1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Arrays.h" 23 #include "lld/Common/Filesystem.h" 24 #include "lld/Common/Memory.h" 25 #include "lld/Common/Strings.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/Support/Parallel.h" 29 #include "llvm/Support/RandomNumberGenerator.h" 30 #include "llvm/Support/SHA1.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include "llvm/Support/xxhash.h" 33 #include <climits> 34 35 #define DEBUG_TYPE "lld" 36 37 using namespace llvm; 38 using namespace llvm::ELF; 39 using namespace llvm::object; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::elf; 44 45 namespace { 46 // The writer writes a SymbolTable result to a file. 47 template <class ELFT> class Writer { 48 public: 49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 50 51 Writer() : buffer(errorHandler().outputBuffer) {} 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 59 void sortSections(); 60 void resolveShfLinkOrder(); 61 void finalizeAddressDependentContent(); 62 void optimizeBasicBlockJumps(); 63 void sortInputSections(); 64 void finalizeSections(); 65 void checkExecuteOnly(); 66 void setReservedSymbolSections(); 67 68 std::vector<PhdrEntry *> createPhdrs(Partition &part); 69 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 70 unsigned pFlags); 71 void assignFileOffsets(); 72 void assignFileOffsetsBinary(); 73 void setPhdrs(Partition &part); 74 void checkSections(); 75 void fixSectionAlignments(); 76 void openFile(); 77 void writeTrapInstr(); 78 void writeHeader(); 79 void writeSections(); 80 void writeSectionsBinary(); 81 void writeBuildId(); 82 83 std::unique_ptr<FileOutputBuffer> &buffer; 84 85 void addRelIpltSymbols(); 86 void addStartEndSymbols(); 87 void addStartStopSymbols(OutputSection *sec); 88 89 uint64_t fileSize; 90 uint64_t sectionHeaderOff; 91 }; 92 } // anonymous namespace 93 94 static bool needsInterpSection() { 95 return !config->relocatable && !config->shared && 96 !config->dynamicLinker.empty() && script->needsInterpSection(); 97 } 98 99 template <class ELFT> void elf::writeResult() { 100 Writer<ELFT>().run(); 101 } 102 103 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 104 auto it = std::stable_partition( 105 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 106 if (p->p_type != PT_LOAD) 107 return true; 108 if (!p->firstSec) 109 return false; 110 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 111 return size != 0; 112 }); 113 114 // Clear OutputSection::ptLoad for sections contained in removed 115 // segments. 116 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 117 for (OutputSection *sec : outputSections) 118 if (removed.count(sec->ptLoad)) 119 sec->ptLoad = nullptr; 120 phdrs.erase(it, phdrs.end()); 121 } 122 123 void elf::copySectionsIntoPartitions() { 124 std::vector<InputSectionBase *> newSections; 125 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 126 for (InputSectionBase *s : inputSections) { 127 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 128 continue; 129 InputSectionBase *copy; 130 if (s->type == SHT_NOTE) 131 copy = make<InputSection>(cast<InputSection>(*s)); 132 else if (auto *es = dyn_cast<EhInputSection>(s)) 133 copy = make<EhInputSection>(*es); 134 else 135 continue; 136 copy->partition = part; 137 newSections.push_back(copy); 138 } 139 } 140 141 inputSections.insert(inputSections.end(), newSections.begin(), 142 newSections.end()); 143 } 144 145 void elf::combineEhSections() { 146 llvm::TimeTraceScope timeScope("Combine EH sections"); 147 for (InputSectionBase *&s : inputSections) { 148 // Ignore dead sections and the partition end marker (.part.end), 149 // whose partition number is out of bounds. 150 if (!s->isLive() || s->partition == 255) 151 continue; 152 153 Partition &part = s->getPartition(); 154 if (auto *es = dyn_cast<EhInputSection>(s)) { 155 part.ehFrame->addSection(es); 156 s = nullptr; 157 } else if (s->kind() == SectionBase::Regular && part.armExidx && 158 part.armExidx->addSection(cast<InputSection>(s))) { 159 s = nullptr; 160 } 161 } 162 163 llvm::erase_value(inputSections, nullptr); 164 } 165 166 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 167 uint64_t val, uint8_t stOther = STV_HIDDEN) { 168 Symbol *s = symtab->find(name); 169 if (!s || s->isDefined()) 170 return nullptr; 171 172 s->resolve(Defined{/*file=*/nullptr, name, STB_GLOBAL, stOther, STT_NOTYPE, 173 val, 174 /*size=*/0, sec}); 175 return cast<Defined>(s); 176 } 177 178 static Defined *addAbsolute(StringRef name) { 179 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 180 STT_NOTYPE, 0, 0, nullptr}); 181 return cast<Defined>(sym); 182 } 183 184 // The linker is expected to define some symbols depending on 185 // the linking result. This function defines such symbols. 186 void elf::addReservedSymbols() { 187 if (config->emachine == EM_MIPS) { 188 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 189 // so that it points to an absolute address which by default is relative 190 // to GOT. Default offset is 0x7ff0. 191 // See "Global Data Symbols" in Chapter 6 in the following document: 192 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 193 ElfSym::mipsGp = addAbsolute("_gp"); 194 195 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 196 // start of function and 'gp' pointer into GOT. 197 if (symtab->find("_gp_disp")) 198 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 199 200 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 201 // pointer. This symbol is used in the code generated by .cpload pseudo-op 202 // in case of using -mno-shared option. 203 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 204 if (symtab->find("__gnu_local_gp")) 205 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 206 } else if (config->emachine == EM_PPC) { 207 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 208 // support Small Data Area, define it arbitrarily as 0. 209 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 210 } else if (config->emachine == EM_PPC64) { 211 addPPC64SaveRestore(); 212 } 213 214 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 215 // combines the typical ELF GOT with the small data sections. It commonly 216 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 217 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 218 // represent the TOC base which is offset by 0x8000 bytes from the start of 219 // the .got section. 220 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 221 // correctness of some relocations depends on its value. 222 StringRef gotSymName = 223 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 224 225 if (Symbol *s = symtab->find(gotSymName)) { 226 if (s->isDefined()) { 227 error(toString(s->file) + " cannot redefine linker defined symbol '" + 228 gotSymName + "'"); 229 return; 230 } 231 232 uint64_t gotOff = 0; 233 if (config->emachine == EM_PPC64) 234 gotOff = 0x8000; 235 236 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 237 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 238 ElfSym::globalOffsetTable = cast<Defined>(s); 239 } 240 241 // __ehdr_start is the location of ELF file headers. Note that we define 242 // this symbol unconditionally even when using a linker script, which 243 // differs from the behavior implemented by GNU linker which only define 244 // this symbol if ELF headers are in the memory mapped segment. 245 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 246 247 // __executable_start is not documented, but the expectation of at 248 // least the Android libc is that it points to the ELF header. 249 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 250 251 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 252 // each DSO. The address of the symbol doesn't matter as long as they are 253 // different in different DSOs, so we chose the start address of the DSO. 254 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 255 256 // If linker script do layout we do not need to create any standard symbols. 257 if (script->hasSectionsCommand) 258 return; 259 260 auto add = [](StringRef s, int64_t pos) { 261 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 262 }; 263 264 ElfSym::bss = add("__bss_start", 0); 265 ElfSym::end1 = add("end", -1); 266 ElfSym::end2 = add("_end", -1); 267 ElfSym::etext1 = add("etext", -1); 268 ElfSym::etext2 = add("_etext", -1); 269 ElfSym::edata1 = add("edata", -1); 270 ElfSym::edata2 = add("_edata", -1); 271 } 272 273 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 274 for (BaseCommand *base : script->sectionCommands) 275 if (auto *sec = dyn_cast<OutputSection>(base)) 276 if (sec->name == name && sec->partition == partition) 277 return sec; 278 return nullptr; 279 } 280 281 template <class ELFT> void elf::createSyntheticSections() { 282 // Initialize all pointers with NULL. This is needed because 283 // you can call lld::elf::main more than once as a library. 284 memset(&Out::first, 0, sizeof(Out)); 285 286 // Add the .interp section first because it is not a SyntheticSection. 287 // The removeUnusedSyntheticSections() function relies on the 288 // SyntheticSections coming last. 289 if (needsInterpSection()) { 290 for (size_t i = 1; i <= partitions.size(); ++i) { 291 InputSection *sec = createInterpSection(); 292 sec->partition = i; 293 inputSections.push_back(sec); 294 } 295 } 296 297 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 298 299 in.shStrTab = make<StringTableSection>(".shstrtab", false); 300 301 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 302 Out::programHeaders->alignment = config->wordsize; 303 304 if (config->strip != StripPolicy::All) { 305 in.strTab = make<StringTableSection>(".strtab", false); 306 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 307 in.symTabShndx = make<SymtabShndxSection>(); 308 } 309 310 in.bss = make<BssSection>(".bss", 0, 1); 311 add(in.bss); 312 313 // If there is a SECTIONS command and a .data.rel.ro section name use name 314 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 315 // This makes sure our relro is contiguous. 316 bool hasDataRelRo = 317 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 318 in.bssRelRo = 319 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 320 add(in.bssRelRo); 321 322 // Add MIPS-specific sections. 323 if (config->emachine == EM_MIPS) { 324 if (!config->shared && config->hasDynSymTab) { 325 in.mipsRldMap = make<MipsRldMapSection>(); 326 add(in.mipsRldMap); 327 } 328 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 329 add(sec); 330 if (auto *sec = MipsOptionsSection<ELFT>::create()) 331 add(sec); 332 if (auto *sec = MipsReginfoSection<ELFT>::create()) 333 add(sec); 334 } 335 336 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 337 338 for (Partition &part : partitions) { 339 auto add = [&](SyntheticSection *sec) { 340 sec->partition = part.getNumber(); 341 inputSections.push_back(sec); 342 }; 343 344 if (!part.name.empty()) { 345 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 346 part.elfHeader->name = part.name; 347 add(part.elfHeader); 348 349 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 350 add(part.programHeaders); 351 } 352 353 if (config->buildId != BuildIdKind::None) { 354 part.buildId = make<BuildIdSection>(); 355 add(part.buildId); 356 } 357 358 part.dynStrTab = make<StringTableSection>(".dynstr", true); 359 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 360 part.dynamic = make<DynamicSection<ELFT>>(); 361 if (config->androidPackDynRelocs) 362 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 363 else 364 part.relaDyn = 365 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 366 367 if (config->hasDynSymTab) { 368 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 369 add(part.dynSymTab); 370 371 part.verSym = make<VersionTableSection>(); 372 add(part.verSym); 373 374 if (!namedVersionDefs().empty()) { 375 part.verDef = make<VersionDefinitionSection>(); 376 add(part.verDef); 377 } 378 379 part.verNeed = make<VersionNeedSection<ELFT>>(); 380 add(part.verNeed); 381 382 if (config->gnuHash) { 383 part.gnuHashTab = make<GnuHashTableSection>(); 384 add(part.gnuHashTab); 385 } 386 387 if (config->sysvHash) { 388 part.hashTab = make<HashTableSection>(); 389 add(part.hashTab); 390 } 391 392 add(part.dynamic); 393 add(part.dynStrTab); 394 add(part.relaDyn); 395 } 396 397 if (config->relrPackDynRelocs) { 398 part.relrDyn = make<RelrSection<ELFT>>(); 399 add(part.relrDyn); 400 } 401 402 if (!config->relocatable) { 403 if (config->ehFrameHdr) { 404 part.ehFrameHdr = make<EhFrameHeader>(); 405 add(part.ehFrameHdr); 406 } 407 part.ehFrame = make<EhFrameSection>(); 408 add(part.ehFrame); 409 } 410 411 if (config->emachine == EM_ARM && !config->relocatable) { 412 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 413 // InputSections. 