1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains functions to parse Mach-O object files. In this comment,
10 // we describe the Mach-O file structure and how we parse it.
11 //
12 // Mach-O is not very different from ELF or COFF. The notion of symbols,
13 // sections and relocations exists in Mach-O as it does in ELF and COFF.
14 //
15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16 // In ELF/COFF, sections are an atomic unit of data copied from input files to
17 // output files. When we merge or garbage-collect sections, we treat each
18 // section as an atomic unit. In Mach-O, that's not the case. Sections can
19 // consist of multiple subsections, and subsections are a unit of merging and
20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to
21 // ELF/COFF's sections than Mach-O's sections are.
22 //
23 // A section can have multiple symbols. A symbol that does not have the
24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25 // definition, a symbol is always present at the beginning of each subsection. A
26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27 // point to a middle of a subsection.
28 //
29 // The notion of subsections also affects how relocations are represented in
30 // Mach-O. All references within a section need to be explicitly represented as
31 // relocations if they refer to different subsections, because we obviously need
32 // to fix up addresses if subsections are laid out in an output file differently
33 // than they were in object files. To represent that, Mach-O relocations can
34 // refer to an unnamed location via its address. Scattered relocations (those
35 // with the R_SCATTERED bit set) always refer to unnamed locations.
36 // Non-scattered relocations refer to an unnamed location if r_extern is not set
37 // and r_symbolnum is zero.
38 //
39 // Without the above differences, I think you can use your knowledge about ELF
40 // and COFF for Mach-O.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #include "InputFiles.h"
45 #include "Config.h"
46 #include "Driver.h"
47 #include "Dwarf.h"
48 #include "ExportTrie.h"
49 #include "InputSection.h"
50 #include "MachOStructs.h"
51 #include "ObjC.h"
52 #include "OutputSection.h"
53 #include "OutputSegment.h"
54 #include "SymbolTable.h"
55 #include "Symbols.h"
56 #include "SyntheticSections.h"
57 #include "Target.h"
58 
59 #include "lld/Common/DWARF.h"
60 #include "lld/Common/ErrorHandler.h"
61 #include "lld/Common/Memory.h"
62 #include "lld/Common/Reproduce.h"
63 #include "llvm/ADT/iterator.h"
64 #include "llvm/BinaryFormat/MachO.h"
65 #include "llvm/LTO/LTO.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/Path.h"
69 #include "llvm/Support/TarWriter.h"
70 #include "llvm/TextAPI/Architecture.h"
71 #include "llvm/TextAPI/InterfaceFile.h"
72 
73 using namespace llvm;
74 using namespace llvm::MachO;
75 using namespace llvm::support::endian;
76 using namespace llvm::sys;
77 using namespace lld;
78 using namespace lld::macho;
79 
80 // Returns "<internal>", "foo.a(bar.o)", or "baz.o".
81 std::string lld::toString(const InputFile *f) {
82   if (!f)
83     return "<internal>";
84 
85   // Multiple dylibs can be defined in one .tbd file.
86   if (auto dylibFile = dyn_cast<DylibFile>(f))
87     if (f->getName().endswith(".tbd"))
88       return (f->getName() + "(" + dylibFile->installName + ")").str();
89 
90   if (f->archiveName.empty())
91     return std::string(f->getName());
92   return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
93 }
94 
95 SetVector<InputFile *> macho::inputFiles;
96 std::unique_ptr<TarWriter> macho::tar;
97 int InputFile::idCount = 0;
98 
99 static VersionTuple decodeVersion(uint32_t version) {
100   unsigned major = version >> 16;
101   unsigned minor = (version >> 8) & 0xffu;
102   unsigned subMinor = version & 0xffu;
103   return VersionTuple(major, minor, subMinor);
104 }
105 
106 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
107   if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
108     return {};
109 
110   const char *hdr = input->mb.getBufferStart();
111 
112   std::vector<PlatformInfo> platformInfos;
113   for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
114     PlatformInfo info;
115     info.target.Platform = static_cast<PlatformKind>(cmd->platform);
116     info.minimum = decodeVersion(cmd->minos);
117     platformInfos.emplace_back(std::move(info));
118   }
119   for (auto *cmd : findCommands<version_min_command>(
120            hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
121            LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
122     PlatformInfo info;
123     switch (cmd->cmd) {
124     case LC_VERSION_MIN_MACOSX:
125       info.target.Platform = PlatformKind::macOS;
126       break;
127     case LC_VERSION_MIN_IPHONEOS:
128       info.target.Platform = PlatformKind::iOS;
129       break;
130     case LC_VERSION_MIN_TVOS:
131       info.target.Platform = PlatformKind::tvOS;
132       break;
133     case LC_VERSION_MIN_WATCHOS:
134       info.target.Platform = PlatformKind::watchOS;
135       break;
136     }
137     info.minimum = decodeVersion(cmd->version);
138     platformInfos.emplace_back(std::move(info));
139   }
140 
141   return platformInfos;
142 }
143 
144 static bool checkCompatibility(const InputFile *input) {
145   std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
146   if (platformInfos.empty())
147     return true;
148 
149   auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
150     return removeSimulator(info.target.Platform) ==
151            removeSimulator(config->platform());
152   });
153   if (it == platformInfos.end()) {
154     std::string platformNames;
155     raw_string_ostream os(platformNames);
156     interleave(
157         platformInfos, os,
158         [&](const PlatformInfo &info) {
159           os << getPlatformName(info.target.Platform);
160         },
161         "/");
162     error(toString(input) + " has platform " + platformNames +
163           Twine(", which is different from target platform ") +
164           getPlatformName(config->platform()));
165     return false;
166   }
167 
168   if (it->minimum > config->platformInfo.minimum)
169     warn(toString(input) + " has version " + it->minimum.getAsString() +
170          ", which is newer than target minimum of " +
171          config->platformInfo.minimum.getAsString());
172 
173   return true;
174 }
175 
176 // This cache mostly exists to store system libraries (and .tbds) as they're
177 // loaded, rather than the input archives, which are already cached at a higher
178 // level, and other files like the filelist that are only read once.
179 // Theoretically this caching could be more efficient by hoisting it, but that
180 // would require altering many callers to track the state.
181 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
182 // Open a given file path and return it as a memory-mapped file.
183 Optional<MemoryBufferRef> macho::readFile(StringRef path) {
184   CachedHashStringRef key(path);
185   auto entry = cachedReads.find(key);
186   if (entry != cachedReads.end())
187     return entry->second;
188 
189   ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
190   if (std::error_code ec = mbOrErr.getError()) {
191     error("cannot open " + path + ": " + ec.message());
192     return None;
193   }
194 
195   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
196   MemoryBufferRef mbref = mb->getMemBufferRef();
197   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
198 
199   // If this is a regular non-fat file, return it.
