are encountered. With lld's semantics there's no observable
558     // difference between a symbol that's isWeakDefCanBeHidden or one that's
559     // privateExtern -- neither makes it into the dynamic symbol table. So just
560     // promote isWeakDefCanBeHidden to isPrivateExtern here.
561     if (isWeakDefCanBeHidden)
562       isPrivateExtern = true;
563 
564     return symtab->addDefined(
565         name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
566         isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
567         sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP);
568   }
569   assert(!isWeakDefCanBeHidden &&
570          "weak_def_can_be_hidden on already-hidden symbol?");
571   return make<Defined>(
572       name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
573       /*isExternal=*/false, /*isPrivateExtern=*/false,
574       sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
575       sym.n_desc & N_NO_DEAD_STRIP);
576 }
577 
578 // Absolute symbols are defined symbols that do not have an associated
579 // InputSection. They cannot be weak.
580 template <class NList>
581 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
582                                      StringRef name) {
583   if (sym.n_type & N_EXT) {
584     return symtab->addDefined(
585         name, file, nullptr, sym.n_value, /*size=*/0,
586         /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF,
587         /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP);
588   }
589   return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
590                        /*isWeakDef=*/false,
591                        /*isExternal=*/false, /*isPrivateExtern=*/false,
592                        sym.n_desc & N_ARM_THUMB_DEF,
593                        /*isReferencedDynamically=*/false,
594                        sym.n_desc & N_NO_DEAD_STRIP);
595 }
596 
597 template <class NList>
598 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
599                                               StringRef name) {
600   uint8_t type = sym.n_type & N_TYPE;
601   switch (type) {
602   case N_UNDF:
603     return sym.n_value == 0
604                ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
605                : symtab->addCommon(name, this, sym.n_value,
606                                    1 << GET_COMM_ALIGN(sym.n_desc),
607                                    sym.n_type & N_PEXT);
608   case N_ABS:
609     return createAbsolute(sym, this, name);
610   case N_PBUD:
611   case N_INDR:
612     error("TODO: support symbols of type " + std::to_string(type));
613     return nullptr;
614   case N_SECT:
615     llvm_unreachable(
616         "N_SECT symbols should not be passed to parseNonSectionSymbol");
617   default:
618     llvm_unreachable("invalid symbol type");
619   }
620 }
621 
622 template <class NList>
623 static bool isUndef(const NList &sym) {
624   return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
625 }
626 
627 template <class LP>
628 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
629                            ArrayRef<typename LP::nlist> nList,
630                            const char *strtab, bool subsectionsViaSymbols) {
631   using NList = typename LP::nlist;
632 
633   // Groups indices of the symbols by the sections that contain them.
634   std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size());
635   symbols.resize(nList.size());
636   SmallVector<unsigned, 32> undefineds;
637   for (uint32_t i = 0; i < nList.size(); ++i) {
638     const NList &sym = nList[i];
639 
640     // Ignore debug symbols for now.
641     // FIXME: may need special handling.
642     if (sym.n_type & N_STAB)
643       continue;
644 
645     StringRef name = strtab + sym.n_strx;
646     if ((sym.n_type & N_TYPE) == N_SECT) {
647       SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
648       // parseSections() may have chosen not to parse this section.
649       if (subsecMap.empty())
650         continue;
651       symbolsBySection[sym.n_sect - 1].push_back(i);
652     } else if (isUndef(sym)) {
653       undefineds.push_back(i);
654     } else {
655       symbols[i] = parseNonSectionSymbol(sym, name);
656     }
657   }
658 
659   for (size_t i = 0; i < subsections.size(); ++i) {
660     SubsectionMap &subsecMap = subsections[i];
661     if (subsecMap.empty())
662       continue;
663 
664     std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
665     uint64_t sectionAddr = sectionHeaders[i].addr;
666     uint32_t sectionAlign = 1u << sectionHeaders[i].align;
667 
668     InputSection *lastIsec = subsecMap.back().isec;
669     // Record-based sections have already been split into subsections during
670     // parseSections(), so we simply need to match Symbols to the corresponding
671     // subsection here.
