1 //===- ARM64.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Arch/ARM64Common.h"
10 #include "InputFiles.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14
15 #include "lld/Common/ErrorHandler.h"
16 #include "mach-o/compact_unwind_encoding.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/BinaryFormat/MachO.h"
20 #include "llvm/Support/Endian.h"
21 #include "llvm/Support/MathExtras.h"
22
23 using namespace llvm;
24 using namespace llvm::MachO;
25 using namespace llvm::support::endian;
26 using namespace lld;
27 using namespace lld::macho;
28
29 namespace {
30
31 struct ARM64 : ARM64Common {
32 ARM64();
33 void writeStub(uint8_t *buf, const Symbol &) const override;
34 void writeStubHelperHeader(uint8_t *buf) const override;
35 void writeStubHelperEntry(uint8_t *buf, const Symbol &,
36 uint64_t entryAddr) const override;
37 void populateThunk(InputSection *thunk, Symbol *funcSym) override;
38 void applyOptimizationHints(uint8_t *, const ConcatInputSection *,
39 ArrayRef<uint64_t>) const override;
40 };
41
42 } // namespace
43
44 // Random notes on reloc types:
45 // ADDEND always pairs with BRANCH26, PAGE21, or PAGEOFF12
46 // POINTER_TO_GOT: ld64 supports a 4-byte pc-relative form as well as an 8-byte
47 // absolute version of this relocation. The semantics of the absolute relocation
48 // are weird -- it results in the value of the GOT slot being written, instead
49 // of the address. Let's not support it unless we find a real-world use case.
50 static constexpr std::array<RelocAttrs, 11> relocAttrsArray{{
51 #define B(x) RelocAttrBits::x
52 {"UNSIGNED",
53 B(UNSIGNED) | B(ABSOLUTE) | B(EXTERN) | B(LOCAL) | B(BYTE4) | B(BYTE8)},
54 {"SUBTRACTOR", B(SUBTRAHEND) | B(EXTERN) | B(BYTE4) | B(BYTE8)},
55 {"BRANCH26", B(PCREL) | B(EXTERN) | B(BRANCH) | B(BYTE4)},
56 {"PAGE21", B(PCREL) | B(EXTERN) | B(BYTE4)},
57 {"PAGEOFF12", B(ABSOLUTE) | B(EXTERN) | B(BYTE4)},
58 {"GOT_LOAD_PAGE21", B(PCREL) | B(EXTERN) | B(GOT) | B(BYTE4)},
59 {"GOT_LOAD_PAGEOFF12",
60 B(ABSOLUTE) | B(EXTERN) | B(GOT) | B(LOAD) | B(BYTE4)},
61 {"POINTER_TO_GOT", B(PCREL) | B(EXTERN) | B(GOT) | B(POINTER) | B(BYTE4)},
62 {"TLVP_LOAD_PAGE21", B(PCREL) | B(EXTERN) | B(TLV) | B(BYTE4)},
63 {"TLVP_LOAD_PAGEOFF12",
64 B(ABSOLUTE) | B(EXTERN) | B(TLV) | B(LOAD) | B(BYTE4)},
65 {"ADDEND", B(ADDEND)},
66 #undef B
67 }};
68
69 static constexpr uint32_t stubCode[] = {
70 0x90000010, // 00: adrp x16, __la_symbol_ptr@page
71 0xf9400210, // 04: ldr x16, [x16, __la_symbol_ptr@pageoff]
72 0xd61f0200, // 08: br x16
73 };
74
writeStub(uint8_t * buf8,const Symbol & sym) const75 void ARM64::writeStub(uint8_t *buf8, const Symbol &sym) const {
76 ::writeStub<LP64>(buf8, stubCode, sym);
77 }
78
79 static constexpr uint32_t stubHelperHeaderCode[] = {
80 0x90000011, // 00: adrp x17, _dyld_private@page
81 0x91000231, // 04: add x17, x17, _dyld_private@pageoff
82 0xa9bf47f0, // 08: stp x16/x17, [sp, #-16]!
