1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/CommonLinkerContext.h" 60 #include "lld/Common/DWARF.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/BinaryStreamReader.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/Support/TimeProfiler.h" 71 #include "llvm/TextAPI/Architecture.h" 72 #include "llvm/TextAPI/InterfaceFile.h" 73 74 #include <type_traits> 75 76 using namespace llvm; 77 using namespace llvm::MachO; 78 using namespace llvm::support::endian; 79 using namespace llvm::sys; 80 using namespace lld; 81 using namespace lld::macho; 82 83 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 84 std::string lld::toString(const InputFile *f) { 85 if (!f) 86 return "<internal>"; 87 88 // Multiple dylibs can be defined in one .tbd file. 89 if (auto dylibFile = dyn_cast<DylibFile>(f)) 90 if (f->getName().endswith(".tbd")) 91 return (f->getName() + "(" + dylibFile->installName + ")").str(); 92 93 if (f->archiveName.empty()) 94 return std::string(f->getName()); 95 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 96 } 97 98 std::string lld::toString(const Section &sec) { 99 return (toString(sec.file) + ":(" + sec.name + ")").str(); 100 } 101 102 SetVector<InputFile *> macho::inputFiles; 103 std::unique_ptr<TarWriter> macho::tar; 104 int InputFile::idCount = 0; 105 106 static VersionTuple decodeVersion(uint32_t version) { 107 unsigned major = version >> 16; 108 unsigned minor = (version >> 8) & 0xffu; 109 unsigned subMinor = version & 0xffu; 110 return VersionTuple(major, minor, subMinor); 111 } 112 113 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 114 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 115 return {}; 116 117 const char *hdr = input->mb.getBufferStart(); 118 119 // "Zippered" object files can have multiple LC_BUILD_VERSION load commands. 120 std::vector<PlatformInfo> platformInfos; 121 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 122 PlatformInfo info; 123 info.target.Platform = static_cast<PlatformType>(cmd->platform); 124 info.minimum = decodeVersion(cmd->minos); 125 platformInfos.emplace_back(std::move(info)); 126 } 127 for (auto *cmd : findCommands<version_min_command>( 128 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 129 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 130 PlatformInfo info; 131 switch (cmd->cmd) { 132 case LC_VERSION_MIN_MACOSX: 133 info.target.Platform = PLATFORM_MACOS; 134 break; 135 case LC_VERSION_MIN_IPHONEOS: 136 info.target.Platform = PLATFORM_IOS; 137 break; 138 case LC_VERSION_MIN_TVOS: 139 info.target.Platform = PLATFORM_TVOS; 140 break; 141 case LC_VERSION_MIN_WATCHOS: 142 info.target.Platform = PLATFORM_WATCHOS; 143 break; 144 } 145 info.minimum = decodeVersion(cmd->version); 146 platformInfos.emplace_back(std::move(info)); 147 } 148 149 return platformInfos; 150 } 151 152 static bool checkCompatibility(const InputFile *input) { 153 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 154 if (platformInfos.empty()) 155 return true; 156 157 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 158 return removeSimulator(info.target.Platform) == 159 removeSimulator(config->platform()); 160 }); 161 if (it == platformInfos.end()) { 162 std::string platformNames; 163 raw_string_ostream os(platformNames); 164 interleave( 165 platformInfos, os, 166 [&](const PlatformInfo &info) { 167 os << getPlatformName(info.target.Platform); 168 }, 169 "/"); 170 error(toString(input) + " has platform " + platformNames + 171 Twine(", which is different from target platform ") + 172 getPlatformName(config->platform())); 173 return false; 174 } 175 176 if (it->minimum > config->platformInfo.minimum) 177 warn(toString(input) + " has version " + it->minimum.getAsString() + 178 ", which is newer than target minimum of " + 179 config->platformInfo.minimum.getAsString()); 180 181 return true; 182 } 183 184 // This cache mostly exists to store system libraries (and .tbds) as they're 185 // loaded, rather than the input archives, which are already cached at a higher 186 // level, and other files like the filelist that are only read once. 187 // Theoretically this caching could be more efficient by hoisting it, but that 188 // would require altering many callers to track the state. 189 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 190 // Open a given file path and return it as a memory-mapped file. 191 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 192 CachedHashStringRef key(path); 193 auto entry = cachedReads.find(key); 194 if (entry != cachedReads.end()) 195 return entry->second; 196 197 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 198 if (std::error_code ec = mbOrErr.getError()) { 199 error("cannot open " + path + ": " + ec.message()); 200 return None; 201 } 202 203 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 204 MemoryBufferRef mbref = mb->getMemBufferRef(); 205 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 206 207 // If this is a regular non-fat file, return it. 208 const char *buf = mbref.getBufferStart(); 209 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 210 if (mbref.getBufferSize() < sizeof(uint32_t) || 211 read32be(&hdr->magic) != FAT_MAGIC) { 212 if (tar) 213 tar->append(relativeToRoot(path), mbref.getBuffer()); 214 return cachedReads[key] = mbref; 215 } 216 217 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); 218 219 // Object files and archive files may be fat files, which contain multiple 220 // real files for different CPU ISAs. Here, we search for a file that matches 221 // with the current link target and returns it as a MemoryBufferRef. 222 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 223 224 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 225 if (reinterpret_cast<const char *>(arch + i + 1) > 226 buf + mbref.getBufferSize()) { 227 error(path + ": fat_arch struct extends beyond end of file"); 228 return None; 229 } 230 231 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 232 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 233 continue; 234 235 uint32_t offset = read32be(&arch[i].offset); 236 uint32_t size = read32be(&arch[i].size); 237 if (offset + size > mbref.getBufferSize()) 238 error(path + ": slice extends beyond end of file"); 239 if (tar) 240 tar->append(relativeToRoot(path), mbref.getBuffer()); 241 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 242 path.copy(bAlloc)); 243 } 244 245 error("unable to find matching architecture in " + path); 246 return None; 247 } 248 249 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 250 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} 251 252 // Some sections comprise of fixed-size records, so instead of splitting them at 253 // symbol boundaries, we split them based on size. Records are distinct from 254 // literals in that they may contain references to other sections, instead of 255 // being leaf nodes in the InputSection graph. 256 // 257 // Note that "record" is a term I came up with. In contrast, "literal" is a term 258 // used by the Mach-O format. 259 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 260 if (name == section_names::compactUnwind) { 261 if (segname == segment_names::ld) 262 return target->wordSize == 8 ? 32 : 20; 263 } 264 if (config->icfLevel == ICFLevel::none) 265 return {}; 266 267 if (name == section_names::cfString && segname == segment_names::data) 268 return target->wordSize == 8 ? 