672     if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) {
673       for (size_t j = 0; j < symbolIndices.size(); ++j) {
674         uint32_t symIndex = symbolIndices[j];
675         const NList &sym = nList[symIndex];
676         StringRef name = strtab + sym.n_strx;
677         uint64_t symbolOffset = sym.n_value - sectionAddr;
678         InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset);
679         if (symbolOffset != 0) {
680           error(toString(lastIsec) + ":  symbol " + name +
681                 " at misaligned offset");
682           continue;
683         }
684         symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize());
685       }
686       continue;
687     }
688 
689     // Calculate symbol sizes and create subsections by splitting the sections
690     // along symbol boundaries.
691     // We populate subsecMap by repeatedly splitting the last (highest address)
692     // subsection.
693     llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
694       return nList[lhs].n_value < nList[rhs].n_value;
695     });
696     SubsectionEntry subsecEntry = subsecMap.back();
697     for (size_t j = 0; j < symbolIndices.size(); ++j) {
698       uint32_t symIndex = symbolIndices[j];
699       const NList &sym = nList[symIndex];
700       StringRef name = strtab + sym.n_strx;
701       InputSection *isec = subsecEntry.isec;
702 
703       uint64_t subsecAddr = sectionAddr + subsecEntry.offset;
704       size_t symbolOffset = sym.n_value - subsecAddr;
705       uint64_t symbolSize =
706           j + 1 < symbolIndices.size()
707               ? nList[symbolIndices[j + 1]].n_value - sym.n_value
708               : isec->data.size() - symbolOffset;
709       // There are 4 cases where we do not need to create a new subsection:
710       //   1. If the input file does not use subsections-via-symbols.
711       //   2. Multiple symbols at the same address only induce one subsection.
712       //      (The symbolOffset == 0 check covers both this case as well as
713       //      the first loop iteration.)
714       //   3. Alternative entry points do not induce new subsections.
715       //   4. If we have a literal section (e.g. __cstring and __literal4).
716       if (!subsectionsViaSymbols || symbolOffset == 0 ||
717           sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
718         symbols[symIndex] =
719             createDefined(sym, name, isec, symbolOffset, symbolSize);
720         continue;
721       }
722       auto *concatIsec = cast<ConcatInputSection>(isec);
723 
724       auto *nextIsec = make<ConcatInputSection>(*concatIsec);
725       nextIsec->wasCoalesced = false;
726       if (isZeroFill(isec->getFlags())) {
727         // Zero-fill sections have NULL data.data() non-zero data.size()
728         nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
729         isec->data = {nullptr, symbolOffset};
730       } else {
731         nextIsec->data = isec->data.slice(symbolOffset);
732         isec->data = isec->data.slice(0, symbolOffset);
733       }
734 
735       // By construction, the symbol will be at offset zero in the new
736       // subsection.
737       symbols[symIndex] =
738           createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
739       // TODO: ld64 appears to preserve the original alignment as well as each
740       // subsection's offset from the last aligned address. We should consider
741       // emulating that behavior.
742       nextIsec->align = MinAlign(sectionAlign, sym.n_value);
743       subsecMap.push_back({sym.n_value - sectionAddr, nextIsec});
744       subsecEntry = subsecMap.back();
745     }
746   }
747 
748   // Undefined symbols can trigger recursive fetch from Archives due to
749   // LazySymbols. Process defined symbols first so that the relative order
750   // between a defined symbol and an undefined symbol does not change the
751   // symbol resolution behavior. In addition, a set of interconnected symbols
752   // will all be resolved to the same file, instead of being resolved to
753   // different files.
754   for (unsigned i : undefineds) {
755     const NList &sym = nList[i];
756     StringRef name = strtab + sym.n_strx;
757     symbols[i] = parseNonSectionSymbol(sym, name);
758   }
759 }
760 
761 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
762                        StringRef sectName)
763     : InputFile(OpaqueKind, mb) {
764   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
765   ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
766   ConcatInputSection *isec =
767       make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16),
768                                /*file=*/this, data);
769   isec->live = true;
770   subsections.push_back({{0, isec}});
771 }
772 
773 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName)
774     : InputFile(ObjKind, mb), modTime(modTime) {
775   this->archiveName = std::string(archiveName);
776   if (target->wordSize == 8)
777     parse<LP64>();
778   else
779     parse<ILP32>();
780 }
781 
782 template <class LP> void ObjFile::parse() {
783   using Header = typename LP::mach_header;
784   using SegmentCommand = typename LP::segment_command;
785   using Section = typename LP::section;
786   using NList = typename LP::nlist;
787 
788   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
789   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
790 
791   Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
792   if (arch != config->arch()) {
793     error(toString(this) + " has architecture " + getArchitectureName(arch) +
794           " which is incompatible with target architecture " +
795           getArchitectureName(config->arch()));
796     return;
797   }
798 
799   if (!checkCompatibility(this))
800     return;
801 
802   for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
803     StringRef data{reinterpret_cast<const char *>(cmd + 1),
804                    cmd->cmdsize - sizeof(linker_option_command)};
805     parseLCLinkerOption(this, cmd->count, data);
806   }
807 
808   ArrayRef<Section> sectionHeaders;
809   if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
810     auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
811     sectionHeaders =
812         ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects};
813     parseSections(sectionHeaders);
814   }
815 
816   // TODO: Error on missing LC_SYMTAB?