200   const char *buf = mbref.getBufferStart();
201   const auto *hdr = reinterpret_cast<const fat_header *>(buf);
202   if (mbref.getBufferSize() < sizeof(uint32_t) ||
203       read32be(&hdr->magic) != FAT_MAGIC) {
204     if (tar)
205       tar->append(relativeToRoot(path), mbref.getBuffer());
206     return cachedReads[key] = mbref;
207   }
208 
209   // Object files and archive files may be fat files, which contain multiple
210   // real files for different CPU ISAs. Here, we search for a file that matches
211   // with the current link target and returns it as a MemoryBufferRef.
212   const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
213 
214   for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
215     if (reinterpret_cast<const char *>(arch + i + 1) >
216         buf + mbref.getBufferSize()) {
217       error(path + ": fat_arch struct extends beyond end of file");
218       return None;
219     }
220 
221     if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
222         read32be(&arch[i].cpusubtype) != target->cpuSubtype)
223       continue;
224 
225     uint32_t offset = read32be(&arch[i].offset);
226     uint32_t size = read32be(&arch[i].size);
227     if (offset + size > mbref.getBufferSize())
228       error(path + ": slice extends beyond end of file");
229     if (tar)
230       tar->append(relativeToRoot(path), mbref.getBuffer());
231     return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
232                                               path.copy(bAlloc));
233   }
234 
235   error("unable to find matching architecture in " + path);
236   return None;
237 }
238 
239 InputFile::InputFile(Kind kind, const InterfaceFile &interface)
240     : id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {}
241 
242 // Some sections comprise of fixed-size records, so instead of splitting them at
243 // symbol boundaries, we split them based on size. Records are distinct from
244 // literals in that they may contain references to other sections, instead of
245 // being leaf nodes in the InputSection graph.
246 //
247 // Note that "record" is a term I came up with. In contrast, "literal" is a term
248 // used by the Mach-O format.
249 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) {
250   if (name == section_names::cfString) {
251     if (config->icfLevel != ICFLevel::none && segname == segment_names::data)
252       return target->wordSize == 8 ? 32 : 16;
253   } else if (name == section_names::compactUnwind) {
254     if (segname == segment_names::ld)
255       return target->wordSize == 8 ? 32 : 20;
256   }
257   return {};
258 }
259 
260 template <class Section>
261 void ObjFile::parseSections(ArrayRef<Section> sections) {
262   subsections.reserve(sections.size());
263   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
264 
265   for (const Section &sec : sections) {
266     StringRef name =
267         StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
268     StringRef segname =
269         StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
270     ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
271                                                     : buf + sec.offset,
272                               static_cast<size_t>(sec.size)};
273     if (sec.align >= 32) {
274       error("alignment " + std::to_string(sec.align) + " of section " + name +
275             " is too large");
276       subsections.push_back({});
277       continue;
278     }
279     uint32_t align = 1 << sec.align;
280     uint32_t flags = sec.flags;
281 
282     auto splitRecords = [&](int recordSize) -> void {
283       subsections.push_back({});
284       if (data.empty())
285         return;
286 
287       SubsectionMap &subsecMap = subsections.back();
288       subsecMap.reserve(data.size() / recordSize);
289       auto *isec = make<ConcatInputSection>(
290           segname, name, this, data.slice(0, recordSize), align, flags);
291       subsecMap.push_back({0, isec});
292       for (uint64_t off = recordSize; off < data.size(); off += recordSize) {
293         // Copying requires less memory than constructing a fresh InputSection.
294         auto *copy = make<ConcatInputSection>(*isec);
295         copy->data = data.slice(off, recordSize);
296         subsecMap.push_back({off, copy});
297       }
298     };
299 
300     if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
301         (config->dedupLiterals && isWordLiteralSection(sec.flags))) {
302       if (sec.nreloc && config->dedupLiterals)
303         fatal(toString(this) + " contains relocations in " + sec.segname + "," +
304               sec.sectname +
305               ", so LLD cannot deduplicate literals. Try re-running without "
306               "--deduplicate-literals.");
307 
308       InputSection *isec;
309       if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
310         isec =
311             make<CStringInputSection>(segname, name, this, data, align, flags);
312         // FIXME: parallelize this?
313         cast<CStringInputSection>(isec)->splitIntoPieces();
314       } else {
315         isec = make<WordLiteralInputSection>(segname, name, this, data, align,
316                                              flags);
317       }
318       subsections.push_back({{0, isec}});
319     } else if (auto recordSize = getRecordSize(segname, name)) {
320       splitRecords(*recordSize);
321     } else if (segname == segment_names::llvm) {
322       // ld64 does not appear to emit contents from sections within the __LLVM
323       // segment. Symbols within those sections point to bitcode metadata
324       // instead of actual symbols. Global symbols within those sections could
325       // have the same name without causing duplicate symbol errors. Push an
326       // empty map to ensure indices line up for the remaining sections.
327       // TODO: Evaluate whether the bitcode metadata is needed.
328       subsections.push_back({});
329     } else {
330       auto *isec =
331           make<ConcatInputSection>(segname, name, this, data, align, flags);
332       if (isDebugSection(isec->getFlags()) &&
333           isec->getSegName() == segment_names::dwarf) {
334         // Instead of emitting DWARF sections, we emit STABS symbols to the
335         // object files that contain them. We filter them out early to avoid
336         // parsing their relocations unnecessarily. But we must still push an
337         // empty map to ensure the indices line up for the remaining sections.
338         subsections.push_back({});
339         debugSections.push_back(isec);
340       } else {
341         subsections.push_back({{0, isec}});
342       }
343     }
344   }
345 }
346 
347 // Find the subsection corresponding to the greatest section offset that is <=
348 // that of the given offset.
349 //
350 // offset: an offset relative to the start of the original InputSection (before
351 // any subsection splitting has occurred). It will be updated to represent the
352 // same location as an offset relative to the start of the containing
353 // subsection.