32 : 16; 269 if (name == section_names::objcClassRefs && segname == segment_names::data) 270 return target->wordSize; 271 return {}; 272 } 273 274 static Error parseCallGraph(ArrayRef<uint8_t> data, 275 std::vector<CallGraphEntry> &callGraph) { 276 TimeTraceScope timeScope("Parsing call graph section"); 277 BinaryStreamReader reader(data, support::little); 278 while (!reader.empty()) { 279 uint32_t fromIndex, toIndex; 280 uint64_t count; 281 if (Error err = reader.readInteger(fromIndex)) 282 return err; 283 if (Error err = reader.readInteger(toIndex)) 284 return err; 285 if (Error err = reader.readInteger(count)) 286 return err; 287 callGraph.emplace_back(fromIndex, toIndex, count); 288 } 289 return Error::success(); 290 } 291 292 // Parse the sequence of sections within a single LC_SEGMENT(_64). 293 // Split each section into subsections. 294 template <class SectionHeader> 295 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 296 sections.reserve(sectionHeaders.size()); 297 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 298 299 for (const SectionHeader &sec : sectionHeaders) { 300 StringRef name = 301 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 302 StringRef segname = 303 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 304 sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr)); 305 if (sec.align >= 32) { 306 error("alignment " + std::to_string(sec.align) + " of section " + name + 307 " is too large"); 308 continue; 309 } 310 Section §ion = *sections.back(); 311 uint32_t align = 1 << sec.align; 312 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 313 : buf + sec.offset, 314 static_cast<size_t>(sec.size)}; 315 316 auto splitRecords = [&](int recordSize) -> void { 317 if (data.empty()) 318 return; 319 Subsections &subsections = section.subsections; 320 subsections.reserve(data.size() / recordSize); 321 for (uint64_t off = 0; off < data.size(); off += recordSize) { 322 auto *isec = make<ConcatInputSection>( 323 section, data.slice(off, recordSize), align); 324 subsections.push_back({off, isec}); 325 } 326 }; 327 328 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 329 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 330 if (sec.nreloc && config->dedupLiterals) 331 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 332 sec.sectname + 333 ", so LLD cannot deduplicate literals. Try re-running without " 334 "--deduplicate-literals."); 335 336 InputSection *isec; 337 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 338 isec = make<CStringInputSection>(section, data, align); 339 // FIXME: parallelize this? 340 cast<CStringInputSection>(isec)->splitIntoPieces(); 341 } else { 342 isec = make<WordLiteralInputSection>(section, data, align); 343 } 344 section.subsections.push_back({0, isec}); 345 } else if (auto recordSize = getRecordSize(segname, name)) { 346 splitRecords(*recordSize); 347 if (name == section_names::compactUnwind) 348 compactUnwindSection = §ion; 349 } else if (segname == segment_names::llvm) { 350 if (config->callGraphProfileSort && name == section_names::cgProfile) 351 checkError(parseCallGraph(data, callGraph)); 352 // ld64 does not appear to emit contents from sections within the __LLVM 353 // segment. Symbols within those sections point to bitcode metadata 354 // instead of actual symbols. Global symbols within those sections could 355 // have the same name without causing duplicate symbol errors. To avoid 356 // spurious duplicate symbol errors, we do not parse these sections. 357 // TODO: Evaluate whether the bitcode metadata is needed. 358 } else { 359 auto *isec = make<ConcatInputSection>(section, data, align); 360 if (isDebugSection(isec->getFlags()) && 361 isec->getSegName() == segment_names::dwarf) { 362 // Instead of emitting DWARF sections, we emit STABS symbols to the 363 // object files that contain them. We filter them out early to avoid 364 // parsing their relocations unnecessarily. 365 debugSections.push_back(isec); 366 } else { 367 section.subsections.push_back({0, isec}); 368 } 369 } 370 } 371 } 372 373 // Find the subsection corresponding to the greatest section offset that is <= 374 // that of the given offset. 375 // 376 // offset: an offset relative to the start of the original InputSection (before 377 // any subsection splitting has occurred). It will be updated to represent the 378 // same location as an offset relative to the start of the containing 379 // subsection. 380 template <class T> 381 static InputSection *findContainingSubsection(const Section §ion, 382 T *offset) { 383 static_assert(std::is_same<uint64_t, T>::value || 384 std::is_same<uint32_t, T>::value, 385 "unexpected type for offset"); 386 auto it = std::prev(llvm::upper_bound( 387 section.subsections, *offset, 388 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 389 *offset -= it->offset; 390 return it->isec; 391 } 392 393 // Find a symbol at offset `off` within `isec`. 394 static Defined *findSymbolAtOffset(const ConcatInputSection *isec, 395 uint64_t off) { 396 auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) { 397 return d->value < off; 398 }); 399 // The offset should point at the exact address of a symbol (with no addend.) 400 if (it == isec->symbols.end() || (*it)->value != off) { 401 assert(isec->wasCoalesced); 402 return nullptr; 403 } 404 return *it; 405 } 406 407 template <class SectionHeader> 408 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 409 relocation_info rel) { 410 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 411 bool valid = true; 412 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 413 valid = false; 414 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 415 std::to_string(rel.r_address) + " of " + sec.segname + "," + 416 sec.sectname + " in " + toString(file)) 417 .str(); 418 }; 419 420 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 421 error(message("must be extern")); 422 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 423 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 424 "be PC-relative")); 425 if (isThreadLocalVariables(sec.flags) && 426 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 427 error(message("not allowed in thread-local section, must be UNSIGNED")); 428 if (rel.r_length < 2 || rel.r_length > 3 || 429 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 430 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 431 error(message("has width " + std::to_string(1 << rel.r_length) + 432 " bytes, but must be " + 433 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 434 " bytes")); 435 } 436 return valid; 437 } 438 439 template <class SectionHeader> 440 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 441 const SectionHeader &sec, 442 Section §ion) { 443 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 444 ArrayRef<relocation_info> relInfos( 445 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 446 447 Subsections &subsections = section.subsections; 448 auto subsecIt = subsections.rbegin(); 449 for (size_t i = 0; i < relInfos.size(); i++) { 450 // Paired relocations serve as Mach-O's method for attaching a 451 // supplemental datum to a primary relocation record. ELF does not 452 // need them because the *_RELOC_RELA records contain the extra 453 // addend field, vs. *_RELOC_REL which omit the addend. 454 // 455 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 456 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 457 // datum for each is a symbolic address. The result is the offset 458 // between two addresses. 