1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Writer.h"
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "InputFiles.h"
15 #include "LinkerScript.h"
16 #include "MapFile.h"
17 #include "OutputSections.h"
18 #include "Relocations.h"
19 #include "SymbolTable.h"
20 #include "Symbols.h"
21 #include "SyntheticSections.h"
22 #include "Target.h"
23 #include "lld/Common/Arrays.h"
24 #include "lld/Common/CommonLinkerContext.h"
25 #include "lld/Common/Filesystem.h"
26 #include "lld/Common/Strings.h"
27 #include "llvm/ADT/StringMap.h"
28 #include "llvm/Support/BLAKE3.h"
29 #include "llvm/Support/Parallel.h"
30 #include "llvm/Support/RandomNumberGenerator.h"
31 #include "llvm/Support/TimeProfiler.h"
32 #include "llvm/Support/xxhash.h"
33 #include <climits>
34
35 #define DEBUG_TYPE "lld"
36
37 using namespace llvm;
38 using namespace llvm::ELF;
39 using namespace llvm::object;
40 using namespace llvm::support;
41 using namespace llvm::support::endian;
42 using namespace lld;
43 using namespace lld::elf;
44
45 namespace {
46 // The writer writes a SymbolTable result to a file.
47 template <class ELFT> class Writer {
48 public:
49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
50
Writer()51 Writer() : buffer(errorHandler().outputBuffer) {}
52
53 void run();
54
55 private:
56 void copyLocalSymbols();
57 void addSectionSymbols();
58 void sortSections();
59 void resolveShfLinkOrder();
60 void finalizeAddressDependentContent();
61 void optimizeBasicBlockJumps();
62 void sortInputSections();
63 void finalizeSections();
64 void checkExecuteOnly();
65 void setReservedSymbolSections();
66
67 SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part);
68 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
69 unsigned pFlags);
70 void assignFileOffsets();
71 void assignFileOffsetsBinary();
72 void setPhdrs(Partition &part);
73 void checkSections();
74 void fixSectionAlignments();
75 void openFile();
76 void writeTrapInstr();
77 void writeHeader();
78 void writeSections();
79 void writeSectionsBinary();
80 void writeBuildId();
81
82 std::unique_ptr<FileOutputBuffer> &buffer;
83
84 void addRelIpltSymbols();
85 void addStartEndSymbols();
86 void addStartStopSymbols(OutputSection &osec);
87
88 uint64_t fileSize;
89 uint64_t sectionHeaderOff;
90 };
91 } // anonymous namespace
92
needsInterpSection()93 static bool needsInterpSection() {
94 return !config->relocatable && !config->shared &&
95 !config->dynamicLinker.empty() && script->needsInterpSection();
96 }
97
writeResult()98 template <class ELFT> void elf::writeResult() {
99 Writer<ELFT>().run();
100 }
101
removeEmptyPTLoad(SmallVector<PhdrEntry *,0> & phdrs)102 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) {
103 auto it = std::stable_partition(
104 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) {
105 if (p->p_type != PT_LOAD)
106 return true;
107 if (!p->firstSec)
108 return false;
109 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
110 return size != 0;
111 });
112
113 // Clear OutputSection::ptLoad for sections contained in removed
114 // segments.
115 DenseSet<PhdrEntry *> removed(it, phdrs.end());
116 for (OutputSection *sec : outputSections)
117 if (removed.count(sec->ptLoad))
118 sec->ptLoad = nullptr;
119 phdrs.erase(it, phdrs.end());
120 }
121
copySectionsIntoPartitions()122 void elf::copySectionsIntoPartitions() {
123 SmallVector<InputSectionBase *, 0> newSections;
124 for (unsigned part = 2; part != partitions.size() + 1; ++part) {
125 for (InputSectionBase *s : inputSections) {
126 if (!(s->flags & SHF_ALLOC) || !s->isLive())
127 continue;
128 InputSectionBase *copy;
129 if (s->type == SHT_NOTE)
130 copy = make<InputSection>(cast<InputSection>(*s));
131 else if (auto *es = dyn_cast<EhInputSection>(s))
132 copy = make<EhInputSection>(*es);
133 else
134 continue;
135 copy->partition = part;
136 newSections.push_back(copy);
137 }
138 }
139
140 inputSections.insert(inputSections.end(), newSections.begin(),
141 newSections.end());
142 }
143
combineEhSections()144 void elf::combineEhSections() {
145 llvm::TimeTraceScope timeScope("Combine EH sections");
146 for (InputSectionBase *&s : inputSections) {
147 // Ignore dead sections and the partition end marker (.part.end),
148 // whose partition number is out of bounds.
149 if (!s->isLive() || s->partition == 255)
150 continue;
151
152 Partition &part = s->getPartition();
153 if (auto *es = dyn_cast<EhInputSection>(s)) {
154 part.ehFrame->addSection(es);
155 s = nullptr;
156 } else if (s->kind() == SectionBase::Regular && part.armExidx &&
157 part.armExidx->addSection(cast<InputSection>(s))) {
158 s = nullptr;
159 }
160 }
161
162 llvm::erase_value(inputSections, nullptr);
163 }
164
addOptionalRegular(StringRef name,SectionBase * sec,uint64_t val,uint8_t stOther=STV_HIDDEN)165 static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
166 uint64_t val, uint8_t stOther = STV_HIDDEN) {
167 Symbol *s = symtab->find(name);
168 if (!s || s->isDefined() || s->isCommon())
169 return nullptr;
170
171 s->resolve(Defined{nullptr, StringRef(), STB_GLOBAL, stOther, STT_NOTYPE, val,
172 /*size=*/0, sec});
173 s->isUsedInRegularObj = true;
174 return cast<Defined>(s);
175 }
176
addAbsolute(StringRef name)177 static Defined *addAbsolute(StringRef name) {
178 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
179 STT_NOTYPE, 0, 0, nullptr});
180 sym->isUsedInRegularObj = true;
181 return cast<Defined>(sym);
182 }
183
184 // The linker is expected to define some symbols depending on
185 // the linking result. This function defines such symbols.
addReservedSymbols()186 void elf::addReservedSymbols() {
187 if (config->emachine == EM_MIPS) {
188 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
189 // so that it points to an absolute address which by default is relative
190 // to GOT. Default offset is 0x7ff0.
191 // See "Global Data Symbols" in Chapter 6 in the following document:
192 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
193 ElfSym::mipsGp = addAbsolute("_gp");
194
195 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
196 // start of function and 'gp' pointer into GOT.
197 if (symtab->find("_gp_disp"))
198 ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
199
200 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
201 // pointer. This symbol is used in the code generated by .cpload pseudo-op
202 // in case of using -mno-shared option.
203 // https://sourceware.org/ml/binutils/2004-12/msg00094.html
204 if (symtab->find("__gnu_local_gp"))
205 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
206 } else if (config->emachine == EM_PPC) {
207 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
208 // support Small Data Area, define it arbitrarily as 0.
209 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
210 } else if (config->emachine == EM_PPC64) {
211 addPPC64SaveRestore();
212 }
213
214 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
215 // combines the typical ELF GOT with the small data sections. It commonly
216 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
217 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
218 // represent the TOC base which is offset by 0x8000 bytes from the start of
219 // the .got section.
220 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
221 // correctness of some relocations depends on its value.
222 StringRef gotSymName =
223 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
224
225 if (Symbol *s = symtab->find(gotSymName)) {
226 if (s->isDefined()) {
227 error(toString(s->file) + " cannot redefine linker defined symbol '" +
228 gotSymName + "'");
229 return;
230 }
231
232 uint64_t gotOff = 0;
233 if (config->emachine == EM_PPC64)
234 gotOff = 0x8000;
235
236 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN,
237 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
238 ElfSym::globalOffsetTable = cast<Defined>(s);
239 }
240
241 // __ehdr_start is the location of ELF file headers. Note that we define
242 // this symbol unconditionally even when using a linker script, which
243 // differs from the behavior implemented by GNU linker which only define
244 // this symbol if ELF headers are in the memory mapped segment.
245 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
246
247 // __executable_start is not documented, but the expectation of at
248 // least the Android libc is that it points to the ELF header.
249 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
250
251 // __dso_handle symbol is passed to cxa_finalize as a marker to identify
252 // each DSO. The address of the symbol doesn't matter as long as they are
253 // different in different DSOs, so we chose the start address of the DSO.
254 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
255
256 // If linker script do layout we do not need to create any standard symbols.
257 if (script->hasSectionsCommand)
258 return;
259
260 auto add = [](StringRef s, int64_t pos) {
261 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
262 };
263
264 ElfSym::bss = add("__bss_start", 0);
265 ElfSym::end1 = add("end", -1);
266 ElfSym::end2 = add("_end", -1);
267 ElfSym::etext1 = add("etext", -1);
268 ElfSym::etext2 = add("_etext", -1);
269 ElfSym::edata1 = add("edata", -1);
270 ElfSym::edata2 = add("_edata", -1);
271 }
272
findSection(StringRef name,unsigned partition=1)273 static OutputSection *findSection(StringRef name, unsigned partition = 1) {
274 for (SectionCommand *cmd : script->sectionCommands)
275 if (auto *osd = dyn_cast<OutputDesc>(cmd))
276 if (osd->osec.name == name && osd->osec.partition == partition)
277 return &osd->osec;
278 return nullptr;
279 }
280
createSyntheticSections()281 template <class ELFT> void elf::createSyntheticSections() {
282 // Initialize all pointers with NULL. This is needed because
283 // you can call lld::elf::main more than once as a library.
284 Out::tlsPhdr = nullptr;
285 Out::preinitArray = nullptr;
286 Out::initArray = nullptr;
287 Out::finiArray = nullptr;
288
289 // Add the .interp section first because it is not a SyntheticSection.
290 // The removeUnusedSyntheticSections() function relies on the
291 // SyntheticSections coming last.
292 if (needsInterpSection()) {
293 for (size_t i = 1; i <= partitions.size(); ++i) {
294 InputSection *sec = createInterpSection();
295 sec->partition = i;
296 inputSections.push_back(sec);
297 }
298 }
299
300 auto add = [](SyntheticSection &sec) { inputSections.push_back(&sec); };
301
302 in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false);
303
304 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
305 Out::programHeaders->alignment = config->wordsize;
306
307 if (config->strip != StripPolicy::All) {
308 in.strTab = std::make_unique<StringTableSection>(".strtab", false);
309 in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab);
310 in.symTabShndx = std::make_unique<SymtabShndxSection>();
311 }
312
313 in.bss = std::make_unique<BssSection>(".bss", 0, 1);
314 add(*in.bss);
315
316 // If there is a SECTIONS command and a .data.rel.ro section name use name
317 // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
318 // This makes sure our relro is contiguous.
319 bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro");
320 in.bssRelRo = std::make_unique<BssSection>(
321 hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
322 add(*in.bssRelRo);
323
324 // Add MIPS-specific sections.
325 if (config->emachine == EM_MIPS) {
326 if (!config->shared && config->hasDynSymTab) {
327 in.mipsRldMap = std::make_unique<MipsRldMapSection>();
328 add(*in.mipsRldMap);
329 }
330 if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create()))
331 add(*in.mipsAbiFlags);
332 if ((in.mipsOptions = MipsOptionsSection<ELFT>::create()))
333 add(*in.mipsOptions);
334 if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create()))
335 add(*in.mipsReginfo);
336 }
337
338 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
339
340 for (Partition &part : partitions) {
341 auto add = [&](SyntheticSection &sec) {
342 sec.partition = part.getNumber();
343 inputSections.push_back(&sec);
344 };
345
346 if (!part.name.empty()) {
347 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>();
348 part.elfHeader->name = part.name;
349 add(*part.elfHeader);
350
351 part.programHeaders =
352 std::make_unique<PartitionProgramHeadersSection<ELFT>>();
353 add(*part.programHeaders);
354 }
355
356 if (config->buildId != BuildIdKind::None) {
357 part.buildId = std::make_unique<BuildIdSection>();
358 add(*part.buildId);
359 }
360
361 part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true);
362 part.dynSymTab =
363 std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab);
364 part.dynamic = std::make_unique<DynamicSection<ELFT>>();
365
366 if (config->emachine == EM_AARCH64 &&
367 config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE) {
368 part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>();
369 add(*part.memtagAndroidNote);
370 }
371
372 if (config->androidPackDynRelocs)
373 part.relaDyn =
374 std::make_unique<AndroidPackedRelocationSection<ELFT>>(relaDynName);
375 else
376 part.relaDyn = std::make_unique<RelocationSection<ELFT>>(
377 relaDynName, config->zCombreloc);
378
379 if (config->hasDynSymTab) {
380 add(*part.dynSymTab);
381
382 part.verSym = std::make_unique<VersionTableSection>();
383 add(*part.verSym);
384
385 if (!namedVersionDefs().empty()) {
386 part.verDef = std::make_unique<VersionDefinitionSection>();
387 add(*part.verDef);
388 }
389
390 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>();
391 add(*part.verNeed);
392
393 if (config->gnuHash) {
394 part.gnuHashTab = std::make_unique<GnuHashTableSection>();
395 add(*part.gnuHashTab);
396 }
397
398 if (config->sysvHash) {
399 part.hashTab = std::make_unique<HashTableSection>();
400 add(*part.hashTab);
401 }
402
403 add(*part.dynamic);
404 add(*part.dynStrTab);
405 add(*part.relaDyn);
406 }
407
408 if (config->relrPackDynRelocs) {
409 part.relrDyn = std::make_unique<RelrSection<ELFT>>();
410 add(*part.relrDyn);
411 }
412
413 if (!config->relocatable) {
414 if (config->ehFrameHdr) {
415 part.ehFrameHdr = std::make_unique<EhFrameHeader>();
416 add(*part.ehFrameHdr);
417 }
418 part.ehFrame = std::make_unique<EhFrameSection>();
419 add(*part.ehFrame);
420 }
421
422 if (config->emachine == EM_ARM && !config->relocatable) {
423 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
424 // InputSections.
425 part.armExidx = std::make_unique<ARMExidxSyntheticSection>();
426 add(*part.armExidx);
427 }
428
429 if (!config->packageMetadata.empty()) {
430 part.packageMetadataNote = std::make_unique<PackageMetadataNote>();
431 add(*part.packageMetadataNote);
432 }
433 }
434
435 if (partitions.size() != 1) {
436 // Create the partition end marker. This needs to be in partition number 255
437 // so that it is sorted after all other partitions. It also has other
438 // special handling (see createPhdrs() and combineEhSections()).