354 static InputSection *findContainingSubsection(SubsectionMap &map,
355                                               uint64_t *offset) {
356   auto it = std::prev(llvm::upper_bound(
357       map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) {
358         return value < subsecEntry.offset;
359       }));
360   *offset -= it->offset;
361   return it->isec;
362 }
363 
364 template <class Section>
365 static bool validateRelocationInfo(InputFile *file, const Section &sec,
366                                    relocation_info rel) {
367   const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
368   bool valid = true;
369   auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
370     valid = false;
371     return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
372             std::to_string(rel.r_address) + " of " + sec.segname + "," +
373             sec.sectname + " in " + toString(file))
374         .str();
375   };
376 
377   if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
378     error(message("must be extern"));
379   if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
380     error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
381                   "be PC-relative"));
382   if (isThreadLocalVariables(sec.flags) &&
383       !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
384     error(message("not allowed in thread-local section, must be UNSIGNED"));
385   if (rel.r_length < 2 || rel.r_length > 3 ||
386       !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
387     static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
388     error(message("has width " + std::to_string(1 << rel.r_length) +
389                   " bytes, but must be " +
390                   widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
391                   " bytes"));
392   }
393   return valid;
394 }
395 
396 template <class Section>
397 void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders,
398                                const Section &sec, SubsectionMap &subsecMap) {
399   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
400   ArrayRef<relocation_info> relInfos(
401       reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
402 
403   auto subsecIt = subsecMap.rbegin();
404   for (size_t i = 0; i < relInfos.size(); i++) {
405     // Paired relocations serve as Mach-O's method for attaching a
406     // supplemental datum to a primary relocation record. ELF does not
407     // need them because the *_RELOC_RELA records contain the extra
408     // addend field, vs. *_RELOC_REL which omit the addend.
409     //
410     // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
411     // and the paired *_RELOC_UNSIGNED record holds the minuend. The
412     // datum for each is a symbolic address. The result is the offset
413     // between two addresses.
414     //
415     // The ARM64_RELOC_ADDEND record holds the addend, and the paired
416     // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
417     // base symbolic address.
418     //
419     // Note: X86 does not use *_RELOC_ADDEND because it can embed an
420     // addend into the instruction stream. On X86, a relocatable address
421     // field always occupies an entire contiguous sequence of byte(s),
422     // so there is no need to merge opcode bits with address
423     // bits. Therefore, it's easy and convenient to store addends in the
424     // instruction-stream bytes that would otherwise contain zeroes. By
425     // contrast, RISC ISAs such as ARM64 mix opcode bits with with
426     // address bits so that bitwise arithmetic is necessary to extract
427     // and insert them. Storing addends in the instruction stream is
428     // possible, but inconvenient and more costly at link time.
429 
430     int64_t pairedAddend = 0;
431     relocation_info relInfo = relInfos[i];
432     if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
433       pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
434       relInfo = relInfos[++i];
435     }
436     assert(i < relInfos.size());
437     if (!validateRelocationInfo(this, sec, relInfo))
438       continue;
439     if (relInfo.r_address & R_SCATTERED)
440       fatal("TODO: Scattered relocations not supported");
441 
442     bool isSubtrahend =
443         target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
444     int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
445     assert(!(embeddedAddend && pairedAddend));
446     int64_t totalAddend = pairedAddend + embeddedAddend;
447     Reloc r;
448     r.type = relInfo.r_type;
449     r.pcrel = relInfo.r_pcrel;
450     r.length = relInfo.r_length;
451     r.offset = relInfo.r_address;
452     if (relInfo.r_extern) {
453       r.referent = symbols[relInfo.r_symbolnum];
454       r.addend = isSubtrahend ? 0 : totalAddend;
455     } else {
456       assert(!isSubtrahend);
457       const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1];
458       uint64_t referentOffset;
459       if (relInfo.r_pcrel) {
460         // The implicit addend for pcrel section relocations is the pcrel offset
461         // in terms of the addresses in the input file. Here we adjust it so
462         // that it describes the offset from the start of the referent section.
463         // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
464         // have pcrel section relocations. We may want to factor this out into
465         // the arch-specific .cpp file.
466         assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
467         referentOffset =
468             sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr;
469       } else {
470         // The addend for a non-pcrel relocation is its absolute address.
471         referentOffset = totalAddend - referentSec.addr;
472       }
473       SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1];
474       r.referent = findContainingSubsection(referentSubsecMap, &referentOffset);
475       r.addend = referentOffset;
476     }
477 
478     // Find the subsection that this relocation belongs to.
479     // Though not required by the Mach-O format, clang and gcc seem to emit
480     // relocations in order, so let's take advantage of it. However, ld64 emits
481     // unsorted relocations (in `-r` mode), so we have a fallback for that
482     // uncommon case.
483     InputSection *subsec;
484     while (subsecIt != subsecMap.rend() && subsecIt->offset > r.offset)
485       ++subsecIt;
486     if (subsecIt == subsecMap.rend() ||
487         subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
488       subsec = findContainingSubsection(subsecMap, &r.offset);
489       // Now that we know the relocs are unsorted, avoid trying the 'fast path'
490       // for the other relocations.
491       subsecIt = subsecMap.rend();
492     } else {
493       subsec = subsecIt->isec;
494       r.offset -= subsecIt->offset;
495     }
496     subsec->relocs.push_back(r);
497 
498     if (isSubtrahend) {
499       relocation_info minuendInfo = relInfos[++i];
500       // SUBTRACTOR relocations should always be followed by an UNSIGNED one
501       // attached to the same address.
502       assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
503              relInfo.r_address == minuendInfo.r_address);
504       Reloc p;
505       p.type = minuendInfo.r_type;
506       if (minuendInfo.r_extern) {
507         p.referent = symbols[minuendInfo.r_symbolnum];
508         p.addend = totalAddend;
509       } else {
510         uint64_t referentOffset =
511             totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
512         SubsectionMap &referentSubsecMap =
513             subsections[minuendInfo.r_symbolnum - 1];
514         p.referent =
515             findContainingSubsection(referentSubsecMap, &referentOffset);
516         p.addend = referentOffset;
517       }
518       subsec->relocs.push_back(p);
519     }
520   }
521 }
522 
523 template <class NList>
524 static macho::Symbol *createDefined(const NList &sym, StringRef name,
525                                     InputSection *isec, uint64_t value,
526                                     uint64_t size) {
527   // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
528   // N_EXT: Global symbols. These go in the symbol table during the link,
529   //        and also in the export table of the output so that the dynamic
530   //        linker sees them.
531   // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
532   //                 symbol table during the link so that duplicates are
533   //                 either reported (for non-weak symbols) or merged
534   //                 (for weak symbols), but they do not go in the export
535   //                 table of the output.
536   // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
537   //         object files) may produce them. LLD does not yet support -r.
538   //         These are translation-unit scoped, identical to the `0` case.
539   // 0: Translation-unit scoped. These are not in the symbol table during
540   //    link, and not in the export table of the output either.