459 // 460 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 461 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 462 // base symbolic address. 463 // 464 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 465 // addend into the instruction stream. On X86, a relocatable address 466 // field always occupies an entire contiguous sequence of byte(s), 467 // so there is no need to merge opcode bits with address 468 // bits. Therefore, it's easy and convenient to store addends in the 469 // instruction-stream bytes that would otherwise contain zeroes. By 470 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 471 // address bits so that bitwise arithmetic is necessary to extract 472 // and insert them. Storing addends in the instruction stream is 473 // possible, but inconvenient and more costly at link time. 474 475 relocation_info relInfo = relInfos[i]; 476 bool isSubtrahend = 477 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 478 if (isSubtrahend && StringRef(sec.sectname) == section_names::ehFrame) { 479 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 480 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 481 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 482 ++i; 483 continue; 484 } 485 int64_t pairedAddend = 0; 486 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 487 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 488 relInfo = relInfos[++i]; 489 } 490 assert(i < relInfos.size()); 491 if (!validateRelocationInfo(this, sec, relInfo)) 492 continue; 493 if (relInfo.r_address & R_SCATTERED) 494 fatal("TODO: Scattered relocations not supported"); 495 496 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 497 assert(!(embeddedAddend && pairedAddend)); 498 int64_t totalAddend = pairedAddend + embeddedAddend; 499 Reloc r; 500 r.type = relInfo.r_type; 501 r.pcrel = relInfo.r_pcrel; 502 r.length = relInfo.r_length; 503 r.offset = relInfo.r_address; 504 if (relInfo.r_extern) { 505 r.referent = symbols[relInfo.r_symbolnum]; 506 r.addend = isSubtrahend ? 0 : totalAddend; 507 } else { 508 assert(!isSubtrahend); 509 const SectionHeader &referentSecHead = 510 sectionHeaders[relInfo.r_symbolnum - 1]; 511 uint64_t referentOffset; 512 if (relInfo.r_pcrel) { 513 // The implicit addend for pcrel section relocations is the pcrel offset 514 // in terms of the addresses in the input file. Here we adjust it so 515 // that it describes the offset from the start of the referent section. 516 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 517 // have pcrel section relocations. We may want to factor this out into 518 // the arch-specific .cpp file. 519 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 520 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 521 referentSecHead.addr; 522 } else { 523 // The addend for a non-pcrel relocation is its absolute address. 524 referentOffset = totalAddend - referentSecHead.addr; 525 } 526 r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1], 527 &referentOffset); 528 r.addend = referentOffset; 529 } 530 531 // Find the subsection that this relocation belongs to. 532 // Though not required by the Mach-O format, clang and gcc seem to emit 533 // relocations in order, so let's take advantage of it. However, ld64 emits 534 // unsorted relocations (in `-r` mode), so we have a fallback for that 535 // uncommon case. 536 InputSection *subsec; 537 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 538 ++subsecIt; 539 if (subsecIt == subsections.rend() || 540 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 541 subsec = findContainingSubsection(section, &r.offset); 542 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 543 // for the other relocations. 544 subsecIt = subsections.rend(); 545 } else { 546 subsec = subsecIt->isec; 547 r.offset -= subsecIt->offset; 548 } 549 subsec->relocs.push_back(r); 550 551 if (isSubtrahend) { 552 relocation_info minuendInfo = relInfos[++i]; 553 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 554 // attached to the same address. 555 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 556 relInfo.r_address == minuendInfo.r_address); 557 Reloc p; 558 p.type = minuendInfo.r_type; 559 if (minuendInfo.r_extern) { 560 p.referent = symbols[minuendInfo.r_symbolnum]; 561 p.addend = totalAddend; 562 } else { 563 uint64_t referentOffset = 564 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 565 p.referent = findContainingSubsection( 566 *sections[minuendInfo.r_symbolnum - 1], &referentOffset); 567 p.addend = referentOffset; 568 } 569 subsec->relocs.push_back(p); 570 } 571 } 572 } 573 574 template <class NList> 575 static macho::Symbol *createDefined(const NList &sym, StringRef name, 576 InputSection *isec, uint64_t value, 577 uint64_t size) { 578 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 579 // N_EXT: Global symbols. These go in the symbol table during the link, 580 // and also in the export table of the output so that the dynamic 581 // linker sees them. 582 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 583 // symbol table during the link so that duplicates are 584 // either reported (for non-weak symbols) or merged 585 // (for weak symbols), but they do not go in the export 586 // table of the output. 587 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 588 // object files) may produce them. LLD does not yet support -r. 589 // These are translation-unit scoped, identical to the `0` case. 590 // 0: Translation-unit scoped. These are not in the symbol table during 591 // link, and not in the export table of the output either. 592 bool isWeakDefCanBeHidden = 593 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 594 595 if (sym.n_type & N_EXT) { 596 bool isPrivateExtern = sym.n_type & N_PEXT; 597 // lld's behavior for merging symbols is slightly different from ld64: 598 // ld64 picks the winning symbol based on several criteria (see 599 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 600 // just merges metadata and keeps the contents of the first symbol 601 // with that name (see SymbolTable::addDefined). For: 602 // * inline function F in a TU built with -fvisibility-inlines-hidden 603 // * and inline function F in another TU built without that flag 604 // ld64 will pick the one from the file built without 605 // -fvisibility-inlines-hidden. 606 // lld will instead pick the one listed first on the link command line and 607 // give it visibility as if the function was built without 608 // -fvisibility-inlines-hidden. 609 // If both functions have the same contents, this will have the same 610 // behavior. If not, it won't, but the input had an ODR violation in 611 // that case. 612 // 613 // Similarly, merging a symbol 614 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 615 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 616 // should produce one 617 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 618 // with ld64's semantics, because it means the non-private-extern 619 // definition will continue to take priority if more private extern 620 // definitions are encountered. With lld's semantics there's no observable 621 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 622 // that's privateExtern -- neither makes it into the dynamic symbol table, 623 // unless the autohide symbol is explicitly exported. 624 // But if a symbol is both privateExtern and autohide then it can't 625 // be exported. 626 // So we nullify the autohide flag when privateExtern is present 627 // and promote the symbol to privateExtern when it is not already. 