817   if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
818     auto *c = reinterpret_cast<const symtab_command *>(cmd);
819     ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
820                           c->nsyms);
821     const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
822     bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
823     parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
824   }
825 
826   // The relocations may refer to the symbols, so we parse them after we have
827   // parsed all the symbols.
828   for (size_t i = 0, n = subsections.size(); i < n; ++i)
829     if (!subsections[i].empty())
830       parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]);
831 
832   parseDebugInfo();
833   if (config->emitDataInCodeInfo)
834     parseDataInCode();
835   registerCompactUnwind();
836 }
837 
838 void ObjFile::parseDebugInfo() {
839   std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
840   if (!dObj)
841     return;
842 
843   auto *ctx = make<DWARFContext>(
844       std::move(dObj), "",
845       [&](Error err) {
846         warn(toString(this) + ": " + toString(std::move(err)));
847       },
848       [&](Error warning) {
849         warn(toString(this) + ": " + toString(std::move(warning)));
850       });
851 
852   // TODO: Since object files can contain a lot of DWARF info, we should verify
853   // that we are parsing just the info we need
854   const DWARFContext::compile_unit_range &units = ctx->compile_units();
855   // FIXME: There can be more than one compile unit per object file. See
856   // PR48637.
857   auto it = units.begin();
858   compileUnit = it->get();
859 }
860 
861 void ObjFile::parseDataInCode() {
862   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
863   const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
864   if (!cmd)
865     return;
866   const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
867   dataInCodeEntries = {
868       reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
869       c->datasize / sizeof(data_in_code_entry)};
870   assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs,
871                                          const data_in_code_entry &rhs) {
872     return lhs.offset < rhs.offset;
873   }));
874 }
875 
876 // Create pointers from symbols to their associated compact unwind entries.
877 void ObjFile::registerCompactUnwind() {
878   // First, locate the __compact_unwind section.
879   SubsectionMap *cuSubsecMap = nullptr;
880   for (SubsectionMap &map : subsections) {
881     if (map.empty())
882       continue;
883     if (map[0].isec->getSegName() != segment_names::ld)
884       continue;
885     cuSubsecMap = &map;
886     break;
887   }
888   if (!cuSubsecMap)
889     return;
890 
891   for (SubsectionEntry &entry : *cuSubsecMap) {
892     ConcatInputSection *isec = cast<ConcatInputSection>(entry.isec);
893     ConcatInputSection *referentIsec;
894     for (const Reloc &r : isec->relocs) {
895       if (r.offset != 0)
896         continue;
897       uint64_t add = r.addend;
898       if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
899         add += sym->value;
900         referentIsec = cast<ConcatInputSection>(sym->isec);
901       } else {
902         referentIsec =
903             cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
904       }
905       // The functionAddress relocations are typically section relocations.
906       // However, unwind info operates on a per-symbol basis, so we search for
907       // the function symbol here.
908       auto it = llvm::lower_bound(
909           referentIsec->symbols, add,
910           [](Defined *d, uint64_t add) { return d->value < add; });
911       // The relocation should point at the exact address of a symbol (with no
912       // addend).
913       if (it == referentIsec->symbols.end() || (*it)->value != add) {
914         assert(referentIsec->wasCoalesced);
915         continue;
916       }
917       (*it)->compactUnwind = isec;
918     }
919   }
920 }
921 
922 // The path can point to either a dylib or a .tbd file.
923 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
924   Optional<MemoryBufferRef> mbref = readFile(path);
925   if (!mbref) {
926     error("could not read dylib file at " + path);
927     return nullptr;
928   }
929   return loadDylib(*mbref, umbrella);
930 }
931 
932 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
933 // the first document storing child pointers to the rest of them. When we are
934 // processing a given TBD file, we store that top-level document in
935 // currentTopLevelTapi. When processing re-exports, we search its children for
936 // potentially matching documents in the same TBD file. Note that the children
937 // themselves don't point to further documents, i.e. this is a two-level tree.