541   bool isWeakDefCanBeHidden =
542       (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
543 
544   if (sym.n_type & N_EXT) {
545     bool isPrivateExtern = sym.n_type & N_PEXT;
546     // lld's behavior for merging symbols is slightly different from ld64:
547     // ld64 picks the winning symbol based on several criteria (see
548     // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
549     // just merges metadata and keeps the contents of the first symbol
550     // with that name (see SymbolTable::addDefined). For:
551     // * inline function F in a TU built with -fvisibility-inlines-hidden
552     // * and inline function F in another TU built without that flag
553     // ld64 will pick the one from the file built without
554     // -fvisibility-inlines-hidden.
555     // lld will instead pick the one listed first on the link command line and
556     // give it visibility as if the function was built without
557     // -fvisibility-inlines-hidden.
558     // If both functions have the same contents, this will have the same
559     // behavior. If not, it won't, but the input had an ODR violation in
560     // that case.
561     //
562     // Similarly, merging a symbol
563     // that's isPrivateExtern and not isWeakDefCanBeHidden with one
564     // that's not isPrivateExtern but isWeakDefCanBeHidden technically
565     // should produce one
566     // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
567     // with ld64's semantics, because it means the non-private-extern
568     // definition will continue to take priority if more private extern
569     // definitions are encountered. With lld's semantics there's no observable
570     // difference between a symbol that's isWeakDefCanBeHidden or one that's
571     // privateExtern -- neither makes it into the dynamic symbol table. So just
572     // promote isWeakDefCanBeHidden to isPrivateExtern here.
573     if (isWeakDefCanBeHidden)
574       isPrivateExtern = true;
575 
576     return symtab->addDefined(
577         name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
578         isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
579         sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP);
580   }
581   assert(!isWeakDefCanBeHidden &&
582          "weak_def_can_be_hidden on already-hidden symbol?");
583   return make<Defined>(
584       name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
585       /*isExternal=*/false, /*isPrivateExtern=*/false,
586       sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
587       sym.n_desc & N_NO_DEAD_STRIP);
588 }
589 
590 // Absolute symbols are defined symbols that do not have an associated
591 // InputSection. They cannot be weak.
592 template <class NList>
593 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
594                                      StringRef name) {
595   if (sym.n_type & N_EXT) {
596     return symtab->addDefined(
597         name, file, nullptr, sym.n_value, /*size=*/0,
598         /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF,
599         /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP);
600   }
601   return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
602                        /*isWeakDef=*/false,
603                        /*isExternal=*/false, /*isPrivateExtern=*/false,
604                        sym.n_desc & N_ARM_THUMB_DEF,
605                        /*isReferencedDynamically=*/false,
606                        sym.n_desc & N_NO_DEAD_STRIP);
607 }
608 
609 template <class NList>
610 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
611                                               StringRef name) {
612   uint8_t type = sym.n_type & N_TYPE;
613   switch (type) {
614   case N_UNDF:
615     return sym.n_value == 0
616                ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
617                : symtab->addCommon(name, this, sym.n_value,
618                                    1 << GET_COMM_ALIGN(sym.n_desc),
619                                    sym.n_type & N_PEXT);
620   case N_ABS:
621     return createAbsolute(sym, this, name);
622   case N_PBUD:
623   case N_INDR:
624     error("TODO: support symbols of type " + std::to_string(type));
625     return nullptr;
626   case N_SECT:
627     llvm_unreachable(
628         "N_SECT symbols should not be passed to parseNonSectionSymbol");
629   default:
630     llvm_unreachable("invalid symbol type");
631   }
632 }
633 
634 template <class NList> static bool isUndef(const NList &sym) {
635   return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
636 }
637 
638 template <class LP>
639 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
640                            ArrayRef<typename LP::nlist> nList,
641                            const char *strtab, bool subsectionsViaSymbols) {
642   using NList = typename LP::nlist;
643 
644   // Groups indices of the symbols by the sections that contain them.
645   std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size());
646   symbols.resize(nList.size());
647   SmallVector<unsigned, 32> undefineds;
648   for (uint32_t i = 0; i < nList.size(); ++i) {
649     const NList &sym = nList[i];
650 
651     // Ignore debug symbols for now.
652     // FIXME: may need special handling.
653     if (sym.n_type & N_STAB)
654       continue;
655 
656     StringRef name = strtab + sym.n_strx;
657     if ((sym.n_type & N_TYPE) == N_SECT) {
658       SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
659       // parseSections() may have chosen not to parse this section.
660       if (subsecMap.empty())
661         continue;
662       symbolsBySection[sym.n_sect - 1].push_back(i);
663     } else if (isUndef(sym)) {
664       undefineds.push_back(i);
665     } else {
666       symbols[i] = parseNonSectionSymbol(sym, name);
667     }
668   }
669 
670   for (size_t i = 0; i < subsections.size(); ++i) {
671     SubsectionMap &subsecMap = subsections[i];
672     if (subsecMap.empty())
673       continue;
674 
675     std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
676     uint64_t sectionAddr = sectionHeaders[i].addr;
677     uint32_t sectionAlign = 1u << sectionHeaders[i].align;
678 
679     InputSection *lastIsec = subsecMap.back().isec;
680     // Record-based sections have already been split into subsections during
681     // parseSections(), so we simply need to match Symbols to the corresponding
682     // subsection here.
683     if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) {
684       for (size_t j = 0; j < symbolIndices.size(); ++j) {
685         uint32_t symIndex = symbolIndices[j];
686         const NList &sym = nList[symIndex];
687         StringRef name = strtab + sym.n_strx;
688         uint64_t symbolOffset = sym.n_value - sectionAddr;
689         InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset);
690         if (symbolOffset != 0) {
691           error(toString(lastIsec) + ":  symbol " + name +
692                 " at misaligned offset");
693           continue;
694         }
695         symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize());
696       }
697       continue;
698     }
699 
700     // Calculate symbol sizes and create subsections by splitting the sections
701     // along symbol boundaries.
702     // We populate subsecMap by repeatedly splitting the last (highest address)
703     // subsection.
704     llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
705       return nList[lhs].n_value < nList[rhs].n_value;
706     });
707     SubsectionEntry subsecEntry = subsecMap.back();
708     for (size_t j = 0; j < symbolIndices.size(); ++j) {
709       uint32_t symIndex = symbolIndices[j];
710       const NList &sym = nList[symIndex];
711       StringRef name = strtab + sym.n_strx;
712       InputSection *isec = subsecEntry.isec;
713 
714       uint64_t subsecAddr = sectionAddr + subsecEntry.offset;
715       size_t symbolOffset = sym.n_value - subsecAddr;
716       uint64_t symbolSize =
717           j + 1 < symbolIndices.size()
718               ? nList[symbolIndices[j + 1]].n_value - sym.n_value
719               : isec->data.size() - symbolOffset;
720       // There are 4 cases where we do not need to create a new subsection:
721       //   1. If the input file does not use subsections-via-symbols.
