1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "CallGraphSort.h" 12 #include "Config.h" 13 #include "LinkerScript.h" 14 #include "MapFile.h" 15 #include "OutputSections.h" 16 #include "Relocations.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "lld/Common/Filesystem.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "lld/Common/Threads.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/RandomNumberGenerator.h" 28 #include "llvm/Support/SHA1.h" 29 #include "llvm/Support/xxhash.h" 30 #include <climits> 31 32 using namespace llvm; 33 using namespace llvm::ELF; 34 using namespace llvm::object; 35 using namespace llvm::support; 36 using namespace llvm::support::endian; 37 38 using namespace lld; 39 using namespace lld::elf; 40 41 namespace { 42 // The writer writes a SymbolTable result to a file. 43 template <class ELFT> class Writer { 44 public: 45 Writer() : Buffer(errorHandler().OutputBuffer) {} 46 using Elf_Shdr = typename ELFT::Shdr; 47 using Elf_Ehdr = typename ELFT::Ehdr; 48 using Elf_Phdr = typename ELFT::Phdr; 49 50 void run(); 51 52 private: 53 void copyLocalSymbols(); 54 void addSectionSymbols(); 55 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> Fn); 56 void sortSections(); 57 void resolveShfLinkOrder(); 58 void finalizeAddressDependentContent(); 59 void sortInputSections(); 60 void finalizeSections(); 61 void checkExecuteOnly(); 62 void setReservedSymbolSections(); 63 64 std::vector<PhdrEntry *> createPhdrs(); 65 void removeEmptyPTLoad(); 66 void addPhdrForSection(std::vector<PhdrEntry *> &Phdrs, unsigned ShType, 67 unsigned PType, unsigned PFlags); 68 void assignFileOffsets(); 69 void assignFileOffsetsBinary(); 70 void setPhdrs(); 71 void checkSections(); 72 void fixSectionAlignments(); 73 void openFile(); 74 void writeTrapInstr(); 75 void writeHeader(); 76 void writeSections(); 77 void writeSectionsBinary(); 78 void writeBuildId(); 79 80 std::unique_ptr<FileOutputBuffer> &Buffer; 81 82 void addRelIpltSymbols(); 83 void addStartEndSymbols(); 84 void addStartStopSymbols(OutputSection *Sec); 85 86 std::vector<PhdrEntry *> Phdrs; 87 88 uint64_t FileSize; 89 uint64_t SectionHeaderOff; 90 }; 91 } // anonymous namespace 92 93 static bool isSectionPrefix(StringRef Prefix, StringRef Name) { 94 return Name.startswith(Prefix) || Name == Prefix.drop_back(); 95 } 96 97 StringRef elf::getOutputSectionName(const InputSectionBase *S) { 98 if (Config->Relocatable) 99 return S->Name; 100 101 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 102 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 103 // technically required, but not doing it is odd). This code guarantees that. 104 if (auto *IS = dyn_cast<InputSection>(S)) { 105 if (InputSectionBase *Rel = IS->getRelocatedSection()) { 106 OutputSection *Out = Rel->getOutputSection(); 107 if (S->Type == SHT_RELA) 108 return Saver.save(".rela" + Out->Name); 109 return Saver.save(".rel" + Out->Name); 110 } 111 } 112 113 // This check is for -z keep-text-section-prefix. This option separates text 114 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or 115 // ".text.exit". 116 // When enabled, this allows identifying the hot code region (.text.hot) in 117 // the final binary which can be selectively mapped to huge pages or mlocked, 118 // for instance. 119 if (Config->ZKeepTextSectionPrefix) 120 for (StringRef V : 121 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) 122 if (isSectionPrefix(V, S->Name)) 123 return V.drop_back(); 124 125 for (StringRef V : 126 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 127 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 128 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 129 if (isSectionPrefix(V, S->Name)) 130 return V.drop_back(); 131 132 // CommonSection is identified as "COMMON" in linker scripts. 133 // By default, it should go to .bss section. 134 if (S->Name == "COMMON") 135 return ".bss"; 136 137 return S->Name; 138 } 139 140 static bool needsInterpSection() { 141 return !SharedFiles.empty() && !Config->DynamicLinker.empty() && 142 Script->needsInterpSection(); 143 } 144 145 template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } 146 147 template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() { 148 llvm::erase_if(Phdrs, [&](const PhdrEntry *P) { 149 if (P->p_type != PT_LOAD) 150 return false; 151 if (!P->FirstSec) 152 return true; 153 uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr; 154 return Size == 0; 155 }); 156 } 157 158 template <class ELFT> static void combineEhSections() { 159 for (InputSectionBase *&S : InputSections) { 160 if (!S->Live) 161 continue; 162 163 if (auto *ES = dyn_cast<EhInputSection>(S)) { 164 In.EhFrame->addSection<ELFT>(ES); 165 S = nullptr; 166 } else if (S->kind() == SectionBase::Regular && In.ARMExidx && 167 In.ARMExidx->addSection(cast<InputSection>(S))) { 168 S = nullptr; 169 } 170 } 171 172 std::vector<InputSectionBase *> &V = InputSections; 173 V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); 174 } 175 176 static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec, 177 uint64_t Val, uint8_t StOther = STV_HIDDEN, 178 uint8_t Binding = STB_GLOBAL) { 179 Symbol *S = Symtab->find(Name); 180 if (!S || S->isDefined()) 181 return nullptr; 182 183 return cast<Defined>(Symtab->addSymbol( 184 Defined{/*File=*/nullptr, Name, Binding, StOther, STT_NOTYPE, Val, 185 /*Size=*/0, Sec})); 186 } 187 188 static Defined *addAbsolute(StringRef Name) { 189 Symbol *Sym = Symtab->addSymbol(Defined{nullptr, Name, STB_GLOBAL, STV_HIDDEN, 190 STT_NOTYPE, 0, 0, nullptr}); 191 if (!Sym->isDefined()) 192 error("duplicate symbol: " + toString(*Sym)); 193 return cast<Defined>(Sym); 194 } 195 196 // The linker is expected to define some symbols depending on 197 // the linking result. This function defines such symbols. 198 void elf::addReservedSymbols() { 199 if (Config->EMachine == EM_MIPS) { 200 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 201 // so that it points to an absolute address which by default is relative 202 // to GOT. Default offset is 0x7ff0. 203 // See "Global Data Symbols" in Chapter 6 in the following document: 204 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 205 ElfSym::MipsGp = addAbsolute("_gp"); 206 207 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 208 // start of function and 'gp' pointer into GOT. 209 if (Symtab->find("_gp_disp")) 210 ElfSym::MipsGpDisp = addAbsolute("_gp_disp"); 211 212 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 213 // pointer. This symbol is used in the code generated by .cpload pseudo-op 214 // in case of using -mno-shared option. 215 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 216 if (Symtab->find("__gnu_local_gp")) 217 ElfSym::MipsLocalGp = addAbsolute("__gnu_local_gp"); 218 } 219 220 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 221 // combines the typical ELF GOT with the small data sections. It commonly 222 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 223 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 224 // represent the TOC base which is offset by 0x8000 bytes from the start of 225 // the .got section. 226 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 227 // correctness of some relocations depends on its value. 228 StringRef GotSymName = 229 (Config->EMachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 230 231 if (Symbol *S = Symtab->find(GotSymName)) { 232 if (S->isDefined()) { 233 error(toString(S->File) + " cannot redefine linker defined symbol '" + 234 GotSymName + "'"); 235 return; 236 } 237 238 uint64_t GotOff = 0; 239 if (Config->EMachine == EM_PPC || Config->EMachine == EM_PPC64) 240 GotOff = 0x8000; 241 242 Symtab->addSymbol(Defined{/*File=*/nullptr, GotSymName, STB_GLOBAL, 243 STV_HIDDEN, STT_NOTYPE, GotOff, /*Size=*/0, 244 Out::ElfHeader}); 245 ElfSym::GlobalOffsetTable = cast<Defined>(S); 246 } 247 248 // __ehdr_start is the location of ELF file headers. Note that we define 249 // this symbol unconditionally even when using a linker script, which 250 // differs from the behavior implemented by GNU linker which only define 251 // this symbol if ELF headers are in the memory mapped segment. 252 addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN); 253 254 // __executable_start is not documented, but the expectation of at 255 // least the Android libc is that it points to the ELF header. 256 addOptionalRegular("__executable_start", Out::ElfHeader, 0, STV_HIDDEN); 257 258 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 259 // each DSO. The address of the symbol doesn't matter as long as they are 260 // different in different DSOs, so we chose the start address of the DSO. 261 addOptionalRegular("__dso_handle", Out::ElfHeader, 0, STV_HIDDEN); 262 263 // If linker script do layout we do not need to create any standart symbols. 264 if (Script->HasSectionsCommand) 265 return; 266 267 auto Add = [](StringRef S, int64_t Pos) { 268 return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT); 269 }; 270 271 ElfSym::Bss = Add("__bss_start", 0); 272 ElfSym::End1 = Add("end", -1); 273 ElfSym::End2 = Add("_end", -1); 274 ElfSym::Etext1 = Add("etext", -1); 275 ElfSym::Etext2 = Add("_etext", -1); 276 ElfSym::Edata1 = Add("edata", -1); 277 ElfSym::Edata2 = Add("_edata", -1); 278 } 279 280 static OutputSection *findSection(StringRef Name) { 281 for (BaseCommand *Base : Script->SectionCommands) 282 if (auto *Sec = dyn_cast<OutputSection>(Base)) 283 if (Sec->Name == Name) 284 return Sec; 285 return nullptr; 286 } 287 288 // Initialize Out members. 289 template <class ELFT> static void createSyntheticSections() { 290 // Initialize all pointers with NULL. This is needed because 291 // you can call lld::elf::main more than once as a library. 292 memset(&Out::First, 0, sizeof(Out)); 293 294 auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; 295 296 In.DynStrTab = make<StringTableSection>(".dynstr", true); 297 In.Dynamic = make<DynamicSection<ELFT>>(); 298 if (Config->AndroidPackDynRelocs) { 299 In.RelaDyn = make<AndroidPackedRelocationSection<ELFT>>( 300 Config->IsRela ? ".rela.dyn" : ".rel.dyn"); 301 } else { 302 In.RelaDyn = make<RelocationSection<ELFT>>( 303 Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); 304 } 305 In.ShStrTab = make<StringTableSection>(".shstrtab", false); 306 307 Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC); 308 Out::ProgramHeaders->Alignment = Config->Wordsize; 309 310 if (needsInterpSection()) 311 Add(createInterpSection()); 312 313 if (Config->Strip != StripPolicy::All) { 314 In.StrTab = make<StringTableSection>(".strtab", false); 315 In.SymTab = make<SymbolTableSection<ELFT>>(*In.StrTab); 316 In.SymTabShndx = make<SymtabShndxSection>(); 317 } 318 319 if (Config->BuildId != BuildIdKind::None) { 320 In.BuildId = make<BuildIdSection>(); 321 Add(In.BuildId); 322 } 323 324 In.Bss = make<BssSection>(".bss", 0, 1); 325 Add(In.Bss); 326 327 // If there is a SECTIONS command and a .data.rel.ro section name use name 328 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 329 // This makes sure our relro is contiguous. 330 bool HasDataRelRo = Script->HasSectionsCommand && findSection(".data.rel.ro"); 331 In.BssRelRo = 332 make<BssSection>(HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 333 Add(In.BssRelRo); 334 335 // Add MIPS-specific sections. 336 if (Config->EMachine == EM_MIPS) { 337 if (!Config->Shared && Config->HasDynSymTab) { 338 In.MipsRldMap = make<MipsRldMapSection>(); 339 Add(In.MipsRldMap); 340 } 341 if (auto *Sec = MipsAbiFlagsSection<ELFT>::create()) 342 Add(Sec); 343 if (auto *Sec = MipsOptionsSection<ELFT>::create()) 344 Add(Sec); 345 if (auto *Sec = MipsReginfoSection<ELFT>::create()) 346 Add(Sec); 347 } 348 349 if (Config->HasDynSymTab) { 350 In.DynSymTab = make<SymbolTableSection<ELFT>>(*In.DynStrTab); 351 Add(In.DynSymTab); 352 353 In.VerSym = make<VersionTableSection>(); 354 Add(In.VerSym); 355 356 if (!Config->VersionDefinitions.empty()) { 357 In.VerDef = make<VersionDefinitionSection>(); 358 Add(In.VerDef); 359 } 360 361 In.VerNeed = make<VersionNeedSection<ELFT>>(); 362 Add(In.VerNeed); 363 364 if (Config->GnuHash) { 365 In.GnuHashTab = make<GnuHashTableSection>(); 366 Add(In.GnuHashTab); 367 } 368 369 if (Config->SysvHash) { 370 In.HashTab = make<HashTableSection>(); 371 Add(In.HashTab); 372 } 373 374 Add(In.Dynamic); 375 Add(In.DynStrTab); 376 Add(In.RelaDyn); 377 } 378 379 if (Config->RelrPackDynRelocs) { 380 In.RelrDyn = make<RelrSection<ELFT>>(); 381 Add(In.RelrDyn); 382 } 383 384 // Add .got. MIPS' .got is so different from the other archs, 385 // it has its own class. 