938 //
939 // Re-exports can either refer to on-disk files, or to documents within .tbd
940 // files.
941 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
942                             const InterfaceFile *currentTopLevelTapi) {
943   // Search order:
944   // 1. Install name basename in -F / -L directories.
945   {
946     StringRef stem = path::stem(path);
947     SmallString<128> frameworkName;
948     path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
949     bool isFramework = path.endswith(frameworkName);
950     if (isFramework) {
951       for (StringRef dir : config->frameworkSearchPaths) {
952         SmallString<128> candidate = dir;
953         path::append(candidate, frameworkName);
954         if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str()))
955           return loadDylib(*dylibPath, umbrella);
956       }
957     } else if (Optional<StringRef> dylibPath = findPathCombination(
958                    stem, config->librarySearchPaths, {".tbd", ".dylib"}))
959       return loadDylib(*dylibPath, umbrella);
960   }
961 
962   // 2. As absolute path.
963   if (path::is_absolute(path, path::Style::posix))
964     for (StringRef root : config->systemLibraryRoots)
965       if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str()))
966         return loadDylib(*dylibPath, umbrella);
967 
968   // 3. As relative path.
969 
970   // TODO: Handle -dylib_file
971 
972   // Replace @executable_path, @loader_path, @rpath prefixes in install name.
973   SmallString<128> newPath;
974   if (config->outputType == MH_EXECUTE &&
975       path.consume_front("@executable_path/")) {
976     // ld64 allows overriding this with the undocumented flag -executable_path.
977     // lld doesn't currently implement that flag.
978     // FIXME: Consider using finalOutput instead of outputFile.
979     path::append(newPath, path::parent_path(config->outputFile), path);
980     path = newPath;
981   } else if (path.consume_front("@loader_path/")) {
982     fs::real_path(umbrella->getName(), newPath);
983     path::remove_filename(newPath);
984     path::append(newPath, path);
985     path = newPath;
986   } else if (path.startswith("@rpath/")) {
987     for (StringRef rpath : umbrella->rpaths) {
988       newPath.clear();
989       if (rpath.consume_front("@loader_path/")) {
990         fs::real_path(umbrella->getName(), newPath);
991         path::remove_filename(newPath);
992       }
993       path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
994       if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
995         return loadDylib(*dylibPath, umbrella);
996     }
997   }
998 
999   // FIXME: Should this be further up?
1000   if (currentTopLevelTapi) {
1001     for (InterfaceFile &child :
1002          make_pointee_range(currentTopLevelTapi->documents())) {
1003       assert(child.documents().empty());
1004       if (path == child.getInstallName()) {
1005         auto file = make<DylibFile>(child, umbrella);
1006         file->parseReexports(child);
1007         return file;
1008       }
1009     }
1010   }
1011 
1012   if (Optional<StringRef> dylibPath = resolveDylibPath(path))
1013     return loadDylib(*dylibPath, umbrella);
1014 
1015   return nullptr;
1016 }
1017 
1018 // If a re-exported dylib is public (lives in /usr/lib or
1019 // /System/Library/Frameworks), then it is considered implicitly linked: we
1020 // should bind to its symbols directly instead of via the re-exporting umbrella
1021 // library.
1022 static bool isImplicitlyLinked(StringRef path) {
1023   if (!config->implicitDylibs)
1024     return false;
1025 
1026   if (path::parent_path(path) == "/usr/lib")
1027     return true;
1028 
1029   // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1030   if (path.consume_front("/System/Library/Frameworks/")) {
1031     StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1032     return path::filename(path) == frameworkName;
1033   }
1034 
1035   return false;
1036 }
1037 
1038 static void loadReexport(StringRef path, DylibFile *umbrella,
1039                          const InterfaceFile *currentTopLevelTapi) {
1040   DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1041   if (!reexport)
1042     error("unable to locate re-export with install name " + path);
1043 }
1044 
1045 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1046                      bool isBundleLoader)
1047     : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1048       isBundleLoader(isBundleLoader) {
1049   assert(!isBundleLoader || !umbrella);
1050   if (umbrella == nullptr)
1051     umbrella = this;
1052   this->umbrella = umbrella;
1053 
1054   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1055   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1056 
1057   // Initialize installName.