439 in.partEnd =
440 std::make_unique<BssSection>(".part.end", config->maxPageSize, 1);
441 in.partEnd->partition = 255;
442 add(*in.partEnd);
443
444 in.partIndex = std::make_unique<PartitionIndexSection>();
445 addOptionalRegular("__part_index_begin", in.partIndex.get(), 0);
446 addOptionalRegular("__part_index_end", in.partIndex.get(),
447 in.partIndex->getSize());
448 add(*in.partIndex);
449 }
450
451 // Add .got. MIPS' .got is so different from the other archs,
452 // it has its own class.
453 if (config->emachine == EM_MIPS) {
454 in.mipsGot = std::make_unique<MipsGotSection>();
455 add(*in.mipsGot);
456 } else {
457 in.got = std::make_unique<GotSection>();
458 add(*in.got);
459 }
460
461 if (config->emachine == EM_PPC) {
462 in.ppc32Got2 = std::make_unique<PPC32Got2Section>();
463 add(*in.ppc32Got2);
464 }
465
466 if (config->emachine == EM_PPC64) {
467 in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>();
468 add(*in.ppc64LongBranchTarget);
469 }
470
471 in.gotPlt = std::make_unique<GotPltSection>();
472 add(*in.gotPlt);
473 in.igotPlt = std::make_unique<IgotPltSection>();
474 add(*in.igotPlt);
475
476 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
477 // it as a relocation and ensure the referenced section is created.
478 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
479 if (target->gotBaseSymInGotPlt)
480 in.gotPlt->hasGotPltOffRel = true;
481 else
482 in.got->hasGotOffRel = true;
483 }
484
485 if (config->gdbIndex)
486 add(*GdbIndexSection::create<ELFT>());
487
488 // We always need to add rel[a].plt to output if it has entries.
489 // Even for static linking it can contain R_[*]_IRELATIVE relocations.
490 in.relaPlt = std::make_unique<RelocationSection<ELFT>>(
491 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
492 add(*in.relaPlt);
493
494 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
495 // relocations are processed last by the dynamic loader. We cannot place the
496 // iplt section in .rel.dyn when Android relocation packing is enabled because
497 // that would cause a section type mismatch. However, because the Android
498 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
499 // behaviour by placing the iplt section in .rel.plt.
500 in.relaIplt = std::make_unique<RelocationSection<ELFT>>(
501 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
502 /*sort=*/false);
503 add(*in.relaIplt);
504
505 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
506 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
507 in.ibtPlt = std::make_unique<IBTPltSection>();
508 add(*in.ibtPlt);
509 }
510
511 if (config->emachine == EM_PPC)
512 in.plt = std::make_unique<PPC32GlinkSection>();
513 else
514 in.plt = std::make_unique<PltSection>();
515 add(*in.plt);
516 in.iplt = std::make_unique<IpltSection>();
517 add(*in.iplt);
518
519 if (config->andFeatures)
520 add(*make<GnuPropertySection>());
521
522 // .note.GNU-stack is always added when we are creating a re-linkable
523 // object file. Other linkers are using the presence of this marker
524 // section to control the executable-ness of the stack area, but that
525 // is irrelevant these days. Stack area should always be non-executable
526 // by default. So we emit this section unconditionally.
527 if (config->relocatable)
528 add(*make<GnuStackSection>());
529
530 if (in.symTab)
531 add(*in.symTab);
532 if (in.symTabShndx)
533 add(*in.symTabShndx);
534 add(*in.shStrTab);
535 if (in.strTab)
536 add(*in.strTab);
537 }
538
539 // The main function of the writer.
run()540 template <class ELFT> void Writer<ELFT>::run() {
541 copyLocalSymbols();
542
543 if (config->copyRelocs)
544 addSectionSymbols();
545
546 // Now that we have a complete set of output sections. This function
547 // completes section contents. For example, we need to add strings
548 // to the string table, and add entries to .got and .plt.
549 // finalizeSections does that.
550 finalizeSections();
551 checkExecuteOnly();
552
553 // If --compressed-debug-sections is specified, compress .debug_* sections.
554 // Do it right now because it changes the size of output sections.
555 for (OutputSection *sec : outputSections)
556 sec->maybeCompress<ELFT>();
557
558 if (script->hasSectionsCommand)
559 script->allocateHeaders(mainPart->phdrs);
560
561 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
562 // 0 sized region. This has to be done late since only after assignAddresses
563 // we know the size of the sections.
564 for (Partition &part : partitions)
565 removeEmptyPTLoad(part.phdrs);
566
567 if (!config->oFormatBinary)
568 assignFileOffsets();
569 else
570 assignFileOffsetsBinary();
571
572 for (Partition &part : partitions)
573 setPhdrs(part);
574
575 // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections()
576 // because the files may be useful in case checkSections() or openFile()
577 // fails, for example, due to an erroneous file size.
578 writeMapAndCref();
579
580 if (config->checkSections)
581 checkSections();
582
583 // It does not make sense try to open the file if we have error already.
584 if (errorCount())
585 return;
586
587 {
588 llvm::TimeTraceScope timeScope("Write output file");
589 // Write the result down to a file.
590 openFile();
591 if (errorCount())
592 return;
593
594 if (!config->oFormatBinary) {
595 if (config->zSeparate != SeparateSegmentKind::None)
596 writeTrapInstr();
597 writeHeader();
598 writeSections();
599 } else {
600 writeSectionsBinary();
601 }
602
603 // Backfill .note.gnu.build-id section content. This is done at last
604 // because the content is usually a hash value of the entire output file.
605 writeBuildId();
606 if (errorCount())
607 return;
608
609 if (auto e = buffer->commit())
610 error("failed to write to the output file: " + toString(std::move(e)));
611 }
612 }
613
614 template <class ELFT, class RelTy>
markUsedLocalSymbolsImpl(ObjFile<ELFT> * file,llvm::ArrayRef<RelTy> rels)615 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file,
616 llvm::ArrayRef<RelTy> rels) {
617 for (const RelTy &rel : rels) {
618 Symbol &sym = file->getRelocTargetSym(rel);
619 if (sym.isLocal())
620 sym.used = true;
621 }
622 }
623
624 // The function ensures that the "used" field of local symbols reflects the fact
625 // that the symbol is used in a relocation from a live section.
markUsedLocalSymbols()626 template <class ELFT> static void markUsedLocalSymbols() {
627 // With --gc-sections, the field is already filled.
628 // See MarkLive<ELFT>::resolveReloc().
629 if (config->gcSections)
630 return;
631 for (ELFFileBase *file : ctx->objectFiles) {
632 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
633 for (InputSectionBase *s : f->getSections()) {
634 InputSection *isec = dyn_cast_or_null<InputSection>(s);
635 if (!isec)
636 continue;
637 if (isec->type == SHT_REL)
638 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>());
639 else if (isec->type == SHT_RELA)
640 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>());
641 }
642 }
643 }
644
shouldKeepInSymtab(const Defined & sym)645 static bool shouldKeepInSymtab(const Defined &sym) {
646 if (sym.isSection())
647 return false;
648
649 // If --emit-reloc or -r is given, preserve symbols referenced by relocations
650 // from live sections.
651 if (sym.used && config->copyRelocs)
652 return true;
653
654 // Exclude local symbols pointing to .ARM.exidx sections.
655 // They are probably mapping symbols "$d", which are optional for these
656 // sections. After merging the .ARM.exidx sections, some of these symbols
657 // may become dangling. The easiest way to avoid the issue is not to add
658 // them to the symbol table from the beginning.
659 if (config->emachine == EM_ARM && sym.section &&
660 sym.section->type == SHT_ARM_EXIDX)
661 return false;
662
663 if (config->discard == DiscardPolicy::None)
664 return true;
665 if (config->discard == DiscardPolicy::All)
666 return false;
667
668 // In ELF assembly .L symbols are normally discarded by the assembler.
669 // If the assembler fails to do so, the linker discards them if
670 // * --discard-locals is used.
671 // * The symbol is in a SHF_MERGE section, which is normally the reason for
672 // the assembler keeping the .L symbol.
673 if (sym.getName().startswith(".L") &&
674 (config->discard == DiscardPolicy::Locals ||
675 (sym.section && (sym.section->flags & SHF_MERGE))))
676 return false;
677 return true;
678 }
679
includeInSymtab(const Symbol & b)680 static bool includeInSymtab(const Symbol &b) {
681 if (auto *d = dyn_cast<Defined>(&b)) {
682 // Always include absolute symbols.
683 SectionBase *sec = d->section;
684 if (!sec)
685 return true;
686
687 if (auto *s = dyn_cast<MergeInputSection>(sec))
688 return s->getSectionPiece(d->value).live;
689 return sec->isLive();
690 }
691 return b.used || !config->gcSections;
692 }
693
694 // Local symbols are not in the linker's symbol table. This function scans
695 // each object file's symbol table to copy local symbols to the output.
copyLocalSymbols()696 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
697 if (!in.symTab)
698 return;
699 llvm::TimeTraceScope timeScope("Add local symbols");
700 if (config->copyRelocs && config->discard != DiscardPolicy::None)
701 markUsedLocalSymbols<ELFT>();
702 for (ELFFileBase *file : ctx->objectFiles) {
703 for (Symbol *b : file->getLocalSymbols()) {
704 assert(b->isLocal() && "should have been caught in initializeSymbols()");
705 auto *dr = dyn_cast<Defined>(b);
706
707 // No reason to keep local undefined symbol in symtab.
708 if (!dr)
709 continue;
710 if (includeInSymtab(*b) && shouldKeepInSymtab(*dr))
711 in.symTab->addSymbol(b);
712 }
713 }
714 }
715
716 // Create a section symbol for each output section so that we can represent
717 // relocations that point to the section. If we know that no relocation is
718 // referring to a section (that happens if the section is a synthetic one), we
719 // don't create a section symbol for that section.
addSectionSymbols()720 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
721 for (SectionCommand *cmd : script->sectionCommands) {
722 auto *osd = dyn_cast<OutputDesc>(cmd);
723 if (!osd)
724 continue;
725 OutputSection &osec = osd->osec;
726 InputSectionBase *isec = nullptr;
727 // Iterate over all input sections and add a STT_SECTION symbol if any input
728 // section may be a relocation target.
729 for (SectionCommand *cmd : osec.commands) {
730 auto *isd = dyn_cast<InputSectionDescription>(cmd);
731 if (!isd)
732 continue;
733 for (InputSectionBase *s : isd->sections) {
734 // Relocations are not using REL[A] section symbols.
735 if (s->type == SHT_REL || s->type == SHT_RELA)
736 continue;
737
738 // Unlike other synthetic sections, mergeable output sections contain
739 // data copied from input sections, and there may be a relocation
740 // pointing to its contents if -r or --emit-reloc is given.
741 if (isa<SyntheticSection>(s) && !(s->flags & SHF_MERGE))
742 continue;
743
744 isec = s;
745 break;
746 }
747 }
748 if (!isec)
749 continue;
750
751 // Set the symbol to be relative to the output section so that its st_value
752 // equals the output section address. Note, there may be a gap between the
753 // start of the output section and isec.
754 in.symTab->addSymbol(makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0,
755 STT_SECTION,
756 /*value=*/0, /*size=*/0, &osec));
757 }
758 }
759
760 // Today's loaders have a feature to make segments read-only after
761 // processing dynamic relocations to enhance security. PT_GNU_RELRO
762 // is defined for that.
763 //
764 // This function returns true if a section needs to be put into a
765 // PT_GNU_RELRO segment.
isRelroSection(const OutputSection * sec)766 static bool isRelroSection(const OutputSection *sec) {
767 if (!config->zRelro)
768 return false;
769 if (sec->relro)
770 return true;
771
772 uint64_t flags = sec->flags;
773
774 // Non-allocatable or non-writable sections don't need RELRO because
775 // they are not writable or not even mapped to memory in the first place.
776 // RELRO is for sections that are essentially read-only but need to
777 // be writable only at process startup to allow dynamic linker to
778 // apply relocations.
779 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
780 return false;
781
782 // Once initialized, TLS data segments are used as data templates
783 // for a thread-local storage. For each new thread, runtime
784 // allocates memory for a TLS and copy templates there. No thread
785 // are supposed to use templates directly. Thus, it can be in RELRO.
786 if (flags & SHF_TLS)
787 return true;
788
789 // .init_array, .preinit_array and .fini_array contain pointers to
790 // functions that are executed on process startup or exit. These
791 // pointers are set by the static linker, and they are not expected
792 // to change at runtime. But if you are an attacker, you could do
793 // interesting things by manipulating pointers in .fini_array, for
794 // example. So they are put into RELRO.
795 uint32_t type = sec->type;
796 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
797 type == SHT_PREINIT_ARRAY)
798 return true;
799
800 // .got contains pointers to external symbols. They are resolved by
801 // the dynamic linker when a module is loaded into memory, and after
802 // that they are not expected to change. So, it can be in RELRO.
803 if (in.got && sec == in.got->getParent())
804 return true;
805
806 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
807 // through r2 register, which is reserved for that purpose. Since r2 is used
808 // for accessing .got as well, .got and .toc need to be close enough in the
809 // virtual address space. Usually, .toc comes just after .got. Since we place
810 // .got into RELRO, .toc needs to be placed into RELRO too.
811 if (sec->name.equals(".toc"))
812 return true;
813
814 // .got.plt contains pointers to external function symbols. They are
815 // by default resolved lazily, so we usually cannot put it into RELRO.
816 // However, if "-z now" is given, the lazy symbol resolution is
817 // disabled, which enables us to put it into RELRO.
818 if (sec == in.gotPlt->getParent())
819 return config->zNow;
820
821 // .dynamic section contains data for the dynamic linker, and
822 // there's no need to write to it at runtime, so it's better to put
823 // it into RELRO.
824 if (sec->name == ".dynamic")
825 return true;
826
827 // Sections with some special names are put into RELRO. This is a
828 // bit unfortunate because section names shouldn't be significant in
829 // ELF in spirit. But in reality many linker features depend on
830 // magic section names.