414 part.armExidx = make<ARMExidxSyntheticSection>(); 415 add(part.armExidx); 416 } 417 } 418 419 if (partitions.size() != 1) { 420 // Create the partition end marker. This needs to be in partition number 255 421 // so that it is sorted after all other partitions. It also has other 422 // special handling (see createPhdrs() and combineEhSections()). 423 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 424 in.partEnd->partition = 255; 425 add(in.partEnd); 426 427 in.partIndex = make<PartitionIndexSection>(); 428 addOptionalRegular("__part_index_begin", in.partIndex, 0); 429 addOptionalRegular("__part_index_end", in.partIndex, 430 in.partIndex->getSize()); 431 add(in.partIndex); 432 } 433 434 // Add .got. MIPS' .got is so different from the other archs, 435 // it has its own class. 436 if (config->emachine == EM_MIPS) { 437 in.mipsGot = make<MipsGotSection>(); 438 add(in.mipsGot); 439 } else { 440 in.got = make<GotSection>(); 441 add(in.got); 442 } 443 444 if (config->emachine == EM_PPC) { 445 in.ppc32Got2 = make<PPC32Got2Section>(); 446 add(in.ppc32Got2); 447 } 448 449 if (config->emachine == EM_PPC64) { 450 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 451 add(in.ppc64LongBranchTarget); 452 } 453 454 in.gotPlt = make<GotPltSection>(); 455 add(in.gotPlt); 456 in.igotPlt = make<IgotPltSection>(); 457 add(in.igotPlt); 458 459 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 460 // it as a relocation and ensure the referenced section is created. 461 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 462 if (target->gotBaseSymInGotPlt) 463 in.gotPlt->hasGotPltOffRel = true; 464 else 465 in.got->hasGotOffRel = true; 466 } 467 468 if (config->gdbIndex) 469 add(GdbIndexSection::create<ELFT>()); 470 471 // We always need to add rel[a].plt to output if it has entries. 472 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 473 in.relaPlt = make<RelocationSection<ELFT>>( 474 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 475 add(in.relaPlt); 476 477 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 478 // relocations are processed last by the dynamic loader. We cannot place the 479 // iplt section in .rel.dyn when Android relocation packing is enabled because 480 // that would cause a section type mismatch. However, because the Android 481 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 482 // behaviour by placing the iplt section in .rel.plt. 483 in.relaIplt = make<RelocationSection<ELFT>>( 484 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 485 /*sort=*/false); 486 add(in.relaIplt); 487 488 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 489 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 490 in.ibtPlt = make<IBTPltSection>(); 491 add(in.ibtPlt); 492 } 493 494 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 495 : make<PltSection>(); 496 add(in.plt); 497 in.iplt = make<IpltSection>(); 498 add(in.iplt); 499 500 if (config->andFeatures) 501 add(make<GnuPropertySection>()); 502 503 // .note.GNU-stack is always added when we are creating a re-linkable 504 // object file. Other linkers are using the presence of this marker 505 // section to control the executable-ness of the stack area, but that 506 // is irrelevant these days. Stack area should always be non-executable 507 // by default. So we emit this section unconditionally. 508 if (config->relocatable) 509 add(make<GnuStackSection>()); 510 511 if (in.symTab) 512 add(in.symTab); 513 if (in.symTabShndx) 514 add(in.symTabShndx); 515 add(in.shStrTab); 516 if (in.strTab) 517 add(in.strTab); 518 } 519 520 // The main function of the writer. 521 template <class ELFT> void Writer<ELFT>::run() { 522 copyLocalSymbols(); 523 524 if (config->copyRelocs) 525 addSectionSymbols(); 526 527 // Now that we have a complete set of output sections. This function 528 // completes section contents. For example, we need to add strings 529 // to the string table, and add entries to .got and .plt. 530 // finalizeSections does that. 531 finalizeSections(); 532 checkExecuteOnly(); 533 if (errorCount()) 534 return; 535 536 // If --compressed-debug-sections is specified, compress .debug_* sections. 537 // Do it right now because it changes the size of output sections. 538 for (OutputSection *sec : outputSections) 539 sec->maybeCompress<ELFT>(); 540 541 if (script->hasSectionsCommand) 542 script->allocateHeaders(mainPart->phdrs); 543 544 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 545 // 0 sized region. This has to be done late since only after assignAddresses 546 // we know the size of the sections. 547 for (Partition &part : partitions) 548 removeEmptyPTLoad(part.phdrs); 549 550 if (!config->oFormatBinary) 551 assignFileOffsets(); 552 else 553 assignFileOffsetsBinary(); 554 555 for (Partition &part : partitions) 556 setPhdrs(part); 557 558 if (config->relocatable) 559 for (OutputSection *sec : outputSections) 560 sec->addr = 0; 561 562 // Handle --print-map(-M)/--Map, --why-extract=, --cref and 563 // --print-archive-stats=. Dump them before checkSections() because the files 564 // may be useful in case checkSections() or openFile() fails, for example, due 565 // to an erroneous file size. 566 writeMapFile(); 567 writeWhyExtract(); 568 writeCrossReferenceTable(); 569 writeArchiveStats(); 570 571 if (config->checkSections) 572 checkSections(); 573 574 // It does not make sense try to open the file if we have error already. 575 if (errorCount()) 576 return; 577 578 { 579 llvm::TimeTraceScope timeScope("Write output file"); 580 // Write the result down to a file. 581 openFile(); 582 if (errorCount()) 583 return; 584 585 if (!config->oFormatBinary) { 586 if (config->zSeparate != SeparateSegmentKind::None) 587 writeTrapInstr(); 588 writeHeader(); 589 writeSections(); 590 } else { 591 writeSectionsBinary(); 592 } 593 594 // Backfill .note.gnu.build-id section content. This is done at last 595 // because the content is usually a hash value of the entire output file. 596 writeBuildId(); 597 if (errorCount()) 598 return; 599 600 if (auto e = buffer->commit()) 601 error("failed to write to the output file: " + toString(std::move(e))); 602 } 603 } 604 605 template <class ELFT, class RelTy> 606 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 607 llvm::ArrayRef<RelTy> rels) { 608 for (const RelTy &rel : rels) { 609 Symbol &sym = file->getRelocTargetSym(rel); 610 if (sym.isLocal()) 611 sym.used = true; 612 } 613 } 614 615 // The function ensures that the "used" field of local symbols reflects the fact 616 // that the symbol is used in a relocation from a live section. 617 template <class ELFT> static void markUsedLocalSymbols() { 618 // With --gc-sections, the field is already filled. 619 // See MarkLive<ELFT>::resolveReloc(). 620 if (config->gcSections) 621 return; 622 // Without --gc-sections, the field is initialized with "true". 623 // Drop the flag first and then rise for symbols referenced in relocations. 624 for (InputFile *file : objectFiles) { 625 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 626 for (Symbol *b : f->getLocalSymbols()) 627 b->used = false; 628 for (InputSectionBase *s : f->getSections()) { 629 InputSection *isec = dyn_cast_or_null<InputSection>(s); 630 if (!isec) 631 continue; 632 if (isec->type == SHT_REL) 633 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 634 else if (isec->type == SHT_RELA) 635 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 636 } 637 } 638 } 639 640 static bool shouldKeepInSymtab(const Defined &sym) { 641 if (sym.isSection()) 642 return false; 643 644 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 645 // from live sections. 646 if (config->copyRelocs && sym.used) 647 return true; 648 649 // Exclude local symbols pointing to .ARM.exidx sections. 650 // They are probably mapping symbols "$d", which are optional for these 651 // sections. After merging the .ARM.exidx sections, some of these symbols 652 // may become dangling. The easiest way to avoid the issue is not to add 653 // them to the symbol table from the beginning. 654 if (config->emachine == EM_ARM && sym.section && 655 sym.section->type == SHT_ARM_EXIDX) 656 return false; 657 658 if (config->discard == DiscardPolicy::None) 659 return true; 660 if (config->discard == DiscardPolicy::All) 661 return false; 662 663 // In ELF assembly .L symbols are normally discarded by the assembler. 664 // If the assembler fails to do so, the linker discards them if 665 // * --discard-locals is used. 666 // * The symbol is in a SHF_MERGE section, which is normally the reason for 667 // the assembler keeping the .L symbol. 668 if (sym.getName().startswith(".L") && 669 (config->discard == DiscardPolicy::Locals || 670 (sym.section && (sym.section->flags & SHF_MERGE)))) 671 return false; 672 return true; 673 } 674 675 static bool includeInSymtab(const Symbol &b) { 676 if (!b.isLocal() && !b.isUsedInRegularObj) 677 return false; 678 679 if (auto *d = dyn_cast<Defined>(&b)) { 680 // Always include absolute symbols. 681 SectionBase *sec = d->section; 682 if (!sec) 683 return true; 684 sec = sec->repl; 685 686 // Exclude symbols pointing to garbage-collected sections. 687 if (isa<InputSectionBase>(sec) && !sec->isLive()) 688 return false; 689 690 if (auto *s = dyn_cast<MergeInputSection>(sec)) 691 if (!s->getSectionPiece(d->value)->live) 692 return false; 693 return true; 694 } 695 return b.used; 696 } 697 698 // Local symbols are not in the linker's symbol table. This function scans 699 // each object file's symbol table to copy local symbols to the output. 700 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 701 if (!in.symTab) 702 return; 703 llvm::TimeTraceScope timeScope("Add local symbols"); 704 if (config->copyRelocs && config->discard != DiscardPolicy::None) 705 markUsedLocalSymbols<ELFT>(); 706 for (InputFile *file : objectFiles) { 707 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 708 for (Symbol *b : f->getLocalSymbols()) { 709 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 710 auto *dr = dyn_cast<Defined>(b); 711 712 // No reason to keep local undefined symbol in symtab. 713 if (!dr) 714 continue; 715 if (!includeInSymtab(*b)) 716 continue; 717 if (!shouldKeepInSymtab(*dr)) 718 continue; 719 in.symTab->addSymbol(b); 720 } 721 } 722 } 723 724 // Create a section symbol for each output section so that we can represent 725 // relocations that point to the section. If we know that no relocation is 726 // referring to a section (that happens if the section is a synthetic one), we 727 // don't create a section symbol for that section. 