83 0x90000010, // 0c: adrp x16, dyld_stub_binder@page
84 0xf9400210, // 10: ldr x16, [x16, dyld_stub_binder@pageoff]
85 0xd61f0200, // 14: br x16
86 };
87
writeStubHelperHeader(uint8_t * buf8) const88 void ARM64::writeStubHelperHeader(uint8_t *buf8) const {
89 ::writeStubHelperHeader<LP64>(buf8, stubHelperHeaderCode);
90 }
91
92 static constexpr uint32_t stubHelperEntryCode[] = {
93 0x18000050, // 00: ldr w16, l0
94 0x14000000, // 04: b stubHelperHeader
95 0x00000000, // 08: l0: .long 0
96 };
97
writeStubHelperEntry(uint8_t * buf8,const Symbol & sym,uint64_t entryVA) const98 void ARM64::writeStubHelperEntry(uint8_t *buf8, const Symbol &sym,
99 uint64_t entryVA) const {
100 ::writeStubHelperEntry(buf8, stubHelperEntryCode, sym, entryVA);
101 }
102
103 // A thunk is the relaxed variation of stubCode. We don't need the
104 // extra indirection through a lazy pointer because the target address
105 // is known at link time.
106 static constexpr uint32_t thunkCode[] = {
107 0x90000010, // 00: adrp x16, <thunk.ptr>@page
108 0x91000210, // 04: add x16, [x16,<thunk.ptr>@pageoff]
109 0xd61f0200, // 08: br x16
110 };
111
populateThunk(InputSection * thunk,Symbol * funcSym)112 void ARM64::populateThunk(InputSection *thunk, Symbol *funcSym) {
113 thunk->align = 4;
114 thunk->data = {reinterpret_cast<const uint8_t *>(thunkCode),
115 sizeof(thunkCode)};
116 thunk->relocs.push_back({/*type=*/ARM64_RELOC_PAGEOFF12,
117 /*pcrel=*/false, /*length=*/2,
118 /*offset=*/4, /*addend=*/0,
119 /*referent=*/funcSym});
120 thunk->relocs.push_back({/*type=*/ARM64_RELOC_PAGE21,
121 /*pcrel=*/true, /*length=*/2,
122 /*offset=*/0, /*addend=*/0,
123 /*referent=*/funcSym});
124 }
125
ARM64()126 ARM64::ARM64() : ARM64Common(LP64()) {
127 cpuType = CPU_TYPE_ARM64;
128 cpuSubtype = CPU_SUBTYPE_ARM64_ALL;
129
130 stubSize = sizeof(stubCode);
131 thunkSize = sizeof(thunkCode);
132
133 // Branch immediate is two's complement 26 bits, which is implicitly
134 // multiplied by 4 (since all functions are 4-aligned: The branch range
135 // is -4*(2**(26-1))..4*(2**(26-1) - 1).
136 backwardBranchRange = 128 * 1024 * 1024;
137 forwardBranchRange = backwardBranchRange - 4;
138
139 modeDwarfEncoding = UNWIND_ARM64_MODE_DWARF;
140 subtractorRelocType = ARM64_RELOC_SUBTRACTOR;
141 unsignedRelocType = ARM64_RELOC_UNSIGNED;
142
143 stubHelperHeaderSize = sizeof(stubHelperHeaderCode);
144 stubHelperEntrySize = sizeof(stubHelperEntryCode);
145
146 relocAttrs = {relocAttrsArray.data(), relocAttrsArray.size()};
147 }
148
149 namespace {
150 struct Adrp {
151 uint32_t destRegister;
152 };
153
154 struct Add {
155 uint8_t destRegister;
156 uint8_t srcRegister;
157 uint32_t addend;
158 };
159
160 enum ExtendType { ZeroExtend = 1, Sign64 = 2, Sign32 = 3 };
161
162 struct Ldr {
163 uint8_t destRegister;
164 uint8_t baseRegister;
165 uint8_t p2Size;
166 bool isFloat;
167 ExtendType extendType;
168 int64_t offset;
169 };
170
171 struct PerformedReloc {
172 const Reloc &rel;
173 uint64_t referentVA;
174 };
175
176 class OptimizationHintContext {
177 public:
OptimizationHintContext(uint8_t * buf,const ConcatInputSection * isec,ArrayRef<uint64_t> relocTargets)178 OptimizationHintContext(uint8_t *buf, const ConcatInputSection *isec,
179 ArrayRef<uint64_t> relocTargets)
180 : buf(buf), isec(isec), relocTargets(relocTargets),
181 relocIt(isec->relocs.rbegin()) {}
182
183 void applyAdrpAdd(const OptimizationHint &);
184 void applyAdrpAdrp(const OptimizationHint &);
185 void applyAdrpLdr(const OptimizationHint &);
186 void applyAdrpLdrGot(const OptimizationHint &);
187 void applyAdrpLdrGotLdr(const OptimizationHint &);
188
189 private:
190 uint8_t *buf;
191 const ConcatInputSection *isec;
192 ArrayRef<uint64_t> relocTargets;
193 std::vector<Reloc>::const_reverse_iterator relocIt;
194
195 uint64_t getRelocTarget(const Reloc &);
196
197 Optional<PerformedReloc> findPrimaryReloc(uint64_t offset);
198 Optional<PerformedReloc> findReloc(uint64_t offset);
199 };
200 } // namespace
201
parseAdrp(uint32_t insn,Adrp & adrp)202 static bool parseAdrp(uint32_t insn, Adrp &adrp) {
203 if ((insn & 0x9f000000) != 0x90000000)
204 return false;
205 adrp.destRegister = insn & 0x1f;
206 return true;
207 }
208
parseAdd(uint32_t insn,Add & add)209 static bool parseAdd(uint32_t insn, Add &add) {
210 if ((insn & 0xffc00000) != 0x91000000)
211 return false;
212 add.destRegister = insn & 0x1f;
213 add.srcRegister = (insn >> 5) & 0x1f;
214 add.addend = (insn >> 10) & 0xfff;
215 return true;
216 }
217
parseLdr(uint32_t insn,Ldr & ldr)218 static bool parseLdr(uint32_t insn, Ldr &ldr) {
219 ldr.destRegister = insn & 0x1f;
220 ldr.baseRegister = (insn >> 5) & 0x1f;
221 uint8_t size = insn >> 30;
222 uint8_t opc = (insn >> 22) & 3;
223
224 if ((insn & 0x3fc00000) == 0x39400000) {
225 // LDR (immediate), LDRB (immediate), LDRH (immediate)
226 ldr.p2Size = size;
227 ldr.extendType = ZeroExtend;
228 ldr.isFloat = false;
229 } else if ((insn & 0x3f800000) == 0x39800000) {
230 // LDRSB (immediate), LDRSH (immediate), LDRSW (immediate)
231 ldr.p2Size = size;
232 ldr.extendType = static_cast<ExtendType>(opc);
233 ldr.isFloat = false;
234 } else if ((insn & 0x3f400000) == 0x3d400000) {
235 // LDR (immediate, SIMD&FP)
236 ldr.extendType = ZeroExtend;
237 ldr.isFloat = true;
238 if (opc == 1)
239 ldr.p2Size = size;
240 else if (size == 0 && opc == 3)
241 ldr.p2Size = 4;
242 else
243 return false;
244 } else {
245 return false;
246 }
247 ldr.offset = ((insn >> 10) & 0xfff) << ldr.p2Size;
248 return true;
249 }
250
isValidAdrOffset(int32_t delta)251 static bool isValidAdrOffset(int32_t delta) { return isInt<21>(delta); }
252
writeAdr(void * loc,uint32_t dest,int32_t delta)253 static void writeAdr(void *loc, uint32_t dest, int32_t delta) {
254 assert(isValidAdrOffset(delta));
255 uint32_t opcode = 0x10000000;
256 uint32_t immHi = (delta & 0x001ffffc) << 3;
257 uint32_t immLo = (delta & 0x00000003) << 29;
258 write32le(loc, opcode | immHi | immLo | dest);
259 }
260
writeNop(void * loc)261 static void writeNop(void *loc) { write32le(loc, 0xd503201f); }
262
isLiteralLdrEligible(const Ldr & ldr)263 static bool isLiteralLdrEligible(const Ldr &ldr) {
264 return ldr.p2Size > 1 && isShiftedInt<19, 2>(ldr.offset);