628 if (isWeakDefCanBeHidden && isPrivateExtern) 629 isWeakDefCanBeHidden = false; 630 else if (isWeakDefCanBeHidden) 631 isPrivateExtern = true; 632 return symtab->addDefined( 633 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 634 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 635 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 636 isWeakDefCanBeHidden); 637 } 638 assert(!isWeakDefCanBeHidden && 639 "weak_def_can_be_hidden on already-hidden symbol?"); 640 bool includeInSymtab = !name.startswith("l") && !name.startswith("L"); 641 return make<Defined>( 642 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 643 /*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab, 644 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 645 sym.n_desc & N_NO_DEAD_STRIP); 646 } 647 648 // Absolute symbols are defined symbols that do not have an associated 649 // InputSection. They cannot be weak. 650 template <class NList> 651 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 652 StringRef name) { 653 if (sym.n_type & N_EXT) { 654 return symtab->addDefined( 655 name, file, nullptr, sym.n_value, /*size=*/0, 656 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 657 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 658 /*isWeakDefCanBeHidden=*/false); 659 } 660 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 661 /*isWeakDef=*/false, 662 /*isExternal=*/false, /*isPrivateExtern=*/false, 663 /*includeInSymtab=*/true, sym.n_desc & N_ARM_THUMB_DEF, 664 /*isReferencedDynamically=*/false, 665 sym.n_desc & N_NO_DEAD_STRIP); 666 } 667 668 template <class NList> 669 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 670 StringRef name) { 671 uint8_t type = sym.n_type & N_TYPE; 672 switch (type) { 673 case N_UNDF: 674 return sym.n_value == 0 675 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 676 : symtab->addCommon(name, this, sym.n_value, 677 1 << GET_COMM_ALIGN(sym.n_desc), 678 sym.n_type & N_PEXT); 679 case N_ABS: 680 return createAbsolute(sym, this, name); 681 case N_PBUD: 682 case N_INDR: 683 error("TODO: support symbols of type " + std::to_string(type)); 684 return nullptr; 685 case N_SECT: 686 llvm_unreachable( 687 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 688 default: 689 llvm_unreachable("invalid symbol type"); 690 } 691 } 692 693 template <class NList> static bool isUndef(const NList &sym) { 694 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 695 } 696 697 template <class LP> 698 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 699 ArrayRef<typename LP::nlist> nList, 700 const char *strtab, bool subsectionsViaSymbols) { 701 using NList = typename LP::nlist; 702 703 // Groups indices of the symbols by the sections that contain them. 704 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 705 symbols.resize(nList.size()); 706 SmallVector<unsigned, 32> undefineds; 707 for (uint32_t i = 0; i < nList.size(); ++i) { 708 const NList &sym = nList[i]; 709 710 // Ignore debug symbols for now. 711 // FIXME: may need special handling. 712 if (sym.n_type & N_STAB) 713 continue; 714 715 StringRef name = strtab + sym.n_strx; 716 if ((sym.n_type & N_TYPE) == N_SECT) { 717 Subsections &subsections = sections[sym.n_sect - 1]->subsections; 718 // parseSections() may have chosen not to parse this section. 719 if (subsections.empty()) 720 continue; 721 symbolsBySection[sym.n_sect - 1].push_back(i); 722 } else if (isUndef(sym)) { 723 undefineds.push_back(i); 724 } else { 725 symbols[i] = parseNonSectionSymbol(sym, name); 726 } 727 } 728 729 for (size_t i = 0; i < sections.size(); ++i) { 730 Subsections &subsections = sections[i]->subsections; 731 if (subsections.empty()) 732 continue; 733 if (sections[i]->name == section_names::ehFrame) { 734 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 735 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 736 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 737 continue; 738 } 739 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 740 uint64_t sectionAddr = sectionHeaders[i].addr; 741 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 742 743 // Record-based sections have already been split into subsections during 744 // parseSections(), so we simply need to match Symbols to the corresponding 745 // subsection here. 746 if (getRecordSize(sections[i]->segname, sections[i]->name)) { 747 for (size_t j = 0; j < symbolIndices.size(); ++j) { 748 uint32_t symIndex = symbolIndices[j]; 749 const NList &sym = nList[symIndex]; 750 StringRef name = strtab + sym.n_strx; 751 uint64_t symbolOffset = sym.n_value - sectionAddr; 752 InputSection *isec = 753 findContainingSubsection(*sections[i], &symbolOffset); 754 if (symbolOffset != 0) { 755 error(toString(*sections[i]) + ": symbol " + name + 756 " at misaligned offset"); 757 continue; 758 } 759 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 760 } 761 continue; 762 } 763 764 // Calculate symbol sizes and create subsections by splitting the sections 765 // along symbol boundaries. 766 // We populate subsections by repeatedly splitting the last (highest 767 // address) subsection. 768 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 769 return nList[lhs].n_value < nList[rhs].n_value; 770 }); 771 for (size_t j = 0; j < symbolIndices.size(); ++j) { 772 uint32_t symIndex = symbolIndices[j]; 773 const NList &sym = nList[symIndex]; 774 StringRef name = strtab + sym.n_strx; 775 Subsection &subsec = subsections.back(); 776 InputSection *isec = subsec.isec; 777 778 uint64_t subsecAddr = sectionAddr + subsec.offset; 779 size_t symbolOffset = sym.n_value - subsecAddr; 780 uint64_t symbolSize = 781 j + 1 < symbolIndices.size() 782 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 783 : isec->data.size() - symbolOffset; 784 // There are 4 cases where we do not need to create a new subsection: 785 // 1. If the input file does not use subsections-via-symbols. 786 // 2. Multiple symbols at the same address only induce one subsection. 787 // (The symbolOffset == 0 check covers both this case as well as 788 // the first loop iteration.) 789 // 3. Alternative entry points do not induce new subsections. 790 // 4. If we have a literal section (e.g. __cstring and __literal4). 791 if (!subsectionsViaSymbols || symbolOffset == 0 || 792 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 793 symbols[symIndex] = 794 createDefined(sym, name, isec, symbolOffset, symbolSize); 795 continue; 796 } 797 auto *concatIsec = cast<ConcatInputSection>(isec); 798 799 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 800 nextIsec->wasCoalesced = false; 801 if (isZeroFill(isec->getFlags())) { 802 // Zero-fill sections have NULL data.data() non-zero data.size() 803 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 804 isec->data = {nullptr, symbolOffset}; 805 } else { 806 nextIsec->data = isec->data.slice(symbolOffset); 807 isec->data = isec->data.slice(0, symbolOffset); 808 } 809 810 // By construction, the symbol will be at offset zero in the new 811 // subsection. 812 symbols[symIndex] = 813 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 814 // TODO: ld64 appears to preserve the original alignment as well as each 815 // subsection's offset from the last aligned address. We should consider 816 // emulating that behavior. 