728 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 729 for (BaseCommand *base : script->sectionCommands) { 730 auto *sec = dyn_cast<OutputSection>(base); 731 if (!sec) 732 continue; 733 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 734 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 735 return !isd->sections.empty(); 736 return false; 737 }); 738 if (i == sec->sectionCommands.end()) 739 continue; 740 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 741 742 // Relocations are not using REL[A] section symbols. 743 if (isec->type == SHT_REL || isec->type == SHT_RELA) 744 continue; 745 746 // Unlike other synthetic sections, mergeable output sections contain data 747 // copied from input sections, and there may be a relocation pointing to its 748 // contents if -r or --emit-reloc is given. 749 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 750 continue; 751 752 // Set the symbol to be relative to the output section so that its st_value 753 // equals the output section address. Note, there may be a gap between the 754 // start of the output section and isec. 755 auto *sym = 756 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 757 /*value=*/0, /*size=*/0, isec->getOutputSection()); 758 in.symTab->addSymbol(sym); 759 } 760 } 761 762 // Today's loaders have a feature to make segments read-only after 763 // processing dynamic relocations to enhance security. PT_GNU_RELRO 764 // is defined for that. 765 // 766 // This function returns true if a section needs to be put into a 767 // PT_GNU_RELRO segment. 768 static bool isRelroSection(const OutputSection *sec) { 769 if (!config->zRelro) 770 return false; 771 772 uint64_t flags = sec->flags; 773 774 // Non-allocatable or non-writable sections don't need RELRO because 775 // they are not writable or not even mapped to memory in the first place. 776 // RELRO is for sections that are essentially read-only but need to 777 // be writable only at process startup to allow dynamic linker to 778 // apply relocations. 779 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 780 return false; 781 782 // Once initialized, TLS data segments are used as data templates 783 // for a thread-local storage. For each new thread, runtime 784 // allocates memory for a TLS and copy templates there. No thread 785 // are supposed to use templates directly. Thus, it can be in RELRO. 786 if (flags & SHF_TLS) 787 return true; 788 789 // .init_array, .preinit_array and .fini_array contain pointers to 790 // functions that are executed on process startup or exit. These 791 // pointers are set by the static linker, and they are not expected 792 // to change at runtime. But if you are an attacker, you could do 793 // interesting things by manipulating pointers in .fini_array, for 794 // example. So they are put into RELRO. 795 uint32_t type = sec->type; 796 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 797 type == SHT_PREINIT_ARRAY) 798 return true; 799 800 // .got contains pointers to external symbols. They are resolved by 801 // the dynamic linker when a module is loaded into memory, and after 802 // that they are not expected to change. So, it can be in RELRO. 803 if (in.got && sec == in.got->getParent()) 804 return true; 805 806 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 807 // through r2 register, which is reserved for that purpose. Since r2 is used 808 // for accessing .got as well, .got and .toc need to be close enough in the 809 // virtual address space. Usually, .toc comes just after .got. Since we place 810 // .got into RELRO, .toc needs to be placed into RELRO too. 811 if (sec->name.equals(".toc")) 812 return true; 813 814 // .got.plt contains pointers to external function symbols. They are 815 // by default resolved lazily, so we usually cannot put it into RELRO. 816 // However, if "-z now" is given, the lazy symbol resolution is 817 // disabled, which enables us to put it into RELRO. 818 if (sec == in.gotPlt->getParent()) 819 return config->zNow; 820 821 // .dynamic section contains data for the dynamic linker, and 822 // there's no need to write to it at runtime, so it's better to put 823 // it into RELRO. 824 if (sec->name == ".dynamic") 825 return true; 826 827 // Sections with some special names are put into RELRO. This is a 828 // bit unfortunate because section names shouldn't be significant in 829 // ELF in spirit. But in reality many linker features depend on 830 // magic section names. 831 StringRef s = sec->name; 832 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 833 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 834 s == ".fini_array" || s == ".init_array" || 835 s == ".openbsd.randomdata" || s == ".preinit_array"; 836 } 837 838 // We compute a rank for each section. The rank indicates where the 839 // section should be placed in the file. Instead of using simple 840 // numbers (0,1,2...), we use a series of flags. One for each decision 841 // point when placing the section. 842 // Using flags has two key properties: 843 // * It is easy to check if a give branch was taken. 844 // * It is easy two see how similar two ranks are (see getRankProximity). 845 enum RankFlags { 846 RF_NOT_ADDR_SET = 1 << 27, 847 RF_NOT_ALLOC = 1 << 26, 848 RF_PARTITION = 1 << 18, // Partition number (8 bits) 849 RF_NOT_PART_EHDR = 1 << 17, 850 RF_NOT_PART_PHDR = 1 << 16, 851 RF_NOT_INTERP = 1 << 15, 852 RF_NOT_NOTE = 1 << 14, 853 RF_WRITE = 1 << 13, 854 RF_EXEC_WRITE = 1 << 12, 855 RF_EXEC = 1 << 11, 856 RF_RODATA = 1 << 10, 857 RF_NOT_RELRO = 1 << 9, 858 RF_NOT_TLS = 1 << 8, 859 RF_BSS = 1 << 7, 860 RF_PPC_NOT_TOCBSS = 1 << 6, 861 RF_PPC_TOCL = 1 << 5, 862 RF_PPC_TOC = 1 << 4, 863 RF_PPC_GOT = 1 << 3, 864 RF_PPC_BRANCH_LT = 1 << 2, 865 RF_MIPS_GPREL = 1 << 1, 866 RF_MIPS_NOT_GOT = 1 << 0 867 }; 868 869 static unsigned getSectionRank(const OutputSection *sec) { 870 unsigned rank = sec->partition * RF_PARTITION; 871 872 // We want to put section specified by -T option first, so we 873 // can start assigning VA starting from them later. 874 if (config->sectionStartMap.count(sec->name)) 875 return rank; 876 rank |= RF_NOT_ADDR_SET; 877 878 // Allocatable sections go first to reduce the total PT_LOAD size and 879 // so debug info doesn't change addresses in actual code. 880 if (!(sec->flags & SHF_ALLOC)) 881 return rank | RF_NOT_ALLOC; 882 883 if (sec->type == SHT_LLVM_PART_EHDR) 884 return rank; 885 rank |= RF_NOT_PART_EHDR; 886 887 if (sec->type == SHT_LLVM_PART_PHDR) 888 return rank; 889 rank |= RF_NOT_PART_PHDR; 890 891 // Put .interp first because some loaders want to see that section 892 // on the first page of the executable file when loaded into memory. 893 if (sec->name == ".interp") 894 return rank; 895 rank |= RF_NOT_INTERP; 896 897 // Put .note sections (which make up one PT_NOTE) at the beginning so that 898 // they are likely to be included in a core file even if core file size is 899 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 900 // included in a core to match core files with executables. 901 if (sec->type == SHT_NOTE) 902 return rank; 903 rank |= RF_NOT_NOTE; 904 905 // Sort sections based on their access permission in the following 906 // order: R, RX, RWX, RW. This order is based on the following 907 // considerations: 908 // * Read-only sections come first such that they go in the 909 // PT_LOAD covering the program headers at the start of the file. 910 // * Read-only, executable sections come next. 911 // * Writable, executable sections follow such that .plt on 912 // architectures where it needs to be writable will be placed 913 // between .text and .data. 914 // * Writable sections come last, such that .bss lands at the very 915 // end of the last PT_LOAD. 916 bool isExec = sec->flags & SHF_EXECINSTR; 917 bool isWrite = sec->flags & SHF_WRITE; 918 919 if (isExec) { 920 if (isWrite) 921 rank |= RF_EXEC_WRITE; 922 else 923 rank |= RF_EXEC; 924 } else if (isWrite) { 925 rank |= RF_WRITE; 926 } else if (sec->type == SHT_PROGBITS) { 927 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 928 // .eh_frame) closer to .text. They likely contain PC or GOT relative 929 // relocations and there could be relocation overflow if other huge sections 930 // (.dynstr .dynsym) were placed in between. 931 rank |= RF_RODATA; 932 } 933 934 // Place RelRo sections first. After considering SHT_NOBITS below, the 935 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 936 // where | marks where page alignment happens. An alternative ordering is 937 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 938 // waste more bytes due to 2 alignment places. 939 if (!isRelroSection(sec)) 940 rank |= RF_NOT_RELRO; 941 942 // If we got here we know that both A and B are in the same PT_LOAD. 943 944 // The TLS initialization block needs to be a single contiguous block in a R/W 945 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 946 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 947 // after PROGBITS. 948 if (!(sec->flags & SHF_TLS)) 949 rank |= RF_NOT_TLS; 950 951 // Within TLS sections, or within other RelRo sections, or within non-RelRo 952 // sections, place non-NOBITS sections first. 953 if (sec->type == SHT_NOBITS) 954 rank |= RF_BSS; 955 956 // Some architectures have additional ordering restrictions for sections 957 // within the same PT_LOAD. 958 if (config->emachine == EM_PPC64) { 959 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 960 // that we would like to make sure appear is a specific order to maximize 961 // their coverage by a single signed 16-bit offset from the TOC base 962 // pointer. Conversely, the special .tocbss section should be first among 963 // all SHT_NOBITS sections. This will put it next to the loaded special 964 // PPC64 sections (and, thus, within reach of the TOC base pointer). 965 StringRef name = sec->name; 966 if (name != ".tocbss") 967 rank |= RF_PPC_NOT_TOCBSS; 968 969 if (name == ".toc1") 970 rank |= RF_PPC_TOCL; 971 972 if (name == ".toc") 973 rank |= RF_PPC_TOC; 974 975 if (name == ".got") 976 rank |= RF_PPC_GOT; 977 978 if (name == ".branch_lt") 979 rank |= RF_PPC_BRANCH_LT; 980 } 981 982 if (config->emachine == EM_MIPS) { 983 // All sections with SHF_MIPS_GPREL flag should be grouped together 984 // because data in these sections is addressable with a gp relative address. 985 if (sec->flags & SHF_MIPS_GPREL) 986 rank |= RF_MIPS_GPREL; 987 988 if (sec->name != ".got") 989 rank |= RF_MIPS_NOT_GOT; 990 } 991 992 return rank; 993 } 994 995 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 996 const OutputSection *a = cast<OutputSection>(aCmd); 997 const OutputSection *b = cast<OutputSection>(bCmd); 998 999 if (a->sortRank != b->sortRank) 1000 return a->sortRank < b->sortRank; 1001 1002 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1003 return config->sectionStartMap.lookup(a->name) < 1004 config->sectionStartMap.lookup(b->name); 1005 return false; 1006 } 1007 1008 void PhdrEntry::add(OutputSection *sec) { 1009 lastSec = sec; 1010 if (!firstSec) 1011 firstSec = sec; 1012 p_align = std::max(p_align, sec->alignment); 1013 if (p_type == PT_LOAD) 1014 sec->ptLoad = this; 1015 } 1016 1017 // The beginning and the ending of .rel[a].plt section are marked 1018 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1019 // executable. The runtime needs these symbols in order to resolve 1020 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1021 // need these symbols, since IRELATIVE relocs are resolved through GOT 1022 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1023 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1024 if (config->relocatable || config->isPic) 1025 return; 1026 1027 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1028 // because .rela.plt might be empty and thus removed from output. 