265 }
266
writeLiteralLdr(void * loc,const Ldr & ldr)267 static void writeLiteralLdr(void *loc, const Ldr &ldr) {
268 assert(isLiteralLdrEligible(ldr));
269 uint32_t imm19 = (ldr.offset / 4 & maskTrailingOnes<uint32_t>(19)) << 5;
270 uint32_t opcode;
271 switch (ldr.p2Size) {
272 case 2:
273 if (ldr.isFloat)
274 opcode = 0x1c000000;
275 else
276 opcode = ldr.extendType == Sign64 ? 0x98000000 : 0x18000000;
277 break;
278 case 3:
279 opcode = ldr.isFloat ? 0x5c000000 : 0x58000000;
280 break;
281 case 4:
282 opcode = 0x9c000000;
283 break;
284 default:
285 llvm_unreachable("Invalid literal ldr size");
286 }
287 write32le(loc, opcode | imm19 | ldr.destRegister);
288 }
289
isImmediateLdrEligible(const Ldr & ldr)290 static bool isImmediateLdrEligible(const Ldr &ldr) {
291 // Note: We deviate from ld64's behavior, which converts to immediate loads
292 // only if ldr.offset < 4096, even though the offset is divided by the load's
293 // size in the 12-bit immediate operand. Only the unsigned offset variant is
294 // supported.
295
296 uint32_t size = 1 << ldr.p2Size;
297 return ldr.offset >= 0 && (ldr.offset % size) == 0 &&
298 isUInt<12>(ldr.offset >> ldr.p2Size);
299 }
300
writeImmediateLdr(void * loc,const Ldr & ldr)301 static void writeImmediateLdr(void *loc, const Ldr &ldr) {
302 assert(isImmediateLdrEligible(ldr));
303 uint32_t opcode = 0x39000000;
304 if (ldr.isFloat) {
305 opcode |= 0x04000000;
306 assert(ldr.extendType == ZeroExtend);
307 }
308 opcode |= ldr.destRegister;
309 opcode |= ldr.baseRegister << 5;
310 uint8_t size, opc;
311 if (ldr.p2Size == 4) {
312 size = 0;
313 opc = 3;
314 } else {
315 opc = ldr.extendType;
316 size = ldr.p2Size;
317 }
318 uint32_t immBits = ldr.offset >> ldr.p2Size;
319 write32le(loc, opcode | (immBits << 10) | (opc << 22) | (size << 30));
320 }
321
getRelocTarget(const Reloc & reloc)322 uint64_t OptimizationHintContext::getRelocTarget(const Reloc &reloc) {
323 size_t relocIdx = &reloc - isec->relocs.data();
324 return relocTargets[relocIdx];
325 }
326
327 // Optimization hints are sorted in a monotonically increasing order by their
328 // first address as are relocations (albeit in decreasing order), so if we keep
329 // a pointer around to the last found relocation, we don't have to do a full
330 // binary search every time.
331 Optional<PerformedReloc>
findPrimaryReloc(uint64_t offset)332 OptimizationHintContext::findPrimaryReloc(uint64_t offset) {
333 const auto end = isec->relocs.rend();
334 while (relocIt != end && relocIt->offset < offset)
335 ++relocIt;
336 if (relocIt == end || relocIt->offset != offset)
337 return None;
338 return PerformedReloc{*relocIt, getRelocTarget(*relocIt)};
339 }
340
341 // The second and third addresses of optimization hints have no such
342 // monotonicity as the first, so we search the entire range of relocations.
findReloc(uint64_t offset)343 Optional<PerformedReloc> OptimizationHintContext::findReloc(uint64_t offset) {
344 // Optimization hints often apply to successive relocations, so we check for
345 // that first before doing a full binary search.