386 if (Config->EMachine == EM_MIPS) { 387 In.MipsGot = make<MipsGotSection>(); 388 Add(In.MipsGot); 389 } else { 390 In.Got = make<GotSection>(); 391 Add(In.Got); 392 } 393 394 if (Config->EMachine == EM_PPC64) { 395 In.PPC64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 396 Add(In.PPC64LongBranchTarget); 397 } 398 399 In.GotPlt = make<GotPltSection>(); 400 Add(In.GotPlt); 401 In.IgotPlt = make<IgotPltSection>(); 402 Add(In.IgotPlt); 403 404 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 405 // it as a relocation and ensure the referenced section is created. 406 if (ElfSym::GlobalOffsetTable && Config->EMachine != EM_MIPS) { 407 if (Target->GotBaseSymInGotPlt) 408 In.GotPlt->HasGotPltOffRel = true; 409 else 410 In.Got->HasGotOffRel = true; 411 } 412 413 if (Config->GdbIndex) 414 Add(GdbIndexSection::create<ELFT>()); 415 416 // We always need to add rel[a].plt to output if it has entries. 417 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 418 In.RelaPlt = make<RelocationSection<ELFT>>( 419 Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); 420 Add(In.RelaPlt); 421 422 // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure 423 // that the IRelative relocations are processed last by the dynamic loader. 424 // We cannot place the iplt section in .rel.dyn when Android relocation 425 // packing is enabled because that would cause a section type mismatch. 426 // However, because the Android dynamic loader reads .rel.plt after .rel.dyn, 427 // we can get the desired behaviour by placing the iplt section in .rel.plt. 428 In.RelaIplt = make<RelocationSection<ELFT>>( 429 (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs) 430 ? ".rel.dyn" 431 : In.RelaPlt->Name, 432 false /*Sort*/); 433 Add(In.RelaIplt); 434 435 In.Plt = make<PltSection>(false); 436 Add(In.Plt); 437 In.Iplt = make<PltSection>(true); 438 Add(In.Iplt); 439 440 // .note.GNU-stack is always added when we are creating a re-linkable 441 // object file. Other linkers are using the presence of this marker 442 // section to control the executable-ness of the stack area, but that 443 // is irrelevant these days. Stack area should always be non-executable 444 // by default. So we emit this section unconditionally. 445 if (Config->Relocatable) 446 Add(make<GnuStackSection>()); 447 448 if (!Config->Relocatable) { 449 if (Config->EhFrameHdr) { 450 In.EhFrameHdr = make<EhFrameHeader>(); 451 Add(In.EhFrameHdr); 452 } 453 In.EhFrame = make<EhFrameSection>(); 454 Add(In.EhFrame); 455 } 456 457 if (In.SymTab) 458 Add(In.SymTab); 459 if (In.SymTabShndx) 460 Add(In.SymTabShndx); 461 Add(In.ShStrTab); 462 if (In.StrTab) 463 Add(In.StrTab); 464 465 if (Config->EMachine == EM_ARM && !Config->Relocatable) { 466 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 467 // InputSections. 468 In.ARMExidx = make<ARMExidxSyntheticSection>(); 469 Add(In.ARMExidx); 470 } 471 } 472 473 // The main function of the writer. 474 template <class ELFT> void Writer<ELFT>::run() { 475 // Create linker-synthesized sections such as .got or .plt. 476 // Such sections are of type input section. 477 createSyntheticSections<ELFT>(); 478 479 // Some input sections that are used for exception handling need to be moved 480 // into synthetic sections. Do that now so that they aren't assigned to 481 // output sections in the usual way. 482 if (!Config->Relocatable) 483 combineEhSections<ELFT>(); 484 485 // We want to process linker script commands. When SECTIONS command 486 // is given we let it create sections. 487 Script->processSectionCommands(); 488 489 // Linker scripts controls how input sections are assigned to output sections. 490 // Input sections that were not handled by scripts are called "orphans", and 491 // they are assigned to output sections by the default rule. Process that. 492 Script->addOrphanSections(); 493 494 if (Config->Discard != DiscardPolicy::All) 495 copyLocalSymbols(); 496 497 if (Config->CopyRelocs) 498 addSectionSymbols(); 499 500 // Now that we have a complete set of output sections. This function 501 // completes section contents. For example, we need to add strings 502 // to the string table, and add entries to .got and .plt. 503 // finalizeSections does that. 504 finalizeSections(); 505 checkExecuteOnly(); 506 if (errorCount()) 507 return; 508 509 Script->assignAddresses(); 510 511 // If -compressed-debug-sections is specified, we need to compress 512 // .debug_* sections. Do it right now because it changes the size of 513 // output sections. 514 for (OutputSection *Sec : OutputSections) 515 Sec->maybeCompress<ELFT>(); 516 517 Script->allocateHeaders(Phdrs); 518 519 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 520 // 0 sized region. This has to be done late since only after assignAddresses 521 // we know the size of the sections. 522 removeEmptyPTLoad(); 523 524 if (!Config->OFormatBinary) 525 assignFileOffsets(); 526 else 527 assignFileOffsetsBinary(); 528 529 setPhdrs(); 530 531 if (Config->Relocatable) 532 for (OutputSection *Sec : OutputSections) 533 Sec->Addr = 0; 534 535 if (Config->CheckSections) 536 checkSections(); 537 538 // It does not make sense try to open the file if we have error already. 539 if (errorCount()) 540 return; 541 // Write the result down to a file. 542 openFile(); 543 if (errorCount()) 544 return; 545 546 if (!Config->OFormatBinary) { 547 writeTrapInstr(); 548 writeHeader(); 549 writeSections(); 550 } else { 551 writeSectionsBinary(); 552 } 553 554 // Backfill .note.gnu.build-id section content. This is done at last 555 // because the content is usually a hash value of the entire output file. 556 writeBuildId(); 557 if (errorCount()) 558 return; 559 560 // Handle -Map and -cref options. 561 writeMapFile(); 562 writeCrossReferenceTable(); 563 if (errorCount()) 564 return; 565 566 if (auto E = Buffer->commit()) 567 error("failed to write to the output file: " + toString(std::move(E))); 568 } 569 570 static bool shouldKeepInSymtab(const Defined &Sym) { 571 if (Sym.isSection()) 572 return false; 573 574 if (Config->Discard == DiscardPolicy::None) 575 return true; 576 577 // If -emit-reloc is given, all symbols including local ones need to be 578 // copied because they may be referenced by relocations. 579 if (Config->EmitRelocs) 580 return true; 581 582 // In ELF assembly .L symbols are normally discarded by the assembler. 583 // If the assembler fails to do so, the linker discards them if 584 // * --discard-locals is used. 585 // * The symbol is in a SHF_MERGE section, which is normally the reason for 586 // the assembler keeping the .L symbol. 587 StringRef Name = Sym.getName(); 588 bool IsLocal = Name.startswith(".L") || Name.empty(); 589 if (!IsLocal) 590 return true; 591 592 if (Config->Discard == DiscardPolicy::Locals) 593 return false; 594 595 SectionBase *Sec = Sym.Section; 596 return !Sec || !(Sec->Flags & SHF_MERGE); 597 } 598 599 static bool includeInSymtab(const Symbol &B) { 600 if (!B.isLocal() && !B.IsUsedInRegularObj) 601 return false; 602 603 if (auto *D = dyn_cast<Defined>(&B)) { 604 // Always include absolute symbols. 605 SectionBase *Sec = D->Section; 606 if (!Sec) 607 return true; 608 Sec = Sec->Repl; 609 610 // Exclude symbols pointing to garbage-collected sections. 611 if (isa<InputSectionBase>(Sec) && !Sec->Live) 612 return false; 613 614 if (auto *S = dyn_cast<MergeInputSection>(Sec)) 615 if (!S->getSectionPiece(D->Value)->Live) 616 return false; 617 return true; 618 } 619 return B.Used; 620 } 621 622 // Local symbols are not in the linker's symbol table. This function scans 623 // each object file's symbol table to copy local symbols to the output. 624 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 625 if (!In.SymTab) 626 return; 627 for (InputFile *File : ObjectFiles) { 628 ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File); 629 for (Symbol *B : F->getLocalSymbols()) { 630 if (!B->isLocal()) 631 fatal(toString(F) + 632 ": broken object: getLocalSymbols returns a non-local symbol"); 633 auto *DR = dyn_cast<Defined>(B); 634 635 // No reason to keep local undefined symbol in symtab. 636 if (!DR) 637 continue; 638 if (!includeInSymtab(*B)) 639 continue; 640 if (!shouldKeepInSymtab(*DR)) 641 continue; 642 In.SymTab->addSymbol(B); 643 } 644 } 645 } 646 647 // Create a section symbol for each output section so that we can represent 648 // relocations that point to the section. If we know that no relocation is 649 // referring to a section (that happens if the section is a synthetic one), we 650 // don't create a section symbol for that section. 651 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 652 for (BaseCommand *Base : Script->SectionCommands) { 653 auto *Sec = dyn_cast<OutputSection>(Base); 654 if (!Sec) 655 continue; 656 auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) { 657 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 658 return !ISD->Sections.empty(); 659 return false; 660 }); 661 if (I == Sec->SectionCommands.end()) 662 continue; 663 InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0]; 664 665 // Relocations are not using REL[A] section symbols. 666 if (IS->Type == SHT_REL || IS->Type == SHT_RELA) 667 continue; 668 669 // Unlike other synthetic sections, mergeable output sections contain data 670 // copied from input sections, and there may be a relocation pointing to its 671 // contents if -r or -emit-reloc are given. 672 if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE)) 673 continue; 674 675 auto *Sym = 676 make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION, 677 /*Value=*/0, /*Size=*/0, IS); 678 In.SymTab->addSymbol(Sym); 679 } 680 } 681 682 // Today's loaders have a feature to make segments read-only after 683 // processing dynamic relocations to enhance security. PT_GNU_RELRO 684 // is defined for that. 685 // 686 // This function returns true if a section needs to be put into a 687 // PT_GNU_RELRO segment. 688 static bool isRelroSection(const OutputSection *Sec) { 689 if (!Config->ZRelro) 690 return false; 691 692 uint64_t Flags = Sec->Flags; 693 694 // Non-allocatable or non-writable sections don't need RELRO because 695 // they are not writable or not even mapped to memory in the first place. 696 // RELRO is for sections that are essentially read-only but need to 697 // be writable only at process startup to allow dynamic linker to 698 // apply relocations. 699 if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) 700 return false; 701 702 // Once initialized, TLS data segments are used as data templates 703 // for a thread-local storage. For each new thread, runtime 704 // allocates memory for a TLS and copy templates there. No thread 705 // are supposed to use templates directly. Thus, it can be in RELRO. 706 if (Flags & SHF_TLS) 707 return true; 708 709 // .init_array, .preinit_array and .fini_array contain pointers to 710 // functions that are executed on process startup or exit. These 711 // pointers are set by the static linker, and they are not expected 712 // to change at runtime. But if you are an attacker, you could do 713 // interesting things by manipulating pointers in .fini_array, for 714 // example. So they are put into RELRO. 715 uint32_t Type = Sec->Type; 716 if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || 717 Type == SHT_PREINIT_ARRAY) 718 return true; 719 720 // .got contains pointers to external symbols. They are resolved by 721 // the dynamic linker when a module is loaded into memory, and after 722 // that they are not expected to change. So, it can be in RELRO. 