817 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 818 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 819 } 820 } 821 822 // Undefined symbols can trigger recursive fetch from Archives due to 823 // LazySymbols. Process defined symbols first so that the relative order 824 // between a defined symbol and an undefined symbol does not change the 825 // symbol resolution behavior. In addition, a set of interconnected symbols 826 // will all be resolved to the same file, instead of being resolved to 827 // different files. 828 for (unsigned i : undefineds) { 829 const NList &sym = nList[i]; 830 StringRef name = strtab + sym.n_strx; 831 symbols[i] = parseNonSectionSymbol(sym, name); 832 } 833 } 834 835 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 836 StringRef sectName) 837 : InputFile(OpaqueKind, mb) { 838 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 839 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 840 sections.push_back(make<Section>(/*file=*/this, segName.take_front(16), 841 sectName.take_front(16), 842 /*flags=*/0, /*addr=*/0)); 843 Section §ion = *sections.back(); 844 ConcatInputSection *isec = make<ConcatInputSection>(section, data); 845 isec->live = true; 846 section.subsections.push_back({0, isec}); 847 } 848 849 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 850 bool lazy) 851 : InputFile(ObjKind, mb, lazy), modTime(modTime) { 852 this->archiveName = std::string(archiveName); 853 if (lazy) { 854 if (target->wordSize == 8) 855 parseLazy<LP64>(); 856 else 857 parseLazy<ILP32>(); 858 } else { 859 if (target->wordSize == 8) 860 parse<LP64>(); 861 else 862 parse<ILP32>(); 863 } 864 } 865 866 template <class LP> void ObjFile::parse() { 867 using Header = typename LP::mach_header; 868 using SegmentCommand = typename LP::segment_command; 869 using SectionHeader = typename LP::section; 870 using NList = typename LP::nlist; 871 872 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 873 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 874 875 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 876 if (arch != config->arch()) { 877 auto msg = config->errorForArchMismatch 878 ? static_cast<void (*)(const Twine &)>(error) 879 : warn; 880 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 881 " which is incompatible with target architecture " + 882 getArchitectureName(config->arch())); 883 return; 884 } 885 886 if (!checkCompatibility(this)) 887 return; 888 889 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 890 StringRef data{reinterpret_cast<const char *>(cmd + 1), 891 cmd->cmdsize - sizeof(linker_option_command)}; 892 parseLCLinkerOption(this, cmd->count, data); 893 } 894 895 ArrayRef<SectionHeader> sectionHeaders; 896 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 897 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 898 sectionHeaders = ArrayRef<SectionHeader>{ 899 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 900 parseSections(sectionHeaders); 901 } 902 903 // TODO: Error on missing LC_SYMTAB? 904 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 905 auto *c = reinterpret_cast<const symtab_command *>(cmd); 906 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 907 c->nsyms); 908 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 909 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 910 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 911 } 912 913 // The relocations may refer to the symbols, so we parse them after we have 914 // parsed all the symbols. 915 for (size_t i = 0, n = sections.size(); i < n; ++i) 916 if (!sections[i]->subsections.empty()) 917 parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]); 918 919 parseDebugInfo(); 920 if (compactUnwindSection) 921 registerCompactUnwind(); 922 } 923 924 template <class LP> void ObjFile::parseLazy() { 925 using Header = typename LP::mach_header; 926 using NList = typename LP::nlist; 927 928 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 929 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 930 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 931 if (!cmd) 932 return; 933 auto *c = reinterpret_cast<const symtab_command *>(cmd); 934 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 935 c->nsyms); 936 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 937 symbols.resize(nList.size()); 938 for (auto it : llvm::enumerate(nList)) { 939 const NList &sym = it.value(); 940 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 941 // TODO: Bound checking 942 StringRef name = strtab + sym.n_strx; 943 symbols[it.index()] = symtab->addLazyObject(name, *this); 944 if (!lazy) 945 break; 946 } 947 } 948 } 949 950 void ObjFile::parseDebugInfo() { 951 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 952 if (!dObj) 953 return; 954 955 auto *ctx = make<DWARFContext>( 956 std::move(dObj), "", 957 [&](Error err) { 958 warn(toString(this) + ": " + toString(std::move(err))); 959 }, 960 [&](Error warning) { 961 warn(toString(this) + ": " + toString(std::move(warning))); 962 }); 963 964 // TODO: Since object files can contain a lot of DWARF info, we should verify 965 // that we are parsing just the info we need 966 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 967 // FIXME: There can be more than one compile unit per object file. See 968 // PR48637. 969 auto it = units.begin(); 970 compileUnit = it->get(); 971 } 972 973 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 974 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 975 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 976 if (!cmd) 977 return {}; 978 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 979 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 980 c->datasize / sizeof(data_in_code_entry)}; 981 } 982 983 // Create pointers from symbols to their associated compact unwind entries. 984 void ObjFile::registerCompactUnwind() { 985 for (const Subsection &subsection : compactUnwindSection->subsections) { 986 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 987 // Hack!! Since each CUE contains a different function address, if ICF 988 // operated naively and compared the entire contents of each CUE, entries 989 // with identical unwind info but belonging to different functions would 990 // never be considered equivalent. To work around this problem, we slice 991 // away the function address here. (Note that we do not adjust the offsets 992 // of the corresponding relocations.) We rely on `relocateCompactUnwind()` 993 // to correctly handle these truncated input sections. 994 isec->data = isec->data.slice(target->wordSize); 995 996 ConcatInputSection *referentIsec; 997 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 998 Reloc &r = *it; 999 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 1000 if (r.offset != 0) { 1001 ++it; 1002 continue; 1003 } 1004 uint64_t add = r.addend; 1005 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 1006 // Check whether the symbol defined in this file is the prevailing one. 1007 // Skip if it is e.g. a weak def that didn't prevail. 1008 if (sym->getFile() != this) { 1009 ++it; 1010 continue; 1011 } 1012 add += sym->value; 1013 referentIsec = cast<ConcatInputSection>(sym->isec); 1014 } else { 1015 referentIsec = 1016 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 1017 } 1018 // Unwind info lives in __DATA, and finalization of __TEXT will occur 1019 // before finalization of __DATA. Moreover, the finalization of unwind 1020 // info depends on the exact addresses that it references. So it is safe 1021 // for compact unwind to reference addresses in __TEXT, but not addresses 1022 // in any other segment. 