346 auto end = isec->relocs.rend();
347 if (relocIt < end - 1 && (relocIt + 1)->offset == offset)
348 return PerformedReloc{*(relocIt + 1), getRelocTarget(*(relocIt + 1))};
349
350 auto reloc = lower_bound(isec->relocs, offset,
351 [](const Reloc &reloc, uint64_t offset) {
352 return offset < reloc.offset;
353 });
354
355 if (reloc == isec->relocs.end() || reloc->offset != offset)
356 return None;
357 return PerformedReloc{*reloc, getRelocTarget(*reloc)};
358 }
359
360 // Transforms a pair of adrp+add instructions into an adr instruction if the
361 // target is within the +/- 1 MiB range allowed by the adr's 21 bit signed
362 // immediate offset.
363 //
364 // adrp xN, _foo@PAGE
365 // add xM, xN, _foo@PAGEOFF
366 // ->
367 // adr xM, _foo
368 // nop
applyAdrpAdd(const OptimizationHint & hint)369 void OptimizationHintContext::applyAdrpAdd(const OptimizationHint &hint) {
370 uint32_t ins1 = read32le(buf + hint.offset0);
371 uint32_t ins2 = read32le(buf + hint.offset0 + hint.delta[0]);
372 Adrp adrp;
373 if (!parseAdrp(ins1, adrp))
374 return;
375 Add add;
376 if (!parseAdd(ins2, add))
377 return;
378 if (adrp.destRegister != add.srcRegister)
379 return;
380
381 Optional<PerformedReloc> rel1 = findPrimaryReloc(hint.offset0);
382 Optional<PerformedReloc> rel2 = findReloc(hint.offset0 + hint.delta[0]);
383 if (!rel1 || !rel2)
384 return;
385 if (rel1->referentVA != rel2->referentVA)
386 return;
387 int64_t delta = rel1->referentVA - rel1->rel.offset - isec->getVA();
388 if (!isValidAdrOffset(delta))
389 return;
390
391 writeAdr(buf + hint.offset0, add.destRegister, delta);
392 writeNop(buf + hint.offset0 + hint.delta[0]);
393 }
394
395 // Transforms two adrp instructions into a single adrp if their referent
396 // addresses are located on the same 4096 byte page.
397 //
398 // adrp xN, _foo@PAGE
399 // adrp xN, _bar@PAGE
400 // ->
401 // adrp xN, _foo@PAGE
402 // nop
applyAdrpAdrp(const OptimizationHint & hint)403 void OptimizationHintContext::applyAdrpAdrp(const OptimizationHint &hint) {
404 uint32_t ins1 = read32le(buf + hint.offset0);
405 uint32_t ins2 = read32le(buf + hint.offset0 + hint.delta[0]);
406 Adrp adrp1, adrp2;
407 if (!parseAdrp(ins1, adrp1) || !parseAdrp(ins2, adrp2))
408 return;
409 if (adrp1.destRegister != adrp2.destRegister)
410 return;
411
412 Optional<PerformedReloc> rel1 = findPrimaryReloc(hint.offset0);
413 Optional<PerformedReloc> rel2 = findReloc(hint.offset0 + hint.delta[0]);
414 if (!rel1 || !rel2)
415 return;
416 if ((rel1->referentVA & ~0xfffULL) != (rel2->referentVA & ~0xfffULL))
417 return;
418
419 writeNop(buf + hint.offset0 + hint.delta[0]);
420 }
421
422 // Transforms a pair of adrp+ldr (immediate) instructions into an ldr (literal)
423 // load from a PC-relative address if it is 4-byte aligned and within +/- 1 MiB,
424 // as ldr can encode a signed 19-bit offset that gets multiplied by 4.