723 if (In.Got && Sec == In.Got->getParent()) 724 return true; 725 726 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 727 // through r2 register, which is reserved for that purpose. Since r2 is used 728 // for accessing .got as well, .got and .toc need to be close enough in the 729 // virtual address space. Usually, .toc comes just after .got. Since we place 730 // .got into RELRO, .toc needs to be placed into RELRO too. 731 if (Sec->Name.equals(".toc")) 732 return true; 733 734 // .got.plt contains pointers to external function symbols. They are 735 // by default resolved lazily, so we usually cannot put it into RELRO. 736 // However, if "-z now" is given, the lazy symbol resolution is 737 // disabled, which enables us to put it into RELRO. 738 if (Sec == In.GotPlt->getParent()) 739 return Config->ZNow; 740 741 // .dynamic section contains data for the dynamic linker, and 742 // there's no need to write to it at runtime, so it's better to put 743 // it into RELRO. 744 if (Sec == In.Dynamic->getParent()) 745 return true; 746 747 // Sections with some special names are put into RELRO. This is a 748 // bit unfortunate because section names shouldn't be significant in 749 // ELF in spirit. But in reality many linker features depend on 750 // magic section names. 751 StringRef S = Sec->Name; 752 return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" || 753 S == ".dtors" || S == ".jcr" || S == ".eh_frame" || 754 S == ".openbsd.randomdata"; 755 } 756 757 // We compute a rank for each section. The rank indicates where the 758 // section should be placed in the file. Instead of using simple 759 // numbers (0,1,2...), we use a series of flags. One for each decision 760 // point when placing the section. 761 // Using flags has two key properties: 762 // * It is easy to check if a give branch was taken. 763 // * It is easy two see how similar two ranks are (see getRankProximity). 764 enum RankFlags { 765 RF_NOT_ADDR_SET = 1 << 17, 766 RF_NOT_ALLOC = 1 << 16, 767 RF_NOT_INTERP = 1 << 15, 768 RF_NOT_NOTE = 1 << 14, 769 RF_WRITE = 1 << 13, 770 RF_EXEC_WRITE = 1 << 12, 771 RF_EXEC = 1 << 11, 772 RF_RODATA = 1 << 10, 773 RF_NOT_RELRO = 1 << 9, 774 RF_NOT_TLS = 1 << 8, 775 RF_BSS = 1 << 7, 776 RF_PPC_NOT_TOCBSS = 1 << 6, 777 RF_PPC_TOCL = 1 << 5, 778 RF_PPC_TOC = 1 << 4, 779 RF_PPC_GOT = 1 << 3, 780 RF_PPC_BRANCH_LT = 1 << 2, 781 RF_MIPS_GPREL = 1 << 1, 782 RF_MIPS_NOT_GOT = 1 << 0 783 }; 784 785 static unsigned getSectionRank(const OutputSection *Sec) { 786 unsigned Rank = 0; 787 788 // We want to put section specified by -T option first, so we 789 // can start assigning VA starting from them later. 790 if (Config->SectionStartMap.count(Sec->Name)) 791 return Rank; 792 Rank |= RF_NOT_ADDR_SET; 793 794 // Allocatable sections go first to reduce the total PT_LOAD size and 795 // so debug info doesn't change addresses in actual code. 796 if (!(Sec->Flags & SHF_ALLOC)) 797 return Rank | RF_NOT_ALLOC; 798 799 // Put .interp first because some loaders want to see that section 800 // on the first page of the executable file when loaded into memory. 801 if (Sec->Name == ".interp") 802 return Rank; 803 Rank |= RF_NOT_INTERP; 804 805 // Put .note sections (which make up one PT_NOTE) at the beginning so that 806 // they are likely to be included in a core file even if core file size is 807 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 808 // included in a core to match core files with executables. 809 if (Sec->Type == SHT_NOTE) 810 return Rank; 811 Rank |= RF_NOT_NOTE; 812 813 // Sort sections based on their access permission in the following 814 // order: R, RX, RWX, RW. This order is based on the following 815 // considerations: 816 // * Read-only sections come first such that they go in the 817 // PT_LOAD covering the program headers at the start of the file. 818 // * Read-only, executable sections come next. 819 // * Writable, executable sections follow such that .plt on 820 // architectures where it needs to be writable will be placed 821 // between .text and .data. 822 // * Writable sections come last, such that .bss lands at the very 823 // end of the last PT_LOAD. 824 bool IsExec = Sec->Flags & SHF_EXECINSTR; 825 bool IsWrite = Sec->Flags & SHF_WRITE; 826 827 if (IsExec) { 828 if (IsWrite) 829 Rank |= RF_EXEC_WRITE; 830 else 831 Rank |= RF_EXEC; 832 } else if (IsWrite) { 833 Rank |= RF_WRITE; 834 } else if (Sec->Type == SHT_PROGBITS) { 835 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 836 // .eh_frame) closer to .text. They likely contain PC or GOT relative 837 // relocations and there could be relocation overflow if other huge sections 838 // (.dynstr .dynsym) were placed in between. 839 Rank |= RF_RODATA; 840 } 841 842 // Place RelRo sections first. After considering SHT_NOBITS below, the 843 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 844 // where | marks where page alignment happens. An alternative ordering is 845 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 846 // waste more bytes due to 2 alignment places. 847 if (!isRelroSection(Sec)) 848 Rank |= RF_NOT_RELRO; 849 850 // If we got here we know that both A and B are in the same PT_LOAD. 851 852 // The TLS initialization block needs to be a single contiguous block in a R/W 853 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 854 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 855 // after PROGBITS. 856 if (!(Sec->Flags & SHF_TLS)) 857 Rank |= RF_NOT_TLS; 858 859 // Within TLS sections, or within other RelRo sections, or within non-RelRo 860 // sections, place non-NOBITS sections first. 861 if (Sec->Type == SHT_NOBITS) 862 Rank |= RF_BSS; 863 864 // Some architectures have additional ordering restrictions for sections 865 // within the same PT_LOAD. 866 if (Config->EMachine == EM_PPC64) { 867 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 868 // that we would like to make sure appear is a specific order to maximize 869 // their coverage by a single signed 16-bit offset from the TOC base 870 // pointer. Conversely, the special .tocbss section should be first among 871 // all SHT_NOBITS sections. This will put it next to the loaded special 872 // PPC64 sections (and, thus, within reach of the TOC base pointer). 873 StringRef Name = Sec->Name; 874 if (Name != ".tocbss") 875 Rank |= RF_PPC_NOT_TOCBSS; 876 877 if (Name == ".toc1") 878 Rank |= RF_PPC_TOCL; 879 880 if (Name == ".toc") 881 Rank |= RF_PPC_TOC; 882 883 if (Name == ".got") 884 Rank |= RF_PPC_GOT; 885 886 if (Name == ".branch_lt") 887 Rank |= RF_PPC_BRANCH_LT; 888 } 889 890 if (Config->EMachine == EM_MIPS) { 891 // All sections with SHF_MIPS_GPREL flag should be grouped together 892 // because data in these sections is addressable with a gp relative address. 893 if (Sec->Flags & SHF_MIPS_GPREL) 894 Rank |= RF_MIPS_GPREL; 895 896 if (Sec->Name != ".got") 897 Rank |= RF_MIPS_NOT_GOT; 898 } 899 900 return Rank; 901 } 902 903 static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) { 904 const OutputSection *A = cast<OutputSection>(ACmd); 905 const OutputSection *B = cast<OutputSection>(BCmd); 906 907 if (A->SortRank != B->SortRank) 908 return A->SortRank < B->SortRank; 909 910 if (!(A->SortRank & RF_NOT_ADDR_SET)) 911 return Config->SectionStartMap.lookup(A->Name) < 912 Config->SectionStartMap.lookup(B->Name); 913 return false; 914 } 915 916 void PhdrEntry::add(OutputSection *Sec) { 917 LastSec = Sec; 918 if (!FirstSec) 919 FirstSec = Sec; 920 p_align = std::max(p_align, Sec->Alignment); 921 if (p_type == PT_LOAD) 922 Sec->PtLoad = this; 923 } 924 925 // The beginning and the ending of .rel[a].plt section are marked 926 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 927 // executable. The runtime needs these symbols in order to resolve 928 // all IRELATIVE relocs on startup. For dynamic executables, we don't 929 // need these symbols, since IRELATIVE relocs are resolved through GOT 930 // and PLT. For details, see http://www.airs.com/blog/archives/403. 931 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 932 if (Config->Relocatable || needsInterpSection()) 933 return; 934 935 // By default, __rela_iplt_{start,end} belong to a dummy section 0 936 // because .rela.plt might be empty and thus removed from output. 937 // We'll override Out::ElfHeader with In.RelaIplt later when we are 938 // sure that .rela.plt exists in output. 939 ElfSym::RelaIpltStart = addOptionalRegular( 940 Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start", 941 Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK); 942 943 ElfSym::RelaIpltEnd = addOptionalRegular( 944 Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end", 945 Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK); 946 } 947 948 template <class ELFT> 949 void Writer<ELFT>::forEachRelSec( 950 llvm::function_ref<void(InputSectionBase &)> Fn) { 951 // Scan all relocations. Each relocation goes through a series 952 // of tests to determine if it needs special treatment, such as 953 // creating GOT, PLT, copy relocations, etc. 954 // Note that relocations for non-alloc sections are directly 955 // processed by InputSection::relocateNonAlloc. 956 for (InputSectionBase *IS : InputSections) 957 if (IS->Live && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC)) 958 Fn(*IS); 959 for (EhInputSection *ES : In.EhFrame->Sections) 960 Fn(*ES); 961 if (In.ARMExidx && In.ARMExidx->Live) 962 for (InputSection *Ex : In.ARMExidx->ExidxSections) 963 Fn(*Ex); 964 } 965 966 // This function generates assignments for predefined symbols (e.g. _end or 967 // _etext) and inserts them into the commands sequence to be processed at the 968 // appropriate time. This ensures that the value is going to be correct by the 969 // time any references to these symbols are processed and is equivalent to 970 // defining these symbols explicitly in the linker script. 971 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 972 if (ElfSym::GlobalOffsetTable) { 973 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 974 // to the start of the .got or .got.plt section. 975 InputSection *GotSection = In.GotPlt; 976 if (!Target->GotBaseSymInGotPlt) 977 GotSection = In.MipsGot ? cast<InputSection>(In.MipsGot) 978 : cast<InputSection>(In.Got); 979 ElfSym::GlobalOffsetTable->Section = GotSection; 980 } 981 982 // .rela_iplt_{start,end} mark the start and the end of .rela.plt section. 983 if (ElfSym::RelaIpltStart && In.RelaIplt->isNeeded()) { 984 ElfSym::RelaIpltStart->Section = In.RelaIplt; 985 ElfSym::RelaIpltEnd->Section = In.RelaIplt; 986 ElfSym::RelaIpltEnd->Value = In.RelaIplt->getSize(); 987 } 988 989 PhdrEntry *Last = nullptr; 990 PhdrEntry *LastRO = nullptr; 991 992 for (PhdrEntry *P : Phdrs) { 993 if (P->p_type != PT_LOAD) 994 continue; 995 Last = P; 996 if (!(P->p_flags & PF_W)) 997 LastRO = P; 998 } 999 1000 if (LastRO) { 1001 // _etext is the first location after the last read-only loadable segment. 1002 if (ElfSym::Etext1) 1003 ElfSym::Etext1->Section = LastRO->LastSec; 1004 if (ElfSym::Etext2) 1005 ElfSym::Etext2->Section = LastRO->LastSec; 1006 } 1007 1008 if (Last) { 1009 // _edata points to the end of the last mapped initialized section. 1010 OutputSection *Edata = nullptr; 1011 for (OutputSection *OS : OutputSections) { 1012 if (OS->Type != SHT_NOBITS) 1013 Edata = OS; 1014 if (OS == Last->LastSec) 1015 break; 1016 } 1017 1018 if (ElfSym::Edata1) 1019 ElfSym::Edata1->Section = Edata; 1020 if (ElfSym::Edata2) 1021 ElfSym::Edata2->Section = Edata; 1022 1023 // _end is the first location after the uninitialized data region. 1024 if (ElfSym::End1) 1025 ElfSym::End1->Section = Last->LastSec; 1026 if (ElfSym::End2) 1027 ElfSym::End2->Section = Last->LastSec; 1028 } 1029 1030 if (ElfSym::Bss) 1031 ElfSym::Bss->Section = findSection(".bss"); 1032 1033 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1034 // be equal to the _gp symbol's value. 