722       //   2. Multiple symbols at the same address only induce one subsection.
723       //      (The symbolOffset == 0 check covers both this case as well as
724       //      the first loop iteration.)
725       //   3. Alternative entry points do not induce new subsections.
726       //   4. If we have a literal section (e.g. __cstring and __literal4).
727       if (!subsectionsViaSymbols || symbolOffset == 0 ||
728           sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
729         symbols[symIndex] =
730             createDefined(sym, name, isec, symbolOffset, symbolSize);
731         continue;
732       }
733       auto *concatIsec = cast<ConcatInputSection>(isec);
734 
735       auto *nextIsec = make<ConcatInputSection>(*concatIsec);
736       nextIsec->wasCoalesced = false;
737       if (isZeroFill(isec->getFlags())) {
738         // Zero-fill sections have NULL data.data() non-zero data.size()
739         nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
740         isec->data = {nullptr, symbolOffset};
741       } else {
742         nextIsec->data = isec->data.slice(symbolOffset);
743         isec->data = isec->data.slice(0, symbolOffset);
744       }
745 
746       // By construction, the symbol will be at offset zero in the new
747       // subsection.
748       symbols[symIndex] =
749           createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
750       // TODO: ld64 appears to preserve the original alignment as well as each
751       // subsection's offset from the last aligned address. We should consider
752       // emulating that behavior.
753       nextIsec->align = MinAlign(sectionAlign, sym.n_value);
754       subsecMap.push_back({sym.n_value - sectionAddr, nextIsec});
755       subsecEntry = subsecMap.back();
756     }
757   }
758 
759   // Undefined symbols can trigger recursive fetch from Archives due to
760   // LazySymbols. Process defined symbols first so that the relative order
761   // between a defined symbol and an undefined symbol does not change the
762   // symbol resolution behavior. In addition, a set of interconnected symbols
763   // will all be resolved to the same file, instead of being resolved to
764   // different files.
765   for (unsigned i : undefineds) {
766     const NList &sym = nList[i];
767     StringRef name = strtab + sym.n_strx;
768     symbols[i] = parseNonSectionSymbol(sym, name);
769   }
770 }
771 
772 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
773                        StringRef sectName)
774     : InputFile(OpaqueKind, mb) {
775   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
776   ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
777   ConcatInputSection *isec =
778       make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16),
779                                /*file=*/this, data);
780   isec->live = true;
781   subsections.push_back({{0, isec}});
782 }
783 
784 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName)
785     : InputFile(ObjKind, mb), modTime(modTime) {
786   this->archiveName = std::string(archiveName);
787   if (target->wordSize == 8)
788     parse<LP64>();
789   else
790     parse<ILP32>();
791 }
792 
793 template <class LP> void ObjFile::parse() {
794   using Header = typename LP::mach_header;
795   using SegmentCommand = typename LP::segment_command;
796   using Section = typename LP::section;
797   using NList = typename LP::nlist;
798 
799   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
800   auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
801 
802   Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
803   if (arch != config->arch()) {
804     auto msg = config->errorForArchMismatch
805                    ? static_cast<void (*)(const Twine &)>(error)
806                    : warn;
807     msg(toString(this) + " has architecture " + getArchitectureName(arch) +
808         " which is incompatible with target architecture " +
809         getArchitectureName(config->arch()));
810     return;
811   }
812 
813   if (!checkCompatibility(this))
814     return;
815 
816   for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
817     StringRef data{reinterpret_cast<const char *>(cmd + 1),
818                    cmd->cmdsize - sizeof(linker_option_command)};
819     parseLCLinkerOption(this, cmd->count, data);
820   }
821 
822   ArrayRef<Section> sectionHeaders;
823   if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
824     auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
825     sectionHeaders =
826         ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects};
827     parseSections(sectionHeaders);
828   }
829 
830   // TODO: Error on missing LC_SYMTAB?
831   if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
832     auto *c = reinterpret_cast<const symtab_command *>(cmd);
833     ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
834                           c->nsyms);
835     const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
836     bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
837     parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
838   }
839 
840   // The relocations may refer to the symbols, so we parse them after we have
841   // parsed all the symbols.
842   for (size_t i = 0, n = subsections.size(); i < n; ++i)
843     if (!subsections[i].empty())
844       parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]);
845 
846   parseDebugInfo();
847   if (config->emitDataInCodeInfo)
848     parseDataInCode();
849   registerCompactUnwind();
850 }
851 
852 void ObjFile::parseDebugInfo() {
853   std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
854   if (!dObj)
855     return;
856 
857   auto *ctx = make<DWARFContext>(
858       std::move(dObj), "",
859       [&](Error err) {
860         warn(toString(this) + ": " + toString(std::move(err)));
861       },
862       [&](Error warning) {
863         warn(toString(this) + ": " + toString(std::move(warning)));
864       });
865 
866   // TODO: Since object files can contain a lot of DWARF info, we should verify
867   // that we are parsing just the info we need
868   const DWARFContext::compile_unit_range &units = ctx->compile_units();
869   // FIXME: There can be more than one compile unit per object file. See
870   // PR48637.
871   auto it = units.begin();
872   compileUnit = it->get();
873 }
874 
875 void ObjFile::parseDataInCode() {
876   const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
877   const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
878   if (!cmd)
879     return;
880   const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
881   dataInCodeEntries = {
882       reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
883       c->datasize / sizeof(data_in_code_entry)};
884   assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs,
885                                          const data_in_code_entry &rhs) {
886     return lhs.offset < rhs.offset;
887   }));
888 }
889 
890 // Create pointers from symbols to their associated compact unwind entries.
891 void ObjFile::registerCompactUnwind() {
892   // First, locate the __compact_unwind section.
893   SubsectionMap *cuSubsecMap = nullptr;
894   for (SubsectionMap &map : subsections) {
895     if (map.empty())
896       continue;
897     if (map[0].isec->getSegName() != segment_names::ld)
898       continue;
899     cuSubsecMap = &map;
900     break;
901   }
902   if (!cuSubsecMap)
903     return;
904 
905   for (SubsectionEntry &entry : *cuSubsecMap) {
906     ConcatInputSection *isec = cast<ConcatInputSection>(entry.isec);
907     // Hack!! Since each CUE contains a different function address, if ICF
908     // operated naively and compared the entire contents of each CUE, entries
909     // with identical unwind info but belonging to different functions would
910     // never be considered equivalent. To work around this problem, we slice
911     // away the function address here. (Note that we do not adjust the offsets
912     // of the corresponding relocations.) We rely on `relocateCompactUnwind()`
913     // to correctly handle these truncated input sections.