425 //
426 // adrp xN, _foo@PAGE
427 // ldr xM, [xN, _foo@PAGEOFF]
428 // ->
429 // nop
430 // ldr xM, _foo
applyAdrpLdr(const OptimizationHint & hint)431 void OptimizationHintContext::applyAdrpLdr(const OptimizationHint &hint) {
432 uint32_t ins1 = read32le(buf + hint.offset0);
433 uint32_t ins2 = read32le(buf + hint.offset0 + hint.delta[0]);
434 Adrp adrp;
435 if (!parseAdrp(ins1, adrp))
436 return;
437 Ldr ldr;
438 if (!parseLdr(ins2, ldr))
439 return;
440 if (adrp.destRegister != ldr.baseRegister)
441 return;
442
443 Optional<PerformedReloc> rel1 = findPrimaryReloc(hint.offset0);
444 Optional<PerformedReloc> rel2 = findReloc(hint.offset0 + hint.delta[0]);
445 if (!rel1 || !rel2)
446 return;
447 if (ldr.offset != static_cast<int64_t>(rel1->referentVA & 0xfff))
448 return;
449 ldr.offset = rel1->referentVA - rel2->rel.offset - isec->getVA();
450 if (!isLiteralLdrEligible(ldr))
451 return;
452
453 writeNop(buf + hint.offset0);
454 writeLiteralLdr(buf + hint.offset0 + hint.delta[0], ldr);
455 }
456
457 // GOT loads are emitted by the compiler as a pair of adrp and ldr instructions,
458 // but they may be changed to adrp+add by relaxGotLoad(). This hint performs
459 // the AdrpLdr or AdrpAdd transformation depending on whether it was relaxed.
applyAdrpLdrGot(const OptimizationHint & hint)460 void OptimizationHintContext::applyAdrpLdrGot(const OptimizationHint &hint) {
461 uint32_t ins2 = read32le(buf + hint.offset0 + hint.delta[0]);
462 Add add;
463 Ldr ldr;
464 if (parseAdd(ins2, add))
465 applyAdrpAdd(hint);
466 else if (parseLdr(ins2, ldr))
467 applyAdrpLdr(hint);
468 }
469
470 // Relaxes a GOT-indirect load.
471 // If the referenced symbol is external and its GOT entry is within +/- 1 MiB,
472 // the GOT entry can be loaded with a single literal ldr instruction.
473 // If the referenced symbol is local, its address may be loaded directly if it's
474 // close enough, or with an adr(p) + ldr pair if it's not.
applyAdrpLdrGotLdr(const OptimizationHint & hint)475 void OptimizationHintContext::applyAdrpLdrGotLdr(const OptimizationHint &hint) {
476 uint32_t ins1 = read32le(buf + hint.offset0);
477 Adrp adrp;
478 if (!parseAdrp(ins1, adrp))
479 return;
480 uint32_t ins3 = read32le(buf + hint.offset0 + hint.delta[1]);
481 Ldr ldr3;
482 if (!parseLdr(ins3, ldr3))
483 return;
484 uint32_t ins2 = read32le(buf + hint.offset0 + hint.delta[0]);
485 Ldr ldr2;
486 Add add2;
487
488 Optional<PerformedReloc> rel1 = findPrimaryReloc(hint.offset0);
489 Optional<PerformedReloc> rel2 = findReloc(hint.offset0 + hint.delta[0]);
490 if (!rel1 || !rel2)
491 return;
492
493 if (parseAdd(ins2, add2)) {
494 // adrp x0, _foo@PAGE
495 // add x1, x0, _foo@PAGEOFF
496 // ldr x2, [x1, #off]
497
498 if (adrp.destRegister != add2.srcRegister)
499 return;
500 if (add2.destRegister != ldr3.baseRegister)
501 return;
502
503 // Load from the target address directly.
504 // nop
505 // nop
506 // ldr x2, [_foo + #off]
507 uint64_t rel3VA = hint.offset0 + hint.delta[1] + isec->getVA();
508 Ldr literalLdr = ldr3;
509 literalLdr.offset += rel1->referentVA - rel3VA;
510 if (isLiteralLdrEligible(literalLdr)) {
511 writeNop(buf + hint.offset0);
512 writeNop(buf + hint.offset0 + hint.delta[0]);
513 writeLiteralLdr(buf + hint.offset0 + hint.delta[1], literalLdr);
514 return;
515 }
516
517 // Load the target address into a register and load from there indirectly.