831 StringRef s = sec->name;
832 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
833 s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
834 s == ".fini_array" || s == ".init_array" ||
835 s == ".openbsd.randomdata" || s == ".preinit_array";
836 }
837
838 // We compute a rank for each section. The rank indicates where the
839 // section should be placed in the file. Instead of using simple
840 // numbers (0,1,2...), we use a series of flags. One for each decision
841 // point when placing the section.
842 // Using flags has two key properties:
843 // * It is easy to check if a give branch was taken.
844 // * It is easy two see how similar two ranks are (see getRankProximity).
845 enum RankFlags {
846 RF_NOT_ADDR_SET = 1 << 27,
847 RF_NOT_ALLOC = 1 << 26,
848 RF_PARTITION = 1 << 18, // Partition number (8 bits)
849 RF_NOT_PART_EHDR = 1 << 17,
850 RF_NOT_PART_PHDR = 1 << 16,
851 RF_NOT_INTERP = 1 << 15,
852 RF_NOT_NOTE = 1 << 14,
853 RF_WRITE = 1 << 13,
854 RF_EXEC_WRITE = 1 << 12,
855 RF_EXEC = 1 << 11,
856 RF_RODATA = 1 << 10,
857 RF_NOT_RELRO = 1 << 9,
858 RF_NOT_TLS = 1 << 8,
859 RF_BSS = 1 << 7,
860 RF_PPC_NOT_TOCBSS = 1 << 6,
861 RF_PPC_TOCL = 1 << 5,
862 RF_PPC_TOC = 1 << 4,
863 RF_PPC_GOT = 1 << 3,
864 RF_PPC_BRANCH_LT = 1 << 2,
865 RF_MIPS_GPREL = 1 << 1,
866 RF_MIPS_NOT_GOT = 1 << 0
867 };
868
getSectionRank(const OutputSection & osec)869 static unsigned getSectionRank(const OutputSection &osec) {
870 unsigned rank = osec.partition * RF_PARTITION;
871
872 // We want to put section specified by -T option first, so we
873 // can start assigning VA starting from them later.
874 if (config->sectionStartMap.count(osec.name))
875 return rank;
876 rank |= RF_NOT_ADDR_SET;
877
878 // Allocatable sections go first to reduce the total PT_LOAD size and
879 // so debug info doesn't change addresses in actual code.
880 if (!(osec.flags & SHF_ALLOC))
881 return rank | RF_NOT_ALLOC;
882
883 if (osec.type == SHT_LLVM_PART_EHDR)
884 return rank;
885 rank |= RF_NOT_PART_EHDR;
886
887 if (osec.type == SHT_LLVM_PART_PHDR)
888 return rank;
889 rank |= RF_NOT_PART_PHDR;
890
891 // Put .interp first because some loaders want to see that section
892 // on the first page of the executable file when loaded into memory.
893 if (osec.name == ".interp")
894 return rank;
895 rank |= RF_NOT_INTERP;
896
897 // Put .note sections (which make up one PT_NOTE) at the beginning so that
898 // they are likely to be included in a core file even if core file size is
899 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
900 // included in a core to match core files with executables.
901 if (osec.type == SHT_NOTE)
902 return rank;
903 rank |= RF_NOT_NOTE;
904
905 // Sort sections based on their access permission in the following
906 // order: R, RX, RWX, RW. This order is based on the following
907 // considerations:
908 // * Read-only sections come first such that they go in the
909 // PT_LOAD covering the program headers at the start of the file.
910 // * Read-only, executable sections come next.
911 // * Writable, executable sections follow such that .plt on
912 // architectures where it needs to be writable will be placed
913 // between .text and .data.
914 // * Writable sections come last, such that .bss lands at the very
915 // end of the last PT_LOAD.
916 bool isExec = osec.flags & SHF_EXECINSTR;
917 bool isWrite = osec.flags & SHF_WRITE;
918
919 if (isExec) {
920 if (isWrite)
921 rank |= RF_EXEC_WRITE;
922 else
923 rank |= RF_EXEC;
924 } else if (isWrite) {
925 rank |= RF_WRITE;
926 } else if (osec.type == SHT_PROGBITS) {
927 // Make non-executable and non-writable PROGBITS sections (e.g .rodata
928 // .eh_frame) closer to .text. They likely contain PC or GOT relative
929 // relocations and there could be relocation overflow if other huge sections
930 // (.dynstr .dynsym) were placed in between.
931 rank |= RF_RODATA;
932 }
933
934 // Place RelRo sections first. After considering SHT_NOBITS below, the
935 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
936 // where | marks where page alignment happens. An alternative ordering is
937 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
938 // waste more bytes due to 2 alignment places.
939 if (!isRelroSection(&osec))
940 rank |= RF_NOT_RELRO;
941
942 // If we got here we know that both A and B are in the same PT_LOAD.
943
944 // The TLS initialization block needs to be a single contiguous block in a R/W
945 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
946 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
947 // after PROGBITS.
948 if (!(osec.flags & SHF_TLS))
949 rank |= RF_NOT_TLS;
950
951 // Within TLS sections, or within other RelRo sections, or within non-RelRo
952 // sections, place non-NOBITS sections first.
953 if (osec.type == SHT_NOBITS)
954 rank |= RF_BSS;
955
956 // Some architectures have additional ordering restrictions for sections
957 // within the same PT_LOAD.
958 if (config->emachine == EM_PPC64) {
959 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
960 // that we would like to make sure appear is a specific order to maximize
961 // their coverage by a single signed 16-bit offset from the TOC base
962 // pointer. Conversely, the special .tocbss section should be first among
963 // all SHT_NOBITS sections. This will put it next to the loaded special
964 // PPC64 sections (and, thus, within reach of the TOC base pointer).
965 StringRef name = osec.name;
966 if (name != ".tocbss")
967 rank |= RF_PPC_NOT_TOCBSS;
968
969 if (name == ".toc1")
970 rank |= RF_PPC_TOCL;
971
972 if (name == ".toc")
973 rank |= RF_PPC_TOC;
974
975 if (name == ".got")
976 rank |= RF_PPC_GOT;
977
978 if (name == ".branch_lt")
979 rank |= RF_PPC_BRANCH_LT;
980 }
981
982 if (config->emachine == EM_MIPS) {
983 // All sections with SHF_MIPS_GPREL flag should be grouped together
984 // because data in these sections is addressable with a gp relative address.
985 if (osec.flags & SHF_MIPS_GPREL)
986 rank |= RF_MIPS_GPREL;
987
988 if (osec.name != ".got")
989 rank |= RF_MIPS_NOT_GOT;
990 }
991
992 return rank;
993 }
994
compareSections(const SectionCommand * aCmd,const SectionCommand * bCmd)995 static bool compareSections(const SectionCommand *aCmd,
996 const SectionCommand *bCmd) {
997 const OutputSection *a = &cast<OutputDesc>(aCmd)->osec;
998 const OutputSection *b = &cast<OutputDesc>(bCmd)->osec;
999
1000 if (a->sortRank != b->sortRank)
1001 return a->sortRank < b->sortRank;
1002
1003 if (!(a->sortRank & RF_NOT_ADDR_SET))
1004 return config->sectionStartMap.lookup(a->name) <
1005 config->sectionStartMap.lookup(b->name);
1006 return false;
1007 }
1008
add(OutputSection * sec)1009 void PhdrEntry::add(OutputSection *sec) {
1010 lastSec = sec;
1011 if (!firstSec)
1012 firstSec = sec;
1013 p_align = std::max(p_align, sec->alignment);
1014 if (p_type == PT_LOAD)
1015 sec->ptLoad = this;
1016 }
1017
1018 // The beginning and the ending of .rel[a].plt section are marked
1019 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
1020 // executable. The runtime needs these symbols in order to resolve
1021 // all IRELATIVE relocs on startup. For dynamic executables, we don't
1022 // need these symbols, since IRELATIVE relocs are resolved through GOT
1023 // and PLT. For details, see http://www.airs.com/blog/archives/403.
addRelIpltSymbols()1024 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
1025 if (config->relocatable || config->isPic)
1026 return;
1027
1028 // By default, __rela_iplt_{start,end} belong to a dummy section 0
1029 // because .rela.plt might be empty and thus removed from output.
1030 // We'll override Out::elfHeader with In.relaIplt later when we are
1031 // sure that .rela.plt exists in output.
1032 ElfSym::relaIpltStart = addOptionalRegular(
1033 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1034 Out::elfHeader, 0, STV_HIDDEN);
1035
1036 ElfSym::relaIpltEnd = addOptionalRegular(
1037 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1038 Out::elfHeader, 0, STV_HIDDEN);
1039 }
1040
1041 // This function generates assignments for predefined symbols (e.g. _end or
1042 // _etext) and inserts them into the commands sequence to be processed at the
1043 // appropriate time. This ensures that the value is going to be correct by the
1044 // time any references to these symbols are processed and is equivalent to
1045 // defining these symbols explicitly in the linker script.
setReservedSymbolSections()1046 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1047 if (ElfSym::globalOffsetTable) {
1048 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1049 // to the start of the .got or .got.plt section.
1050 InputSection *sec = in.gotPlt.get();
1051 if (!target->gotBaseSymInGotPlt)
1052 sec = in.mipsGot.get() ? cast<InputSection>(in.mipsGot.get())
1053 : cast<InputSection>(in.got.get());
1054 ElfSym::globalOffsetTable->section = sec;
1055 }
1056
1057 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1058 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1059 ElfSym::relaIpltStart->section = in.relaIplt.get();
1060 ElfSym::relaIpltEnd->section = in.relaIplt.get();
1061 ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1062 }
1063
1064 PhdrEntry *last = nullptr;
1065 PhdrEntry *lastRO = nullptr;
1066
1067 for (Partition &part : partitions) {
1068 for (PhdrEntry *p : part.phdrs) {
1069 if (p->p_type != PT_LOAD)
1070 continue;
1071 last = p;
1072 if (!(p->p_flags & PF_W))
1073 lastRO = p;
1074 }
1075 }
1076
1077 if (lastRO) {
1078 // _etext is the first location after the last read-only loadable segment.
1079 if (ElfSym::etext1)
1080 ElfSym::etext1->section = lastRO->lastSec;
1081 if (ElfSym::etext2)
1082 ElfSym::etext2->section = lastRO->lastSec;
1083 }
1084
1085 if (last) {
1086 // _edata points to the end of the last mapped initialized section.
1087 OutputSection *edata = nullptr;
1088 for (OutputSection *os : outputSections) {
1089 if (os->type != SHT_NOBITS)
1090 edata = os;
1091 if (os == last->lastSec)
1092 break;
1093 }
1094
1095 if (ElfSym::edata1)
1096 ElfSym::edata1->section = edata;
1097 if (ElfSym::edata2)
1098 ElfSym::edata2->section = edata;
1099
1100 // _end is the first location after the uninitialized data region.
1101 if (ElfSym::end1)
1102 ElfSym::end1->section = last->lastSec;
1103 if (ElfSym::end2)
1104 ElfSym::end2->section = last->lastSec;
1105 }
1106
1107 if (ElfSym::bss)
1108 ElfSym::bss->section = findSection(".bss");
1109
1110 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1111 // be equal to the _gp symbol's value.
1112 if (ElfSym::mipsGp) {
1113 // Find GP-relative section with the lowest address
1114 // and use this address to calculate default _gp value.
1115 for (OutputSection *os : outputSections) {
1116 if (os->flags & SHF_MIPS_GPREL) {
1117 ElfSym::mipsGp->section = os;
1118 ElfSym::mipsGp->value = 0x7ff0;
1119 break;
1120 }
1121 }
1122 }
1123 }
1124
1125 // We want to find how similar two ranks are.
1126 // The more branches in getSectionRank that match, the more similar they are.
1127 // Since each branch corresponds to a bit flag, we can just use
1128 // countLeadingZeros.
getRankProximityAux(const OutputSection & a,const OutputSection & b)1129 static int getRankProximityAux(const OutputSection &a, const OutputSection &b) {
1130 return countLeadingZeros(a.sortRank ^ b.sortRank);
1131 }
1132
getRankProximity(OutputSection * a,SectionCommand * b)1133 static int getRankProximity(OutputSection *a, SectionCommand *b) {
1134 auto *osd = dyn_cast<OutputDesc>(b);
1135 return (osd && osd->osec.hasInputSections)
1136 ? getRankProximityAux(*a, osd->osec)
1137 : -1;
1138 }
1139
1140 // When placing orphan sections, we want to place them after symbol assignments
1141 // so that an orphan after
1142 // begin_foo = .;
1143 // foo : { *(foo) }
1144 // end_foo = .;
1145 // doesn't break the intended meaning of the begin/end symbols.
1146 // We don't want to go over sections since findOrphanPos is the
1147 // one in charge of deciding the order of the sections.
1148 // We don't want to go over changes to '.', since doing so in
1149 // rx_sec : { *(rx_sec) }
1150 // . = ALIGN(0x1000);
1151 // /* The RW PT_LOAD starts here*/
1152 // rw_sec : { *(rw_sec) }
1153 // would mean that the RW PT_LOAD would become unaligned.
shouldSkip(SectionCommand * cmd)1154 static bool shouldSkip(SectionCommand *cmd) {
1155 if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1156 return assign->name != ".";
1157 return false;
1158 }
1159
1160 // We want to place orphan sections so that they share as much
1161 // characteristics with their neighbors as possible. For example, if
1162 // both are rw, or both are tls.
1163 static SmallVectorImpl<SectionCommand *>::iterator
findOrphanPos(SmallVectorImpl<SectionCommand * >::iterator b,SmallVectorImpl<SectionCommand * >::iterator e)1164 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b,
1165 SmallVectorImpl<SectionCommand *>::iterator e) {
1166 OutputSection *sec = &cast<OutputDesc>(*e)->osec;
1167
1168 // Find the first element that has as close a rank as possible.
1169 auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) {
1170 return getRankProximity(sec, a) < getRankProximity(sec, b);
1171 });
1172 if (i == e)
1173 return e;
1174 if (!isa<OutputDesc>(*i))
1175 return e;
1176 auto foundSec = &cast<OutputDesc>(*i)->osec;
1177
1178 // Consider all existing sections with the same proximity.