1035 if (ElfSym::MipsGp) { 1036 // Find GP-relative section with the lowest address 1037 // and use this address to calculate default _gp value. 1038 for (OutputSection *OS : OutputSections) { 1039 if (OS->Flags & SHF_MIPS_GPREL) { 1040 ElfSym::MipsGp->Section = OS; 1041 ElfSym::MipsGp->Value = 0x7ff0; 1042 break; 1043 } 1044 } 1045 } 1046 } 1047 1048 // We want to find how similar two ranks are. 1049 // The more branches in getSectionRank that match, the more similar they are. 1050 // Since each branch corresponds to a bit flag, we can just use 1051 // countLeadingZeros. 1052 static int getRankProximityAux(OutputSection *A, OutputSection *B) { 1053 return countLeadingZeros(A->SortRank ^ B->SortRank); 1054 } 1055 1056 static int getRankProximity(OutputSection *A, BaseCommand *B) { 1057 auto *Sec = dyn_cast<OutputSection>(B); 1058 return (Sec && Sec->Live) ? getRankProximityAux(A, Sec) : -1; 1059 } 1060 1061 // When placing orphan sections, we want to place them after symbol assignments 1062 // so that an orphan after 1063 // begin_foo = .; 1064 // foo : { *(foo) } 1065 // end_foo = .; 1066 // doesn't break the intended meaning of the begin/end symbols. 1067 // We don't want to go over sections since findOrphanPos is the 1068 // one in charge of deciding the order of the sections. 1069 // We don't want to go over changes to '.', since doing so in 1070 // rx_sec : { *(rx_sec) } 1071 // . = ALIGN(0x1000); 1072 // /* The RW PT_LOAD starts here*/ 1073 // rw_sec : { *(rw_sec) } 1074 // would mean that the RW PT_LOAD would become unaligned. 1075 static bool shouldSkip(BaseCommand *Cmd) { 1076 if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd)) 1077 return Assign->Name != "."; 1078 return false; 1079 } 1080 1081 // We want to place orphan sections so that they share as much 1082 // characteristics with their neighbors as possible. For example, if 1083 // both are rw, or both are tls. 1084 static std::vector<BaseCommand *>::iterator 1085 findOrphanPos(std::vector<BaseCommand *>::iterator B, 1086 std::vector<BaseCommand *>::iterator E) { 1087 OutputSection *Sec = cast<OutputSection>(*E); 1088 1089 // Find the first element that has as close a rank as possible. 1090 auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) { 1091 return getRankProximity(Sec, A) < getRankProximity(Sec, B); 1092 }); 1093 if (I == E) 1094 return E; 1095 1096 // Consider all existing sections with the same proximity. 1097 int Proximity = getRankProximity(Sec, *I); 1098 for (; I != E; ++I) { 1099 auto *CurSec = dyn_cast<OutputSection>(*I); 1100 if (!CurSec || !CurSec->Live) 1101 continue; 1102 if (getRankProximity(Sec, CurSec) != Proximity || 1103 Sec->SortRank < CurSec->SortRank) 1104 break; 1105 } 1106 1107 auto IsLiveOutputSec = [](BaseCommand *Cmd) { 1108 auto *OS = dyn_cast<OutputSection>(Cmd); 1109 return OS && OS->Live; 1110 }; 1111 auto J = std::find_if(llvm::make_reverse_iterator(I), 1112 llvm::make_reverse_iterator(B), IsLiveOutputSec); 1113 I = J.base(); 1114 1115 // As a special case, if the orphan section is the last section, put 1116 // it at the very end, past any other commands. 1117 // This matches bfd's behavior and is convenient when the linker script fully 1118 // specifies the start of the file, but doesn't care about the end (the non 1119 // alloc sections for example). 1120 auto NextSec = std::find_if(I, E, IsLiveOutputSec); 1121 if (NextSec == E) 1122 return E; 1123 1124 while (I != E && shouldSkip(*I)) 1125 ++I; 1126 return I; 1127 } 1128 1129 // Builds section order for handling --symbol-ordering-file. 1130 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1131 DenseMap<const InputSectionBase *, int> SectionOrder; 1132 // Use the rarely used option -call-graph-ordering-file to sort sections. 1133 if (!Config->CallGraphProfile.empty()) 1134 return computeCallGraphProfileOrder(); 1135 1136 if (Config->SymbolOrderingFile.empty()) 1137 return SectionOrder; 1138 1139 struct SymbolOrderEntry { 1140 int Priority; 1141 bool Present; 1142 }; 1143 1144 // Build a map from symbols to their priorities. Symbols that didn't 1145 // appear in the symbol ordering file have the lowest priority 0. 1146 // All explicitly mentioned symbols have negative (higher) priorities. 1147 DenseMap<StringRef, SymbolOrderEntry> SymbolOrder; 1148 int Priority = -Config->SymbolOrderingFile.size(); 1149 for (StringRef S : Config->SymbolOrderingFile) 1150 SymbolOrder.insert({S, {Priority++, false}}); 1151 1152 // Build a map from sections to their priorities. 1153 auto AddSym = [&](Symbol &Sym) { 1154 auto It = SymbolOrder.find(Sym.getName()); 1155 if (It == SymbolOrder.end()) 1156 return; 1157 SymbolOrderEntry &Ent = It->second; 1158 Ent.Present = true; 1159 1160 maybeWarnUnorderableSymbol(&Sym); 1161 1162 if (auto *D = dyn_cast<Defined>(&Sym)) { 1163 if (auto *Sec = dyn_cast_or_null<InputSectionBase>(D->Section)) { 1164 int &Priority = SectionOrder[cast<InputSectionBase>(Sec->Repl)]; 1165 Priority = std::min(Priority, Ent.Priority); 1166 } 1167 } 1168 }; 1169 1170 // We want both global and local symbols. We get the global ones from the 1171 // symbol table and iterate the object files for the local ones. 1172 for (Symbol *Sym : Symtab->getSymbols()) 1173 if (!Sym->isLazy()) 1174 AddSym(*Sym); 1175 for (InputFile *File : ObjectFiles) 1176 for (Symbol *Sym : File->getSymbols()) 1177 if (Sym->isLocal()) 1178 AddSym(*Sym); 1179 1180 if (Config->WarnSymbolOrdering) 1181 for (auto OrderEntry : SymbolOrder) 1182 if (!OrderEntry.second.Present) 1183 warn("symbol ordering file: no such symbol: " + OrderEntry.first); 1184 1185 return SectionOrder; 1186 } 1187 1188 // Sorts the sections in ISD according to the provided section order. 1189 static void 1190 sortISDBySectionOrder(InputSectionDescription *ISD, 1191 const DenseMap<const InputSectionBase *, int> &Order) { 1192 std::vector<InputSection *> UnorderedSections; 1193 std::vector<std::pair<InputSection *, int>> OrderedSections; 1194 uint64_t UnorderedSize = 0; 1195 1196 for (InputSection *IS : ISD->Sections) { 1197 auto I = Order.find(IS); 1198 if (I == Order.end()) { 1199 UnorderedSections.push_back(IS); 1200 UnorderedSize += IS->getSize(); 1201 continue; 1202 } 1203 OrderedSections.push_back({IS, I->second}); 1204 } 1205 llvm::sort(OrderedSections, [&](std::pair<InputSection *, int> A, 1206 std::pair<InputSection *, int> B) { 1207 return A.second < B.second; 1208 }); 1209 1210 // Find an insertion point for the ordered section list in the unordered 1211 // section list. On targets with limited-range branches, this is the mid-point 1212 // of the unordered section list. This decreases the likelihood that a range 1213 // extension thunk will be needed to enter or exit the ordered region. If the 1214 // ordered section list is a list of hot functions, we can generally expect 1215 // the ordered functions to be called more often than the unordered functions, 1216 // making it more likely that any particular call will be within range, and 1217 // therefore reducing the number of thunks required. 1218 // 1219 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1220 // If the layout is: 1221 // 1222 // 8MB hot 1223 // 32MB cold 1224 // 1225 // only the first 8-16MB of the cold code (depending on which hot function it 1226 // is actually calling) can call the hot code without a range extension thunk. 1227 // However, if we use this layout: 1228 // 1229 // 16MB cold 1230 // 8MB hot 1231 // 16MB cold 1232 // 1233 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1234 // of the second block of cold code can call the hot code without a thunk. So 1235 // we effectively double the amount of code that could potentially call into 1236 // the hot code without a thunk. 1237 size_t InsPt = 0; 1238 if (Target->getThunkSectionSpacing() && !OrderedSections.empty()) { 1239 uint64_t UnorderedPos = 0; 1240 for (; InsPt != UnorderedSections.size(); ++InsPt) { 1241 UnorderedPos += UnorderedSections[InsPt]->getSize(); 1242 if (UnorderedPos > UnorderedSize / 2) 1243 break; 1244 } 1245 } 1246 1247 ISD->Sections.clear(); 1248 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(0, InsPt)) 1249 ISD->Sections.push_back(IS); 1250 for (std::pair<InputSection *, int> P : OrderedSections) 1251 ISD->Sections.push_back(P.first); 1252 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(InsPt)) 1253 ISD->Sections.push_back(IS); 1254 } 1255 1256 static void sortSection(OutputSection *Sec, 1257 const DenseMap<const InputSectionBase *, int> &Order) { 1258 StringRef Name = Sec->Name; 1259 1260 // Sort input sections by section name suffixes for 1261 // __attribute__((init_priority(N))). 1262 if (Name == ".init_array" || Name == ".fini_array") { 1263 if (!Script->HasSectionsCommand) 1264 Sec->sortInitFini(); 1265 return; 1266 } 1267 1268 // Sort input sections by the special rule for .ctors and .dtors. 1269 if (Name == ".ctors" || Name == ".dtors") { 1270 if (!Script->HasSectionsCommand) 1271 Sec->sortCtorsDtors(); 1272 return; 1273 } 1274 1275 // Never sort these. 1276 if (Name == ".init" || Name == ".fini") 1277 return; 1278 1279 // .toc is allocated just after .got and is accessed using GOT-relative 1280 // relocations. Object files compiled with small code model have an 1281 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1282 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1283 // sections having smaller relocation offsets are at beginning of .toc 1284 if (Config->EMachine == EM_PPC64 && Name == ".toc") { 1285 if (Script->HasSectionsCommand) 1286 return; 1287 assert(Sec->SectionCommands.size() == 1); 1288 auto *ISD = cast<InputSectionDescription>(Sec->SectionCommands[0]); 1289 llvm::stable_sort(ISD->Sections, 1290 [](const InputSection *A, const InputSection *B) -> bool { 1291 return A->File->PPC64SmallCodeModelTocRelocs && 1292 !B->File->PPC64SmallCodeModelTocRelocs; 1293 }); 1294 return; 1295 } 1296 1297 // Sort input sections by priority using the list provided 1298 // by --symbol-ordering-file. 1299 if (!Order.empty()) 1300 for (BaseCommand *B : Sec->SectionCommands) 1301 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1302 sortISDBySectionOrder(ISD, Order); 1303 } 1304 1305 // If no layout was provided by linker script, we want to apply default 1306 // sorting for special input sections. This also handles --symbol-ordering-file. 1307 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1308 // Build the order once since it is expensive. 1309 DenseMap<const InputSectionBase *, int> Order = buildSectionOrder(); 1310 for (BaseCommand *Base : Script->SectionCommands) 1311 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1312 sortSection(Sec, Order); 1313 } 1314 1315 template <class ELFT> void Writer<ELFT>::sortSections() { 1316 Script->adjustSectionsBeforeSorting(); 1317 1318 // Don't sort if using -r. It is not necessary and we want to preserve the 1319 // relative order for SHF_LINK_ORDER sections. 1320 if (Config->Relocatable) 1321 return; 1322 1323 sortInputSections(); 1324 1325 for (BaseCommand *Base : Script->SectionCommands) { 1326 auto *OS = dyn_cast<OutputSection>(Base); 1327 if (!OS) 1328 continue; 1329 OS->SortRank = getSectionRank(OS); 1330 1331 // We want to assign rude approximation values to OutSecOff fields 1332 // to know the relative order of the input sections. We use it for 1333 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1334 uint64_t I = 0; 1335 for (InputSection *Sec : getInputSections(OS)) 1336 Sec->OutSecOff = I++; 1337 } 1338 1339 if (!Script->HasSectionsCommand) { 1340 // We know that all the OutputSections are contiguous in this case. 1341 auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); }; 1342 std::stable_sort( 1343 llvm::find_if(Script->SectionCommands, IsSection), 1344 llvm::find_if(llvm::reverse(Script->SectionCommands), IsSection).base(), 1345 compareSections); 1346 return; 1347 } 1348 1349 // Orphan sections are sections present in the input files which are 1350 // not explicitly placed into the output file by the linker script. 