1058   if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1059     auto *c = reinterpret_cast<const dylib_command *>(cmd);
1060     currentVersion = read32le(&c->dylib.current_version);
1061     compatibilityVersion = read32le(&c->dylib.compatibility_version);
1062     installName =
1063         reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1064   } else if (!isBundleLoader) {
1065     // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1066     // so it's OK.
1067     error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
1068     return;
1069   }
1070 
1071   if (config->printEachFile)
1072     message(toString(this));
1073   inputFiles.insert(this);
1074 
1075   deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1076 
1077   if (!checkCompatibility(this))
1078     return;
1079 
1080   checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1081 
1082   for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1083     StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1084     rpaths.push_back(rpath);
1085   }
1086 
1087   // Initialize symbols.
1088   exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
1089   if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
1090     auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
1091     parseTrie(buf + c->export_off, c->export_size,
1092               [&](const Twine &name, uint64_t flags) {
1093                 StringRef savedName = saver.save(name);
1094                 if (handleLDSymbol(savedName))
1095                   return;
1096                 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1097                 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1098                 symbols.push_back(symtab->addDylib(savedName, exportingFile,
1099                                                    isWeakDef, isTlv));
1100               });
1101   } else {
1102     error("LC_DYLD_INFO_ONLY not found in " + toString(this));
1103     return;
1104   }
1105 }
1106 
1107 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1108   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1109   const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1110                      target->headerSize;
1111   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1112     auto *cmd = reinterpret_cast<const load_command *>(p);
1113     p += cmd->cmdsize;
1114 
1115     if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1116         cmd->cmd == LC_REEXPORT_DYLIB) {
1117       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1118       StringRef reexportPath =
1119           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1120       loadReexport(reexportPath, exportingFile, nullptr);
1121     }
1122 
1123     // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1124     // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1125     // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1126     if (config->namespaceKind == NamespaceKind::flat &&
1127         cmd->cmd == LC_LOAD_DYLIB) {
1128       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1129       StringRef dylibPath =
1130           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1131       DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1132       if (!dylib)
1133         error(Twine("unable to locate library '") + dylibPath +
1134               "' loaded from '" + toString(this) + "' for -flat_namespace");
1135     }
1136   }
1137 }
1138 
1139 // Some versions of XCode ship with .tbd files that don't have the right
1140 // platform settings.
1141 static constexpr std::array<StringRef, 3> skipPlatformChecks{
1142     "/usr/lib/system/libsystem_kernel.dylib",
1143     "/usr/lib/system/libsystem_platform.dylib",
1144     "/usr/lib/system/libsystem_pthread.dylib"};
1145 
1146 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1147                      bool isBundleLoader)
1148     : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1149       isBundleLoader(isBundleLoader) {
1150   // FIXME: Add test for the missing TBD code path.
1151 
1152   if (umbrella == nullptr)
1153     umbrella = this;
1154   this->umbrella = umbrella;
1155 
1156   installName = saver.save(interface.getInstallName());
1157   compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1158   currentVersion = interface.getCurrentVersion().rawValue();
1159 
1160   if (config->printEachFile)
1161     message(toString(this));
1162   inputFiles.insert(this);
1163 
1164   if (!is_contained(skipPlatformChecks, installName) &&
1165       !is_contained(interface.targets(), config->platformInfo.target)) {
1166     error(toString(this) + " is incompatible with " +
1167           std::string(config->platformInfo.target));
1168     return;
1169   }
1170 
1171   checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1172 
1173   exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1174   auto addSymbol = [&](const Twine &name) -> void {
1175     symbols.push_back(symtab->addDylib(saver.save(name), exportingFile,
1176                                        /*isWeakDef=*/false,
1177                                        /*isTlv=*/false));
1178   };
1179   // TODO(compnerd) filter out symbols based on the target platform
1180   // TODO: handle weak defs, thread locals
1181   for (const auto *symbol : interface.symbols()) {
1182     if (!symbol->getArchitectures().has(config->arch()))
1183       continue;
1184 
1185     if (handleLDSymbol(symbol->getName()))
1186       continue;
1187 
1188     switch (symbol->getKind()) {
1189     case SymbolKind::GlobalSymbol:
1190       addSymbol(symbol->getName());
1191       break;
1192     case SymbolKind::ObjectiveCClass:
1193       // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1194       // want to emulate that.