1179 int proximity = getRankProximity(sec, *i);
1180 unsigned sortRank = sec->sortRank;
1181 if (script->hasPhdrsCommands() || !script->memoryRegions.empty())
1182 // Prevent the orphan section to be placed before the found section. If
1183 // custom program headers are defined, that helps to avoid adding it to a
1184 // previous segment and changing flags of that segment, for example, making
1185 // a read-only segment writable. If memory regions are defined, an orphan
1186 // section should continue the same region as the found section to better
1187 // resemble the behavior of GNU ld.
1188 sortRank = std::max(sortRank, foundSec->sortRank);
1189 for (; i != e; ++i) {
1190 auto *curSecDesc = dyn_cast<OutputDesc>(*i);
1191 if (!curSecDesc || !curSecDesc->osec.hasInputSections)
1192 continue;
1193 if (getRankProximity(sec, curSecDesc) != proximity ||
1194 sortRank < curSecDesc->osec.sortRank)
1195 break;
1196 }
1197
1198 auto isOutputSecWithInputSections = [](SectionCommand *cmd) {
1199 auto *osd = dyn_cast<OutputDesc>(cmd);
1200 return osd && osd->osec.hasInputSections;
1201 };
1202 auto j =
1203 std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b),
1204 isOutputSecWithInputSections);
1205 i = j.base();
1206
1207 // As a special case, if the orphan section is the last section, put
1208 // it at the very end, past any other commands.
1209 // This matches bfd's behavior and is convenient when the linker script fully
1210 // specifies the start of the file, but doesn't care about the end (the non
1211 // alloc sections for example).
1212 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1213 if (nextSec == e)
1214 return e;
1215
1216 while (i != e && shouldSkip(*i))
1217 ++i;
1218 return i;
1219 }
1220
1221 // Adds random priorities to sections not already in the map.
maybeShuffle(DenseMap<const InputSectionBase *,int> & order)1222 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) {
1223 if (config->shuffleSections.empty())
1224 return;
1225
1226 SmallVector<InputSectionBase *, 0> matched, sections = inputSections;
1227 matched.reserve(sections.size());
1228 for (const auto &patAndSeed : config->shuffleSections) {
1229 matched.clear();
1230 for (InputSectionBase *sec : sections)
1231 if (patAndSeed.first.match(sec->name))
1232 matched.push_back(sec);
1233 const uint32_t seed = patAndSeed.second;
1234 if (seed == UINT32_MAX) {
1235 // If --shuffle-sections <section-glob>=-1, reverse the section order. The
1236 // section order is stable even if the number of sections changes. This is
1237 // useful to catch issues like static initialization order fiasco
1238 // reliably.
1239 std::reverse(matched.begin(), matched.end());
1240 } else {
1241 std::mt19937 g(seed ? seed : std::random_device()());
1242 llvm::shuffle(matched.begin(), matched.end(), g);
1243 }
1244 size_t i = 0;
1245 for (InputSectionBase *&sec : sections)
1246 if (patAndSeed.first.match(sec->name))
1247 sec = matched[i++];
1248 }
1249
1250 // Existing priorities are < 0, so use priorities >= 0 for the missing
1251 // sections.
1252 int prio = 0;
1253 for (InputSectionBase *sec : sections) {
1254 if (order.try_emplace(sec, prio).second)
1255 ++prio;
1256 }
1257 }
1258
1259 // Builds section order for handling --symbol-ordering-file.
buildSectionOrder()1260 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1261 DenseMap<const InputSectionBase *, int> sectionOrder;
1262 // Use the rarely used option --call-graph-ordering-file to sort sections.
1263 if (!config->callGraphProfile.empty())
1264 return computeCallGraphProfileOrder();
1265
1266 if (config->symbolOrderingFile.empty())
1267 return sectionOrder;
1268
1269 struct SymbolOrderEntry {
1270 int priority;
1271 bool present;
1272 };
1273
1274 // Build a map from symbols to their priorities. Symbols that didn't
1275 // appear in the symbol ordering file have the lowest priority 0.
1276 // All explicitly mentioned symbols have negative (higher) priorities.
1277 DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder;
1278 int priority = -config->symbolOrderingFile.size();
1279 for (StringRef s : config->symbolOrderingFile)
1280 symbolOrder.insert({CachedHashStringRef(s), {priority++, false}});
1281
1282 // Build a map from sections to their priorities.
1283 auto addSym = [&](Symbol &sym) {
1284 auto it = symbolOrder.find(CachedHashStringRef(sym.getName()));
1285 if (it == symbolOrder.end())
1286 return;
1287 SymbolOrderEntry &ent = it->second;
1288 ent.present = true;
1289
1290 maybeWarnUnorderableSymbol(&sym);
1291
1292 if (auto *d = dyn_cast<Defined>(&sym)) {
1293 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1294 int &priority = sectionOrder[cast<InputSectionBase>(sec)];
1295 priority = std::min(priority, ent.priority);
1296 }
1297 }
1298 };
1299
1300 // We want both global and local symbols. We get the global ones from the
1301 // symbol table and iterate the object files for the local ones.
1302 for (Symbol *sym : symtab->symbols())
1303 addSym(*sym);
1304
1305 for (ELFFileBase *file : ctx->objectFiles)
1306 for (Symbol *sym : file->getLocalSymbols())
1307 addSym(*sym);
1308
1309 if (config->warnSymbolOrdering)
1310 for (auto orderEntry : symbolOrder)
1311 if (!orderEntry.second.present)
1312 warn("symbol ordering file: no such symbol: " + orderEntry.first.val());
1313
1314 return sectionOrder;
1315 }
1316
1317 // Sorts the sections in ISD according to the provided section order.
1318 static void
sortISDBySectionOrder(InputSectionDescription * isd,const DenseMap<const InputSectionBase *,int> & order,bool executableOutputSection)1319 sortISDBySectionOrder(InputSectionDescription *isd,
1320 const DenseMap<const InputSectionBase *, int> &order,
1321 bool executableOutputSection) {
1322 SmallVector<InputSection *, 0> unorderedSections;
1323 SmallVector<std::pair<InputSection *, int>, 0> orderedSections;
1324 uint64_t unorderedSize = 0;
1325 uint64_t totalSize = 0;
1326
1327 for (InputSection *isec : isd->sections) {
1328 if (executableOutputSection)
1329 totalSize += isec->getSize();
1330 auto i = order.find(isec);
1331 if (i == order.end()) {
1332 unorderedSections.push_back(isec);
1333 unorderedSize += isec->getSize();
1334 continue;
1335 }
1336 orderedSections.push_back({isec, i->second});
1337 }
1338 llvm::sort(orderedSections, llvm::less_second());
1339
1340 // Find an insertion point for the ordered section list in the unordered
1341 // section list. On targets with limited-range branches, this is the mid-point
1342 // of the unordered section list. This decreases the likelihood that a range
1343 // extension thunk will be needed to enter or exit the ordered region. If the
1344 // ordered section list is a list of hot functions, we can generally expect
1345 // the ordered functions to be called more often than the unordered functions,
1346 // making it more likely that any particular call will be within range, and
1347 // therefore reducing the number of thunks required.
1348 //
1349 // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1350 // If the layout is:
1351 //
1352 // 8MB hot
1353 // 32MB cold
1354 //
1355 // only the first 8-16MB of the cold code (depending on which hot function it
1356 // is actually calling) can call the hot code without a range extension thunk.
1357 // However, if we use this layout:
1358 //
1359 // 16MB cold
1360 // 8MB hot
1361 // 16MB cold
1362 //
1363 // both the last 8-16MB of the first block of cold code and the first 8-16MB
1364 // of the second block of cold code can call the hot code without a thunk. So
1365 // we effectively double the amount of code that could potentially call into
1366 // the hot code without a thunk.
1367 //
1368 // The above is not necessary if total size of input sections in this "isd"
1369 // is small. Note that we assume all input sections are executable if the
1370 // output section is executable (which is not always true but supposed to
1371 // cover most cases).
1372 size_t insPt = 0;
1373 if (executableOutputSection && !orderedSections.empty() &&
1374 target->getThunkSectionSpacing() &&
1375 totalSize >= target->getThunkSectionSpacing()) {
1376 uint64_t unorderedPos = 0;
1377 for (; insPt != unorderedSections.size(); ++insPt) {
1378 unorderedPos += unorderedSections[insPt]->getSize();
1379 if (unorderedPos > unorderedSize / 2)
1380 break;
1381 }
1382 }
1383
1384 isd->sections.clear();
1385 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
1386 isd->sections.push_back(isec);
1387 for (std::pair<InputSection *, int> p : orderedSections)
1388 isd->sections.push_back(p.first);
1389 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
1390 isd->sections.push_back(isec);
1391 }
1392
sortSection(OutputSection & osec,const DenseMap<const InputSectionBase *,int> & order)1393 static void sortSection(OutputSection &osec,
1394 const DenseMap<const InputSectionBase *, int> &order) {
1395 StringRef name = osec.name;
1396
1397 // Never sort these.
1398 if (name == ".init" || name == ".fini")
1399 return;
1400
1401 // IRelative relocations that usually live in the .rel[a].dyn section should
1402 // be processed last by the dynamic loader. To achieve that we add synthetic
1403 // sections in the required order from the beginning so that the in.relaIplt
1404 // section is placed last in an output section. Here we just do not apply
1405 // sorting for an output section which holds the in.relaIplt section.
1406 if (in.relaIplt->getParent() == &osec)
1407 return;
1408
1409 // Sort input sections by priority using the list provided by
1410 // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1411 // digit radix sort. The sections may be sorted stably again by a more
1412 // significant key.
1413 if (!order.empty())
1414 for (SectionCommand *b : osec.commands)
1415 if (auto *isd = dyn_cast<InputSectionDescription>(b))
1416 sortISDBySectionOrder(isd, order, osec.flags & SHF_EXECINSTR);
1417
1418 if (script->hasSectionsCommand)
1419 return;
1420
1421 if (name == ".init_array" || name == ".fini_array") {
1422 osec.sortInitFini();
1423 } else if (name == ".ctors" || name == ".dtors") {
1424 osec.sortCtorsDtors();
1425 } else if (config->emachine == EM_PPC64 && name == ".toc") {
1426 // .toc is allocated just after .got and is accessed using GOT-relative
1427 // relocations. Object files compiled with small code model have an
1428 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1429 // To reduce the risk of relocation overflow, .toc contents are sorted so
1430 // that sections having smaller relocation offsets are at beginning of .toc
1431 assert(osec.commands.size() == 1);
1432 auto *isd = cast<InputSectionDescription>(osec.commands[0]);
1433 llvm::stable_sort(isd->sections,
1434 [](const InputSection *a, const InputSection *b) -> bool {
1435 return a->file->ppc64SmallCodeModelTocRelocs &&
1436 !b->file->ppc64SmallCodeModelTocRelocs;
1437 });
1438 }
1439 }
1440
1441 // If no layout was provided by linker script, we want to apply default
1442 // sorting for special input sections. This also handles --symbol-ordering-file.
sortInputSections()1443 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1444 // Build the order once since it is expensive.
1445 DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1446 maybeShuffle(order);
1447 for (SectionCommand *cmd : script->sectionCommands)
1448 if (auto *osd = dyn_cast<OutputDesc>(cmd))
1449 sortSection(osd->osec, order);
1450 }
1451
sortSections()1452 template <class ELFT> void Writer<ELFT>::sortSections() {
1453 llvm::TimeTraceScope timeScope("Sort sections");
1454
1455 // Don't sort if using -r. It is not necessary and we want to preserve the
1456 // relative order for SHF_LINK_ORDER sections.
1457 if (config->relocatable) {
1458 script->adjustOutputSections();
1459 return;
1460 }
1461
1462 sortInputSections();
1463
1464 for (SectionCommand *cmd : script->sectionCommands)
1465 if (auto *osd = dyn_cast<OutputDesc>(cmd))
1466 osd->osec.sortRank = getSectionRank(osd->osec);
1467 if (!script->hasSectionsCommand) {
1468 // We know that all the OutputSections are contiguous in this case.
1469 auto isSection = [](SectionCommand *cmd) { return isa<OutputDesc>(cmd); };
1470 std::stable_sort(
1471 llvm::find_if(script->sectionCommands, isSection),
1472 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
1473 compareSections);
1474 }
1475
1476 // Process INSERT commands and update output section attributes. From this
1477 // point onwards the order of script->sectionCommands is fixed.
1478 script->processInsertCommands();
1479 script->adjustOutputSections();
1480
1481 if (!script->hasSectionsCommand)
1482 return;
1483
1484 // Orphan sections are sections present in the input files which are
1485 // not explicitly placed into the output file by the linker script.
1486 //
1487 // The sections in the linker script are already in the correct
1488 // order. We have to figuere out where to insert the orphan
1489 // sections.
1490 //
1491 // The order of the sections in the script is arbitrary and may not agree with
1492 // compareSections. This means that we cannot easily define a strict weak
1493 // ordering. To see why, consider a comparison of a section in the script and
1494 // one not in the script. We have a two simple options:
1495 // * Make them equivalent (a is not less than b, and b is not less than a).
1496 // The problem is then that equivalence has to be transitive and we can
1497 // have sections a, b and c with only b in a script and a less than c
1498 // which breaks this property.
1499 // * Use compareSectionsNonScript. Given that the script order doesn't have
1500 // to match, we can end up with sections a, b, c, d where b and c are in the
1501 // script and c is compareSectionsNonScript less than b. In which case d
1502 // can be equivalent to c, a to b and d < a. As a concrete example:
1503 // .a (rx) # not in script
1504 // .b (rx) # in script
1505 // .c (ro) # in script
1506 // .d (ro) # not in script
1507 //
1508 // The way we define an order then is:
1509 // * Sort only the orphan sections. They are in the end right now.
1510 // * Move each orphan section to its preferred position. We try
1511 // to put each section in the last position where it can share
1512 // a PT_LOAD.
1513 //
1514 // There is some ambiguity as to where exactly a new entry should be
1515 // inserted, because Commands contains not only output section
1516 // commands but also other types of commands such as symbol assignment
1517 // expressions. There's no correct answer here due to the lack of the
1518 // formal specification of the linker script. We use heuristics to
1519 // determine whether a new output command should be added before or
1520 // after another commands. For the details, look at shouldSkip
1521 // function.