1351 // 1352 // The sections in the linker script are already in the correct 1353 // order. We have to figuere out where to insert the orphan 1354 // sections. 1355 // 1356 // The order of the sections in the script is arbitrary and may not agree with 1357 // compareSections. This means that we cannot easily define a strict weak 1358 // ordering. To see why, consider a comparison of a section in the script and 1359 // one not in the script. We have a two simple options: 1360 // * Make them equivalent (a is not less than b, and b is not less than a). 1361 // The problem is then that equivalence has to be transitive and we can 1362 // have sections a, b and c with only b in a script and a less than c 1363 // which breaks this property. 1364 // * Use compareSectionsNonScript. Given that the script order doesn't have 1365 // to match, we can end up with sections a, b, c, d where b and c are in the 1366 // script and c is compareSectionsNonScript less than b. In which case d 1367 // can be equivalent to c, a to b and d < a. As a concrete example: 1368 // .a (rx) # not in script 1369 // .b (rx) # in script 1370 // .c (ro) # in script 1371 // .d (ro) # not in script 1372 // 1373 // The way we define an order then is: 1374 // * Sort only the orphan sections. They are in the end right now. 1375 // * Move each orphan section to its preferred position. We try 1376 // to put each section in the last position where it can share 1377 // a PT_LOAD. 1378 // 1379 // There is some ambiguity as to where exactly a new entry should be 1380 // inserted, because Commands contains not only output section 1381 // commands but also other types of commands such as symbol assignment 1382 // expressions. There's no correct answer here due to the lack of the 1383 // formal specification of the linker script. We use heuristics to 1384 // determine whether a new output command should be added before or 1385 // after another commands. For the details, look at shouldSkip 1386 // function. 1387 1388 auto I = Script->SectionCommands.begin(); 1389 auto E = Script->SectionCommands.end(); 1390 auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) { 1391 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1392 return Sec->SectionIndex == UINT32_MAX; 1393 return false; 1394 }); 1395 1396 // Sort the orphan sections. 1397 std::stable_sort(NonScriptI, E, compareSections); 1398 1399 // As a horrible special case, skip the first . assignment if it is before any 1400 // section. We do this because it is common to set a load address by starting 1401 // the script with ". = 0xabcd" and the expectation is that every section is 1402 // after that. 1403 auto FirstSectionOrDotAssignment = 1404 std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); 1405 if (FirstSectionOrDotAssignment != E && 1406 isa<SymbolAssignment>(**FirstSectionOrDotAssignment)) 1407 ++FirstSectionOrDotAssignment; 1408 I = FirstSectionOrDotAssignment; 1409 1410 while (NonScriptI != E) { 1411 auto Pos = findOrphanPos(I, NonScriptI); 1412 OutputSection *Orphan = cast<OutputSection>(*NonScriptI); 1413 1414 // As an optimization, find all sections with the same sort rank 1415 // and insert them with one rotate. 1416 unsigned Rank = Orphan->SortRank; 1417 auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) { 1418 return cast<OutputSection>(Cmd)->SortRank != Rank; 1419 }); 1420 std::rotate(Pos, NonScriptI, End); 1421 NonScriptI = End; 1422 } 1423 1424 Script->adjustSectionsAfterSorting(); 1425 } 1426 1427 static bool compareByFilePosition(InputSection *A, InputSection *B) { 1428 InputSection *LA = A->getLinkOrderDep(); 1429 InputSection *LB = B->getLinkOrderDep(); 1430 OutputSection *AOut = LA->getParent(); 1431 OutputSection *BOut = LB->getParent(); 1432 1433 if (AOut != BOut) 1434 return AOut->SectionIndex < BOut->SectionIndex; 1435 return LA->OutSecOff < LB->OutSecOff; 1436 } 1437 1438 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1439 for (OutputSection *Sec : OutputSections) { 1440 if (!(Sec->Flags & SHF_LINK_ORDER)) 1441 continue; 1442 1443 // Link order may be distributed across several InputSectionDescriptions 1444 // but sort must consider them all at once. 1445 std::vector<InputSection **> ScriptSections; 1446 std::vector<InputSection *> Sections; 1447 for (BaseCommand *Base : Sec->SectionCommands) { 1448 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) { 1449 for (InputSection *&IS : ISD->Sections) { 1450 ScriptSections.push_back(&IS); 1451 Sections.push_back(IS); 1452 } 1453 } 1454 } 1455 1456 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1457 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1458 if (!Config->Relocatable && Config->EMachine == EM_ARM && 1459 Sec->Type == SHT_ARM_EXIDX) 1460 continue; 1461 1462 llvm::stable_sort(Sections, compareByFilePosition); 1463 1464 for (int I = 0, N = Sections.size(); I < N; ++I) 1465 *ScriptSections[I] = Sections[I]; 1466 } 1467 } 1468 1469 // We need to generate and finalize the content that depends on the address of 1470 // InputSections. As the generation of the content may also alter InputSection 1471 // addresses we must converge to a fixed point. We do that here. See the comment 1472 // in Writer<ELFT>::finalizeSections(). 1473 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1474 ThunkCreator TC; 1475 AArch64Err843419Patcher A64P; 1476 1477 // For some targets, like x86, this loop iterates only once. 1478 for (;;) { 1479 bool Changed = false; 1480 1481 Script->assignAddresses(); 1482 1483 if (Target->NeedsThunks) 1484 Changed |= TC.createThunks(OutputSections); 1485 1486 if (Config->FixCortexA53Errata843419) { 1487 if (Changed) 1488 Script->assignAddresses(); 1489 Changed |= A64P.createFixes(); 1490 } 1491 1492 if (In.MipsGot) 1493 In.MipsGot->updateAllocSize(); 1494 1495 Changed |= In.RelaDyn->updateAllocSize(); 1496 1497 if (In.RelrDyn) 1498 Changed |= In.RelrDyn->updateAllocSize(); 1499 1500 if (!Changed) 1501 return; 1502 } 1503 } 1504 1505 static void finalizeSynthetic(SyntheticSection *Sec) { 1506 if (Sec && Sec->isNeeded() && Sec->getParent()) 1507 Sec->finalizeContents(); 1508 } 1509 1510 // In order to allow users to manipulate linker-synthesized sections, 1511 // we had to add synthetic sections to the input section list early, 1512 // even before we make decisions whether they are needed. This allows 1513 // users to write scripts like this: ".mygot : { .got }". 1514 // 1515 // Doing it has an unintended side effects. If it turns out that we 1516 // don't need a .got (for example) at all because there's no 1517 // relocation that needs a .got, we don't want to emit .got. 1518 // 1519 // To deal with the above problem, this function is called after 1520 // scanRelocations is called to remove synthetic sections that turn 1521 // out to be empty. 1522 static void removeUnusedSyntheticSections() { 1523 // All input synthetic sections that can be empty are placed after 1524 // all regular ones. We iterate over them all and exit at first 1525 // non-synthetic. 1526 for (InputSectionBase *S : llvm::reverse(InputSections)) { 1527 SyntheticSection *SS = dyn_cast<SyntheticSection>(S); 1528 if (!SS) 1529 return; 1530 OutputSection *OS = SS->getParent(); 1531 if (!OS || SS->isNeeded()) 1532 continue; 1533 1534 // If we reach here, then SS is an unused synthetic section and we want to 1535 // remove it from corresponding input section description of output section. 1536 for (BaseCommand *B : OS->SectionCommands) 1537 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1538 llvm::erase_if(ISD->Sections, 1539 [=](InputSection *IS) { return IS == SS; }); 1540 } 1541 } 1542 1543 // Returns true if a symbol can be replaced at load-time by a symbol 1544 // with the same name defined in other ELF executable or DSO. 1545 static bool computeIsPreemptible(const Symbol &B) { 1546 assert(!B.isLocal()); 1547 1548 // Only symbols that appear in dynsym can be preempted. 1549 if (!B.includeInDynsym()) 1550 return false; 1551 1552 // Only default visibility symbols can be preempted. 1553 if (B.Visibility != STV_DEFAULT) 1554 return false; 1555 1556 // At this point copy relocations have not been created yet, so any 1557 // symbol that is not defined locally is preemptible. 1558 if (!B.isDefined()) 1559 return true; 1560 1561 // If we have a dynamic list it specifies which local symbols are preemptible. 1562 if (Config->HasDynamicList) 1563 return false; 1564 1565 if (!Config->Shared) 1566 return false; 1567 1568 // -Bsymbolic means that definitions are not preempted. 1569 if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc())) 1570 return false; 1571 return true; 1572 } 1573 1574 // Create output section objects and add them to OutputSections. 1575 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1576 Out::PreinitArray = findSection(".preinit_array"); 1577 Out::InitArray = findSection(".init_array"); 1578 Out::FiniArray = findSection(".fini_array"); 1579 1580 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1581 // symbols for sections, so that the runtime can get the start and end 1582 // addresses of each section by section name. Add such symbols. 1583 if (!Config->Relocatable) { 1584 addStartEndSymbols(); 1585 for (BaseCommand *Base : Script->SectionCommands) 1586 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1587 addStartStopSymbols(Sec); 1588 } 1589 1590 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1591 // It should be okay as no one seems to care about the type. 1592 // Even the author of gold doesn't remember why gold behaves that way. 1593 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1594 if (In.Dynamic->Parent) 1595 Symtab->addSymbol(Defined{/*File=*/nullptr, "_DYNAMIC", STB_WEAK, 1596 STV_HIDDEN, STT_NOTYPE, 1597 /*Value=*/0, /*Size=*/0, In.Dynamic}); 1598 1599 // Define __rel[a]_iplt_{start,end} symbols if needed. 1600 addRelIpltSymbols(); 1601 1602 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800 if not defined. 1603 if (Config->EMachine == EM_RISCV) 1604 if (!dyn_cast_or_null<Defined>(Symtab->find("__global_pointer$"))) 1605 addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800); 1606 1607 // This responsible for splitting up .eh_frame section into 1608 // pieces. The relocation scan uses those pieces, so this has to be 1609 // earlier. 1610 finalizeSynthetic(In.EhFrame); 1611 1612 for (Symbol *S : Symtab->getSymbols()) 1613 if (!S->IsPreemptible) 1614 S->IsPreemptible = computeIsPreemptible(*S); 1615 1616 // Scan relocations. This must be done after every symbol is declared so that 1617 // we can correctly decide if a dynamic relocation is needed. 1618 if (!Config->Relocatable) 1619 forEachRelSec(scanRelocations<ELFT>); 1620 1621 addIRelativeRelocs(); 1622 1623 if (In.Plt && In.Plt->isNeeded()) 1624 In.Plt->addSymbols(); 1625 if (In.Iplt && In.Iplt->isNeeded()) 1626 In.Iplt->addSymbols(); 1627 1628 if (!Config->AllowShlibUndefined) { 1629 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1630 // entires are seen. These cases would otherwise lead to runtime errors 1631 // reported by the dynamic linker. 1632 // 1633 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1634 // catch more cases. That is too much for us. Our approach resembles the one 1635 // used in ld.gold, achieves a good balance to be useful but not too smart. 1636 for (SharedFile *File : SharedFiles) 1637 File->AllNeededIsKnown = 1638 llvm::all_of(File->DtNeeded, [&](StringRef Needed) { 1639 return Symtab->SoNames.count(Needed); 1640 }); 1641 for (Symbol *Sym : Symtab->getSymbols()) 1642 if (Sym->isUndefined() && !Sym->isWeak()) 1643 if (auto *F = dyn_cast_or_null<SharedFile>(Sym->File)) 1644 if (F->AllNeededIsKnown) 1645 error(toString(F) + ": undefined reference to " + toString(*Sym)); 1646 } 1647 1648 // Now that we have defined all possible global symbols including linker- 1649 // synthesized ones. Visit all symbols to give the finishing touches. 