1029 // We'll override Out::elfHeader with In.relaIplt later when we are 1030 // sure that .rela.plt exists in output. 1031 ElfSym::relaIpltStart = addOptionalRegular( 1032 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1033 Out::elfHeader, 0, STV_HIDDEN); 1034 1035 ElfSym::relaIpltEnd = addOptionalRegular( 1036 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1037 Out::elfHeader, 0, STV_HIDDEN); 1038 } 1039 1040 template <class ELFT> 1041 void Writer<ELFT>::forEachRelSec( 1042 llvm::function_ref<void(InputSectionBase &)> fn) { 1043 // Scan all relocations. Each relocation goes through a series 1044 // of tests to determine if it needs special treatment, such as 1045 // creating GOT, PLT, copy relocations, etc. 1046 // Note that relocations for non-alloc sections are directly 1047 // processed by InputSection::relocateNonAlloc. 1048 for (InputSectionBase *isec : inputSections) 1049 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1050 fn(*isec); 1051 for (Partition &part : partitions) { 1052 for (EhInputSection *es : part.ehFrame->sections) 1053 fn(*es); 1054 if (part.armExidx && part.armExidx->isLive()) 1055 for (InputSection *ex : part.armExidx->exidxSections) 1056 fn(*ex); 1057 } 1058 } 1059 1060 // This function generates assignments for predefined symbols (e.g. _end or 1061 // _etext) and inserts them into the commands sequence to be processed at the 1062 // appropriate time. This ensures that the value is going to be correct by the 1063 // time any references to these symbols are processed and is equivalent to 1064 // defining these symbols explicitly in the linker script. 1065 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1066 if (ElfSym::globalOffsetTable) { 1067 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1068 // to the start of the .got or .got.plt section. 1069 InputSection *gotSection = in.gotPlt; 1070 if (!target->gotBaseSymInGotPlt) 1071 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1072 : cast<InputSection>(in.got); 1073 ElfSym::globalOffsetTable->section = gotSection; 1074 } 1075 1076 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1077 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1078 ElfSym::relaIpltStart->section = in.relaIplt; 1079 ElfSym::relaIpltEnd->section = in.relaIplt; 1080 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1081 } 1082 1083 PhdrEntry *last = nullptr; 1084 PhdrEntry *lastRO = nullptr; 1085 1086 for (Partition &part : partitions) { 1087 for (PhdrEntry *p : part.phdrs) { 1088 if (p->p_type != PT_LOAD) 1089 continue; 1090 last = p; 1091 if (!(p->p_flags & PF_W)) 1092 lastRO = p; 1093 } 1094 } 1095 1096 if (lastRO) { 1097 // _etext is the first location after the last read-only loadable segment. 1098 if (ElfSym::etext1) 1099 ElfSym::etext1->section = lastRO->lastSec; 1100 if (ElfSym::etext2) 1101 ElfSym::etext2->section = lastRO->lastSec; 1102 } 1103 1104 if (last) { 1105 // _edata points to the end of the last mapped initialized section. 1106 OutputSection *edata = nullptr; 1107 for (OutputSection *os : outputSections) { 1108 if (os->type != SHT_NOBITS) 1109 edata = os; 1110 if (os == last->lastSec) 1111 break; 1112 } 1113 1114 if (ElfSym::edata1) 1115 ElfSym::edata1->section = edata; 1116 if (ElfSym::edata2) 1117 ElfSym::edata2->section = edata; 1118 1119 // _end is the first location after the uninitialized data region. 1120 if (ElfSym::end1) 1121 ElfSym::end1->section = last->lastSec; 1122 if (ElfSym::end2) 1123 ElfSym::end2->section = last->lastSec; 1124 } 1125 1126 if (ElfSym::bss) 1127 ElfSym::bss->section = findSection(".bss"); 1128 1129 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1130 // be equal to the _gp symbol's value. 1131 if (ElfSym::mipsGp) { 1132 // Find GP-relative section with the lowest address 1133 // and use this address to calculate default _gp value. 1134 for (OutputSection *os : outputSections) { 1135 if (os->flags & SHF_MIPS_GPREL) { 1136 ElfSym::mipsGp->section = os; 1137 ElfSym::mipsGp->value = 0x7ff0; 1138 break; 1139 } 1140 } 1141 } 1142 } 1143 1144 // We want to find how similar two ranks are. 1145 // The more branches in getSectionRank that match, the more similar they are. 1146 // Since each branch corresponds to a bit flag, we can just use 1147 // countLeadingZeros. 1148 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1149 return countLeadingZeros(a->sortRank ^ b->sortRank); 1150 } 1151 1152 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1153 auto *sec = dyn_cast<OutputSection>(b); 1154 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1155 } 1156 1157 // When placing orphan sections, we want to place them after symbol assignments 1158 // so that an orphan after 1159 // begin_foo = .; 1160 // foo : { *(foo) } 1161 // end_foo = .; 1162 // doesn't break the intended meaning of the begin/end symbols. 1163 // We don't want to go over sections since findOrphanPos is the 1164 // one in charge of deciding the order of the sections. 1165 // We don't want to go over changes to '.', since doing so in 1166 // rx_sec : { *(rx_sec) } 1167 // . = ALIGN(0x1000); 1168 // /* The RW PT_LOAD starts here*/ 1169 // rw_sec : { *(rw_sec) } 1170 // would mean that the RW PT_LOAD would become unaligned. 1171 static bool shouldSkip(BaseCommand *cmd) { 1172 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1173 return assign->name != "."; 1174 return false; 1175 } 1176 1177 // We want to place orphan sections so that they share as much 1178 // characteristics with their neighbors as possible. For example, if 1179 // both are rw, or both are tls. 1180 static std::vector<BaseCommand *>::iterator 1181 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1182 std::vector<BaseCommand *>::iterator e) { 1183 OutputSection *sec = cast<OutputSection>(*e); 1184 1185 // Find the first element that has as close a rank as possible. 1186 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1187 return getRankProximity(sec, a) < getRankProximity(sec, b); 1188 }); 1189 if (i == e) 1190 return e; 1191 auto foundSec = dyn_cast<OutputSection>(*i); 1192 if (!foundSec) 1193 return e; 1194 1195 // Consider all existing sections with the same proximity. 1196 int proximity = getRankProximity(sec, *i); 1197 unsigned sortRank = sec->sortRank; 1198 if (script->hasPhdrsCommands() || !script->memoryRegions.empty()) 1199 // Prevent the orphan section to be placed before the found section. If 1200 // custom program headers are defined, that helps to avoid adding it to a 1201 // previous segment and changing flags of that segment, for example, making 1202 // a read-only segment writable. If memory regions are defined, an orphan 1203 // section should continue the same region as the found section to better 1204 // resemble the behavior of GNU ld. 1205 sortRank = std::max(sortRank, foundSec->sortRank); 1206 for (; i != e; ++i) { 1207 auto *curSec = dyn_cast<OutputSection>(*i); 1208 if (!curSec || !curSec->hasInputSections) 1209 continue; 1210 if (getRankProximity(sec, curSec) != proximity || 1211 sortRank < curSec->sortRank) 1212 break; 1213 } 1214 1215 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1216 auto *os = dyn_cast<OutputSection>(cmd); 1217 return os && os->hasInputSections; 1218 }; 1219 auto j = std::find_if(llvm::make_reverse_iterator(i), 1220 llvm::make_reverse_iterator(b), 1221 isOutputSecWithInputSections); 1222 i = j.base(); 1223 1224 // As a special case, if the orphan section is the last section, put 1225 // it at the very end, past any other commands. 1226 // This matches bfd's behavior and is convenient when the linker script fully 1227 // specifies the start of the file, but doesn't care about the end (the non 1228 // alloc sections for example). 1229 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1230 if (nextSec == e) 1231 return e; 1232 1233 while (i != e && shouldSkip(*i)) 1234 ++i; 1235 return i; 1236 } 1237 1238 // Adds random priorities to sections not already in the map. 1239 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1240 if (config->shuffleSections.empty()) 1241 return; 1242 1243 std::vector<InputSectionBase *> matched, sections = inputSections; 1244 matched.reserve(sections.size()); 1245 for (const auto &patAndSeed : config->shuffleSections) { 1246 matched.clear(); 1247 for (InputSectionBase *sec : sections) 1248 if (patAndSeed.first.match(sec->name)) 1249 matched.push_back(sec); 1250 const uint32_t seed = patAndSeed.second; 1251 if (seed == UINT32_MAX) { 1252 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1253 // section order is stable even if the number of sections changes. This is 1254 // useful to catch issues like static initialization order fiasco 1255 // reliably. 1256 std::reverse(matched.begin(), matched.end()); 1257 } else { 1258 std::mt19937 g(seed ? seed : std::random_device()()); 1259 llvm::shuffle(matched.begin(), matched.end(), g); 1260 } 1261 size_t i = 0; 1262 for (InputSectionBase *&sec : sections) 1263 if (patAndSeed.first.match(sec->name)) 1264 sec = matched[i++]; 1265 } 1266 1267 // Existing priorities are < 0, so use priorities >= 0 for the missing 1268 // sections. 1269 int prio = 0; 1270 for (InputSectionBase *sec : sections) { 1271 if (order.try_emplace(sec, prio).second) 1272 ++prio; 1273 } 1274 } 1275 1276 // Builds section order for handling --symbol-ordering-file. 1277 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1278 DenseMap<const InputSectionBase *, int> sectionOrder; 1279 // Use the rarely used option --call-graph-ordering-file to sort sections. 1280 if (!config->callGraphProfile.empty()) 1281 return computeCallGraphProfileOrder(); 1282 1283 if (config->symbolOrderingFile.empty()) 1284 return sectionOrder; 1285 1286 struct SymbolOrderEntry { 1287 int priority; 1288 bool present; 1289 }; 1290 1291 // Build a map from symbols to their priorities. Symbols that didn't 1292 // appear in the symbol ordering file have the lowest priority 0. 1293 // All explicitly mentioned symbols have negative (higher) priorities. 1294 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1295 int priority = -config->symbolOrderingFile.size(); 1296 for (StringRef s : config->symbolOrderingFile) 1297 symbolOrder.insert({s, {priority++, false}}); 1298 1299 // Build a map from sections to their priorities. 1300 auto addSym = [&](Symbol &sym) { 1301 auto it = symbolOrder.find(sym.getName()); 1302 if (it == symbolOrder.end()) 1303 return; 1304 SymbolOrderEntry &ent = it->second; 1305 ent.present = true; 1306 1307 maybeWarnUnorderableSymbol(&sym); 1308 1309 if (auto *d = dyn_cast<Defined>(&sym)) { 1310 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1311 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1312 priority = std::min(priority, ent.priority); 1313 } 1314 } 1315 }; 1316 1317 // We want both global and local symbols. We get the global ones from the 1318 // symbol table and iterate the object files for the local ones. 1319 for (Symbol *sym : symtab->symbols()) 1320 if (!sym->isLazy()) 1321 addSym(*sym); 1322 1323 for (InputFile *file : objectFiles) 1324 for (Symbol *sym : file->getSymbols()) { 1325 if (!sym->isLocal()) 1326 break; 1327 addSym(*sym); 1328 } 1329 1330 if (config->warnSymbolOrdering) 1331 for (auto orderEntry : symbolOrder) 1332 if (!orderEntry.second.present) 1333 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1334 1335 return sectionOrder; 1336 } 1337 1338 // Sorts the sections in ISD according to the provided section order. 