1522
1523 auto i = script->sectionCommands.begin();
1524 auto e = script->sectionCommands.end();
1525 auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) {
1526 if (auto *osd = dyn_cast<OutputDesc>(cmd))
1527 return osd->osec.sectionIndex == UINT32_MAX;
1528 return false;
1529 });
1530
1531 // Sort the orphan sections.
1532 std::stable_sort(nonScriptI, e, compareSections);
1533
1534 // As a horrible special case, skip the first . assignment if it is before any
1535 // section. We do this because it is common to set a load address by starting
1536 // the script with ". = 0xabcd" and the expectation is that every section is
1537 // after that.
1538 auto firstSectionOrDotAssignment =
1539 std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); });
1540 if (firstSectionOrDotAssignment != e &&
1541 isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1542 ++firstSectionOrDotAssignment;
1543 i = firstSectionOrDotAssignment;
1544
1545 while (nonScriptI != e) {
1546 auto pos = findOrphanPos(i, nonScriptI);
1547 OutputSection *orphan = &cast<OutputDesc>(*nonScriptI)->osec;
1548
1549 // As an optimization, find all sections with the same sort rank
1550 // and insert them with one rotate.
1551 unsigned rank = orphan->sortRank;
1552 auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) {
1553 return cast<OutputDesc>(cmd)->osec.sortRank != rank;
1554 });
1555 std::rotate(pos, nonScriptI, end);
1556 nonScriptI = end;
1557 }
1558
1559 script->adjustSectionsAfterSorting();
1560 }
1561
compareByFilePosition(InputSection * a,InputSection * b)1562 static bool compareByFilePosition(InputSection *a, InputSection *b) {
1563 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr;
1564 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr;
1565 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
1566 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
1567 if (!la || !lb)
1568 return la && !lb;
1569 OutputSection *aOut = la->getParent();
1570 OutputSection *bOut = lb->getParent();
1571
1572 if (aOut != bOut)
1573 return aOut->addr < bOut->addr;
1574 return la->outSecOff < lb->outSecOff;
1575 }
1576
resolveShfLinkOrder()1577 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1578 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER");
1579 for (OutputSection *sec : outputSections) {
1580 if (!(sec->flags & SHF_LINK_ORDER))
1581 continue;
1582
1583 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1584 // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1585 if (!config->relocatable && config->emachine == EM_ARM &&
1586 sec->type == SHT_ARM_EXIDX)
1587 continue;
1588
1589 // Link order may be distributed across several InputSectionDescriptions.
1590 // Sorting is performed separately.
1591 SmallVector<InputSection **, 0> scriptSections;
1592 SmallVector<InputSection *, 0> sections;
1593 for (SectionCommand *cmd : sec->commands) {
1594 auto *isd = dyn_cast<InputSectionDescription>(cmd);
1595 if (!isd)
1596 continue;
1597 bool hasLinkOrder = false;
1598 scriptSections.clear();
1599 sections.clear();
1600 for (InputSection *&isec : isd->sections) {
1601 if (isec->flags & SHF_LINK_ORDER) {
1602 InputSection *link = isec->getLinkOrderDep();
1603 if (link && !link->getParent())
1604 error(toString(isec) + ": sh_link points to discarded section " +
1605 toString(link));
1606 hasLinkOrder = true;
1607 }
1608 scriptSections.push_back(&isec);
1609 sections.push_back(isec);
1610 }
1611 if (hasLinkOrder && errorCount() == 0) {
1612 llvm::stable_sort(sections, compareByFilePosition);
1613 for (int i = 0, n = sections.size(); i != n; ++i)
1614 *scriptSections[i] = sections[i];
1615 }
1616 }
1617 }
1618 }
1619
finalizeSynthetic(SyntheticSection * sec)1620 static void finalizeSynthetic(SyntheticSection *sec) {
1621 if (sec && sec->isNeeded() && sec->getParent()) {
1622 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name);
1623 sec->finalizeContents();
1624 }
1625 }
1626
1627 // We need to generate and finalize the content that depends on the address of
1628 // InputSections. As the generation of the content may also alter InputSection
1629 // addresses we must converge to a fixed point. We do that here. See the comment
1630 // in Writer<ELFT>::finalizeSections().
finalizeAddressDependentContent()1631 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1632 llvm::TimeTraceScope timeScope("Finalize address dependent content");
1633 ThunkCreator tc;
1634 AArch64Err843419Patcher a64p;
1635 ARMErr657417Patcher a32p;
1636 script->assignAddresses();
1637 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1638 // do require the relative addresses of OutputSections because linker scripts
1639 // can assign Virtual Addresses to OutputSections that are not monotonically
1640 // increasing.
1641 for (Partition &part : partitions)
1642 finalizeSynthetic(part.armExidx.get());
1643 resolveShfLinkOrder();
1644
1645 // Converts call x@GDPLT to call __tls_get_addr
1646 if (config->emachine == EM_HEXAGON)
1647 hexagonTLSSymbolUpdate(outputSections);
1648
1649 uint32_t pass = 0, assignPasses = 0;
1650 for (;;) {
1651 bool changed = target->needsThunks ? tc.createThunks(pass, outputSections)
1652 : target->relaxOnce(pass);
1653 ++pass;
1654
1655 // With Thunk Size much smaller than branch range we expect to
1656 // converge quickly; if we get to 15 something has gone wrong.
1657 if (changed && pass >= 15) {
1658 error(target->needsThunks ? "thunk creation not converged"
1659 : "relaxation not converged");
1660 break;
1661 }
1662
1663 if (config->fixCortexA53Errata843419) {
1664 if (changed)
1665 script->assignAddresses();
1666 changed |= a64p.createFixes();
1667 }
1668 if (config->fixCortexA8) {
1669 if (changed)
1670 script->assignAddresses();
1671 changed |= a32p.createFixes();
1672 }
1673
1674 if (in.mipsGot)
1675 in.mipsGot->updateAllocSize();
1676
1677 for (Partition &part : partitions) {
1678 changed |= part.relaDyn->updateAllocSize();
1679 if (part.relrDyn)
1680 changed |= part.relrDyn->updateAllocSize();
1681 }
1682
1683 const Defined *changedSym = script->assignAddresses();
1684 if (!changed) {
1685 // Some symbols may be dependent on section addresses. When we break the
1686 // loop, the symbol values are finalized because a previous
1687 // assignAddresses() finalized section addresses.
1688 if (!changedSym)
1689 break;
1690 if (++assignPasses == 5) {
1691 errorOrWarn("assignment to symbol " + toString(*changedSym) +
1692 " does not converge");
1693 break;
1694 }
1695 }
1696 }
1697 if (!config->relocatable && config->emachine == EM_RISCV)
1698 riscvFinalizeRelax(pass);
1699
1700 if (config->relocatable)
1701 for (OutputSection *sec : outputSections)
1702 sec->addr = 0;
1703
1704 // If addrExpr is set, the address may not be a multiple of the alignment.
1705 // Warn because this is error-prone.
1706 for (SectionCommand *cmd : script->sectionCommands)
1707 if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
1708 OutputSection *osec = &osd->osec;
1709 if (osec->addr % osec->alignment != 0)
1710 warn("address (0x" + Twine::utohexstr(osec->addr) + ") of section " +
1711 osec->name + " is not a multiple of alignment (" +
1712 Twine(osec->alignment) + ")");
1713 }
1714 }
1715
1716 // If Input Sections have been shrunk (basic block sections) then
1717 // update symbol values and sizes associated with these sections. With basic
1718 // block sections, input sections can shrink when the jump instructions at
1719 // the end of the section are relaxed.
fixSymbolsAfterShrinking()1720 static void fixSymbolsAfterShrinking() {
1721 for (InputFile *File : ctx->objectFiles) {
1722 parallelForEach(File->getSymbols(), [&](Symbol *Sym) {
1723 auto *def = dyn_cast<Defined>(Sym);
1724 if (!def)
1725 return;
1726
1727 const SectionBase *sec = def->section;
1728 if (!sec)
1729 return;
1730
1731 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec);
1732 if (!inputSec || !inputSec->bytesDropped)
1733 return;
1734
1735 const size_t OldSize = inputSec->rawData.size();
1736 const size_t NewSize = OldSize - inputSec->bytesDropped;
1737
1738 if (def->value > NewSize && def->value <= OldSize) {
1739 LLVM_DEBUG(llvm::dbgs()
1740 << "Moving symbol " << Sym->getName() << " from "
1741 << def->value << " to "
1742 << def->value - inputSec->bytesDropped << " bytes\n");
1743 def->value -= inputSec->bytesDropped;
1744 return;
1745 }
1746
1747 if (def->value + def->size > NewSize && def->value <= OldSize &&
1748 def->value + def->size <= OldSize) {
1749 LLVM_DEBUG(llvm::dbgs()
1750 << "Shrinking symbol " << Sym->getName() << " from "
1751 << def->size << " to " << def->size - inputSec->bytesDropped
1752 << " bytes\n");
1753 def->size -= inputSec->bytesDropped;
1754 }
1755 });
1756 }
1757 }
1758
1759 // If basic block sections exist, there are opportunities to delete fall thru
1760 // jumps and shrink jump instructions after basic block reordering. This
1761 // relaxation pass does that. It is only enabled when --optimize-bb-jumps
1762 // option is used.
optimizeBasicBlockJumps()1763 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() {
1764 assert(config->optimizeBBJumps);
1765 SmallVector<InputSection *, 0> storage;
1766
1767 script->assignAddresses();
1768 // For every output section that has executable input sections, this
1769 // does the following:
1770 // 1. Deletes all direct jump instructions in input sections that
1771 // jump to the following section as it is not required.
1772 // 2. If there are two consecutive jump instructions, it checks
1773 // if they can be flipped and one can be deleted.
1774 for (OutputSection *osec : outputSections) {
1775 if (!(osec->flags & SHF_EXECINSTR))
1776 continue;
1777 ArrayRef<InputSection *> sections = getInputSections(*osec, storage);
1778 size_t numDeleted = 0;
1779 // Delete all fall through jump instructions. Also, check if two
1780 // consecutive jump instructions can be flipped so that a fall
1781 // through jmp instruction can be deleted.
1782 for (size_t i = 0, e = sections.size(); i != e; ++i) {
1783 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr;
1784 InputSection &sec = *sections[i];
1785 numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next);
1786 }
1787 if (numDeleted > 0) {
1788 script->assignAddresses();
1789 LLVM_DEBUG(llvm::dbgs()
1790 << "Removing " << numDeleted << " fall through jumps\n");
1791 }
1792 }
1793
1794 fixSymbolsAfterShrinking();
1795
1796 for (OutputSection *osec : outputSections)
1797 for (InputSection *is : getInputSections(*osec, storage))
1798 is->trim();
1799 }
1800
1801 // In order to allow users to manipulate linker-synthesized sections,
1802 // we had to add synthetic sections to the input section list early,
1803 // even before we make decisions whether they are needed. This allows
1804 // users to write scripts like this: ".mygot : { .got }".
1805 //
1806 // Doing it has an unintended side effects. If it turns out that we
1807 // don't need a .got (for example) at all because there's no
1808 // relocation that needs a .got, we don't want to emit .got.
1809 //
1810 // To deal with the above problem, this function is called after
1811 // scanRelocations is called to remove synthetic sections that turn
1812 // out to be empty.
removeUnusedSyntheticSections()1813 static void removeUnusedSyntheticSections() {
1814 // All input synthetic sections that can be empty are placed after
1815 // all regular ones. Reverse iterate to find the first synthetic section
1816 // after a non-synthetic one which will be our starting point.
1817 auto start = std::find_if(inputSections.rbegin(), inputSections.rend(),
1818 [](InputSectionBase *s) {
1819 return !isa<SyntheticSection>(s);
1820 })
1821 .base();
1822
1823 // Remove unused synthetic sections from inputSections;
1824 DenseSet<InputSectionBase *> unused;
1825 auto end =
1826 std::remove_if(start, inputSections.end(), [&](InputSectionBase *s) {
1827 auto *sec = cast<SyntheticSection>(s);
1828 if (sec->getParent() && sec->isNeeded())
1829 return false;
1830 unused.insert(sec);
1831 return true;
1832 });
1833 inputSections.erase(end, inputSections.end());
1834
1835 // Remove unused synthetic sections from the corresponding input section
1836 // description and orphanSections.
1837 for (auto *sec : unused)
1838 if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent())
1839 for (SectionCommand *cmd : osec->commands)
1840 if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
1841 llvm::erase_if(isd->sections, [&](InputSection *isec) {
1842 return unused.count(isec);
1843 });
1844 llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) {
1845 return unused.count(sec);
1846 });
1847 }
1848
1849 // Create output section objects and add them to OutputSections.
finalizeSections()1850 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1851 Out::preinitArray = findSection(".preinit_array");
1852 Out::initArray = findSection(".init_array");
1853 Out::finiArray = findSection(".fini_array");
1854
1855 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1856 // symbols for sections, so that the runtime can get the start and end
1857 // addresses of each section by section name. Add such symbols.
1858 if (!config->relocatable) {
1859 addStartEndSymbols();
1860 for (SectionCommand *cmd : script->sectionCommands)
1861 if (auto *osd = dyn_cast<OutputDesc>(cmd))
1862 addStartStopSymbols(osd->osec);
1863 }
1864
1865 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1866 // It should be okay as no one seems to care about the type.
1867 // Even the author of gold doesn't remember why gold behaves that way.
1868 // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1869 if (mainPart->dynamic->parent)
1870 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE,
1871 /*value=*/0, /*size=*/0, mainPart->dynamic.get()})->isUsedInRegularObj = true;
1872
1873 // Define __rel[a]_iplt_{start,end} symbols if needed.
1874 addRelIpltSymbols();
1875
1876 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1877 // should only be defined in an executable. If .sdata does not exist, its
1878 // value/section does not matter but it has to be relative, so set its
1879 // st_shndx arbitrarily to 1 (Out::elfHeader).
1880 if (config->emachine == EM_RISCV && !config->shared) {
1881 OutputSection *sec = findSection(".sdata");
1882 ElfSym::riscvGlobalPointer =
1883 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader,
1884 0x800, STV_DEFAULT);
1885 }
1886
1887 if (config->emachine == EM_386 || config->emachine == EM_X86_64) {
1888 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1889 // way that:
1890 //
1891 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1892 // computes 0.