1650 for (Symbol *Sym : Symtab->getSymbols()) { 1651 if (!includeInSymtab(*Sym)) 1652 continue; 1653 if (In.SymTab) 1654 In.SymTab->addSymbol(Sym); 1655 1656 if (Sym->includeInDynsym()) { 1657 In.DynSymTab->addSymbol(Sym); 1658 if (auto *File = dyn_cast_or_null<SharedFile>(Sym->File)) 1659 if (File->IsNeeded && !Sym->isUndefined()) 1660 addVerneed(Sym); 1661 } 1662 } 1663 1664 // Do not proceed if there was an undefined symbol. 1665 if (errorCount()) 1666 return; 1667 1668 if (In.MipsGot) 1669 In.MipsGot->build(); 1670 1671 removeUnusedSyntheticSections(); 1672 1673 sortSections(); 1674 1675 // Now that we have the final list, create a list of all the 1676 // OutputSections for convenience. 1677 for (BaseCommand *Base : Script->SectionCommands) 1678 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1679 OutputSections.push_back(Sec); 1680 1681 // Prefer command line supplied address over other constraints. 1682 for (OutputSection *Sec : OutputSections) { 1683 auto I = Config->SectionStartMap.find(Sec->Name); 1684 if (I != Config->SectionStartMap.end()) 1685 Sec->AddrExpr = [=] { return I->second; }; 1686 } 1687 1688 // This is a bit of a hack. A value of 0 means undef, so we set it 1689 // to 1 to make __ehdr_start defined. The section number is not 1690 // particularly relevant. 1691 Out::ElfHeader->SectionIndex = 1; 1692 1693 for (size_t I = 0, E = OutputSections.size(); I != E; ++I) { 1694 OutputSection *Sec = OutputSections[I]; 1695 Sec->SectionIndex = I + 1; 1696 Sec->ShName = In.ShStrTab->addString(Sec->Name); 1697 } 1698 1699 // Binary and relocatable output does not have PHDRS. 1700 // The headers have to be created before finalize as that can influence the 1701 // image base and the dynamic section on mips includes the image base. 1702 if (!Config->Relocatable && !Config->OFormatBinary) { 1703 Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs(); 1704 if (Config->EMachine == EM_ARM) { 1705 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1706 addPhdrForSection(Phdrs, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 1707 } 1708 if (Config->EMachine == EM_MIPS) { 1709 // Add separate segments for MIPS-specific sections. 1710 addPhdrForSection(Phdrs, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 1711 addPhdrForSection(Phdrs, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 1712 addPhdrForSection(Phdrs, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 1713 } 1714 Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); 1715 1716 // Find the TLS segment. This happens before the section layout loop so that 1717 // Android relocation packing can look up TLS symbol addresses. 1718 for (PhdrEntry *P : Phdrs) 1719 if (P->p_type == PT_TLS) 1720 Out::TlsPhdr = P; 1721 } 1722 1723 // Some symbols are defined in term of program headers. Now that we 1724 // have the headers, we can find out which sections they point to. 1725 setReservedSymbolSections(); 1726 1727 // Dynamic section must be the last one in this list and dynamic 1728 // symbol table section (DynSymTab) must be the first one. 1729 finalizeSynthetic(In.DynSymTab); 1730 finalizeSynthetic(In.ARMExidx); 1731 finalizeSynthetic(In.Bss); 1732 finalizeSynthetic(In.BssRelRo); 1733 finalizeSynthetic(In.GnuHashTab); 1734 finalizeSynthetic(In.HashTab); 1735 finalizeSynthetic(In.SymTabShndx); 1736 finalizeSynthetic(In.ShStrTab); 1737 finalizeSynthetic(In.StrTab); 1738 finalizeSynthetic(In.VerDef); 1739 finalizeSynthetic(In.Got); 1740 finalizeSynthetic(In.MipsGot); 1741 finalizeSynthetic(In.IgotPlt); 1742 finalizeSynthetic(In.GotPlt); 1743 finalizeSynthetic(In.RelaDyn); 1744 finalizeSynthetic(In.RelrDyn); 1745 finalizeSynthetic(In.RelaIplt); 1746 finalizeSynthetic(In.RelaPlt); 1747 finalizeSynthetic(In.Plt); 1748 finalizeSynthetic(In.Iplt); 1749 finalizeSynthetic(In.EhFrameHdr); 1750 finalizeSynthetic(In.VerSym); 1751 finalizeSynthetic(In.VerNeed); 1752 finalizeSynthetic(In.Dynamic); 1753 1754 if (!Script->HasSectionsCommand && !Config->Relocatable) 1755 fixSectionAlignments(); 1756 1757 // SHFLinkOrder processing must be processed after relative section placements are 1758 // known but before addresses are allocated. 1759 resolveShfLinkOrder(); 1760 1761 // This is used to: 1762 // 1) Create "thunks": 1763 // Jump instructions in many ISAs have small displacements, and therefore 1764 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 1765 // JAL instruction can target only +-1 MiB from PC. It is a linker's 1766 // responsibility to create and insert small pieces of code between 1767 // sections to extend the ranges if jump targets are out of range. Such 1768 // code pieces are called "thunks". 1769 // 1770 // We add thunks at this stage. We couldn't do this before this point 1771 // because this is the earliest point where we know sizes of sections and 1772 // their layouts (that are needed to determine if jump targets are in 1773 // range). 1774 // 1775 // 2) Update the sections. We need to generate content that depends on the 1776 // address of InputSections. For example, MIPS GOT section content or 1777 // android packed relocations sections content. 1778 // 1779 // 3) Assign the final values for the linker script symbols. Linker scripts 1780 // sometimes using forward symbol declarations. We want to set the correct 1781 // values. They also might change after adding the thunks. 1782 finalizeAddressDependentContent(); 1783 1784 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 1785 finalizeSynthetic(In.SymTab); 1786 finalizeSynthetic(In.PPC64LongBranchTarget); 1787 1788 // Fill other section headers. The dynamic table is finalized 1789 // at the end because some tags like RELSZ depend on result 1790 // of finalizing other sections. 1791 for (OutputSection *Sec : OutputSections) 1792 Sec->finalize(); 1793 } 1794 1795 // Ensure data sections are not mixed with executable sections when 1796 // -execute-only is used. -execute-only is a feature to make pages executable 1797 // but not readable, and the feature is currently supported only on AArch64. 1798 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 1799 if (!Config->ExecuteOnly) 1800 return; 1801 1802 for (OutputSection *OS : OutputSections) 1803 if (OS->Flags & SHF_EXECINSTR) 1804 for (InputSection *IS : getInputSections(OS)) 1805 if (!(IS->Flags & SHF_EXECINSTR)) 1806 error("cannot place " + toString(IS) + " into " + toString(OS->Name) + 1807 ": -execute-only does not support intermingling data and code"); 1808 } 1809 1810 // The linker is expected to define SECNAME_start and SECNAME_end 1811 // symbols for a few sections. This function defines them. 1812 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1813 // If a section does not exist, there's ambiguity as to how we 1814 // define _start and _end symbols for an init/fini section. Since 1815 // the loader assume that the symbols are always defined, we need to 1816 // always define them. But what value? The loader iterates over all 1817 // pointers between _start and _end to run global ctors/dtors, so if 1818 // the section is empty, their symbol values don't actually matter 1819 // as long as _start and _end point to the same location. 1820 // 1821 // That said, we don't want to set the symbols to 0 (which is 1822 // probably the simplest value) because that could cause some 1823 // program to fail to link due to relocation overflow, if their 1824 // program text is above 2 GiB. We use the address of the .text 1825 // section instead to prevent that failure. 1826 // 1827 // In a rare sitaution, .text section may not exist. If that's the 1828 // case, use the image base address as a last resort. 1829 OutputSection *Default = findSection(".text"); 1830 if (!Default) 1831 Default = Out::ElfHeader; 1832 1833 auto Define = [=](StringRef Start, StringRef End, OutputSection *OS) { 1834 if (OS) { 1835 addOptionalRegular(Start, OS, 0); 1836 addOptionalRegular(End, OS, -1); 1837 } else { 1838 addOptionalRegular(Start, Default, 0); 1839 addOptionalRegular(End, Default, 0); 1840 } 1841 }; 1842 1843 Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); 1844 Define("__init_array_start", "__init_array_end", Out::InitArray); 1845 Define("__fini_array_start", "__fini_array_end", Out::FiniArray); 1846 1847 if (OutputSection *Sec = findSection(".ARM.exidx")) 1848 Define("__exidx_start", "__exidx_end", Sec); 1849 } 1850 1851 // If a section name is valid as a C identifier (which is rare because of 1852 // the leading '.'), linkers are expected to define __start_<secname> and 1853 // __stop_<secname> symbols. They are at beginning and end of the section, 1854 // respectively. This is not requested by the ELF standard, but GNU ld and 1855 // gold provide the feature, and used by many programs. 1856 template <class ELFT> 1857 void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) { 1858 StringRef S = Sec->Name; 1859 if (!isValidCIdentifier(S)) 1860 return; 1861 addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_PROTECTED); 1862 addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_PROTECTED); 1863 } 1864 1865 static bool needsPtLoad(OutputSection *Sec) { 1866 if (!(Sec->Flags & SHF_ALLOC) || Sec->Noload) 1867 return false; 1868 1869 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 1870 // responsible for allocating space for them, not the PT_LOAD that 1871 // contains the TLS initialization image. 1872 if ((Sec->Flags & SHF_TLS) && Sec->Type == SHT_NOBITS) 1873 return false; 1874 return true; 1875 } 1876 1877 // Linker scripts are responsible for aligning addresses. Unfortunately, most 1878 // linker scripts are designed for creating two PT_LOADs only, one RX and one 1879 // RW. This means that there is no alignment in the RO to RX transition and we 1880 // cannot create a PT_LOAD there. 1881 static uint64_t computeFlags(uint64_t Flags) { 1882 if (Config->Omagic) 1883 return PF_R | PF_W | PF_X; 1884 if (Config->ExecuteOnly && (Flags & PF_X)) 1885 return Flags & ~PF_R; 1886 if (Config->SingleRoRx && !(Flags & PF_W)) 1887 return Flags | PF_X; 1888 return Flags; 1889 } 1890 1891 // Decide which program headers to create and which sections to include in each 1892 // one. 1893 template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() { 1894 std::vector<PhdrEntry *> Ret; 1895 auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { 1896 Ret.push_back(make<PhdrEntry>(Type, Flags)); 1897 return Ret.back(); 1898 }; 1899 1900 // The first phdr entry is PT_PHDR which describes the program header itself. 1901 AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); 1902 1903 // PT_INTERP must be the second entry if exists. 1904 if (OutputSection *Cmd = findSection(".interp")) 1905 AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd); 1906 1907 // Add the first PT_LOAD segment for regular output sections. 1908 uint64_t Flags = computeFlags(PF_R); 1909 PhdrEntry *Load = AddHdr(PT_LOAD, Flags); 1910 1911 // Add the headers. We will remove them if they don't fit. 1912 Load->add(Out::ElfHeader); 1913 Load->add(Out::ProgramHeaders); 1914 1915 // PT_GNU_RELRO includes all sections that should be marked as 1916 // read-only by dynamic linker after proccessing relocations. 1917 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 1918 // an error message if more than one PT_GNU_RELRO PHDR is required. 1919 PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 1920 bool InRelroPhdr = false; 1921 OutputSection *RelroEnd = nullptr; 1922 for (OutputSection *Sec : OutputSections) { 1923 if (!needsPtLoad(Sec)) 1924 continue; 1925 if (isRelroSection(Sec)) { 1926 InRelroPhdr = true; 1927 if (!RelroEnd) 1928 RelRo->add(Sec); 1929 else 1930 error("section: " + Sec->Name + " is not contiguous with other relro" + 1931 " sections"); 1932 } else if (InRelroPhdr) { 1933 InRelroPhdr = false; 1934 RelroEnd = Sec; 1935 } 1936 } 1937 1938 for (OutputSection *Sec : OutputSections) { 1939 if (!(Sec->Flags & SHF_ALLOC)) 1940 break; 1941 if (!needsPtLoad(Sec)) 1942 continue; 1943 1944 // Segments are contiguous memory regions that has the same attributes 1945 // (e.g. executable or writable). There is one phdr for each segment. 