1339 static void 1340 sortISDBySectionOrder(InputSectionDescription *isd, 1341 const DenseMap<const InputSectionBase *, int> &order) { 1342 std::vector<InputSection *> unorderedSections; 1343 std::vector<std::pair<InputSection *, int>> orderedSections; 1344 uint64_t unorderedSize = 0; 1345 1346 for (InputSection *isec : isd->sections) { 1347 auto i = order.find(isec); 1348 if (i == order.end()) { 1349 unorderedSections.push_back(isec); 1350 unorderedSize += isec->getSize(); 1351 continue; 1352 } 1353 orderedSections.push_back({isec, i->second}); 1354 } 1355 llvm::sort(orderedSections, llvm::less_second()); 1356 1357 // Find an insertion point for the ordered section list in the unordered 1358 // section list. On targets with limited-range branches, this is the mid-point 1359 // of the unordered section list. This decreases the likelihood that a range 1360 // extension thunk will be needed to enter or exit the ordered region. If the 1361 // ordered section list is a list of hot functions, we can generally expect 1362 // the ordered functions to be called more often than the unordered functions, 1363 // making it more likely that any particular call will be within range, and 1364 // therefore reducing the number of thunks required. 1365 // 1366 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1367 // If the layout is: 1368 // 1369 // 8MB hot 1370 // 32MB cold 1371 // 1372 // only the first 8-16MB of the cold code (depending on which hot function it 1373 // is actually calling) can call the hot code without a range extension thunk. 1374 // However, if we use this layout: 1375 // 1376 // 16MB cold 1377 // 8MB hot 1378 // 16MB cold 1379 // 1380 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1381 // of the second block of cold code can call the hot code without a thunk. So 1382 // we effectively double the amount of code that could potentially call into 1383 // the hot code without a thunk. 1384 size_t insPt = 0; 1385 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1386 uint64_t unorderedPos = 0; 1387 for (; insPt != unorderedSections.size(); ++insPt) { 1388 unorderedPos += unorderedSections[insPt]->getSize(); 1389 if (unorderedPos > unorderedSize / 2) 1390 break; 1391 } 1392 } 1393 1394 isd->sections.clear(); 1395 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1396 isd->sections.push_back(isec); 1397 for (std::pair<InputSection *, int> p : orderedSections) 1398 isd->sections.push_back(p.first); 1399 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1400 isd->sections.push_back(isec); 1401 } 1402 1403 static void sortSection(OutputSection *sec, 1404 const DenseMap<const InputSectionBase *, int> &order) { 1405 StringRef name = sec->name; 1406 1407 // Never sort these. 1408 if (name == ".init" || name == ".fini") 1409 return; 1410 1411 // IRelative relocations that usually live in the .rel[a].dyn section should 1412 // be processed last by the dynamic loader. To achieve that we add synthetic 1413 // sections in the required order from the beginning so that the in.relaIplt 1414 // section is placed last in an output section. Here we just do not apply 1415 // sorting for an output section which holds the in.relaIplt section. 1416 if (in.relaIplt->getParent() == sec) 1417 return; 1418 1419 // Sort input sections by priority using the list provided by 1420 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1421 // digit radix sort. The sections may be sorted stably again by a more 1422 // significant key. 1423 if (!order.empty()) 1424 for (BaseCommand *b : sec->sectionCommands) 1425 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1426 sortISDBySectionOrder(isd, order); 1427 1428 if (script->hasSectionsCommand) 1429 return; 1430 1431 if (name == ".init_array" || name == ".fini_array") { 1432 sec->sortInitFini(); 1433 } else if (name == ".ctors" || name == ".dtors") { 1434 sec->sortCtorsDtors(); 1435 } else if (config->emachine == EM_PPC64 && name == ".toc") { 1436 // .toc is allocated just after .got and is accessed using GOT-relative 1437 // relocations. Object files compiled with small code model have an 1438 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1439 // To reduce the risk of relocation overflow, .toc contents are sorted so 1440 // that sections having smaller relocation offsets are at beginning of .toc 1441 assert(sec->sectionCommands.size() == 1); 1442 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1443 llvm::stable_sort(isd->sections, 1444 [](const InputSection *a, const InputSection *b) -> bool { 1445 return a->file->ppc64SmallCodeModelTocRelocs && 1446 !b->file->ppc64SmallCodeModelTocRelocs; 1447 }); 1448 } 1449 } 1450 1451 // If no layout was provided by linker script, we want to apply default 1452 // sorting for special input sections. This also handles --symbol-ordering-file. 1453 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1454 // Build the order once since it is expensive. 1455 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1456 maybeShuffle(order); 1457 for (BaseCommand *base : script->sectionCommands) 1458 if (auto *sec = dyn_cast<OutputSection>(base)) 1459 sortSection(sec, order); 1460 } 1461 1462 template <class ELFT> void Writer<ELFT>::sortSections() { 1463 llvm::TimeTraceScope timeScope("Sort sections"); 1464 script->adjustSectionsBeforeSorting(); 1465 1466 // Don't sort if using -r. It is not necessary and we want to preserve the 1467 // relative order for SHF_LINK_ORDER sections. 1468 if (config->relocatable) 1469 return; 1470 1471 sortInputSections(); 1472 1473 for (BaseCommand *base : script->sectionCommands) { 1474 auto *os = dyn_cast<OutputSection>(base); 1475 if (!os) 1476 continue; 1477 os->sortRank = getSectionRank(os); 1478 1479 // We want to assign rude approximation values to outSecOff fields 1480 // to know the relative order of the input sections. We use it for 1481 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1482 uint64_t i = 0; 1483 for (InputSection *sec : getInputSections(os)) 1484 sec->outSecOff = i++; 1485 } 1486 1487 if (!script->hasSectionsCommand) { 1488 // We know that all the OutputSections are contiguous in this case. 1489 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1490 std::stable_sort( 1491 llvm::find_if(script->sectionCommands, isSection), 1492 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1493 compareSections); 1494 1495 // Process INSERT commands. From this point onwards the order of 1496 // script->sectionCommands is fixed. 1497 script->processInsertCommands(); 1498 return; 1499 } 1500 1501 script->processInsertCommands(); 1502 1503 // Orphan sections are sections present in the input files which are 1504 // not explicitly placed into the output file by the linker script. 1505 // 1506 // The sections in the linker script are already in the correct 1507 // order. We have to figuere out where to insert the orphan 1508 // sections. 1509 // 1510 // The order of the sections in the script is arbitrary and may not agree with 1511 // compareSections. This means that we cannot easily define a strict weak 1512 // ordering. To see why, consider a comparison of a section in the script and 1513 // one not in the script. We have a two simple options: 1514 // * Make them equivalent (a is not less than b, and b is not less than a). 1515 // The problem is then that equivalence has to be transitive and we can 1516 // have sections a, b and c with only b in a script and a less than c 1517 // which breaks this property. 1518 // * Use compareSectionsNonScript. Given that the script order doesn't have 1519 // to match, we can end up with sections a, b, c, d where b and c are in the 1520 // script and c is compareSectionsNonScript less than b. In which case d 1521 // can be equivalent to c, a to b and d < a. As a concrete example: 1522 // .a (rx) # not in script 1523 // .b (rx) # in script 1524 // .c (ro) # in script 1525 // .d (ro) # not in script 1526 // 1527 // The way we define an order then is: 1528 // * Sort only the orphan sections. They are in the end right now. 1529 // * Move each orphan section to its preferred position. We try 1530 // to put each section in the last position where it can share 1531 // a PT_LOAD. 1532 // 1533 // There is some ambiguity as to where exactly a new entry should be 1534 // inserted, because Commands contains not only output section 1535 // commands but also other types of commands such as symbol assignment 1536 // expressions. There's no correct answer here due to the lack of the 1537 // formal specification of the linker script. We use heuristics to 1538 // determine whether a new output command should be added before or 1539 // after another commands. For the details, look at shouldSkip 1540 // function. 1541 1542 auto i = script->sectionCommands.begin(); 1543 auto e = script->sectionCommands.end(); 1544 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1545 if (auto *sec = dyn_cast<OutputSection>(base)) 1546 return sec->sectionIndex == UINT32_MAX; 1547 return false; 1548 }); 1549 1550 // Sort the orphan sections. 1551 std::stable_sort(nonScriptI, e, compareSections); 1552 1553 // As a horrible special case, skip the first . assignment if it is before any 1554 // section. We do this because it is common to set a load address by starting 1555 // the script with ". = 0xabcd" and the expectation is that every section is 1556 // after that. 1557 auto firstSectionOrDotAssignment = 1558 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1559 if (firstSectionOrDotAssignment != e && 1560 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1561 ++firstSectionOrDotAssignment; 1562 i = firstSectionOrDotAssignment; 1563 1564 while (nonScriptI != e) { 1565 auto pos = findOrphanPos(i, nonScriptI); 1566 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1567 1568 // As an optimization, find all sections with the same sort rank 1569 // and insert them with one rotate. 1570 unsigned rank = orphan->sortRank; 1571 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1572 return cast<OutputSection>(cmd)->sortRank != rank; 1573 }); 1574 std::rotate(pos, nonScriptI, end); 1575 nonScriptI = end; 1576 } 1577 1578 script->adjustSectionsAfterSorting(); 1579 } 1580 1581 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1582 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1583 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1584 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1585 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1586 if (!la || !lb) 1587 return la && !lb; 1588 OutputSection *aOut = la->getParent(); 1589 OutputSection *bOut = lb->getParent(); 1590 1591 if (aOut != bOut) 1592 return aOut->addr < bOut->addr; 1593 return la->outSecOff < lb->outSecOff; 1594 } 1595 1596 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1597 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1598 for (OutputSection *sec : outputSections) { 1599 if (!(sec->flags & SHF_LINK_ORDER)) 1600 continue; 1601 1602 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1603 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1604 if (!config->relocatable && config->emachine == EM_ARM && 1605 sec->type == SHT_ARM_EXIDX) 1606 continue; 1607 1608 // Link order may be distributed across several InputSectionDescriptions. 1609 // Sorting is performed separately. 