914     isec->data = isec->data.slice(target->wordSize);
915 
916     ConcatInputSection *referentIsec;
917     for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
918       Reloc &r = *it;
919       // We only wish to handle the relocation for CUE::functionAddress.
920       if (r.offset != 0) {
921         ++it;
922         continue;
923       }
924       uint64_t add = r.addend;
925       if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
926         // Check whether the symbol defined in this file is the prevailing one.
927         // Skip if it is e.g. a weak def that didn't prevail.
928         if (sym->getFile() != this) {
929           ++it;
930           continue;
931         }
932         add += sym->value;
933         referentIsec = cast<ConcatInputSection>(sym->isec);
934       } else {
935         referentIsec =
936             cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
937       }
938       if (referentIsec->getSegName() != segment_names::text)
939         error("compact unwind references address in " + toString(referentIsec) +
940               " which is not in segment __TEXT");
941       // The functionAddress relocations are typically section relocations.
942       // However, unwind info operates on a per-symbol basis, so we search for
943       // the function symbol here.
944       auto symIt = llvm::lower_bound(
945           referentIsec->symbols, add,
946           [](Defined *d, uint64_t add) { return d->value < add; });
947       // The relocation should point at the exact address of a symbol (with no
948       // addend).
949       if (symIt == referentIsec->symbols.end() || (*symIt)->value != add) {
950         assert(referentIsec->wasCoalesced);
951         ++it;
952         continue;
953       }
954       (*symIt)->compactUnwind = isec;
955       // Since we've sliced away the functionAddress, we should remove the
956       // corresponding relocation too. Given that clang emits relocations in
957       // reverse order of address, this relocation should be at the end of the
958       // vector for most of our input object files, so this is typically an O(1)
959       // operation.
960       it = isec->relocs.erase(it);
961     }
962   }
963 }
964 
965 // The path can point to either a dylib or a .tbd file.
966 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
967   Optional<MemoryBufferRef> mbref = readFile(path);
968   if (!mbref) {
969     error("could not read dylib file at " + path);
970     return nullptr;
971   }
972   return loadDylib(*mbref, umbrella);
973 }
974 
975 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
976 // the first document storing child pointers to the rest of them. When we are
977 // processing a given TBD file, we store that top-level document in
978 // currentTopLevelTapi. When processing re-exports, we search its children for
979 // potentially matching documents in the same TBD file. Note that the children
980 // themselves don't point to further documents, i.e. this is a two-level tree.
981 //
982 // Re-exports can either refer to on-disk files, or to documents within .tbd
983 // files.
984 static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
985                             const InterfaceFile *currentTopLevelTapi) {
986   // Search order:
987   // 1. Install name basename in -F / -L directories.
988   {
989     StringRef stem = path::stem(path);
990     SmallString<128> frameworkName;
991     path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
992     bool isFramework = path.endswith(frameworkName);
993     if (isFramework) {
994       for (StringRef dir : config->frameworkSearchPaths) {
995         SmallString<128> candidate = dir;
996         path::append(candidate, frameworkName);
997         if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str()))
998           return loadDylib(*dylibPath, umbrella);
999       }
1000     } else if (Optional<StringRef> dylibPath = findPathCombination(
1001                    stem, config->librarySearchPaths, {".tbd", ".dylib"}))
1002       return loadDylib(*dylibPath, umbrella);
1003   }
1004 
1005   // 2. As absolute path.
1006   if (path::is_absolute(path, path::Style::posix))
1007     for (StringRef root : config->systemLibraryRoots)
1008       if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str()))
1009         return loadDylib(*dylibPath, umbrella);
1010 
1011   // 3. As relative path.
1012 
1013   // TODO: Handle -dylib_file
1014 
1015   // Replace @executable_path, @loader_path, @rpath prefixes in install name.
1016   SmallString<128> newPath;
1017   if (config->outputType == MH_EXECUTE &&
1018       path.consume_front("@executable_path/")) {
1019     // ld64 allows overriding this with the undocumented flag -executable_path.
1020     // lld doesn't currently implement that flag.
1021     // FIXME: Consider using finalOutput instead of outputFile.
1022     path::append(newPath, path::parent_path(config->outputFile), path);
1023     path = newPath;
1024   } else if (path.consume_front("@loader_path/")) {
1025     fs::real_path(umbrella->getName(), newPath);
1026     path::remove_filename(newPath);
1027     path::append(newPath, path);
1028     path = newPath;
1029   } else if (path.startswith("@rpath/")) {
1030     for (StringRef rpath : umbrella->rpaths) {
1031       newPath.clear();
1032       if (rpath.consume_front("@loader_path/")) {
1033         fs::real_path(umbrella->getName(), newPath);
1034         path::remove_filename(newPath);
1035       }
1036       path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1037       if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1038         return loadDylib(*dylibPath, umbrella);
1039     }
1040   }
1041 
1042   // FIXME: Should this be further up?
1043   if (currentTopLevelTapi) {
1044     for (InterfaceFile &child :
1045          make_pointee_range(currentTopLevelTapi->documents())) {
1046       assert(child.documents().empty());
1047       if (path == child.getInstallName()) {
1048         auto file = make<DylibFile>(child, umbrella);
1049         file->parseReexports(child);
1050         return file;
1051       }
1052     }
1053   }
1054 
1055   if (Optional<StringRef> dylibPath = resolveDylibPath(path))
1056     return loadDylib(*dylibPath, umbrella);
1057 
1058   return nullptr;
1059 }
1060 
1061 // If a re-exported dylib is public (lives in /usr/lib or
1062 // /System/Library/Frameworks), then it is considered implicitly linked: we
1063 // should bind to its symbols directly instead of via the re-exporting umbrella
1064 // library.
1065 static bool isImplicitlyLinked(StringRef path) {
1066   if (!config->implicitDylibs)
1067     return false;
1068 
1069   if (path::parent_path(path) == "/usr/lib")
1070     return true;
1071 
1072   // Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1073   if (path.consume_front("/System/Library/Frameworks/")) {
1074     StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1075     return path::filename(path) == frameworkName;
1076   }
1077 
1078   return false;
1079 }
1080 
1081 static void loadReexport(StringRef path, DylibFile *umbrella,
1082                          const InterfaceFile *currentTopLevelTapi) {
1083   DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1084   if (!reexport)
1085     error("unable to locate re-export with install name " + path);
1086 }
1087 
1088 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1089                      bool isBundleLoader)
1090     : InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1091       isBundleLoader(isBundleLoader) {
1092   assert(!isBundleLoader || !umbrella);
1093   if (umbrella == nullptr)
1094     umbrella = this;
1095   this->umbrella = umbrella;
1096 
1097   auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1098   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1099 
1100   // Initialize installName.