1893 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
1894 // the TLS block).
1895 //
1896 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
1897 // an absolute symbol of zero. This is different from GNU linkers which
1898 // define _TLS_MODULE_BASE_ relative to the first TLS section.
1899 Symbol *s = symtab->find("_TLS_MODULE_BASE_");
1900 if (s && s->isUndefined()) {
1901 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN,
1902 STT_TLS, /*value=*/0, 0,
1903 /*section=*/nullptr});
1904 ElfSym::tlsModuleBase = cast<Defined>(s);
1905 }
1906 }
1907
1908 {
1909 llvm::TimeTraceScope timeScope("Finalize .eh_frame");
1910 // This responsible for splitting up .eh_frame section into
1911 // pieces. The relocation scan uses those pieces, so this has to be
1912 // earlier.
1913 for (Partition &part : partitions)
1914 finalizeSynthetic(part.ehFrame.get());
1915 }
1916
1917 if (config->hasDynSymTab) {
1918 parallelForEach(symtab->symbols(), [](Symbol *sym) {
1919 sym->isPreemptible = computeIsPreemptible(*sym);
1920 });
1921 }
1922
1923 // Change values of linker-script-defined symbols from placeholders (assigned
1924 // by declareSymbols) to actual definitions.
1925 script->processSymbolAssignments();
1926
1927 {
1928 llvm::TimeTraceScope timeScope("Scan relocations");
1929 // Scan relocations. This must be done after every symbol is declared so
1930 // that we can correctly decide if a dynamic relocation is needed. This is
1931 // called after processSymbolAssignments() because it needs to know whether
1932 // a linker-script-defined symbol is absolute.
1933 ppc64noTocRelax.clear();
1934 if (!config->relocatable) {
1935 // Scan all relocations. Each relocation goes through a series of tests to
1936 // determine if it needs special treatment, such as creating GOT, PLT,
1937 // copy relocations, etc. Note that relocations for non-alloc sections are
1938 // directly processed by InputSection::relocateNonAlloc.
1939 for (InputSectionBase *sec : inputSections)
1940 if (sec->isLive() && isa<InputSection>(sec) && (sec->flags & SHF_ALLOC))
1941 scanRelocations<ELFT>(*sec);
1942 for (Partition &part : partitions) {
1943 for (EhInputSection *sec : part.ehFrame->sections)
1944 scanRelocations<ELFT>(*sec);
1945 if (part.armExidx && part.armExidx->isLive())
1946 for (InputSection *sec : part.armExidx->exidxSections)
1947 scanRelocations<ELFT>(*sec);
1948 }
1949
1950 reportUndefinedSymbols();
1951 postScanRelocations();
1952 }
1953 }
1954
1955 if (in.plt && in.plt->isNeeded())
1956 in.plt->addSymbols();
1957 if (in.iplt && in.iplt->isNeeded())
1958 in.iplt->addSymbols();
1959
1960 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) {
1961 auto diagnose =
1962 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError
1963 ? errorOrWarn
1964 : warn;
1965 // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1966 // entries are seen. These cases would otherwise lead to runtime errors
1967 // reported by the dynamic linker.
1968 //
1969 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
1970 // catch more cases. That is too much for us. Our approach resembles the one
1971 // used in ld.gold, achieves a good balance to be useful but not too smart.
1972 for (SharedFile *file : ctx->sharedFiles) {
1973 bool allNeededIsKnown =
1974 llvm::all_of(file->dtNeeded, [&](StringRef needed) {
1975 return symtab->soNames.count(CachedHashStringRef(needed));
1976 });
1977 if (!allNeededIsKnown)
1978 continue;
1979 for (Symbol *sym : file->requiredSymbols)
1980 if (sym->isUndefined() && !sym->isWeak())
1981 diagnose("undefined reference due to --no-allow-shlib-undefined: " +
1982 toString(*sym) + "\n>>> referenced by " + toString(file));
1983 }
1984 }
1985
1986 {
1987 llvm::TimeTraceScope timeScope("Add symbols to symtabs");
1988 // Now that we have defined all possible global symbols including linker-
1989 // synthesized ones. Visit all symbols to give the finishing touches.
1990 for (Symbol *sym : symtab->symbols()) {
1991 if (!sym->isUsedInRegularObj || !includeInSymtab(*sym))
1992 continue;
1993 if (!config->relocatable)
1994 sym->binding = sym->computeBinding();
1995 if (in.symTab)
1996 in.symTab->addSymbol(sym);
1997
1998 if (sym->includeInDynsym()) {
1999 partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
2000 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
2001 if (file->isNeeded && !sym->isUndefined())
2002 addVerneed(sym);
2003 }
2004 }
2005
2006 // We also need to scan the dynamic relocation tables of the other
2007 // partitions and add any referenced symbols to the partition's dynsym.
2008 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
2009 DenseSet<Symbol *> syms;
2010 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
2011 syms.insert(e.sym);
2012 for (DynamicReloc &reloc : part.relaDyn->relocs)
2013 if (reloc.sym && reloc.needsDynSymIndex() &&
2014 syms.insert(reloc.sym).second)
2015 part.dynSymTab->addSymbol(reloc.sym);
2016 }
2017 }
2018
2019 if (in.mipsGot)
2020 in.mipsGot->build();
2021
2022 removeUnusedSyntheticSections();
2023 script->diagnoseOrphanHandling();
2024
2025 sortSections();
2026
2027 // Create a list of OutputSections, assign sectionIndex, and populate
2028 // in.shStrTab.
2029 for (SectionCommand *cmd : script->sectionCommands)
2030 if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
2031 OutputSection *osec = &osd->osec;
2032 outputSections.push_back(osec);
2033 osec->sectionIndex = outputSections.size();
2034 osec->shName = in.shStrTab->addString(osec->name);
2035 }
2036
2037 // Prefer command line supplied address over other constraints.
2038 for (OutputSection *sec : outputSections) {
2039 auto i = config->sectionStartMap.find(sec->name);
2040 if (i != config->sectionStartMap.end())
2041 sec->addrExpr = [=] { return i->second; };
2042 }
2043
2044 // With the outputSections available check for GDPLT relocations
2045 // and add __tls_get_addr symbol if needed.
2046 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) {
2047 Symbol *sym = symtab->addSymbol(Undefined{
2048 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE});
2049 sym->isPreemptible = true;
2050 partitions[0].dynSymTab->addSymbol(sym);
2051 }
2052
2053 // This is a bit of a hack. A value of 0 means undef, so we set it
2054 // to 1 to make __ehdr_start defined. The section number is not
2055 // particularly relevant.
2056 Out::elfHeader->sectionIndex = 1;
2057 Out::elfHeader->size = sizeof(typename ELFT::Ehdr);
2058
2059 // Binary and relocatable output does not have PHDRS.
2060 // The headers have to be created before finalize as that can influence the
2061 // image base and the dynamic section on mips includes the image base.
2062 if (!config->relocatable && !config->oFormatBinary) {
2063 for (Partition &part : partitions) {
2064 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
2065 : createPhdrs(part);
2066 if (config->emachine == EM_ARM) {
2067 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2068 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
2069 }
2070 if (config->emachine == EM_MIPS) {
2071 // Add separate segments for MIPS-specific sections.
2072 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
2073 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
2074 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
2075 }
2076 }
2077 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
2078
2079 // Find the TLS segment. This happens before the section layout loop so that
2080 // Android relocation packing can look up TLS symbol addresses. We only need
2081 // to care about the main partition here because all TLS symbols were moved
2082 // to the main partition (see MarkLive.cpp).
2083 for (PhdrEntry *p : mainPart->phdrs)
2084 if (p->p_type == PT_TLS)
2085 Out::tlsPhdr = p;
2086 }
2087
2088 // Some symbols are defined in term of program headers. Now that we
2089 // have the headers, we can find out which sections they point to.
2090 setReservedSymbolSections();
2091
2092 {
2093 llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2094
2095 finalizeSynthetic(in.bss.get());
2096 finalizeSynthetic(in.bssRelRo.get());
2097 finalizeSynthetic(in.symTabShndx.get());
2098 finalizeSynthetic(in.shStrTab.get());
2099 finalizeSynthetic(in.strTab.get());
2100 finalizeSynthetic(in.got.get());
2101 finalizeSynthetic(in.mipsGot.get());
2102 finalizeSynthetic(in.igotPlt.get());
2103 finalizeSynthetic(in.gotPlt.get());
2104 finalizeSynthetic(in.relaIplt.get());
2105 finalizeSynthetic(in.relaPlt.get());
2106 finalizeSynthetic(in.plt.get());
2107 finalizeSynthetic(in.iplt.get());
2108 finalizeSynthetic(in.ppc32Got2.get());
2109 finalizeSynthetic(in.partIndex.get());
2110
2111 // Dynamic section must be the last one in this list and dynamic
2112 // symbol table section (dynSymTab) must be the first one.
2113 for (Partition &part : partitions) {
2114 if (part.relaDyn) {
2115 // Compute DT_RELACOUNT to be used by part.dynamic.
2116 part.relaDyn->partitionRels();
2117 finalizeSynthetic(part.relaDyn.get());
2118 }
2119
2120 finalizeSynthetic(part.dynSymTab.get());
2121 finalizeSynthetic(part.gnuHashTab.get());
2122 finalizeSynthetic(part.hashTab.get());
2123 finalizeSynthetic(part.verDef.get());
2124 finalizeSynthetic(part.relrDyn.get());
2125 finalizeSynthetic(part.ehFrameHdr.get());
2126 finalizeSynthetic(part.verSym.get());
2127 finalizeSynthetic(part.verNeed.get());
2128 finalizeSynthetic(part.dynamic.get());
2129 }
2130 }
2131
2132 if (!script->hasSectionsCommand && !config->relocatable)
2133 fixSectionAlignments();
2134
2135 // This is used to:
2136 // 1) Create "thunks":
2137 // Jump instructions in many ISAs have small displacements, and therefore
2138 // they cannot jump to arbitrary addresses in memory. For example, RISC-V
2139 // JAL instruction can target only +-1 MiB from PC. It is a linker's
2140 // responsibility to create and insert small pieces of code between
2141 // sections to extend the ranges if jump targets are out of range. Such
2142 // code pieces are called "thunks".
2143 //
2144 // We add thunks at this stage. We couldn't do this before this point
2145 // because this is the earliest point where we know sizes of sections and
2146 // their layouts (that are needed to determine if jump targets are in
2147 // range).
2148 //
2149 // 2) Update the sections. We need to generate content that depends on the
2150 // address of InputSections. For example, MIPS GOT section content or
2151 // android packed relocations sections content.
2152 //
2153 // 3) Assign the final values for the linker script symbols. Linker scripts
2154 // sometimes using forward symbol declarations. We want to set the correct
2155 // values. They also might change after adding the thunks.
2156 finalizeAddressDependentContent();
2157
2158 // All information needed for OutputSection part of Map file is available.
2159 if (errorCount())
2160 return;
2161
2162 {
2163 llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2164 // finalizeAddressDependentContent may have added local symbols to the
2165 // static symbol table.
2166 finalizeSynthetic(in.symTab.get());
2167 finalizeSynthetic(in.ppc64LongBranchTarget.get());
2168 }
2169
2170 // Relaxation to delete inter-basic block jumps created by basic block
2171 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
2172 // can relax jump instructions based on symbol offset.
2173 if (config->optimizeBBJumps)
2174 optimizeBasicBlockJumps();
2175
2176 // Fill other section headers. The dynamic table is finalized
2177 // at the end because some tags like RELSZ depend on result
2178 // of finalizing other sections.
2179 for (OutputSection *sec : outputSections)
2180 sec->finalize();
2181 }
2182
2183 // Ensure data sections are not mixed with executable sections when
2184 // --execute-only is used. --execute-only make pages executable but not
2185 // readable.
checkExecuteOnly()2186 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
2187 if (!config->executeOnly)
2188 return;
2189
2190 SmallVector<InputSection *, 0> storage;
2191 for (OutputSection *osec : outputSections)
2192 if (osec->flags & SHF_EXECINSTR)
2193 for (InputSection *isec : getInputSections(*osec, storage))
2194 if (!(isec->flags & SHF_EXECINSTR))
2195 error("cannot place " + toString(isec) + " into " +
2196 toString(osec->name) +
2197 ": --execute-only does not support intermingling data and code");
2198 }
2199
2200 // The linker is expected to define SECNAME_start and SECNAME_end
2201 // symbols for a few sections. This function defines them.
addStartEndSymbols()2202 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
2203 // If a section does not exist, there's ambiguity as to how we
2204 // define _start and _end symbols for an init/fini section. Since
2205 // the loader assume that the symbols are always defined, we need to
2206 // always define them. But what value? The loader iterates over all
2207 // pointers between _start and _end to run global ctors/dtors, so if
2208 // the section is empty, their symbol values don't actually matter
2209 // as long as _start and _end point to the same location.
2210 //
2211 // That said, we don't want to set the symbols to 0 (which is
2212 // probably the simplest value) because that could cause some
2213 // program to fail to link due to relocation overflow, if their
2214 // program text is above 2 GiB. We use the address of the .text
2215 // section instead to prevent that failure.
2216 //
2217 // In rare situations, the .text section may not exist. If that's the
2218 // case, use the image base address as a last resort.
2219 OutputSection *Default = findSection(".text");
2220 if (!Default)
2221 Default = Out::elfHeader;
2222
2223 auto define = [=](StringRef start, StringRef end, OutputSection *os) {
2224 if (os && !script->isDiscarded(os)) {
2225 addOptionalRegular(start, os, 0);
2226 addOptionalRegular(end, os, -1);
2227 } else {
2228 addOptionalRegular(start, Default, 0);
2229 addOptionalRegular(end, Default, 0);
2230 }
2231 };
2232
2233 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
2234 define("__init_array_start", "__init_array_end", Out::initArray);
2235 define("__fini_array_start", "__fini_array_end", Out::finiArray);
2236
2237 if (OutputSection *sec = findSection(".ARM.exidx"))
2238 define("__exidx_start", "__exidx_end", sec);
2239 }
2240
2241 // If a section name is valid as a C identifier (which is rare because of
2242 // the leading '.'), linkers are expected to define __start_<secname> and
2243 // __stop_<secname> symbols. They are at beginning and end of the section,
2244 // respectively. This is not requested by the ELF standard, but GNU ld and
2245 // gold provide the feature, and used by many programs.