1610 std::vector<InputSection **> scriptSections; 1611 std::vector<InputSection *> sections; 1612 for (BaseCommand *base : sec->sectionCommands) { 1613 auto *isd = dyn_cast<InputSectionDescription>(base); 1614 if (!isd) 1615 continue; 1616 bool hasLinkOrder = false; 1617 scriptSections.clear(); 1618 sections.clear(); 1619 for (InputSection *&isec : isd->sections) { 1620 if (isec->flags & SHF_LINK_ORDER) { 1621 InputSection *link = isec->getLinkOrderDep(); 1622 if (link && !link->getParent()) 1623 error(toString(isec) + ": sh_link points to discarded section " + 1624 toString(link)); 1625 hasLinkOrder = true; 1626 } 1627 scriptSections.push_back(&isec); 1628 sections.push_back(isec); 1629 } 1630 if (hasLinkOrder && errorCount() == 0) { 1631 llvm::stable_sort(sections, compareByFilePosition); 1632 for (int i = 0, n = sections.size(); i != n; ++i) 1633 *scriptSections[i] = sections[i]; 1634 } 1635 } 1636 } 1637 } 1638 1639 static void finalizeSynthetic(SyntheticSection *sec) { 1640 if (sec && sec->isNeeded() && sec->getParent()) { 1641 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1642 sec->finalizeContents(); 1643 } 1644 } 1645 1646 // We need to generate and finalize the content that depends on the address of 1647 // InputSections. As the generation of the content may also alter InputSection 1648 // addresses we must converge to a fixed point. We do that here. See the comment 1649 // in Writer<ELFT>::finalizeSections(). 1650 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1651 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1652 ThunkCreator tc; 1653 AArch64Err843419Patcher a64p; 1654 ARMErr657417Patcher a32p; 1655 script->assignAddresses(); 1656 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1657 // do require the relative addresses of OutputSections because linker scripts 1658 // can assign Virtual Addresses to OutputSections that are not monotonically 1659 // increasing. 1660 for (Partition &part : partitions) 1661 finalizeSynthetic(part.armExidx); 1662 resolveShfLinkOrder(); 1663 1664 // Converts call x@GDPLT to call __tls_get_addr 1665 if (config->emachine == EM_HEXAGON) 1666 hexagonTLSSymbolUpdate(outputSections); 1667 1668 int assignPasses = 0; 1669 for (;;) { 1670 bool changed = target->needsThunks && tc.createThunks(outputSections); 1671 1672 // With Thunk Size much smaller than branch range we expect to 1673 // converge quickly; if we get to 15 something has gone wrong. 1674 if (changed && tc.pass >= 15) { 1675 error("thunk creation not converged"); 1676 break; 1677 } 1678 1679 if (config->fixCortexA53Errata843419) { 1680 if (changed) 1681 script->assignAddresses(); 1682 changed |= a64p.createFixes(); 1683 } 1684 if (config->fixCortexA8) { 1685 if (changed) 1686 script->assignAddresses(); 1687 changed |= a32p.createFixes(); 1688 } 1689 1690 if (in.mipsGot) 1691 in.mipsGot->updateAllocSize(); 1692 1693 for (Partition &part : partitions) { 1694 changed |= part.relaDyn->updateAllocSize(); 1695 if (part.relrDyn) 1696 changed |= part.relrDyn->updateAllocSize(); 1697 } 1698 1699 const Defined *changedSym = script->assignAddresses(); 1700 if (!changed) { 1701 // Some symbols may be dependent on section addresses. When we break the 1702 // loop, the symbol values are finalized because a previous 1703 // assignAddresses() finalized section addresses. 1704 if (!changedSym) 1705 break; 1706 if (++assignPasses == 5) { 1707 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1708 " does not converge"); 1709 break; 1710 } 1711 } 1712 } 1713 1714 // If addrExpr is set, the address may not be a multiple of the alignment. 1715 // Warn because this is error-prone. 1716 for (BaseCommand *cmd : script->sectionCommands) 1717 if (auto *os = dyn_cast<OutputSection>(cmd)) 1718 if (os->addr % os->alignment != 0) 1719 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1720 os->name + " is not a multiple of alignment (" + 1721 Twine(os->alignment) + ")"); 1722 } 1723 1724 // If Input Sections have been shrunk (basic block sections) then 1725 // update symbol values and sizes associated with these sections. With basic 1726 // block sections, input sections can shrink when the jump instructions at 1727 // the end of the section are relaxed. 1728 static void fixSymbolsAfterShrinking() { 1729 for (InputFile *File : objectFiles) { 1730 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1731 auto *def = dyn_cast<Defined>(Sym); 1732 if (!def) 1733 return; 1734 1735 const SectionBase *sec = def->section; 1736 if (!sec) 1737 return; 1738 1739 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl); 1740 if (!inputSec || !inputSec->bytesDropped) 1741 return; 1742 1743 const size_t OldSize = inputSec->data().size(); 1744 const size_t NewSize = OldSize - inputSec->bytesDropped; 1745 1746 if (def->value > NewSize && def->value <= OldSize) { 1747 LLVM_DEBUG(llvm::dbgs() 1748 << "Moving symbol " << Sym->getName() << " from " 1749 << def->value << " to " 1750 << def->value - inputSec->bytesDropped << " bytes\n"); 1751 def->value -= inputSec->bytesDropped; 1752 return; 1753 } 1754 1755 if (def->value + def->size > NewSize && def->value <= OldSize && 1756 def->value + def->size <= OldSize) { 1757 LLVM_DEBUG(llvm::dbgs() 1758 << "Shrinking symbol " << Sym->getName() << " from " 1759 << def->size << " to " << def->size - inputSec->bytesDropped 1760 << " bytes\n"); 1761 def->size -= inputSec->bytesDropped; 1762 } 1763 }); 1764 } 1765 } 1766 1767 // If basic block sections exist, there are opportunities to delete fall thru 1768 // jumps and shrink jump instructions after basic block reordering. This 1769 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1770 // option is used. 1771 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1772 assert(config->optimizeBBJumps); 1773 1774 script->assignAddresses(); 1775 // For every output section that has executable input sections, this 1776 // does the following: 1777 // 1. Deletes all direct jump instructions in input sections that 1778 // jump to the following section as it is not required. 1779 // 2. If there are two consecutive jump instructions, it checks 1780 // if they can be flipped and one can be deleted. 1781 for (OutputSection *os : outputSections) { 1782 if (!(os->flags & SHF_EXECINSTR)) 1783 continue; 1784 std::vector<InputSection *> sections = getInputSections(os); 1785 std::vector<unsigned> result(sections.size()); 1786 // Delete all fall through jump instructions. Also, check if two 1787 // consecutive jump instructions can be flipped so that a fall 1788 // through jmp instruction can be deleted. 1789 parallelForEachN(0, sections.size(), [&](size_t i) { 1790 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1791 InputSection &is = *sections[i]; 1792 result[i] = 1793 target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0; 1794 }); 1795 size_t numDeleted = std::count(result.begin(), result.end(), 1); 1796 if (numDeleted > 0) { 1797 script->assignAddresses(); 1798 LLVM_DEBUG(llvm::dbgs() 1799 << "Removing " << numDeleted << " fall through jumps\n"); 1800 } 1801 } 1802 1803 fixSymbolsAfterShrinking(); 1804 1805 for (OutputSection *os : outputSections) { 1806 std::vector<InputSection *> sections = getInputSections(os); 1807 for (InputSection *is : sections) 1808 is->trim(); 1809 } 1810 } 1811 1812 // In order to allow users to manipulate linker-synthesized sections, 1813 // we had to add synthetic sections to the input section list early, 1814 // even before we make decisions whether they are needed. This allows 1815 // users to write scripts like this: ".mygot : { .got }". 1816 // 1817 // Doing it has an unintended side effects. If it turns out that we 1818 // don't need a .got (for example) at all because there's no 1819 // relocation that needs a .got, we don't want to emit .got. 1820 // 1821 // To deal with the above problem, this function is called after 1822 // scanRelocations is called to remove synthetic sections that turn 1823 // out to be empty. 1824 static void removeUnusedSyntheticSections() { 1825 // All input synthetic sections that can be empty are placed after 1826 // all regular ones. Reverse iterate to find the first synthetic section 1827 // after a non-synthetic one which will be our starting point. 1828 auto start = std::find_if(inputSections.rbegin(), inputSections.rend(), 1829 [](InputSectionBase *s) { 1830 return !isa<SyntheticSection>(s); 1831 }) 1832 .base(); 1833 1834 DenseSet<InputSectionDescription *> isdSet; 1835 // Mark unused synthetic sections for deletion 1836 auto end = std::stable_partition( 1837 start, inputSections.end(), [&](InputSectionBase *s) { 1838 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1839 OutputSection *os = ss->getParent(); 1840 if (!os || ss->isNeeded()) 1841 return true; 1842 1843 // If we reach here, then ss is an unused synthetic section and we want 1844 // to remove it from the corresponding input section description, and 1845 // orphanSections. 1846 for (BaseCommand *b : os->sectionCommands) 1847 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1848 isdSet.insert(isd); 1849 1850 llvm::erase_if( 1851 script->orphanSections, 1852 [=](const InputSectionBase *isec) { return isec == ss; }); 1853 1854 return false; 1855 }); 1856 1857 DenseSet<InputSectionBase *> unused(end, inputSections.end()); 1858 for (auto *isd : isdSet) 1859 llvm::erase_if(isd->sections, 1860 [=](InputSection *isec) { return unused.count(isec); }); 1861 1862 // Erase unused synthetic sections. 1863 inputSections.erase(end, inputSections.end()); 1864 } 1865 1866 // Create output section objects and add them to OutputSections. 1867 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1868 Out::preinitArray = findSection(".preinit_array"); 1869 Out::initArray = findSection(".init_array"); 1870 Out::finiArray = findSection(".fini_array"); 1871 1872 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1873 // symbols for sections, so that the runtime can get the start and end 1874 // addresses of each section by section name. Add such symbols. 1875 if (!config->relocatable) { 1876 addStartEndSymbols(); 1877 for (BaseCommand *base : script->sectionCommands) 1878 if (auto *sec = dyn_cast<OutputSection>(base)) 1879 addStartStopSymbols(sec); 1880 } 1881 1882 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1883 // It should be okay as no one seems to care about the type. 1884 // Even the author of gold doesn't remember why gold behaves that way. 1885 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1886 if (mainPart->dynamic->parent) 1887 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1888 STV_HIDDEN, STT_NOTYPE, 1889 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1890 1891 // Define __rel[a]_iplt_{start,end} symbols if needed. 1892 addRelIpltSymbols(); 1893 1894 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1895 // should only be defined in an executable. If .sdata does not exist, its 1896 // value/section does not matter but it has to be relative, so set its 1897 // st_shndx arbitrarily to 1 (Out::elfHeader). 1898 if (config->emachine == EM_RISCV && !config->shared) { 1899 OutputSection *sec = findSection(".sdata"); 1900 ElfSym::riscvGlobalPointer = 1901 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1902 0x800, STV_DEFAULT); 1903 } 1904 1905 if (config->emachine == EM_386 || config->emachine == EM_X86_64) { 1906 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1907 // way that: 1908 // 1909 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1910 // computes 0. 1911 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1912 // the TLS block). 1913 // 1914 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1915 // an absolute symbol of zero. This is different from GNU linkers which 1916 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1917 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1918 if (s && s->isUndefined()) { 1919 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1920 STT_TLS, /*value=*/0, 0, 1921 /*section=*/nullptr}); 1922 ElfSym::tlsModuleBase = cast<Defined>(s); 1923 } 1924 } 1925 1926 { 1927 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1928 // This responsible for splitting up .eh_frame section into 1929 // pieces. The relocation scan uses those pieces, so this has to be 1930 // earlier. 