1946 // Therefore, we need to create a new phdr when the next section has 1947 // different flags or is loaded at a discontiguous address or memory 1948 // region using AT or AT> linker script command, respectively. At the same 1949 // time, we don't want to create a separate load segment for the headers, 1950 // even if the first output section has an AT or AT> attribute. 1951 uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); 1952 if (((Sec->LMAExpr || 1953 (Sec->LMARegion && (Sec->LMARegion != Load->FirstSec->LMARegion))) && 1954 Load->LastSec != Out::ProgramHeaders) || 1955 Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags || 1956 Sec == RelroEnd) { 1957 Load = AddHdr(PT_LOAD, NewFlags); 1958 Flags = NewFlags; 1959 } 1960 1961 Load->add(Sec); 1962 } 1963 1964 // Add a TLS segment if any. 1965 PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 1966 for (OutputSection *Sec : OutputSections) 1967 if (Sec->Flags & SHF_TLS) 1968 TlsHdr->add(Sec); 1969 if (TlsHdr->FirstSec) 1970 Ret.push_back(TlsHdr); 1971 1972 // Add an entry for .dynamic. 1973 if (OutputSection *Sec = In.Dynamic->getParent()) 1974 AddHdr(PT_DYNAMIC, Sec->getPhdrFlags())->add(Sec); 1975 1976 if (RelRo->FirstSec) 1977 Ret.push_back(RelRo); 1978 1979 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 1980 if (In.EhFrame->isNeeded() && In.EhFrameHdr && In.EhFrame->getParent() && 1981 In.EhFrameHdr->getParent()) 1982 AddHdr(PT_GNU_EH_FRAME, In.EhFrameHdr->getParent()->getPhdrFlags()) 1983 ->add(In.EhFrameHdr->getParent()); 1984 1985 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 1986 // the dynamic linker fill the segment with random data. 1987 if (OutputSection *Cmd = findSection(".openbsd.randomdata")) 1988 AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd); 1989 1990 // PT_GNU_STACK is a special section to tell the loader to make the 1991 // pages for the stack non-executable. If you really want an executable 1992 // stack, you can pass -z execstack, but that's not recommended for 1993 // security reasons. 1994 unsigned Perm = PF_R | PF_W; 1995 if (Config->ZExecstack) 1996 Perm |= PF_X; 1997 AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; 1998 1999 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2000 // is expected to perform W^X violations, such as calling mprotect(2) or 2001 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2002 // OpenBSD. 2003 if (Config->ZWxneeded) 2004 AddHdr(PT_OPENBSD_WXNEEDED, PF_X); 2005 2006 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2007 // same alignment. 2008 PhdrEntry *Note = nullptr; 2009 for (OutputSection *Sec : OutputSections) { 2010 if (Sec->Type == SHT_NOTE && (Sec->Flags & SHF_ALLOC)) { 2011 if (!Note || Sec->LMAExpr || Note->LastSec->Alignment != Sec->Alignment) 2012 Note = AddHdr(PT_NOTE, PF_R); 2013 Note->add(Sec); 2014 } else { 2015 Note = nullptr; 2016 } 2017 } 2018 return Ret; 2019 } 2020 2021 template <class ELFT> 2022 void Writer<ELFT>::addPhdrForSection(std::vector<PhdrEntry *> &Phdrs, 2023 unsigned ShType, unsigned PType, 2024 unsigned PFlags) { 2025 auto I = llvm::find_if( 2026 OutputSections, [=](OutputSection *Cmd) { return Cmd->Type == ShType; }); 2027 if (I == OutputSections.end()) 2028 return; 2029 2030 PhdrEntry *Entry = make<PhdrEntry>(PType, PFlags); 2031 Entry->add(*I); 2032 Phdrs.push_back(Entry); 2033 } 2034 2035 // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the 2036 // first section after PT_GNU_RELRO have to be page aligned so that the dynamic 2037 // linker can set the permissions. 2038 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2039 auto PageAlign = [](OutputSection *Cmd) { 2040 if (Cmd && !Cmd->AddrExpr) 2041 Cmd->AddrExpr = [=] { 2042 return alignTo(Script->getDot(), Config->MaxPageSize); 2043 }; 2044 }; 2045 2046 for (const PhdrEntry *P : Phdrs) 2047 if (P->p_type == PT_LOAD && P->FirstSec) 2048 PageAlign(P->FirstSec); 2049 2050 for (const PhdrEntry *P : Phdrs) { 2051 if (P->p_type != PT_GNU_RELRO) 2052 continue; 2053 2054 if (P->FirstSec) 2055 PageAlign(P->FirstSec); 2056 2057 // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we 2058 // have to align it to a page. 2059 auto End = OutputSections.end(); 2060 auto I = llvm::find(OutputSections, P->LastSec); 2061 if (I == End || (I + 1) == End) 2062 continue; 2063 2064 OutputSection *Cmd = (*(I + 1)); 2065 if (needsPtLoad(Cmd)) 2066 PageAlign(Cmd); 2067 } 2068 } 2069 2070 // Compute an in-file position for a given section. The file offset must be the 2071 // same with its virtual address modulo the page size, so that the loader can 2072 // load executables without any address adjustment. 2073 static uint64_t computeFileOffset(OutputSection *OS, uint64_t Off) { 2074 // File offsets are not significant for .bss sections. By convention, we keep 2075 // section offsets monotonically increasing rather than setting to zero. 2076 if (OS->Type == SHT_NOBITS) 2077 return Off; 2078 2079 // If the section is not in a PT_LOAD, we just have to align it. 2080 if (!OS->PtLoad) 2081 return alignTo(Off, OS->Alignment); 2082 2083 // The first section in a PT_LOAD has to have congruent offset and address 2084 // module the page size. 2085 OutputSection *First = OS->PtLoad->FirstSec; 2086 if (OS == First) { 2087 uint64_t Alignment = std::max<uint64_t>(OS->Alignment, Config->MaxPageSize); 2088 return alignTo(Off, Alignment, OS->Addr); 2089 } 2090 2091 // If two sections share the same PT_LOAD the file offset is calculated 2092 // using this formula: Off2 = Off1 + (VA2 - VA1). 2093 return First->Offset + OS->Addr - First->Addr; 2094 } 2095 2096 // Set an in-file position to a given section and returns the end position of 2097 // the section. 2098 static uint64_t setFileOffset(OutputSection *OS, uint64_t Off) { 2099 Off = computeFileOffset(OS, Off); 2100 OS->Offset = Off; 2101 2102 if (OS->Type == SHT_NOBITS) 2103 return Off; 2104 return Off + OS->Size; 2105 } 2106 2107 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2108 uint64_t Off = 0; 2109 for (OutputSection *Sec : OutputSections) 2110 if (Sec->Flags & SHF_ALLOC) 2111 Off = setFileOffset(Sec, Off); 2112 FileSize = alignTo(Off, Config->Wordsize); 2113 } 2114 2115 static std::string rangeToString(uint64_t Addr, uint64_t Len) { 2116 return "[0x" + utohexstr(Addr) + ", 0x" + utohexstr(Addr + Len - 1) + "]"; 2117 } 2118 2119 // Assign file offsets to output sections. 2120 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2121 uint64_t Off = 0; 2122 Off = setFileOffset(Out::ElfHeader, Off); 2123 Off = setFileOffset(Out::ProgramHeaders, Off); 2124 2125 PhdrEntry *LastRX = nullptr; 2126 for (PhdrEntry *P : Phdrs) 2127 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2128 LastRX = P; 2129 2130 for (OutputSection *Sec : OutputSections) { 2131 Off = setFileOffset(Sec, Off); 2132 if (Script->HasSectionsCommand) 2133 continue; 2134 2135 // If this is a last section of the last executable segment and that 2136 // segment is the last loadable segment, align the offset of the 2137 // following section to avoid loading non-segments parts of the file. 2138 if (LastRX && LastRX->LastSec == Sec) 2139 Off = alignTo(Off, Config->CommonPageSize); 2140 } 2141 2142 SectionHeaderOff = alignTo(Off, Config->Wordsize); 2143 FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); 2144 2145 // Our logic assumes that sections have rising VA within the same segment. 2146 // With use of linker scripts it is possible to violate this rule and get file 2147 // offset overlaps or overflows. That should never happen with a valid script 2148 // which does not move the location counter backwards and usually scripts do 2149 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2150 // kernel, which control segment distribution explicitly and move the counter 2151 // backwards, so we have to allow doing that to support linking them. We 2152 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2153 // we want to prevent file size overflows because it would crash the linker. 2154 for (OutputSection *Sec : OutputSections) { 2155 if (Sec->Type == SHT_NOBITS) 2156 continue; 2157 if ((Sec->Offset > FileSize) || (Sec->Offset + Sec->Size > FileSize)) 2158 error("unable to place section " + Sec->Name + " at file offset " + 2159 rangeToString(Sec->Offset, Sec->Size) + 2160 "; check your linker script for overflows"); 2161 } 2162 } 2163 2164 // Finalize the program headers. We call this function after we assign 2165 // file offsets and VAs to all sections. 2166 template <class ELFT> void Writer<ELFT>::setPhdrs() { 2167 for (PhdrEntry *P : Phdrs) { 2168 OutputSection *First = P->FirstSec; 2169 OutputSection *Last = P->LastSec; 2170 2171 if (First) { 2172 P->p_filesz = Last->Offset - First->Offset; 2173 if (Last->Type != SHT_NOBITS) 2174 P->p_filesz += Last->Size; 2175 2176 P->p_memsz = Last->Addr + Last->Size - First->Addr; 2177 P->p_offset = First->Offset; 2178 P->p_vaddr = First->Addr; 2179 2180 if (!P->HasLMA) 2181 P->p_paddr = First->getLMA(); 2182 } 2183 2184 if (P->p_type == PT_LOAD) { 2185 P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize); 2186 } else if (P->p_type == PT_GNU_RELRO) { 2187 P->p_align = 1; 2188 // The glibc dynamic loader rounds the size down, so we need to round up 2189 // to protect the last page. This is a no-op on FreeBSD which always 2190 // rounds up. 2191 P->p_memsz = alignTo(P->p_memsz, Config->CommonPageSize); 2192 } 2193 } 2194 } 2195 2196 // A helper struct for checkSectionOverlap. 2197 namespace { 2198 struct SectionOffset { 2199 OutputSection *Sec; 2200 uint64_t Offset; 2201 }; 2202 } // namespace 2203 2204 // Check whether sections overlap for a specific address range (file offsets, 2205 // load and virtual adresses). 2206 static void checkOverlap(StringRef Name, std::vector<SectionOffset> &Sections, 2207 bool IsVirtualAddr) { 2208 llvm::sort(Sections, [=](const SectionOffset &A, const SectionOffset &B) { 2209 return A.Offset < B.Offset; 2210 }); 2211 2212 // Finding overlap is easy given a vector is sorted by start position. 2213 // If an element starts before the end of the previous element, they overlap. 2214 for (size_t I = 1, End = Sections.size(); I < End; ++I) { 2215 SectionOffset A = Sections[I - 1]; 2216 SectionOffset B = Sections[I]; 2217 if (B.Offset >= A.Offset + A.Sec->Size) 2218 continue; 2219 2220 // If both sections are in OVERLAY we allow the overlapping of virtual 2221 // addresses, because it is what OVERLAY was designed for. 2222 if (IsVirtualAddr && A.Sec->InOverlay && B.Sec->InOverlay) 2223 continue; 2224 2225 errorOrWarn("section " + A.Sec->Name + " " + Name + 2226 " range overlaps with " + B.Sec->Name + "\n>>> " + A.Sec->Name + 2227 " range is " + rangeToString(A.Offset, A.Sec->Size) + "\n>>> " + 2228 B.Sec->Name + " range is " + 2229 rangeToString(B.Offset, B.Sec->Size)); 2230 } 2231 } 2232 2233 // Check for overlapping sections and address overflows. 2234 // 2235 // In this function we check that none of the output sections have overlapping 2236 // file offsets. For SHF_ALLOC sections we also check that the load address 2237 // ranges and the virtual address ranges don't overlap 2238 template <class ELFT> void Writer<ELFT>::checkSections() { 2239 // First, check that section's VAs fit in available address space for target. 2240 for (OutputSection *OS : OutputSections) 2241 if ((OS->Addr + OS->Size < OS->Addr) || 2242 (!ELFT::Is64Bits && OS->Addr + OS->Size > UINT32_MAX)) 2243 errorOrWarn("section " + OS->Name + " at 0x" + utohexstr(OS->Addr) + 2244 " of size 0x" + utohexstr(OS->Size) + 2245 " exceeds available address space"); 2246 2247 // Check for overlapping file offsets. In this case we need to skip any 2248 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2249 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2250 // binary is specified only add SHF_ALLOC sections are added to the output 2251 // file so we skip any non-allocated sections in that case. 2252 std::vector<SectionOffset> FileOffs; 2253 for (OutputSection *Sec : OutputSections) 2254 if (Sec->Size > 0 && Sec->Type != SHT_NOBITS && 2255 (!Config->OFormatBinary || (Sec->Flags & SHF_ALLOC))) 2256 FileOffs.push_back({Sec, Sec->Offset}); 2257 checkOverlap("file", FileOffs, false); 2258 2259 // When linking with -r there is no need to check for overlapping virtual/load 2260 // addresses since those addresses will only be assigned when the final 2261 // executable/shared object is created. 