1101   if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1102     auto *c = reinterpret_cast<const dylib_command *>(cmd);
1103     currentVersion = read32le(&c->dylib.current_version);
1104     compatibilityVersion = read32le(&c->dylib.compatibility_version);
1105     installName =
1106         reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1107   } else if (!isBundleLoader) {
1108     // macho_executable and macho_bundle don't have LC_ID_DYLIB,
1109     // so it's OK.
1110     error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
1111     return;
1112   }
1113 
1114   if (config->printEachFile)
1115     message(toString(this));
1116   inputFiles.insert(this);
1117 
1118   deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1119 
1120   if (!checkCompatibility(this))
1121     return;
1122 
1123   checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1124 
1125   for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1126     StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1127     rpaths.push_back(rpath);
1128   }
1129 
1130   // Initialize symbols.
1131   exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
1132   if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
1133     auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
1134     parseTrie(buf + c->export_off, c->export_size,
1135               [&](const Twine &name, uint64_t flags) {
1136                 StringRef savedName = saver.save(name);
1137                 if (handleLDSymbol(savedName))
1138                   return;
1139                 bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1140                 bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1141                 symbols.push_back(symtab->addDylib(savedName, exportingFile,
1142                                                    isWeakDef, isTlv));
1143               });
1144   } else {
1145     error("LC_DYLD_INFO_ONLY not found in " + toString(this));
1146     return;
1147   }
1148 }
1149 
1150 void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1151   auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1152   const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1153                      target->headerSize;
1154   for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1155     auto *cmd = reinterpret_cast<const load_command *>(p);
1156     p += cmd->cmdsize;
1157 
1158     if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1159         cmd->cmd == LC_REEXPORT_DYLIB) {
1160       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1161       StringRef reexportPath =
1162           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1163       loadReexport(reexportPath, exportingFile, nullptr);
1164     }
1165 
1166     // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1167     // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1168     // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1169     if (config->namespaceKind == NamespaceKind::flat &&
1170         cmd->cmd == LC_LOAD_DYLIB) {
1171       const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1172       StringRef dylibPath =
1173           reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1174       DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1175       if (!dylib)
1176         error(Twine("unable to locate library '") + dylibPath +
1177               "' loaded from '" + toString(this) + "' for -flat_namespace");
1178     }
1179   }
1180 }
1181 
1182 // Some versions of XCode ship with .tbd files that don't have the right
1183 // platform settings.
1184 static constexpr std::array<StringRef, 3> skipPlatformChecks{
1185     "/usr/lib/system/libsystem_kernel.dylib",
1186     "/usr/lib/system/libsystem_platform.dylib",
1187     "/usr/lib/system/libsystem_pthread.dylib"};
1188 
1189 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1190                      bool isBundleLoader)
1191     : InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1192       isBundleLoader(isBundleLoader) {
1193   // FIXME: Add test for the missing TBD code path.
1194 
1195   if (umbrella == nullptr)
1196     umbrella = this;
1197   this->umbrella = umbrella;
1198 
1199   installName = saver.save(interface.getInstallName());
1200   compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1201   currentVersion = interface.getCurrentVersion().rawValue();
1202 
1203   if (config->printEachFile)
1204     message(toString(this));
1205   inputFiles.insert(this);
1206 
1207   if (!is_contained(skipPlatformChecks, installName) &&
1208       !is_contained(interface.targets(), config->platformInfo.target)) {
1209     error(toString(this) + " is incompatible with " +
1210           std::string(config->platformInfo.target));
1211     return;
1212   }
1213 
1214   checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1215 
1216   exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
1217   auto addSymbol = [&](const Twine &name) -> void {
1218     symbols.push_back(symtab->addDylib(saver.save(name), exportingFile,
1219                                        /*isWeakDef=*/false,
1220                                        /*isTlv=*/false));
1221   };
1222   // TODO(compnerd) filter out symbols based on the target platform
1223   // TODO: handle weak defs, thread locals
1224   for (const auto *symbol : interface.symbols()) {
1225     if (!symbol->getArchitectures().has(config->arch()))
1226       continue;
1227 
1228     if (handleLDSymbol(symbol->getName()))
1229       continue;
1230 
1231     switch (symbol->getKind()) {
1232     case SymbolKind::GlobalSymbol:
1233       addSymbol(symbol->getName());
1234       break;
1235     case SymbolKind::ObjectiveCClass:
1236       // XXX ld64 only creates these symbols when -ObjC is passed in. We may
1237       // want to emulate that.
1238       addSymbol(objc::klass + symbol->getName());
1239       addSymbol(objc::metaclass + symbol->getName());
1240       break;
1241     case SymbolKind::ObjectiveCClassEHType:
1242       addSymbol(objc::ehtype + symbol->getName());
1243       break;
1244     case SymbolKind::ObjectiveCInstanceVariable:
1245       addSymbol(objc::ivar + symbol->getName());
1246       break;
1247     }
1248   }
1249 }
1250 
1251 void DylibFile::parseReexports(const InterfaceFile &interface) {
1252   const InterfaceFile *topLevel =
1253       interface.getParent() == nullptr ? &interface : interface.getParent();
1254   for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1255     InterfaceFile::const_target_range targets = intfRef.targets();
1256     if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1257         is_contained(targets, config->platformInfo.target))
1258       loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1259   }
1260 }
1261 
1262 // $ld$ symbols modify the properties/behavior of the library (e.g. its install
1263 // name, compatibility version or hide/add symbols) for specific target
1264 // versions.
1265 bool DylibFile::handleLDSymbol(StringRef originalName) {
1266   if (!originalName.startswith("$ld$"))
1267     return false;
1268 
1269   StringRef action;
1270   StringRef name;
1271   std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
1272   if (action == "previous")
1273     handleLDPreviousSymbol(name, originalName);
1274   else if (action == "install_name")
1275     handleLDInstallNameSymbol(name, originalName);
1276   return true;
1277 }
1278 
1279 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
1280   // originalName: $ld$ previous $ <installname> $ <compatversion> $
1281   // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
1282   StringRef installName;
1283   StringRef compatVersion;
1284   StringRef platformStr;
1285   StringRef startVersion;
1286   StringRef endVersion;
1287   StringRef symbolName;
1288   StringRef rest;
1289 
1290   std::tie(installName, name) = name.split('$');
1291   std::tie(compatVersion, name) = name.split('$');
1292   std::tie(platformStr, name) = name.split('$');
1293   std::tie(startVersion, name) = name.split('$');
1294   std::tie(endVersion, name) = name.split('$');
1295   std::tie(symbolName, rest) = name.split('$');
1296   // TODO: ld64 contains some logic for non-empty symbolName as well.