1931 for (Partition &part : partitions) 1932 finalizeSynthetic(part.ehFrame); 1933 } 1934 1935 for (Symbol *sym : symtab->symbols()) 1936 sym->isPreemptible = computeIsPreemptible(*sym); 1937 1938 // Change values of linker-script-defined symbols from placeholders (assigned 1939 // by declareSymbols) to actual definitions. 1940 script->processSymbolAssignments(); 1941 1942 { 1943 llvm::TimeTraceScope timeScope("Scan relocations"); 1944 // Scan relocations. This must be done after every symbol is declared so 1945 // that we can correctly decide if a dynamic relocation is needed. This is 1946 // called after processSymbolAssignments() because it needs to know whether 1947 // a linker-script-defined symbol is absolute. 1948 ppc64noTocRelax.clear(); 1949 if (!config->relocatable) { 1950 forEachRelSec(scanRelocations<ELFT>); 1951 reportUndefinedSymbols<ELFT>(); 1952 } 1953 } 1954 1955 if (in.plt && in.plt->isNeeded()) 1956 in.plt->addSymbols(); 1957 if (in.iplt && in.iplt->isNeeded()) 1958 in.iplt->addSymbols(); 1959 1960 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 1961 auto diagnose = 1962 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 1963 ? errorOrWarn 1964 : warn; 1965 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1966 // entries are seen. These cases would otherwise lead to runtime errors 1967 // reported by the dynamic linker. 1968 // 1969 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1970 // catch more cases. That is too much for us. Our approach resembles the one 1971 // used in ld.gold, achieves a good balance to be useful but not too smart. 1972 for (SharedFile *file : sharedFiles) { 1973 bool allNeededIsKnown = 1974 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1975 return symtab->soNames.count(needed); 1976 }); 1977 if (!allNeededIsKnown) 1978 continue; 1979 for (Symbol *sym : file->requiredSymbols) 1980 if (sym->isUndefined() && !sym->isWeak()) 1981 diagnose(toString(file) + ": undefined reference to " + 1982 toString(*sym) + " [--no-allow-shlib-undefined]"); 1983 } 1984 } 1985 1986 { 1987 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 1988 // Now that we have defined all possible global symbols including linker- 1989 // synthesized ones. Visit all symbols to give the finishing touches. 1990 for (Symbol *sym : symtab->symbols()) { 1991 if (!includeInSymtab(*sym)) 1992 continue; 1993 if (in.symTab) 1994 in.symTab->addSymbol(sym); 1995 1996 if (sym->includeInDynsym()) { 1997 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1998 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1999 if (file->isNeeded && !sym->isUndefined()) 2000 addVerneed(sym); 2001 } 2002 } 2003 2004 // We also need to scan the dynamic relocation tables of the other 2005 // partitions and add any referenced symbols to the partition's dynsym. 2006 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2007 DenseSet<Symbol *> syms; 2008 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2009 syms.insert(e.sym); 2010 for (DynamicReloc &reloc : part.relaDyn->relocs) 2011 if (reloc.sym && reloc.needsDynSymIndex() && 2012 syms.insert(reloc.sym).second) 2013 part.dynSymTab->addSymbol(reloc.sym); 2014 } 2015 } 2016 2017 // Do not proceed if there was an undefined symbol. 2018 if (errorCount()) 2019 return; 2020 2021 if (in.mipsGot) 2022 in.mipsGot->build(); 2023 2024 removeUnusedSyntheticSections(); 2025 script->diagnoseOrphanHandling(); 2026 2027 sortSections(); 2028 2029 // Now that we have the final list, create a list of all the 2030 // OutputSections for convenience. 2031 for (BaseCommand *base : script->sectionCommands) 2032 if (auto *sec = dyn_cast<OutputSection>(base)) 2033 outputSections.push_back(sec); 2034 2035 // Prefer command line supplied address over other constraints. 2036 for (OutputSection *sec : outputSections) { 2037 auto i = config->sectionStartMap.find(sec->name); 2038 if (i != config->sectionStartMap.end()) 2039 sec->addrExpr = [=] { return i->second; }; 2040 } 2041 2042 // With the outputSections available check for GDPLT relocations 2043 // and add __tls_get_addr symbol if needed. 2044 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2045 Symbol *sym = symtab->addSymbol(Undefined{ 2046 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2047 sym->isPreemptible = true; 2048 partitions[0].dynSymTab->addSymbol(sym); 2049 } 2050 2051 // This is a bit of a hack. A value of 0 means undef, so we set it 2052 // to 1 to make __ehdr_start defined. The section number is not 2053 // particularly relevant. 2054 Out::elfHeader->sectionIndex = 1; 2055 2056 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 2057 OutputSection *sec = outputSections[i]; 2058 sec->sectionIndex = i + 1; 2059 sec->shName = in.shStrTab->addString(sec->name); 2060 } 2061 2062 // Binary and relocatable output does not have PHDRS. 2063 // The headers have to be created before finalize as that can influence the 2064 // image base and the dynamic section on mips includes the image base. 2065 if (!config->relocatable && !config->oFormatBinary) { 2066 for (Partition &part : partitions) { 2067 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2068 : createPhdrs(part); 2069 if (config->emachine == EM_ARM) { 2070 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2071 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2072 } 2073 if (config->emachine == EM_MIPS) { 2074 // Add separate segments for MIPS-specific sections. 2075 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2076 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2077 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2078 } 2079 } 2080 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2081 2082 // Find the TLS segment. This happens before the section layout loop so that 2083 // Android relocation packing can look up TLS symbol addresses. We only need 2084 // to care about the main partition here because all TLS symbols were moved 2085 // to the main partition (see MarkLive.cpp). 2086 for (PhdrEntry *p : mainPart->phdrs) 2087 if (p->p_type == PT_TLS) 2088 Out::tlsPhdr = p; 2089 } 2090 2091 // Some symbols are defined in term of program headers. Now that we 2092 // have the headers, we can find out which sections they point to. 2093 setReservedSymbolSections(); 2094 2095 { 2096 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2097 2098 finalizeSynthetic(in.bss); 2099 finalizeSynthetic(in.bssRelRo); 2100 finalizeSynthetic(in.symTabShndx); 2101 finalizeSynthetic(in.shStrTab); 2102 finalizeSynthetic(in.strTab); 2103 finalizeSynthetic(in.got); 2104 finalizeSynthetic(in.mipsGot); 2105 finalizeSynthetic(in.igotPlt); 2106 finalizeSynthetic(in.gotPlt); 2107 finalizeSynthetic(in.relaIplt); 2108 finalizeSynthetic(in.relaPlt); 2109 finalizeSynthetic(in.plt); 2110 finalizeSynthetic(in.iplt); 2111 finalizeSynthetic(in.ppc32Got2); 2112 finalizeSynthetic(in.partIndex); 2113 2114 // Dynamic section must be the last one in this list and dynamic 2115 // symbol table section (dynSymTab) must be the first one. 2116 for (Partition &part : partitions) { 2117 finalizeSynthetic(part.dynSymTab); 2118 finalizeSynthetic(part.gnuHashTab); 2119 finalizeSynthetic(part.hashTab); 2120 finalizeSynthetic(part.verDef); 2121 finalizeSynthetic(part.relaDyn); 2122 finalizeSynthetic(part.relrDyn); 2123 finalizeSynthetic(part.ehFrameHdr); 2124 finalizeSynthetic(part.verSym); 2125 finalizeSynthetic(part.verNeed); 2126 finalizeSynthetic(part.dynamic); 2127 } 2128 } 2129 2130 if (!script->hasSectionsCommand && !config->relocatable) 2131 fixSectionAlignments(); 2132 2133 // This is used to: 2134 // 1) Create "thunks": 2135 // Jump instructions in many ISAs have small displacements, and therefore 2136 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2137 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2138 // responsibility to create and insert small pieces of code between 2139 // sections to extend the ranges if jump targets are out of range. Such 2140 // code pieces are called "thunks". 2141 // 2142 // We add thunks at this stage. We couldn't do this before this point 2143 // because this is the earliest point where we know sizes of sections and 2144 // their layouts (that are needed to determine if jump targets are in 2145 // range). 2146 // 2147 // 2) Update the sections. We need to generate content that depends on the 2148 // address of InputSections. For example, MIPS GOT section content or 2149 // android packed relocations sections content. 2150 // 2151 // 3) Assign the final values for the linker script symbols. Linker scripts 2152 // sometimes using forward symbol declarations. We want to set the correct 2153 // values. They also might change after adding the thunks. 2154 finalizeAddressDependentContent(); 2155 if (errorCount()) 2156 return; 2157 2158 { 2159 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2160 // finalizeAddressDependentContent may have added local symbols to the 2161 // static symbol table. 2162 finalizeSynthetic(in.symTab); 2163 finalizeSynthetic(in.ppc64LongBranchTarget); 2164 } 2165 2166 // Relaxation to delete inter-basic block jumps created by basic block 2167 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2168 // can relax jump instructions based on symbol offset. 2169 if (config->optimizeBBJumps) 2170 optimizeBasicBlockJumps(); 2171 2172 // Fill other section headers. The dynamic table is finalized 2173 // at the end because some tags like RELSZ depend on result 2174 // of finalizing other sections. 2175 for (OutputSection *sec : outputSections) 2176 sec->finalize(); 2177 } 2178 2179 // Ensure data sections are not mixed with executable sections when 2180 // --execute-only is used. --execute-only make pages executable but not 2181 // readable. 2182 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2183 if (!config->executeOnly) 2184 return; 2185 2186 for (OutputSection *os : outputSections) 2187 if (os->flags & SHF_EXECINSTR) 2188 for (InputSection *isec : getInputSections(os)) 2189 if (!(isec->flags & SHF_EXECINSTR)) 2190 error("cannot place " + toString(isec) + " into " + toString(os->name) + 2191 ": -execute-only does not support intermingling data and code"); 2192 } 2193 2194 // The linker is expected to define SECNAME_start and SECNAME_end 2195 // symbols for a few sections. This function defines them. 2196 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2197 // If a section does not exist, there's ambiguity as to how we 2198 // define _start and _end symbols for an init/fini section. Since 2199 // the loader assume that the symbols are always defined, we need to 2200 // always define them. But what value? The loader iterates over all 2201 // pointers between _start and _end to run global ctors/dtors, so if 2202 // the section is empty, their symbol values don't actually matter 2203 // as long as _start and _end point to the same location. 2204 // 2205 // That said, we don't want to set the symbols to 0 (which is 2206 // probably the simplest value) because that could cause some 2207 // program to fail to link due to relocation overflow, if their 2208 // program text is above 2 GiB. We use the address of the .text 2209 // section instead to prevent that failure. 2210 // 2211 // In rare situations, the .text section may not exist. If that's the 2212 // case, use the image base address as a last resort. 