1023 if (referentIsec->getSegName() != segment_names::text) 1024 error(isec->getLocation(r.offset) + " references section " + 1025 referentIsec->getName() + " which is not in segment __TEXT"); 1026 // The functionAddress relocations are typically section relocations. 1027 // However, unwind info operates on a per-symbol basis, so we search for 1028 // the function symbol here. 1029 Defined *d = findSymbolAtOffset(referentIsec, add); 1030 if (!d) { 1031 ++it; 1032 continue; 1033 } 1034 d->unwindEntry = isec; 1035 // Since we've sliced away the functionAddress, we should remove the 1036 // corresponding relocation too. Given that clang emits relocations in 1037 // reverse order of address, this relocation should be at the end of the 1038 // vector for most of our input object files, so this is typically an O(1) 1039 // operation. 1040 it = isec->relocs.erase(it); 1041 } 1042 } 1043 } 1044 1045 // The path can point to either a dylib or a .tbd file. 1046 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1047 Optional<MemoryBufferRef> mbref = readFile(path); 1048 if (!mbref) { 1049 error("could not read dylib file at " + path); 1050 return nullptr; 1051 } 1052 return loadDylib(*mbref, umbrella); 1053 } 1054 1055 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1056 // the first document storing child pointers to the rest of them. When we are 1057 // processing a given TBD file, we store that top-level document in 1058 // currentTopLevelTapi. When processing re-exports, we search its children for 1059 // potentially matching documents in the same TBD file. Note that the children 1060 // themselves don't point to further documents, i.e. this is a two-level tree. 1061 // 1062 // Re-exports can either refer to on-disk files, or to documents within .tbd 1063 // files. 1064 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1065 const InterfaceFile *currentTopLevelTapi) { 1066 // Search order: 1067 // 1. Install name basename in -F / -L directories. 1068 { 1069 StringRef stem = path::stem(path); 1070 SmallString<128> frameworkName; 1071 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1072 bool isFramework = path.endswith(frameworkName); 1073 if (isFramework) { 1074 for (StringRef dir : config->frameworkSearchPaths) { 1075 SmallString<128> candidate = dir; 1076 path::append(candidate, frameworkName); 1077 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1078 return loadDylib(*dylibPath, umbrella); 1079 } 1080 } else if (Optional<StringRef> dylibPath = findPathCombination( 1081 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1082 return loadDylib(*dylibPath, umbrella); 1083 } 1084 1085 // 2. As absolute path. 1086 if (path::is_absolute(path, path::Style::posix)) 1087 for (StringRef root : config->systemLibraryRoots) 1088 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1089 return loadDylib(*dylibPath, umbrella); 1090 1091 // 3. As relative path. 1092 1093 // TODO: Handle -dylib_file 1094 1095 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1096 SmallString<128> newPath; 1097 if (config->outputType == MH_EXECUTE && 1098 path.consume_front("@executable_path/")) { 1099 // ld64 allows overriding this with the undocumented flag -executable_path. 1100 // lld doesn't currently implement that flag. 1101 // FIXME: Consider using finalOutput instead of outputFile. 1102 path::append(newPath, path::parent_path(config->outputFile), path); 1103 path = newPath; 1104 } else if (path.consume_front("@loader_path/")) { 1105 fs::real_path(umbrella->getName(), newPath); 1106 path::remove_filename(newPath); 1107 path::append(newPath, path); 1108 path = newPath; 1109 } else if (path.startswith("@rpath/")) { 1110 for (StringRef rpath : umbrella->rpaths) { 1111 newPath.clear(); 1112 if (rpath.consume_front("@loader_path/")) { 1113 fs::real_path(umbrella->getName(), newPath); 1114 path::remove_filename(newPath); 1115 } 1116 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1117 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1118 return loadDylib(*dylibPath, umbrella); 1119 } 1120 } 1121 1122 // FIXME: Should this be further up? 1123 if (currentTopLevelTapi) { 1124 for (InterfaceFile &child : 1125 make_pointee_range(currentTopLevelTapi->documents())) { 1126 assert(child.documents().empty()); 1127 if (path == child.getInstallName()) { 1128 auto file = make<DylibFile>(child, umbrella); 1129 file->parseReexports(child); 1130 return file; 1131 } 1132 } 1133 } 1134 1135 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1136 return loadDylib(*dylibPath, umbrella); 1137 1138 return nullptr; 1139 } 1140 1141 // If a re-exported dylib is public (lives in /usr/lib or 1142 // /System/Library/Frameworks), then it is considered implicitly linked: we 1143 // should bind to its symbols directly instead of via the re-exporting umbrella 1144 // library. 1145 static bool isImplicitlyLinked(StringRef path) { 1146 if (!config->implicitDylibs) 1147 return false; 1148 1149 if (path::parent_path(path) == "/usr/lib") 1150 return true; 1151 1152 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1153 if (path.consume_front("/System/Library/Frameworks/")) { 1154 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1155 return path::filename(path) == frameworkName; 1156 } 1157 1158 return false; 1159 } 1160 1161 static void loadReexport(StringRef path, DylibFile *umbrella, 1162 const InterfaceFile *currentTopLevelTapi) { 1163 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1164 if (!reexport) 1165 error("unable to locate re-export with install name " + path); 1166 } 1167 1168 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1169 bool isBundleLoader) 1170 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1171 isBundleLoader(isBundleLoader) { 1172 assert(!isBundleLoader || !umbrella); 1173 if (umbrella == nullptr) 1174 umbrella = this; 1175 this->umbrella = umbrella; 1176 1177 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1178 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1179 1180 // Initialize installName. 1181 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1182 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1183 currentVersion = read32le(&c->dylib.current_version); 1184 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1185 installName = 1186 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1187 } else if (!isBundleLoader) { 1188 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1189 // so it's OK. 1190 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1191 return; 1192 } 1193 1194 if (config->printEachFile) 1195 message(toString(this)); 1196 inputFiles.insert(this); 1197 1198 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1199 1200 if (!checkCompatibility(this)) 1201 return; 1202 1203 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1204 1205 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1206 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1207 rpaths.push_back(rpath); 1208 } 1209 1210 // Initialize symbols. 1211 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1212 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1213 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1214 struct TrieEntry { 1215 StringRef name; 1216 uint64_t flags; 1217 }; 1218 1219 std::vector<TrieEntry> entries; 1220 // Find all the $ld$* symbols to process first. 