1297   if (!symbolName.empty())
1298     return;
1299   unsigned platform;
1300   if (platformStr.getAsInteger(10, platform) ||
1301       platform != static_cast<unsigned>(config->platform()))
1302     return;
1303 
1304   VersionTuple start;
1305   if (start.tryParse(startVersion)) {
1306     warn("failed to parse start version, symbol '" + originalName +
1307          "' ignored");
1308     return;
1309   }
1310   VersionTuple end;
1311   if (end.tryParse(endVersion)) {
1312     warn("failed to parse end version, symbol '" + originalName + "' ignored");
1313     return;
1314   }
1315   if (config->platformInfo.minimum < start ||
1316       config->platformInfo.minimum >= end)
1317     return;
1318 
1319   this->installName = saver.save(installName);
1320 
1321   if (!compatVersion.empty()) {
1322     VersionTuple cVersion;
1323     if (cVersion.tryParse(compatVersion)) {
1324       warn("failed to parse compatibility version, symbol '" + originalName +
1325            "' ignored");
1326       return;
1327     }
1328     compatibilityVersion = encodeVersion(cVersion);
1329   }
1330 }
1331 
1332 void DylibFile::handleLDInstallNameSymbol(StringRef name,
1333                                           StringRef originalName) {
1334   // originalName: $ld$ install_name $ os<version> $ install_name
1335   StringRef condition, installName;
1336   std::tie(condition, installName) = name.split('$');
1337   VersionTuple version;
1338   if (!condition.consume_front("os") || version.tryParse(condition))
1339     warn("failed to parse os version, symbol '" + originalName + "' ignored");
1340   else if (version == config->platformInfo.minimum)
1341     this->installName = saver.save(installName);
1342 }
1343 
1344 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
1345   if (config->applicationExtension && !dylibIsAppExtensionSafe)
1346     warn("using '-application_extension' with unsafe dylib: " + toString(this));
1347 }
1348 
1349 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
1350     : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {}
1351 
1352 void ArchiveFile::addLazySymbols() {
1353   for (const object::Archive::Symbol &sym : file->symbols())
1354     symtab->addLazy(sym.getName(), this, sym);
1355 }
1356 
1357 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb,
1358                                                uint32_t modTime,
1359                                                StringRef archiveName,
1360                                                uint64_t offsetInArchive) {
1361   if (config->zeroModTime)
1362     modTime = 0;
1363 
1364   switch (identify_magic(mb.getBuffer())) {
1365   case file_magic::macho_object:
1366     return make<ObjFile>(mb, modTime, archiveName);
1367   case file_magic::bitcode:
1368     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1369   default:
1370     return createStringError(inconvertibleErrorCode(),
1371                              mb.getBufferIdentifier() +
1372                                  " has unhandled file type");
1373   }
1374 }
1375 
1376 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
1377   if (!seen.insert(c.getChildOffset()).second)
1378     return Error::success();
1379 
1380   Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
1381   if (!mb)
1382     return mb.takeError();
1383 
1384   // Thin archives refer to .o files, so --reproduce needs the .o files too.
1385   if (tar && c.getParent()->isThin())
1386     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
1387 
1388   Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
1389   if (!modTime)
1390     return modTime.takeError();
1391 
1392   Expected<InputFile *> file =
1393       loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset());
1394 
1395   if (!file)
1396     return file.takeError();
1397 
1398   inputFiles.insert(*file);
1399   printArchiveMemberLoad(reason, *file);
1400   return Error::success();
1401 }
1402 
1403 void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
1404   object::Archive::Child c =
1405       CHECK(sym.getMember(), toString(this) +
1406                                  ": could not get the member defining symbol " +
1407                                  toMachOString(sym));
1408 
1409   // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
1410   // and become invalid after that call. Copy it to the stack so we can refer
1411   // to it later.
1412   const object::Archive::Symbol symCopy = sym;
1413 
1414   // ld64 doesn't demangle sym here even with -demangle.
1415   // Match that: intentionally don't call toMachOString().
1416   if (Error e = fetch(c, symCopy.getName()))
1417     error(toString(this) + ": could not get the member defining symbol " +
1418           toMachOString(symCopy) + ": " + toString(std::move(e)));
1419 }
1420 
1421 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
1422                                           BitcodeFile &file) {
1423   StringRef name = saver.save(objSym.getName());
1424 
1425   // TODO: support weak references
1426   if (objSym.isUndefined())
1427     return symtab->addUndefined(name, &file, /*isWeakRef=*/false);
1428 
1429   // TODO: Write a test demonstrating why computing isPrivateExtern before
1430   // LTO compilation is important.
1431   bool isPrivateExtern = false;
1432   switch (objSym.getVisibility()) {
1433   case GlobalValue::HiddenVisibility:
1434     isPrivateExtern = true;
1435     break;
1436   case GlobalValue::ProtectedVisibility:
1437     error(name + " has protected visibility, which is not supported by Mach-O");
1438     break;
1439   case GlobalValue::DefaultVisibility:
1440     break;
1441   }
1442 
1443   if (objSym.isCommon())
1444     return symtab->addCommon(name, &file, objSym.getCommonSize(),
1445                              objSym.getCommonAlignment(), isPrivateExtern);
1446 
1447   return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
1448                             /*size=*/0, objSym.isWeak(), isPrivateExtern,
1449                             /*isThumb=*/false,
1450                             /*isReferencedDynamically=*/false,
1451                             /*noDeadStrip=*/false);
1452 }
1453 
1454 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1455                          uint64_t offsetInArchive)
1456     : InputFile(BitcodeKind, mb) {
1457   std::string path = mb.getBufferIdentifier().str();
1458   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1459   // name. If two members with the same name are provided, this causes a
1460   // collision and ThinLTO can't proceed.
1461   // So, we append the archive name to disambiguate two members with the same
1462   // name from multiple different archives, and offset within the archive to
1463   // disambiguate two members of the same name from a single archive.
1464   MemoryBufferRef mbref(
1465       mb.getBuffer(),
1466       saver.save(archiveName.empty() ? path
1467                                      : archiveName + sys::path::filename(path) +
1468                                            utostr(offsetInArchive)));
1469 
1470   obj = check(lto::InputFile::create(mbref));
1471 
1472   // Convert LTO Symbols to LLD Symbols in order to perform resolution. The
1473   // "winning" symbol will then be marked as Prevailing at LTO compilation
1474   // time.
1475   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1476     symbols.push_back(createBitcodeSymbol(objSym, *this));
1477 }
1478 
1479 template void ObjFile::parse<LP64>();
1480