518 // adr x1, _foo
519 // nop
520 // ldr x2, [x1, #off]
521 int64_t adrOffset = rel1->referentVA - rel1->rel.offset - isec->getVA();
522 if (isValidAdrOffset(adrOffset)) {
523 writeAdr(buf + hint.offset0, ldr3.baseRegister, adrOffset);
524 writeNop(buf + hint.offset0 + hint.delta[0]);
525 return;
526 }
527
528 // Move the target's page offset into the ldr's immediate offset.
529 // adrp x0, _foo@PAGE
530 // nop
531 // ldr x2, [x0, _foo@PAGEOFF + #off]
532 Ldr immediateLdr = ldr3;
533 immediateLdr.baseRegister = adrp.destRegister;
534 immediateLdr.offset += add2.addend;
535 if (isImmediateLdrEligible(immediateLdr)) {
536 writeNop(buf + hint.offset0 + hint.delta[0]);
537 writeImmediateLdr(buf + hint.offset0 + hint.delta[1], immediateLdr);
538 return;
539 }
540 } else if (parseLdr(ins2, ldr2)) {
541 // adrp x1, _foo@GOTPAGE
542 // ldr x2, [x1, _foo@GOTPAGEOFF]
543 // ldr x3, [x2, #off]
544 if (ldr2.baseRegister != adrp.destRegister)
545 return;
546 if (ldr3.baseRegister != ldr2.destRegister)
547 return;
548 // Loads from the GOT must be pointer sized.
549 if (ldr2.p2Size != 3 || ldr2.isFloat)
550 return;
551
552 // Load the GOT entry's address directly.
553 // nop
554 // ldr x2, _foo@GOTPAGE + _foo@GOTPAGEOFF
555 // ldr x3, [x2, #off]
556 Ldr literalLdr = ldr2;
557 literalLdr.offset = rel1->referentVA - rel2->rel.offset - isec->getVA();
558 if (isLiteralLdrEligible(literalLdr)) {
559 writeNop(buf + hint.offset0);
560 writeLiteralLdr(buf + hint.offset0 + hint.delta[0], literalLdr);
561 }
562 }
563 }
564
applyOptimizationHints(uint8_t * buf,const ConcatInputSection * isec,ArrayRef<uint64_t> relocTargets) const565 void ARM64::applyOptimizationHints(uint8_t *buf, const ConcatInputSection *isec,
566 ArrayRef<uint64_t> relocTargets) const {
567 assert(isec);
568 assert(relocTargets.size() == isec->relocs.size());
569
570 // Note: Some of these optimizations might not be valid when shared regions
571 // are in use. Will need to revisit this if splitSegInfo is added.
572
573 OptimizationHintContext ctx1(buf, isec, relocTargets);
574 for (const OptimizationHint &hint : isec->optimizationHints) {
575 switch (hint.type) {
576 case LOH_ARM64_ADRP_ADRP:
577 // This is done in another pass because the other optimization hints
578 // might cause its targets to be turned into NOPs.
579 break;
580 case LOH_ARM64_ADRP_LDR:
581 ctx1.applyAdrpLdr(hint);
582 break;
583 case LOH_ARM64_ADRP_ADD_LDR:
584 // TODO: Implement this
585 break;
586 case LOH_ARM64_ADRP_LDR_GOT_LDR:
587 ctx1.applyAdrpLdrGotLdr(hint);
588 break;
589 case LOH_ARM64_ADRP_ADD_STR:
590 case LOH_ARM64_ADRP_LDR_GOT_STR:
591 // TODO: Implement these
592 break;
593 case LOH_ARM64_ADRP_ADD:
594 ctx1.applyAdrpAdd(hint);
595 break;
596 case LOH_ARM64_ADRP_LDR_GOT:
597 ctx1.applyAdrpLdrGot(hint);
598 break;
599 }
600 }
601
602 OptimizationHintContext ctx2(buf, isec, relocTargets);
603 for (const OptimizationHint &hint : isec->optimizationHints)
604 if (hint.type == LOH_ARM64_ADRP_ADRP)
605 ctx2.applyAdrpAdrp(hint);
606 }
607
createARM64TargetInfo()608 TargetInfo *macho::createARM64TargetInfo() {
609 static ARM64 t;
610 return &t;
611 }
612