1221 parseTrie(buf + c->export_off, c->export_size, 1222 [&](const Twine &name, uint64_t flags) { 1223 StringRef savedName = saver().save(name); 1224 if (handleLDSymbol(savedName)) 1225 return; 1226 entries.push_back({savedName, flags}); 1227 }); 1228 1229 // Process the "normal" symbols. 1230 for (TrieEntry &entry : entries) { 1231 if (exportingFile->hiddenSymbols.contains( 1232 CachedHashStringRef(entry.name))) 1233 continue; 1234 1235 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1236 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1237 1238 symbols.push_back( 1239 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1240 } 1241 1242 } else { 1243 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1244 return; 1245 } 1246 } 1247 1248 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1249 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1250 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1251 target->headerSize; 1252 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1253 auto *cmd = reinterpret_cast<const load_command *>(p); 1254 p += cmd->cmdsize; 1255 1256 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1257 cmd->cmd == LC_REEXPORT_DYLIB) { 1258 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1259 StringRef reexportPath = 1260 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1261 loadReexport(reexportPath, exportingFile, nullptr); 1262 } 1263 1264 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1265 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1266 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1267 if (config->namespaceKind == NamespaceKind::flat && 1268 cmd->cmd == LC_LOAD_DYLIB) { 1269 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1270 StringRef dylibPath = 1271 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1272 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1273 if (!dylib) 1274 error(Twine("unable to locate library '") + dylibPath + 1275 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1276 } 1277 } 1278 } 1279 1280 // Some versions of XCode ship with .tbd files that don't have the right 1281 // platform settings. 1282 constexpr std::array<StringRef, 4> skipPlatformChecks{ 1283 "/usr/lib/system/libsystem_kernel.dylib", 1284 "/usr/lib/system/libsystem_platform.dylib", 1285 "/usr/lib/system/libsystem_pthread.dylib", 1286 "/usr/lib/system/libcompiler_rt.dylib"}; 1287 1288 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1289 bool isBundleLoader) 1290 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1291 isBundleLoader(isBundleLoader) { 1292 // FIXME: Add test for the missing TBD code path. 1293 1294 if (umbrella == nullptr) 1295 umbrella = this; 1296 this->umbrella = umbrella; 1297 1298 installName = saver().save(interface.getInstallName()); 1299 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1300 currentVersion = interface.getCurrentVersion().rawValue(); 1301 1302 if (config->printEachFile) 1303 message(toString(this)); 1304 inputFiles.insert(this); 1305 1306 if (!is_contained(skipPlatformChecks, installName) && 1307 !is_contained(interface.targets(), config->platformInfo.target)) { 1308 error(toString(this) + " is incompatible with " + 1309 std::string(config->platformInfo.target)); 1310 return; 1311 } 1312 1313 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1314 1315 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1316 auto addSymbol = [&](const Twine &name) -> void { 1317 StringRef savedName = saver().save(name); 1318 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1319 return; 1320 1321 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1322 /*isWeakDef=*/false, 1323 /*isTlv=*/false)); 1324 }; 1325 1326 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1327 normalSymbols.reserve(interface.symbolsCount()); 1328 for (const auto *symbol : interface.symbols()) { 1329 if (!symbol->getArchitectures().has(config->arch())) 1330 continue; 1331 if (handleLDSymbol(symbol->getName())) 1332 continue; 1333 1334 switch (symbol->getKind()) { 1335 case SymbolKind::GlobalSymbol: // Fallthrough 1336 case SymbolKind::ObjectiveCClass: // Fallthrough 1337 case SymbolKind::ObjectiveCClassEHType: // Fallthrough 1338 case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough 1339 normalSymbols.push_back(symbol); 1340 } 1341 } 1342 1343 // TODO(compnerd) filter out symbols based on the target platform 1344 // TODO: handle weak defs, thread locals 1345 for (const auto *symbol : normalSymbols) { 1346 switch (symbol->getKind()) { 1347 case SymbolKind::GlobalSymbol: 1348 addSymbol(symbol->getName()); 1349 break; 1350 case SymbolKind::ObjectiveCClass: 1351 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1352 // want to emulate that. 1353 addSymbol(objc::klass + symbol->getName()); 1354 addSymbol(objc::metaclass + symbol->getName()); 1355 break; 1356 case SymbolKind::ObjectiveCClassEHType: 1357 addSymbol(objc::ehtype + symbol->getName()); 1358 break; 1359 case SymbolKind::ObjectiveCInstanceVariable: 1360 addSymbol(objc::ivar + symbol->getName()); 1361 break; 1362 } 1363 } 1364 } 1365 1366 void DylibFile::parseReexports(const InterfaceFile &interface) { 1367 const InterfaceFile *topLevel = 1368 interface.getParent() == nullptr ? &interface : interface.getParent(); 1369 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1370 InterfaceFile::const_target_range targets = intfRef.targets(); 1371 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1372 is_contained(targets, config->platformInfo.target)) 1373 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1374 } 1375 } 1376 1377 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1378 // name, compatibility version or hide/add symbols) for specific target 1379 // versions. 1380 bool DylibFile::handleLDSymbol(StringRef originalName) { 1381 if (!originalName.startswith("$ld$")) 1382 return false; 1383 1384 StringRef action; 1385 StringRef name; 1386 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1387 if (action == "previous") 1388 handleLDPreviousSymbol(name, originalName); 1389 else if (action == "install_name") 1390 handleLDInstallNameSymbol(name, originalName); 1391 else if (action == "hide") 1392 handleLDHideSymbol(name, originalName); 1393 return true; 1394 } 1395 1396 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1397 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1398 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1399 StringRef installName; 1400 StringRef compatVersion; 1401 StringRef platformStr; 1402 StringRef startVersion; 1403 StringRef endVersion; 1404 StringRef symbolName; 1405 StringRef rest; 1406 1407 std::tie(installName, name) = name.split('$'); 1408 std::tie(compatVersion, name) = name.split('$'); 1409 std::tie(platformStr, name) = name.split('$'); 1410 std::tie(startVersion, name) = name.split('$'); 1411 std::tie(endVersion, name) = name.split('$'); 1412 std::tie(symbolName, rest) = name.split('$'); 1413 // TODO: ld64 contains some logic for non-empty symbolName as well. 1414 if (!symbolName.empty()) 1415 return; 1416 unsigned platform; 1417 if (platformStr.getAsInteger(10, platform) || 1418 platform != static_cast<unsigned>(config->platform())) 1419 return; 1420 1421 VersionTuple start; 1422 if (start.tryParse(startVersion)) { 1423 warn("failed to parse start version, symbol '" + originalName + 1424 "' ignored"); 1425 return; 1426 } 1427 VersionTuple end; 1428 if (end.tryParse(endVersion)) { 1429 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1430 return; 1431 } 1432 if (config->platformInfo.minimum < start || 1433 config->platformInfo.minimum >= end) 1434 return; 1435 1436 this->installName = saver().save(installName); 1437 1438 if (!compatVersion.empty()) { 1439 VersionTuple cVersion; 1440 if (cVersion.tryParse(compatVersion)) { 1441 warn("failed to parse compatibility version, symbol '" + originalName + 1442 "' ignored"); 1443 return; 1444 } 1445 compatibilityVersion = encodeVersion(cVersion); 1446 } 1447 } 1448 1449 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1450 StringRef originalName) { 1451 // originalName: $ld$ install_name $ os<version> $ install_name 1452 StringRef condition, installName; 1453 std::tie(condition, installName) = name.split('$'); 1454 VersionTuple version; 1455 if (!condition.consume_front("os") || version.tryParse(condition)) 1456 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1457 else if (version == config->platformInfo.minimum) 1458 this->installName = saver().save(installName); 1459 } 1460 1461 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 1462 StringRef symbolName; 1463 bool shouldHide = true; 1464 if (name.startswith("os")) { 1465 // If it's hidden based on versions. 