2246 template <class ELFT>
addStartStopSymbols(OutputSection & osec)2247 void Writer<ELFT>::addStartStopSymbols(OutputSection &osec) {
2248 StringRef s = osec.name;
2249 if (!isValidCIdentifier(s))
2250 return;
2251 addOptionalRegular(saver().save("__start_" + s), &osec, 0,
2252 config->zStartStopVisibility);
2253 addOptionalRegular(saver().save("__stop_" + s), &osec, -1,
2254 config->zStartStopVisibility);
2255 }
2256
needsPtLoad(OutputSection * sec)2257 static bool needsPtLoad(OutputSection *sec) {
2258 if (!(sec->flags & SHF_ALLOC))
2259 return false;
2260
2261 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2262 // responsible for allocating space for them, not the PT_LOAD that
2263 // contains the TLS initialization image.
2264 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
2265 return false;
2266 return true;
2267 }
2268
2269 // Linker scripts are responsible for aligning addresses. Unfortunately, most
2270 // linker scripts are designed for creating two PT_LOADs only, one RX and one
2271 // RW. This means that there is no alignment in the RO to RX transition and we
2272 // cannot create a PT_LOAD there.
computeFlags(uint64_t flags)2273 static uint64_t computeFlags(uint64_t flags) {
2274 if (config->omagic)
2275 return PF_R | PF_W | PF_X;
2276 if (config->executeOnly && (flags & PF_X))
2277 return flags & ~PF_R;
2278 if (config->singleRoRx && !(flags & PF_W))
2279 return flags | PF_X;
2280 return flags;
2281 }
2282
2283 // Decide which program headers to create and which sections to include in each
2284 // one.
2285 template <class ELFT>
createPhdrs(Partition & part)2286 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) {
2287 SmallVector<PhdrEntry *, 0> ret;
2288 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2289 ret.push_back(make<PhdrEntry>(type, flags));
2290 return ret.back();
2291 };
2292
2293 unsigned partNo = part.getNumber();
2294 bool isMain = partNo == 1;
2295
2296 // Add the first PT_LOAD segment for regular output sections.
2297 uint64_t flags = computeFlags(PF_R);
2298 PhdrEntry *load = nullptr;
2299
2300 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2301 // PT_LOAD.
2302 if (!config->nmagic && !config->omagic) {
2303 // The first phdr entry is PT_PHDR which describes the program header
2304 // itself.
2305 if (isMain)
2306 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2307 else
2308 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2309
2310 // PT_INTERP must be the second entry if exists.
2311 if (OutputSection *cmd = findSection(".interp", partNo))
2312 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2313
2314 // Add the headers. We will remove them if they don't fit.
2315 // In the other partitions the headers are ordinary sections, so they don't
2316 // need to be added here.
2317 if (isMain) {
2318 load = addHdr(PT_LOAD, flags);
2319 load->add(Out::elfHeader);
2320 load->add(Out::programHeaders);
2321 }
2322 }
2323
2324 // PT_GNU_RELRO includes all sections that should be marked as
2325 // read-only by dynamic linker after processing relocations.
2326 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2327 // an error message if more than one PT_GNU_RELRO PHDR is required.
2328 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2329 bool inRelroPhdr = false;
2330 OutputSection *relroEnd = nullptr;
2331 for (OutputSection *sec : outputSections) {
2332 if (sec->partition != partNo || !needsPtLoad(sec))
2333 continue;
2334 if (isRelroSection(sec)) {
2335 inRelroPhdr = true;
2336 if (!relroEnd)
2337 relRo->add(sec);
2338 else
2339 error("section: " + sec->name + " is not contiguous with other relro" +
2340 " sections");
2341 } else if (inRelroPhdr) {
2342 inRelroPhdr = false;
2343 relroEnd = sec;
2344 }
2345 }
2346
2347 for (OutputSection *sec : outputSections) {
2348 if (!needsPtLoad(sec))
2349 continue;
2350
2351 // Normally, sections in partitions other than the current partition are
2352 // ignored. But partition number 255 is a special case: it contains the
2353 // partition end marker (.part.end). It needs to be added to the main
2354 // partition so that a segment is created for it in the main partition,
2355 // which will cause the dynamic loader to reserve space for the other
2356 // partitions.
2357 if (sec->partition != partNo) {
2358 if (isMain && sec->partition == 255)
2359 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2360 continue;
2361 }
2362
2363 // Segments are contiguous memory regions that has the same attributes
2364 // (e.g. executable or writable). There is one phdr for each segment.
2365 // Therefore, we need to create a new phdr when the next section has
2366 // different flags or is loaded at a discontiguous address or memory
2367 // region using AT or AT> linker script command, respectively. At the same
2368 // time, we don't want to create a separate load segment for the headers,
2369 // even if the first output section has an AT or AT> attribute.
2370 uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2371 bool sameLMARegion =
2372 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
2373 if (!(load && newFlags == flags && sec != relroEnd &&
2374 sec->memRegion == load->firstSec->memRegion &&
2375 (sameLMARegion || load->lastSec == Out::programHeaders))) {
2376 load = addHdr(PT_LOAD, newFlags);
2377 flags = newFlags;
2378 }
2379
2380 load->add(sec);
2381 }
2382
2383 // Add a TLS segment if any.
2384 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2385 for (OutputSection *sec : outputSections)
2386 if (sec->partition == partNo && sec->flags & SHF_TLS)
2387 tlsHdr->add(sec);
2388 if (tlsHdr->firstSec)
2389 ret.push_back(tlsHdr);
2390
2391 // Add an entry for .dynamic.
2392 if (OutputSection *sec = part.dynamic->getParent())
2393 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2394
2395 if (relRo->firstSec)
2396 ret.push_back(relRo);
2397
2398 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2399 if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2400 part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2401 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2402 ->add(part.ehFrameHdr->getParent());
2403
2404 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2405 // the dynamic linker fill the segment with random data.
2406 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2407 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2408
2409 if (config->zGnustack != GnuStackKind::None) {
2410 // PT_GNU_STACK is a special section to tell the loader to make the
2411 // pages for the stack non-executable. If you really want an executable
2412 // stack, you can pass -z execstack, but that's not recommended for
2413 // security reasons.
2414 unsigned perm = PF_R | PF_W;
2415 if (config->zGnustack == GnuStackKind::Exec)
2416 perm |= PF_X;
2417 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2418 }
2419
2420 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2421 // is expected to perform W^X violations, such as calling mprotect(2) or
2422 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2423 // OpenBSD.
2424 if (config->zWxneeded)
2425 addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2426
2427 if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2428 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2429
2430 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2431 // same alignment.
2432 PhdrEntry *note = nullptr;
2433 for (OutputSection *sec : outputSections) {
2434 if (sec->partition != partNo)
2435 continue;
2436 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2437 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
2438 note = addHdr(PT_NOTE, PF_R);
2439 note->add(sec);
2440 } else {
2441 note = nullptr;
2442 }
2443 }
2444 return ret;
2445 }
2446
2447 template <class ELFT>
addPhdrForSection(Partition & part,unsigned shType,unsigned pType,unsigned pFlags)2448 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2449 unsigned pType, unsigned pFlags) {
2450 unsigned partNo = part.getNumber();
2451 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2452 return cmd->partition == partNo && cmd->type == shType;
2453 });
2454 if (i == outputSections.end())
2455 return;
2456
2457 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2458 entry->add(*i);
2459 part.phdrs.push_back(entry);
2460 }
2461
2462 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2463 // This is achieved by assigning an alignment expression to addrExpr of each
2464 // such section.
fixSectionAlignments()2465 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2466 const PhdrEntry *prev;
2467 auto pageAlign = [&](const PhdrEntry *p) {
2468 OutputSection *cmd = p->firstSec;
2469 if (!cmd)
2470 return;
2471 cmd->alignExpr = [align = cmd->alignment]() { return align; };
2472 if (!cmd->addrExpr) {
2473 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2474 // padding in the file contents.
2475 //
2476 // When -z separate-code is used we must not have any overlap in pages
2477 // between an executable segment and a non-executable segment. We align to
2478 // the next maximum page size boundary on transitions between executable
2479 // and non-executable segments.
2480 //
2481 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2482 // sections will be extracted to a separate file. Align to the next
2483 // maximum page size boundary so that we can find the ELF header at the
2484 // start. We cannot benefit from overlapping p_offset ranges with the
2485 // previous segment anyway.
2486 if (config->zSeparate == SeparateSegmentKind::Loadable ||
2487 (config->zSeparate == SeparateSegmentKind::Code && prev &&
2488 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2489 cmd->type == SHT_LLVM_PART_EHDR)
2490 cmd->addrExpr = [] {
2491 return alignToPowerOf2(script->getDot(), config->maxPageSize);
2492 };
2493 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2494 // it must be the RW. Align to p_align(PT_TLS) to make sure
2495 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2496 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2497 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2498 // be congruent to 0 modulo p_align(PT_TLS).
2499 //
2500 // Technically this is not required, but as of 2019, some dynamic loaders
2501 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2502 // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2503 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2504 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2505 // blocks correctly. We need to keep the workaround for a while.
2506 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2507 cmd->addrExpr = [] {
2508 return alignToPowerOf2(script->getDot(), config->maxPageSize) +
2509 alignToPowerOf2(script->getDot() % config->maxPageSize,
2510 Out::tlsPhdr->p_align);
2511 };
2512 else
2513 cmd->addrExpr = [] {
2514 return alignToPowerOf2(script->getDot(), config->maxPageSize) +
2515 script->getDot() % config->maxPageSize;
2516 };
2517 }
2518 };
2519
2520 for (Partition &part : partitions) {
2521 prev = nullptr;
2522 for (const PhdrEntry *p : part.phdrs)
2523 if (p->p_type == PT_LOAD && p->firstSec) {
2524 pageAlign(p);
2525 prev = p;
2526 }
2527 }
2528 }
2529
2530 // Compute an in-file position for a given section. The file offset must be the
2531 // same with its virtual address modulo the page size, so that the loader can
2532 // load executables without any address adjustment.
computeFileOffset(OutputSection * os,uint64_t off)2533 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2534 // The first section in a PT_LOAD has to have congruent offset and address
2535 // modulo the maximum page size.
2536 if (os->ptLoad && os->ptLoad->firstSec == os)
2537 return alignTo(off, os->ptLoad->p_align, os->addr);
2538
2539 // File offsets are not significant for .bss sections other than the first one
2540 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically
2541 // increasing rather than setting to zero.
2542 if (os->type == SHT_NOBITS &&
2543 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os))
2544 return off;
2545
2546 // If the section is not in a PT_LOAD, we just have to align it.
2547 if (!os->ptLoad)
2548 return alignToPowerOf2(off, os->alignment);
2549
2550 // If two sections share the same PT_LOAD the file offset is calculated
2551 // using this formula: Off2 = Off1 + (VA2 - VA1).
2552 OutputSection *first = os->ptLoad->firstSec;
2553 return first->offset + os->addr - first->addr;
2554 }
2555
assignFileOffsetsBinary()2556 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2557 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
2558 auto needsOffset = [](OutputSection &sec) {
2559 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0;
2560 };
2561 uint64_t minAddr = UINT64_MAX;
2562 for (OutputSection *sec : outputSections)
2563 if (needsOffset(*sec)) {
2564 sec->offset = sec->getLMA();
2565 minAddr = std::min(minAddr, sec->offset);
2566 }
2567
2568 // Sections are laid out at LMA minus minAddr.
2569 fileSize = 0;
2570 for (OutputSection *sec : outputSections)
2571 if (needsOffset(*sec)) {
2572 sec->offset -= minAddr;
2573 fileSize = std::max(fileSize, sec->offset + sec->size);
2574 }
2575 }
2576
rangeToString(uint64_t addr,uint64_t len)2577 static std::string rangeToString(uint64_t addr, uint64_t len) {
2578 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2579 }
2580
2581 // Assign file offsets to output sections.
assignFileOffsets()2582 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2583 Out::programHeaders->offset = Out::elfHeader->size;
2584 uint64_t off = Out::elfHeader->size + Out::programHeaders->size;
2585
2586 PhdrEntry *lastRX = nullptr;
2587 for (Partition &part : partitions)
2588 for (PhdrEntry *p : part.phdrs)
2589 if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2590 lastRX = p;
2591
2592 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
2593 // will not occupy file offsets contained by a PT_LOAD.
2594 for (OutputSection *sec : outputSections) {
2595 if (!(sec->flags & SHF_ALLOC))
2596 continue;
2597 off = computeFileOffset(sec, off);
2598 sec->offset = off;
2599 if (sec->type != SHT_NOBITS)
2600 off += sec->size;
2601
2602 // If this is a last section of the last executable segment and that
2603 // segment is the last loadable segment, align the offset of the
2604 // following section to avoid loading non-segments parts of the file.
2605 if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2606 lastRX->lastSec == sec)
2607 off = alignToPowerOf2(off, config->maxPageSize);
2608 }
2609 for (OutputSection *osec : outputSections)
2610 if (!(osec->flags & SHF_ALLOC)) {
2611 osec->offset = alignToPowerOf2(off, osec->alignment);
2612 off = osec->offset + osec->size;
2613 }
2614
2615 sectionHeaderOff = alignToPowerOf2(off, config->wordsize);
2616 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2617
2618 // Our logic assumes that sections have rising VA within the same segment.
2619 // With use of linker scripts it is possible to violate this rule and get file
2620 // offset overlaps or overflows. That should never happen with a valid script
2621 // which does not move the location counter backwards and usually scripts do
2622 // not do that. Unfortunately, there are apps in the wild, for example, Linux
2623 // kernel, which control segment distribution explicitly and move the counter
2624 // backwards, so we have to allow doing that to support linking them. We
2625 // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2626 // we want to prevent file size overflows because it would crash the linker.