1195       addSymbol(objc::klass + symbol->getName());
1196       addSymbol(objc::metaclass + symbol->getName());
1197       break;
1198     case SymbolKind::ObjectiveCClassEHType:
1199       addSymbol(objc::ehtype + symbol->getName());
1200       break;
1201     case SymbolKind::ObjectiveCInstanceVariable:
1202       addSymbol(objc::ivar + symbol->getName());
1203       break;
1204     }
1205   }
1206 }
1207 
1208 void DylibFile::parseReexports(const InterfaceFile &interface) {
1209   const InterfaceFile *topLevel =
1210       interface.getParent() == nullptr ? &interface : interface.getParent();
1211   for (InterfaceFileRef intfRef : interface.reexportedLibraries()) {
1212     InterfaceFile::const_target_range targets = intfRef.targets();
1213     if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1214         is_contained(targets, config->platformInfo.target))
1215       loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1216   }
1217 }
1218 
1219 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1220 // name, compatibility version or hide/add symbols) for specific target
1221 // versions.
1222 bool DylibFile::handleLDSymbol(StringRef originalName) {
1223   if (!originalName.startswith("$ld$"))
1224     return false;
1225 
1226   StringRef action;
1227   StringRef name;
1228   std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1229   if (action == "previous")
1230     handleLDPreviousSymbol(name, originalName);
1231   else if (action == "install_name")
1232     handleLDInstallNameSymbol(name, originalName);
1233   return true;
1234 }
1235 
1236 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1237   // originalName: $ld$ previous $ <installname> $ <compatversion> $
1238   // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1239   StringRef installName;
1240   StringRef compatVersion;
1241   StringRef platformStr;
1242   StringRef startVersion;
1243   StringRef endVersion;
1244   StringRef symbolName;
1245   StringRef rest;
1246 
1247   std::tie(installName, name) = name.split('$');
1248   std::tie(compatVersion, name) = name.split('$');
1249   std::tie(platformStr, name) = name.split('$');
1250   std::tie(startVersion, name) = name.split('$');
1251   std::tie(endVersion, name) = name.split('$');
1252   std::tie(symbolName, rest) = name.split('$');
1253   // TODO: ld64 contains some logic for non-empty symbolName as well.
1254   if (!symbolName.empty())
1255     return;
1256   unsigned platform;
1257   if (platformStr.getAsInteger(10, platform) ||
1258       platform != static_cast<unsigned>(config->platform()))
1259     return;
1260 
1261   VersionTuple start;
1262   if (start.tryParse(startVersion)) {
1263     warn("failed to parse start version, symbol '" + originalName +
1264          "' ignored");
1265     return;
1266   }
1267   VersionTuple end;
1268   if (end.tryParse(endVersion)) {
1269     warn("failed to parse end version, symbol '" + originalName + "' ignored");
1270     return;
1271   }
1272   if (config->platformInfo.minimum < start ||
1273       config->platformInfo.minimum >= end)
1274     return;
1275 
1276   this->installName = saver.save(installName);
1277 
1278   if (!compatVersion.empty()) {
1279     VersionTuple cVersion;
1280     if (cVersion.tryParse(compatVersion)) {
1281       warn("failed to parse compatibility version, symbol '" + originalName +
1282            "' ignored");
1283       return;
1284     }
1285     compatibilityVersion = encodeVersion(cVersion);
1286   }
1287 }
1288 
1289 void DylibFile::handleLDInstallNameSymbol(StringRef name,
1290                                           StringRef originalName) {
1291   // originalName: $ld$ install_name $ os<version> $ install_name
1292   StringRef condition, installName;
1293   std::tie(condition, installName) = name.split('$');
1294   VersionTuple version;
1295   if (!condition.consume_front("os") || version.tryParse(condition))
1296     warn("failed to parse os version, symbol '" + originalName + "' ignored");
1297   else if (version == config->platformInfo.minimum)
1298     this->installName = saver.save(installName);
1299 }
1300 
1301 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
1302   if (config->applicationExtension && !dylibIsAppExtensionSafe)
1303     warn("using '-application_extension' with unsafe dylib: " + toString(this));
1304 }
1305 
1306 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
1307     : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {}
1308 
1309 void ArchiveFile::addLazySymbols() {
1310   for (const object::Archive::Symbol &sym : file->symbols())
1311     symtab->addLazy(sym.getName(), this, sym);
1312 }
1313 
1314 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb,
1315                                                uint32_t modTime,
1316                                                StringRef archiveName,
1317                                                uint64_t offsetInArchive) {
1318   if (config->zeroModTime)
1319     modTime = 0;
1320 
1321   switch (identify_magic(mb.getBuffer())) {
1322   case file_magic::macho_object:
1323     return make<ObjFile>(mb, modTime, archiveName);
1324   case file_magic::bitcode:
1325     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1326   default:
1327     return createStringError(inconvertibleErrorCode(),
1328                              mb.getBufferIdentifier() +
1329                                  " has unhandled file type");
1330   }
1331 }
1332 
1333 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
1334   if (!seen.insert(c.getChildOffset()).second)
1335     return Error::success();
1336 
1337   Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
1338   if (!mb)
1339     return mb.takeError();
1340 
1341   // Thin archives refer to .o files, so --reproduce needs the .o files too.