1466 name = name.drop_front(2); 1467 StringRef minVersion; 1468 std::tie(minVersion, symbolName) = name.split('$'); 1469 VersionTuple versionTup; 1470 if (versionTup.tryParse(minVersion)) { 1471 warn("Failed to parse hidden version, symbol `" + originalName + 1472 "` ignored."); 1473 return; 1474 } 1475 shouldHide = versionTup == config->platformInfo.minimum; 1476 } else { 1477 symbolName = name; 1478 } 1479 1480 if (shouldHide) 1481 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 1482 } 1483 1484 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1485 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1486 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1487 } 1488 1489 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1490 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1491 1492 void ArchiveFile::addLazySymbols() { 1493 for (const object::Archive::Symbol &sym : file->symbols()) 1494 symtab->addLazyArchive(sym.getName(), this, sym); 1495 } 1496 1497 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1498 uint32_t modTime, 1499 StringRef archiveName, 1500 uint64_t offsetInArchive) { 1501 if (config->zeroModTime) 1502 modTime = 0; 1503 1504 switch (identify_magic(mb.getBuffer())) { 1505 case file_magic::macho_object: 1506 return make<ObjFile>(mb, modTime, archiveName); 1507 case file_magic::bitcode: 1508 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1509 default: 1510 return createStringError(inconvertibleErrorCode(), 1511 mb.getBufferIdentifier() + 1512 " has unhandled file type"); 1513 } 1514 } 1515 1516 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1517 if (!seen.insert(c.getChildOffset()).second) 1518 return Error::success(); 1519 1520 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1521 if (!mb) 1522 return mb.takeError(); 1523 1524 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1525 if (tar && c.getParent()->isThin()) 1526 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1527 1528 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1529 if (!modTime) 1530 return modTime.takeError(); 1531 1532 Expected<InputFile *> file = 1533 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1534 1535 if (!file) 1536 return file.takeError(); 1537 1538 inputFiles.insert(*file); 1539 printArchiveMemberLoad(reason, *file); 1540 return Error::success(); 1541 } 1542 1543 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1544 object::Archive::Child c = 1545 CHECK(sym.getMember(), toString(this) + 1546 ": could not get the member defining symbol " + 1547 toMachOString(sym)); 1548 1549 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1550 // and become invalid after that call. Copy it to the stack so we can refer 1551 // to it later. 1552 const object::Archive::Symbol symCopy = sym; 1553 1554 // ld64 doesn't demangle sym here even with -demangle. 1555 // Match that: intentionally don't call toMachOString(). 1556 if (Error e = fetch(c, symCopy.getName())) 1557 error(toString(this) + ": could not get the member defining symbol " + 1558 toMachOString(symCopy) + ": " + toString(std::move(e))); 1559 } 1560 1561 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1562 BitcodeFile &file) { 1563 StringRef name = saver().save(objSym.getName()); 1564 1565 if (objSym.isUndefined()) 1566 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 1567 1568 // TODO: Write a test demonstrating why computing isPrivateExtern before 1569 // LTO compilation is important. 1570 bool isPrivateExtern = false; 1571 switch (objSym.getVisibility()) { 1572 case GlobalValue::HiddenVisibility: 1573 isPrivateExtern = true; 1574 break; 1575 case GlobalValue::ProtectedVisibility: 1576 error(name + " has protected visibility, which is not supported by Mach-O"); 1577 break; 1578 case GlobalValue::DefaultVisibility: 1579 break; 1580 } 1581 isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable(); 1582 1583 if (objSym.isCommon()) 1584 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1585 objSym.getCommonAlignment(), isPrivateExtern); 1586 1587 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1588 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1589 /*isThumb=*/false, 1590 /*isReferencedDynamically=*/false, 1591 /*noDeadStrip=*/false, 1592 /*isWeakDefCanBeHidden=*/false); 1593 } 1594 1595 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1596 uint64_t offsetInArchive, bool lazy) 1597 : InputFile(BitcodeKind, mb, lazy) { 1598 this->archiveName = std::string(archiveName); 1599 std::string path = mb.getBufferIdentifier().str(); 1600 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1601 // name. If two members with the same name are provided, this causes a 1602 // collision and ThinLTO can't proceed. 1603 // So, we append the archive name to disambiguate two members with the same 1604 // name from multiple different archives, and offset within the archive to 1605 // disambiguate two members of the same name from a single archive. 1606 MemoryBufferRef mbref(mb.getBuffer(), 1607 saver().save(archiveName.empty() 1608 ? path 1609 : archiveName + 1610 sys::path::filename(path) + 1611 utostr(offsetInArchive))); 1612 1613 obj = check(lto::InputFile::create(mbref)); 1614 if (lazy) 1615 parseLazy(); 1616 else 1617 parse(); 1618 } 1619 1620 void BitcodeFile::parse() { 1621 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1622 // "winning" symbol will then be marked as Prevailing at LTO compilation 1623 // time. 1624 symbols.clear(); 1625 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1626 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1627 } 1628 1629 void BitcodeFile::parseLazy() { 1630 symbols.resize(obj->symbols().size()); 1631 for (auto it : llvm::enumerate(obj->symbols())) { 1632 const lto::InputFile::Symbol &objSym = it.value(); 1633 if (!objSym.isUndefined()) { 1634 symbols[it.index()] = 1635 symtab->addLazyObject(saver().save(objSym.getName()), *this); 1636 if (!lazy) 1637 break; 1638 } 1639 } 1640 } 1641 1642 void macho::extract(InputFile &file, StringRef reason) { 1643 assert(file.lazy); 1644 file.lazy = false; 1645 printArchiveMemberLoad(reason, &file); 1646 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 1647 bitcode->parse(); 1648 } else { 1649 auto &f = cast<ObjFile>(file); 1650 if (target->wordSize == 8) 1651 f.parse<LP64>(); 1652 else 1653 f.parse<ILP32>(); 1654 } 1655 } 1656 1657 template void ObjFile::parse<LP64>(); 1658