2627 for (OutputSection *sec : outputSections) {
2628 if (sec->type == SHT_NOBITS)
2629 continue;
2630 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2631 error("unable to place section " + sec->name + " at file offset " +
2632 rangeToString(sec->offset, sec->size) +
2633 "; check your linker script for overflows");
2634 }
2635 }
2636
2637 // Finalize the program headers. We call this function after we assign
2638 // file offsets and VAs to all sections.
setPhdrs(Partition & part)2639 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2640 for (PhdrEntry *p : part.phdrs) {
2641 OutputSection *first = p->firstSec;
2642 OutputSection *last = p->lastSec;
2643
2644 if (first) {
2645 p->p_filesz = last->offset - first->offset;
2646 if (last->type != SHT_NOBITS)
2647 p->p_filesz += last->size;
2648
2649 p->p_memsz = last->addr + last->size - first->addr;
2650 p->p_offset = first->offset;
2651 p->p_vaddr = first->addr;
2652
2653 // File offsets in partitions other than the main partition are relative
2654 // to the offset of the ELF headers. Perform that adjustment now.
2655 if (part.elfHeader)
2656 p->p_offset -= part.elfHeader->getParent()->offset;
2657
2658 if (!p->hasLMA)
2659 p->p_paddr = first->getLMA();
2660 }
2661
2662 if (p->p_type == PT_GNU_RELRO) {
2663 p->p_align = 1;
2664 // musl/glibc ld.so rounds the size down, so we need to round up
2665 // to protect the last page. This is a no-op on FreeBSD which always
2666 // rounds up.
2667 p->p_memsz =
2668 alignToPowerOf2(p->p_offset + p->p_memsz, config->commonPageSize) -
2669 p->p_offset;
2670 }
2671 }
2672 }
2673
2674 // A helper struct for checkSectionOverlap.
2675 namespace {
2676 struct SectionOffset {
2677 OutputSection *sec;
2678 uint64_t offset;
2679 };
2680 } // namespace
2681
2682 // Check whether sections overlap for a specific address range (file offsets,
2683 // load and virtual addresses).
checkOverlap(StringRef name,std::vector<SectionOffset> & sections,bool isVirtualAddr)2684 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions,
2685 bool isVirtualAddr) {
2686 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2687 return a.offset < b.offset;
2688 });
2689
2690 // Finding overlap is easy given a vector is sorted by start position.
2691 // If an element starts before the end of the previous element, they overlap.
2692 for (size_t i = 1, end = sections.size(); i < end; ++i) {
2693 SectionOffset a = sections[i - 1];
2694 SectionOffset b = sections[i];
2695 if (b.offset >= a.offset + a.sec->size)
2696 continue;
2697
2698 // If both sections are in OVERLAY we allow the overlapping of virtual
2699 // addresses, because it is what OVERLAY was designed for.
2700 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2701 continue;
2702
2703 errorOrWarn("section " + a.sec->name + " " + name +
2704 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2705 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2706 b.sec->name + " range is " +
2707 rangeToString(b.offset, b.sec->size));
2708 }
2709 }
2710
2711 // Check for overlapping sections and address overflows.
2712 //
2713 // In this function we check that none of the output sections have overlapping
2714 // file offsets. For SHF_ALLOC sections we also check that the load address
2715 // ranges and the virtual address ranges don't overlap
checkSections()2716 template <class ELFT> void Writer<ELFT>::checkSections() {
2717 // First, check that section's VAs fit in available address space for target.
2718 for (OutputSection *os : outputSections)
2719 if ((os->addr + os->size < os->addr) ||
2720 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
2721 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2722 " of size 0x" + utohexstr(os->size) +
2723 " exceeds available address space");
2724
2725 // Check for overlapping file offsets. In this case we need to skip any
2726 // section marked as SHT_NOBITS. These sections don't actually occupy space in
2727 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2728 // binary is specified only add SHF_ALLOC sections are added to the output
2729 // file so we skip any non-allocated sections in that case.
2730 std::vector<SectionOffset> fileOffs;
2731 for (OutputSection *sec : outputSections)
2732 if (sec->size > 0 && sec->type != SHT_NOBITS &&
2733 (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2734 fileOffs.push_back({sec, sec->offset});
2735 checkOverlap("file", fileOffs, false);
2736
2737 // When linking with -r there is no need to check for overlapping virtual/load
2738 // addresses since those addresses will only be assigned when the final
2739 // executable/shared object is created.
2740 if (config->relocatable)
2741 return;
2742
2743 // Checking for overlapping virtual and load addresses only needs to take
2744 // into account SHF_ALLOC sections since others will not be loaded.
2745 // Furthermore, we also need to skip SHF_TLS sections since these will be
2746 // mapped to other addresses at runtime and can therefore have overlapping
2747 // ranges in the file.
2748 std::vector<SectionOffset> vmas;
2749 for (OutputSection *sec : outputSections)
2750 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2751 vmas.push_back({sec, sec->addr});
2752 checkOverlap("virtual address", vmas, true);
2753
2754 // Finally, check that the load addresses don't overlap. This will usually be
2755 // the same as the virtual addresses but can be different when using a linker
2756 // script with AT().
2757 std::vector<SectionOffset> lmas;
2758 for (OutputSection *sec : outputSections)
2759 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2760 lmas.push_back({sec, sec->getLMA()});
2761 checkOverlap("load address", lmas, false);
2762 }
2763
2764 // The entry point address is chosen in the following ways.
2765 //
2766 // 1. the '-e' entry command-line option;
2767 // 2. the ENTRY(symbol) command in a linker control script;
2768 // 3. the value of the symbol _start, if present;
2769 // 4. the number represented by the entry symbol, if it is a number;
2770 // 5. the address 0.
getEntryAddr()2771 static uint64_t getEntryAddr() {
2772 // Case 1, 2 or 3
2773 if (Symbol *b = symtab->find(config->entry))
2774 return b->getVA();
2775
2776 // Case 4
2777 uint64_t addr;
2778 if (to_integer(config->entry, addr))
2779 return addr;
2780
2781 // Case 5
2782 if (config->warnMissingEntry)
2783 warn("cannot find entry symbol " + config->entry +
2784 "; not setting start address");
2785 return 0;
2786 }
2787
getELFType()2788 static uint16_t getELFType() {
2789 if (config->isPic)
2790 return ET_DYN;
2791 if (config->relocatable)
2792 return ET_REL;
2793 return ET_EXEC;
2794 }
2795
writeHeader()2796 template <class ELFT> void Writer<ELFT>::writeHeader() {
2797 writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2798 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2799
2800 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2801 eHdr->e_type = getELFType();
2802 eHdr->e_entry = getEntryAddr();
2803 eHdr->e_shoff = sectionHeaderOff;
2804
2805 // Write the section header table.
2806 //
2807 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2808 // and e_shstrndx fields. When the value of one of these fields exceeds
2809 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2810 // use fields in the section header at index 0 to store
2811 // the value. The sentinel values and fields are:
2812 // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2813 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2814 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2815 size_t num = outputSections.size() + 1;
2816 if (num >= SHN_LORESERVE)
2817 sHdrs->sh_size = num;
2818 else
2819 eHdr->e_shnum = num;
2820
2821 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2822 if (strTabIndex >= SHN_LORESERVE) {
2823 sHdrs->sh_link = strTabIndex;
2824 eHdr->e_shstrndx = SHN_XINDEX;
2825 } else {
2826 eHdr->e_shstrndx = strTabIndex;
2827 }
2828
2829 for (OutputSection *sec : outputSections)
2830 sec->writeHeaderTo<ELFT>(++sHdrs);
2831 }
2832
2833 // Open a result file.
openFile()2834 template <class ELFT> void Writer<ELFT>::openFile() {
2835 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2836 if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2837 std::string msg;
2838 raw_string_ostream s(msg);
2839 s << "output file too large: " << Twine(fileSize) << " bytes\n"
2840 << "section sizes:\n";
2841 for (OutputSection *os : outputSections)
2842 s << os->name << ' ' << os->size << "\n";
2843 error(s.str());
2844 return;
2845 }
2846
2847 unlinkAsync(config->outputFile);
2848 unsigned flags = 0;
2849 if (!config->relocatable)
2850 flags |= FileOutputBuffer::F_executable;
2851 if (!config->mmapOutputFile)
2852 flags |= FileOutputBuffer::F_no_mmap;
2853 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2854 FileOutputBuffer::create(config->outputFile, fileSize, flags);
2855
2856 if (!bufferOrErr) {
2857 error("failed to open " + config->outputFile + ": " +
2858 llvm::toString(bufferOrErr.takeError()));
2859 return;
2860 }
2861 buffer = std::move(*bufferOrErr);
2862 Out::bufferStart = buffer->getBufferStart();
2863 }
2864
writeSectionsBinary()2865 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2866 for (OutputSection *sec : outputSections)
2867 if (sec->flags & SHF_ALLOC)
2868 sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2869 }
2870
fillTrap(uint8_t * i,uint8_t * end)2871 static void fillTrap(uint8_t *i, uint8_t *end) {
2872 for (; i + 4 <= end; i += 4)
2873 memcpy(i, &target->trapInstr, 4);
2874 }
2875
2876 // Fill the last page of executable segments with trap instructions
2877 // instead of leaving them as zero. Even though it is not required by any
2878 // standard, it is in general a good thing to do for security reasons.
2879 //
2880 // We'll leave other pages in segments as-is because the rest will be
2881 // overwritten by output sections.
writeTrapInstr()2882 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2883 for (Partition &part : partitions) {
2884 // Fill the last page.
2885 for (PhdrEntry *p : part.phdrs)
2886 if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2887 fillTrap(Out::bufferStart +
2888 alignDown(p->firstSec->offset + p->p_filesz, 4),
2889 Out::bufferStart +
2890 alignToPowerOf2(p->firstSec->offset + p->p_filesz,
2891 config->maxPageSize));
2892
2893 // Round up the file size of the last segment to the page boundary iff it is
2894 // an executable segment to ensure that other tools don't accidentally
2895 // trim the instruction padding (e.g. when stripping the file).
2896 PhdrEntry *last = nullptr;
2897 for (PhdrEntry *p : part.phdrs)
2898 if (p->p_type == PT_LOAD)
2899 last = p;
2900
2901 if (last && (last->p_flags & PF_X))
2902 last->p_memsz = last->p_filesz =
2903 alignToPowerOf2(last->p_filesz, config->maxPageSize);
2904 }
2905 }
2906
2907 // Write section contents to a mmap'ed file.
writeSections()2908 template <class ELFT> void Writer<ELFT>::writeSections() {
2909 llvm::TimeTraceScope timeScope("Write sections");
2910
2911 // In -r or --emit-relocs mode, write the relocation sections first as in
2912 // ELf_Rel targets we might find out that we need to modify the relocated
2913 // section while doing it.
2914 for (OutputSection *sec : outputSections)
2915 if (sec->type == SHT_REL || sec->type == SHT_RELA)
2916 sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2917
2918 for (OutputSection *sec : outputSections)
2919 if (sec->type != SHT_REL && sec->type != SHT_RELA)
2920 sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2921
2922 // Finally, check that all dynamic relocation addends were written correctly.
2923 if (config->checkDynamicRelocs && config->writeAddends) {
2924 for (OutputSection *sec : outputSections)
2925 if (sec->type == SHT_REL || sec->type == SHT_RELA)
2926 sec->checkDynRelAddends(Out::bufferStart);
2927 }
2928 }
2929
2930 // Computes a hash value of Data using a given hash function.
2931 // In order to utilize multiple cores, we first split data into 1MB
2932 // chunks, compute a hash for each chunk, and then compute a hash value
2933 // of the hash values.
2934 static void
computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,llvm::ArrayRef<uint8_t> data,std::function<void (uint8_t * dest,ArrayRef<uint8_t> arr)> hashFn)2935 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
2936 llvm::ArrayRef<uint8_t> data,
2937 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
2938 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
2939 const size_t hashesSize = chunks.size() * hashBuf.size();
2940 std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]);
2941
2942 // Compute hash values.
2943 parallelFor(0, chunks.size(), [&](size_t i) {
2944 hashFn(hashes.get() + i * hashBuf.size(), chunks[i]);
2945 });
2946
2947 // Write to the final output buffer.
2948 hashFn(hashBuf.data(), makeArrayRef(hashes.get(), hashesSize));
2949 }
2950
writeBuildId()2951 template <class ELFT> void Writer<ELFT>::writeBuildId() {
2952 if (!mainPart->buildId || !mainPart->buildId->getParent())
2953 return;
2954
2955 if (config->buildId == BuildIdKind::Hexstring) {
2956 for (Partition &part : partitions)
2957 part.buildId->writeBuildId(config->buildIdVector);
2958 return;
2959 }
2960
2961 // Compute a hash of all sections of the output file.
2962 size_t hashSize = mainPart->buildId->hashSize;
2963 std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]);
2964 MutableArrayRef<uint8_t> output(buildId.get(), hashSize);
2965 llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)};
2966
2967 // Fedora introduced build ID as "approximation of true uniqueness across all
2968 // binaries that might be used by overlapping sets of people". It does not
2969 // need some security goals that some hash algorithms strive to provide, e.g.
2970 // (second-)preimage and collision resistance. In practice people use 'md5'
2971 // and 'sha1' just for different lengths. Implement them with the more
2972 // efficient BLAKE3.
2973 switch (config->buildId) {
2974 case BuildIdKind::Fast:
2975 computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
2976 write64le(dest, xxHash64(arr));
2977 });
2978 break;
2979 case BuildIdKind::Md5:
2980 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2981 memcpy(dest, BLAKE3::hash<16>(arr).data(), hashSize);
2982 });
2983 break;
2984 case BuildIdKind::Sha1:
2985 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2986 memcpy(dest, BLAKE3::hash<20>(arr).data(), hashSize);
2987 });
2988 break;
2989 case BuildIdKind::Uuid:
2990 if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize))
2991 error("entropy source failure: " + ec.message());
2992 break;
2993 default:
2994 llvm_unreachable("unknown BuildIdKind");
2995 }
2996 for (Partition &part : partitions)
2997 part.buildId->writeBuildId(output);
2998 }
2999
3000 template void elf::createSyntheticSections<ELF32LE>();
3001 template void elf::createSyntheticSections<ELF32BE>();
3002 template void elf::createSyntheticSections<ELF64LE>();
3003 template void elf::createSyntheticSections<ELF64BE>();
3004
3005 template void elf::writeResult<ELF32LE>();
3006 template void elf::writeResult<ELF32BE>();
3007 template void elf::writeResult<ELF64LE>();
3008 template void elf::writeResult<ELF64BE>();
3009