1342   if (tar && c.getParent()->isThin())
1343     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
1344 
1345   Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
1346   if (!modTime)
1347     return modTime.takeError();
1348 
1349   Expected<InputFile *> file =
1350       loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset());
1351 
1352   if (!file)
1353     return file.takeError();
1354 
1355   inputFiles.insert(*file);
1356   printArchiveMemberLoad(reason, *file);
1357   return Error::success();
1358 }
1359 
1360 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
1361   object::Archive::Child c =
1362       CHECK(sym.getMember(), toString(this) +
1363                                  ": could not get the member defining symbol " +
1364                                  toMachOString(sym));
1365 
1366   // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
1367   // and become invalid after that call. Copy it to the stack so we can refer
1368   // to it later.
1369   const object::Archive::Symbol symCopy = sym;
1370 
1371   // ld64 doesn't demangle sym here even with -demangle.
1372   // Match that: intentionally don't call toMachOString().
1373   if (Error e = fetch(c, symCopy.getName()))
1374     error(toString(this) + ": could not get the member defining symbol " +
1375           toMachOString(symCopy) + ": " + toString(std::move(e)));
1376 }
1377 
1378 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
1379                                           BitcodeFile &file) {
1380   StringRef name = saver.save(objSym.getName());
1381 
1382   // TODO: support weak references
1383   if (objSym.isUndefined())
1384     return symtab->addUndefined(name, &file, /*isWeakRef=*/false);
1385 
1386   // TODO: Write a test demonstrating why computing isPrivateExtern before
1387   // LTO compilation is important.
1388   bool isPrivateExtern = false;
1389   switch (objSym.getVisibility()) {
1390   case GlobalValue::HiddenVisibility:
1391     isPrivateExtern = true;
1392     break;
1393   case GlobalValue::ProtectedVisibility:
1394     error(name + " has protected visibility, which is not supported by Mach-O");
1395     break;
1396   case GlobalValue::DefaultVisibility:
1397     break;
1398   }
1399 
1400   if (objSym.isCommon())
1401     return symtab->addCommon(name, &file, objSym.getCommonSize(),
1402                              objSym.getCommonAlignment(), isPrivateExtern);
1403 
1404   return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
1405                             /*size=*/0, objSym.isWeak(), isPrivateExtern,
1406                             /*isThumb=*/false,
1407                             /*isReferencedDynamically=*/false,
1408                             /*noDeadStrip=*/false);
1409 }
1410 
1411 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1412                          uint64_t offsetInArchive)
1413     : InputFile(BitcodeKind, mb) {
1414   std::string path = mb.getBufferIdentifier().str();
1415   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1416   // name. If two members with the same name are provided, this causes a
1417   // collision and ThinLTO can't proceed.
1418   // So, we append the archive name to disambiguate two members with the same
1419   // name from multiple different archives, and offset within the archive to
1420   // disambiguate two members of the same name from a single archive.
1421   MemoryBufferRef mbref(
1422       mb.getBuffer(),
1423       saver.save(archiveName.empty() ? path
1424                                      : archiveName + sys::path::filename(path) +
1425                                            utostr(offsetInArchive)));
1426 
1427   obj = check(lto::InputFile::create(mbref));
1428 
1429   // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
1430   // "winning" symbol will then be marked as Prevailing at LTO compilation
1431   // time.
1432   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1433     symbols.push_back(createBitcodeSymbol(objSym, *this));
1434 }
1435 
1436 template void ObjFile::parse<LP64>();
1437