2262 if (Config->Relocatable) 2263 return; 2264 2265 // Checking for overlapping virtual and load addresses only needs to take 2266 // into account SHF_ALLOC sections since others will not be loaded. 2267 // Furthermore, we also need to skip SHF_TLS sections since these will be 2268 // mapped to other addresses at runtime and can therefore have overlapping 2269 // ranges in the file. 2270 std::vector<SectionOffset> VMAs; 2271 for (OutputSection *Sec : OutputSections) 2272 if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2273 VMAs.push_back({Sec, Sec->Addr}); 2274 checkOverlap("virtual address", VMAs, true); 2275 2276 // Finally, check that the load addresses don't overlap. This will usually be 2277 // the same as the virtual addresses but can be different when using a linker 2278 // script with AT(). 2279 std::vector<SectionOffset> LMAs; 2280 for (OutputSection *Sec : OutputSections) 2281 if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2282 LMAs.push_back({Sec, Sec->getLMA()}); 2283 checkOverlap("load address", LMAs, false); 2284 } 2285 2286 // The entry point address is chosen in the following ways. 2287 // 2288 // 1. the '-e' entry command-line option; 2289 // 2. the ENTRY(symbol) command in a linker control script; 2290 // 3. the value of the symbol _start, if present; 2291 // 4. the number represented by the entry symbol, if it is a number; 2292 // 5. the address of the first byte of the .text section, if present; 2293 // 6. the address 0. 2294 static uint64_t getEntryAddr() { 2295 // Case 1, 2 or 3 2296 if (Symbol *B = Symtab->find(Config->Entry)) 2297 return B->getVA(); 2298 2299 // Case 4 2300 uint64_t Addr; 2301 if (to_integer(Config->Entry, Addr)) 2302 return Addr; 2303 2304 // Case 5 2305 if (OutputSection *Sec = findSection(".text")) { 2306 if (Config->WarnMissingEntry) 2307 warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + 2308 utohexstr(Sec->Addr)); 2309 return Sec->Addr; 2310 } 2311 2312 // Case 6 2313 if (Config->WarnMissingEntry) 2314 warn("cannot find entry symbol " + Config->Entry + 2315 "; not setting start address"); 2316 return 0; 2317 } 2318 2319 static uint16_t getELFType() { 2320 if (Config->Pic) 2321 return ET_DYN; 2322 if (Config->Relocatable) 2323 return ET_REL; 2324 return ET_EXEC; 2325 } 2326 2327 static uint8_t getAbiVersion() { 2328 // MIPS non-PIC executable gets ABI version 1. 2329 if (Config->EMachine == EM_MIPS) { 2330 if (getELFType() == ET_EXEC && 2331 (Config->EFlags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 2332 return 1; 2333 return 0; 2334 } 2335 2336 if (Config->EMachine == EM_AMDGPU) { 2337 uint8_t Ver = ObjectFiles[0]->ABIVersion; 2338 for (InputFile *File : makeArrayRef(ObjectFiles).slice(1)) 2339 if (File->ABIVersion != Ver) 2340 error("incompatible ABI version: " + toString(File)); 2341 return Ver; 2342 } 2343 2344 return 0; 2345 } 2346 2347 template <class ELFT> void Writer<ELFT>::writeHeader() { 2348 // For executable segments, the trap instructions are written before writing 2349 // the header. Setting Elf header bytes to zero ensures that any unused bytes 2350 // in header are zero-cleared, instead of having trap instructions. 2351 memset(Out::BufferStart, 0, sizeof(Elf_Ehdr)); 2352 memcpy(Out::BufferStart, "\177ELF", 4); 2353 2354 // Write the ELF header. 2355 auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Out::BufferStart); 2356 EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32; 2357 EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB; 2358 EHdr->e_ident[EI_VERSION] = EV_CURRENT; 2359 EHdr->e_ident[EI_OSABI] = Config->OSABI; 2360 EHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 2361 EHdr->e_type = getELFType(); 2362 EHdr->e_machine = Config->EMachine; 2363 EHdr->e_version = EV_CURRENT; 2364 EHdr->e_entry = getEntryAddr(); 2365 EHdr->e_shoff = SectionHeaderOff; 2366 EHdr->e_flags = Config->EFlags; 2367 EHdr->e_ehsize = sizeof(Elf_Ehdr); 2368 EHdr->e_phnum = Phdrs.size(); 2369 EHdr->e_shentsize = sizeof(Elf_Shdr); 2370 2371 if (!Config->Relocatable) { 2372 EHdr->e_phoff = sizeof(Elf_Ehdr); 2373 EHdr->e_phentsize = sizeof(Elf_Phdr); 2374 } 2375 2376 // Write the program header table. 2377 auto *HBuf = reinterpret_cast<Elf_Phdr *>(Out::BufferStart + EHdr->e_phoff); 2378 for (PhdrEntry *P : Phdrs) { 2379 HBuf->p_type = P->p_type; 2380 HBuf->p_flags = P->p_flags; 2381 HBuf->p_offset = P->p_offset; 2382 HBuf->p_vaddr = P->p_vaddr; 2383 HBuf->p_paddr = P->p_paddr; 2384 HBuf->p_filesz = P->p_filesz; 2385 HBuf->p_memsz = P->p_memsz; 2386 HBuf->p_align = P->p_align; 2387 ++HBuf; 2388 } 2389 2390 // Write the section header table. 2391 // 2392 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2393 // and e_shstrndx fields. When the value of one of these fields exceeds 2394 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2395 // use fields in the section header at index 0 to store 2396 // the value. The sentinel values and fields are: 2397 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2398 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2399 auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Out::BufferStart + EHdr->e_shoff); 2400 size_t Num = OutputSections.size() + 1; 2401 if (Num >= SHN_LORESERVE) 2402 SHdrs->sh_size = Num; 2403 else 2404 EHdr->e_shnum = Num; 2405 2406 uint32_t StrTabIndex = In.ShStrTab->getParent()->SectionIndex; 2407 if (StrTabIndex >= SHN_LORESERVE) { 2408 SHdrs->sh_link = StrTabIndex; 2409 EHdr->e_shstrndx = SHN_XINDEX; 2410 } else { 2411 EHdr->e_shstrndx = StrTabIndex; 2412 } 2413 2414 for (OutputSection *Sec : OutputSections) 2415 Sec->writeHeaderTo<ELFT>(++SHdrs); 2416 } 2417 2418 // Open a result file. 2419 template <class ELFT> void Writer<ELFT>::openFile() { 2420 uint64_t MaxSize = Config->Is64 ? INT64_MAX : UINT32_MAX; 2421 if (FileSize != size_t(FileSize) || MaxSize < FileSize) { 2422 error("output file too large: " + Twine(FileSize) + " bytes"); 2423 return; 2424 } 2425 2426 unlinkAsync(Config->OutputFile); 2427 unsigned Flags = 0; 2428 if (!Config->Relocatable) 2429 Flags = FileOutputBuffer::F_executable; 2430 Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr = 2431 FileOutputBuffer::create(Config->OutputFile, FileSize, Flags); 2432 2433 if (!BufferOrErr) { 2434 error("failed to open " + Config->OutputFile + ": " + 2435 llvm::toString(BufferOrErr.takeError())); 2436 return; 2437 } 2438 Buffer = std::move(*BufferOrErr); 2439 Out::BufferStart = Buffer->getBufferStart(); 2440 } 2441 2442 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2443 for (OutputSection *Sec : OutputSections) 2444 if (Sec->Flags & SHF_ALLOC) 2445 Sec->writeTo<ELFT>(Out::BufferStart + Sec->Offset); 2446 } 2447 2448 static void fillTrap(uint8_t *I, uint8_t *End) { 2449 for (; I + 4 <= End; I += 4) 2450 memcpy(I, &Target->TrapInstr, 4); 2451 } 2452 2453 // Fill the last page of executable segments with trap instructions 2454 // instead of leaving them as zero. Even though it is not required by any 2455 // standard, it is in general a good thing to do for security reasons. 2456 // 2457 // We'll leave other pages in segments as-is because the rest will be 2458 // overwritten by output sections. 2459 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2460 if (Script->HasSectionsCommand) 2461 return; 2462 2463 // Fill the last page. 2464 for (PhdrEntry *P : Phdrs) 2465 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2466 fillTrap(Out::BufferStart + alignDown(P->p_offset + P->p_filesz, 2467 Config->CommonPageSize), 2468 Out::BufferStart + 2469 alignTo(P->p_offset + P->p_filesz, Config->CommonPageSize)); 2470 2471 // Round up the file size of the last segment to the page boundary iff it is 2472 // an executable segment to ensure that other tools don't accidentally 2473 // trim the instruction padding (e.g. when stripping the file). 2474 PhdrEntry *Last = nullptr; 2475 for (PhdrEntry *P : Phdrs) 2476 if (P->p_type == PT_LOAD) 2477 Last = P; 2478 2479 if (Last && (Last->p_flags & PF_X)) 2480 Last->p_memsz = Last->p_filesz = 2481 alignTo(Last->p_filesz, Config->CommonPageSize); 2482 } 2483 2484 // Write section contents to a mmap'ed file. 2485 template <class ELFT> void Writer<ELFT>::writeSections() { 2486 // In -r or -emit-relocs mode, write the relocation sections first as in 2487 // ELf_Rel targets we might find out that we need to modify the relocated 2488 // section while doing it. 2489 for (OutputSection *Sec : OutputSections) 2490 if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) 2491 Sec->writeTo<ELFT>(Out::BufferStart + Sec->Offset); 2492 2493 for (OutputSection *Sec : OutputSections) 2494 if (Sec->Type != SHT_REL && Sec->Type != SHT_RELA) 2495 Sec->writeTo<ELFT>(Out::BufferStart + Sec->Offset); 2496 } 2497 2498 // Split one uint8 array into small pieces of uint8 arrays. 2499 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> Arr, 2500 size_t ChunkSize) { 2501 std::vector<ArrayRef<uint8_t>> Ret; 2502 while (Arr.size() > ChunkSize) { 2503 Ret.push_back(Arr.take_front(ChunkSize)); 2504 Arr = Arr.drop_front(ChunkSize); 2505 } 2506 if (!Arr.empty()) 2507 Ret.push_back(Arr); 2508 return Ret; 2509 } 2510 2511 // Computes a hash value of Data using a given hash function. 2512 // In order to utilize multiple cores, we first split data into 1MB 2513 // chunks, compute a hash for each chunk, and then compute a hash value 2514 // of the hash values. 2515 static void 2516 computeHash(llvm::MutableArrayRef<uint8_t> HashBuf, 2517 llvm::ArrayRef<uint8_t> Data, 2518 std::function<void(uint8_t *Dest, ArrayRef<uint8_t> Arr)> HashFn) { 2519 std::vector<ArrayRef<uint8_t>> Chunks = split(Data, 1024 * 1024); 2520 std::vector<uint8_t> Hashes(Chunks.size() * HashBuf.size()); 2521 2522 // Compute hash values. 2523 parallelForEachN(0, Chunks.size(), [&](size_t I) { 2524 HashFn(Hashes.data() + I * HashBuf.size(), Chunks[I]); 2525 }); 2526 2527 // Write to the final output buffer. 2528 HashFn(HashBuf.data(), Hashes); 2529 } 2530 2531 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2532 if (!In.BuildId || !In.BuildId->getParent()) 2533 return; 2534 2535 if (Config->BuildId == BuildIdKind::Hexstring) { 2536 In.BuildId->writeBuildId(Config->BuildIdVector); 2537 return; 2538 } 2539 2540 // Compute a hash of all sections of the output file. 2541 std::vector<uint8_t> BuildId(In.BuildId->HashSize); 2542 llvm::ArrayRef<uint8_t> Buf{Out::BufferStart, size_t(FileSize)}; 2543 2544 switch (Config->BuildId) { 2545 case BuildIdKind::Fast: 2546 computeHash(BuildId, Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) { 2547 write64le(Dest, xxHash64(Arr)); 2548 }); 2549 break; 2550 case BuildIdKind::Md5: 2551 computeHash(BuildId, Buf, [&](uint8_t *Dest, ArrayRef<uint8_t> Arr) { 2552 memcpy(Dest, MD5::hash(Arr).data(), In.BuildId->HashSize); 2553 }); 2554 break; 2555 case BuildIdKind::Sha1: 2556 computeHash(BuildId, Buf, [&](uint8_t *Dest, ArrayRef<uint8_t> Arr) { 2557 memcpy(Dest, SHA1::hash(Arr).data(), In.BuildId->HashSize); 2558 }); 2559 break; 2560 case BuildIdKind::Uuid: 2561 if (auto EC = llvm::getRandomBytes(BuildId.data(), In.BuildId->HashSize)) 2562 error("entropy source failure: " + EC.message()); 2563 break; 2564 default: 2565 llvm_unreachable("unknown BuildIdKind"); 2566 } 2567 In.BuildId->writeBuildId(BuildId); 2568 } 2569 2570 template void elf::writeResult<ELF32LE>(); 2571 template void elf::writeResult<ELF32BE>(); 2572 template void elf::writeResult<ELF64LE>(); 2573 template void elf::writeResult<ELF64BE>(); 2574