2213 OutputSection *Default = findSection(".text"); 2214 if (!Default) 2215 Default = Out::elfHeader; 2216 2217 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2218 if (os && !script->isDiscarded(os)) { 2219 addOptionalRegular(start, os, 0); 2220 addOptionalRegular(end, os, -1); 2221 } else { 2222 addOptionalRegular(start, Default, 0); 2223 addOptionalRegular(end, Default, 0); 2224 } 2225 }; 2226 2227 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2228 define("__init_array_start", "__init_array_end", Out::initArray); 2229 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2230 2231 if (OutputSection *sec = findSection(".ARM.exidx")) 2232 define("__exidx_start", "__exidx_end", sec); 2233 } 2234 2235 // If a section name is valid as a C identifier (which is rare because of 2236 // the leading '.'), linkers are expected to define __start_<secname> and 2237 // __stop_<secname> symbols. They are at beginning and end of the section, 2238 // respectively. This is not requested by the ELF standard, but GNU ld and 2239 // gold provide the feature, and used by many programs. 2240 template <class ELFT> 2241 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2242 StringRef s = sec->name; 2243 if (!isValidCIdentifier(s)) 2244 return; 2245 addOptionalRegular(saver.save("__start_" + s), sec, 0, 2246 config->zStartStopVisibility); 2247 addOptionalRegular(saver.save("__stop_" + s), sec, -1, 2248 config->zStartStopVisibility); 2249 } 2250 2251 static bool needsPtLoad(OutputSection *sec) { 2252 if (!(sec->flags & SHF_ALLOC)) 2253 return false; 2254 2255 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2256 // responsible for allocating space for them, not the PT_LOAD that 2257 // contains the TLS initialization image. 2258 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2259 return false; 2260 return true; 2261 } 2262 2263 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2264 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2265 // RW. This means that there is no alignment in the RO to RX transition and we 2266 // cannot create a PT_LOAD there. 2267 static uint64_t computeFlags(uint64_t flags) { 2268 if (config->omagic) 2269 return PF_R | PF_W | PF_X; 2270 if (config->executeOnly && (flags & PF_X)) 2271 return flags & ~PF_R; 2272 if (config->singleRoRx && !(flags & PF_W)) 2273 return flags | PF_X; 2274 return flags; 2275 } 2276 2277 // Decide which program headers to create and which sections to include in each 2278 // one. 2279 template <class ELFT> 2280 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2281 std::vector<PhdrEntry *> ret; 2282 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2283 ret.push_back(make<PhdrEntry>(type, flags)); 2284 return ret.back(); 2285 }; 2286 2287 unsigned partNo = part.getNumber(); 2288 bool isMain = partNo == 1; 2289 2290 // Add the first PT_LOAD segment for regular output sections. 2291 uint64_t flags = computeFlags(PF_R); 2292 PhdrEntry *load = nullptr; 2293 2294 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2295 // PT_LOAD. 2296 if (!config->nmagic && !config->omagic) { 2297 // The first phdr entry is PT_PHDR which describes the program header 2298 // itself. 2299 if (isMain) 2300 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2301 else 2302 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2303 2304 // PT_INTERP must be the second entry if exists. 2305 if (OutputSection *cmd = findSection(".interp", partNo)) 2306 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2307 2308 // Add the headers. We will remove them if they don't fit. 2309 // In the other partitions the headers are ordinary sections, so they don't 2310 // need to be added here. 2311 if (isMain) { 2312 load = addHdr(PT_LOAD, flags); 2313 load->add(Out::elfHeader); 2314 load->add(Out::programHeaders); 2315 } 2316 } 2317 2318 // PT_GNU_RELRO includes all sections that should be marked as 2319 // read-only by dynamic linker after processing relocations. 2320 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2321 // an error message if more than one PT_GNU_RELRO PHDR is required. 2322 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2323 bool inRelroPhdr = false; 2324 OutputSection *relroEnd = nullptr; 2325 for (OutputSection *sec : outputSections) { 2326 if (sec->partition != partNo || !needsPtLoad(sec)) 2327 continue; 2328 if (isRelroSection(sec)) { 2329 inRelroPhdr = true; 2330 if (!relroEnd) 2331 relRo->add(sec); 2332 else 2333 error("section: " + sec->name + " is not contiguous with other relro" + 2334 " sections"); 2335 } else if (inRelroPhdr) { 2336 inRelroPhdr = false; 2337 relroEnd = sec; 2338 } 2339 } 2340 2341 for (OutputSection *sec : outputSections) { 2342 if (!needsPtLoad(sec)) 2343 continue; 2344 2345 // Normally, sections in partitions other than the current partition are 2346 // ignored. But partition number 255 is a special case: it contains the 2347 // partition end marker (.part.end). It needs to be added to the main 2348 // partition so that a segment is created for it in the main partition, 2349 // which will cause the dynamic loader to reserve space for the other 2350 // partitions. 2351 if (sec->partition != partNo) { 2352 if (isMain && sec->partition == 255) 2353 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2354 continue; 2355 } 2356 2357 // Segments are contiguous memory regions that has the same attributes 2358 // (e.g. executable or writable). There is one phdr for each segment. 2359 // Therefore, we need to create a new phdr when the next section has 2360 // different flags or is loaded at a discontiguous address or memory 2361 // region using AT or AT> linker script command, respectively. At the same 2362 // time, we don't want to create a separate load segment for the headers, 2363 // even if the first output section has an AT or AT> attribute. 2364 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2365 bool sameLMARegion = 2366 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2367 if (!(load && newFlags == flags && sec != relroEnd && 2368 sec->memRegion == load->firstSec->memRegion && 2369 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2370 load = addHdr(PT_LOAD, newFlags); 2371 flags = newFlags; 2372 } 2373 2374 load->add(sec); 2375 } 2376 2377 // Add a TLS segment if any. 2378 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2379 for (OutputSection *sec : outputSections) 2380 if (sec->partition == partNo && sec->flags & SHF_TLS) 2381 tlsHdr->add(sec); 2382 if (tlsHdr->firstSec) 2383 ret.push_back(tlsHdr); 2384 2385 // Add an entry for .dynamic. 2386 if (OutputSection *sec = part.dynamic->getParent()) 2387 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2388 2389 if (relRo->firstSec) 2390 ret.push_back(relRo); 2391 2392 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2393 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2394 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2395 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2396 ->add(part.ehFrameHdr->getParent()); 2397 2398 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2399 // the dynamic linker fill the segment with random data. 2400 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2401 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2402 2403 if (config->zGnustack != GnuStackKind::None) { 2404 // PT_GNU_STACK is a special section to tell the loader to make the 2405 // pages for the stack non-executable. If you really want an executable 2406 // stack, you can pass -z execstack, but that's not recommended for 2407 // security reasons. 2408 unsigned perm = PF_R | PF_W; 2409 if (config->zGnustack == GnuStackKind::Exec) 2410 perm |= PF_X; 2411 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2412 } 2413 2414 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2415 // is expected to perform W^X violations, such as calling mprotect(2) or 2416 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2417 // OpenBSD. 2418 if (config->zWxneeded) 2419 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2420 2421 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2422 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2423 2424 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2425 // same alignment. 2426 PhdrEntry *note = nullptr; 2427 for (OutputSection *sec : outputSections) { 2428 if (sec->partition != partNo) 2429 continue; 2430 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2431 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2432 note = addHdr(PT_NOTE, PF_R); 2433 note->add(sec); 2434 } else { 2435 note = nullptr; 2436 } 2437 } 2438 return ret; 2439 } 2440 2441 template <class ELFT> 2442 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2443 unsigned pType, unsigned pFlags) { 2444 unsigned partNo = part.getNumber(); 2445 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2446 return cmd->partition == partNo && cmd->type == shType; 2447 }); 2448 if (i == outputSections.end()) 2449 return; 2450 2451 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2452 entry->add(*i); 2453 part.phdrs.push_back(entry); 2454 } 2455 2456 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2457 // This is achieved by assigning an alignment expression to addrExpr of each 2458 // such section. 2459 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2460 const PhdrEntry *prev; 2461 auto pageAlign = [&](const PhdrEntry *p) { 2462 OutputSection *cmd = p->firstSec; 2463 if (!cmd) 2464 return; 2465 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2466 if (!cmd->addrExpr) { 2467 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2468 // padding in the file contents. 2469 // 2470 // When -z separate-code is used we must not have any overlap in pages 2471 // between an executable segment and a non-executable segment. We align to 2472 // the next maximum page size boundary on transitions between executable 2473 // and non-executable segments. 2474 // 2475 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2476 // sections will be extracted to a separate file. Align to the next 2477 // maximum page size boundary so that we can find the ELF header at the 2478 // start. We cannot benefit from overlapping p_offset ranges with the 2479 // previous segment anyway. 2480 if (config->zSeparate == SeparateSegmentKind::Loadable || 2481 (config->zSeparate == SeparateSegmentKind::Code && prev && 2482 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2483 cmd->type == SHT_LLVM_PART_EHDR) 2484 cmd->addrExpr = [] { 2485 return alignTo(script->getDot(), config->maxPageSize); 2486 }; 2487 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2488 // it must be the RW. Align to p_align(PT_TLS) to make sure 2489 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2490 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2491 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2492 // be congruent to 0 modulo p_align(PT_TLS). 2493 // 2494 // Technically this is not required, but as of 2019, some dynamic loaders 2495 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2496 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2497 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2498 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2499 // blocks correctly. We need to keep the workaround for a while. 2500 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2501 cmd->addrExpr = [] { 2502 return alignTo(script->getDot(), config->maxPageSize) + 2503 alignTo(script->getDot() % config->maxPageSize, 2504 Out::tlsPhdr->p_align); 2505 }; 2506 else 2507 cmd->addrExpr = [] { 2508 return alignTo(script->getDot(), config->maxPageSize) + 2509 script->getDot() % config->maxPageSize; 2510 }; 2511 } 2512 }; 2513 2514 for (Partition &part : partitions) { 2515 prev = nullptr; 2516 for (const PhdrEntry *p : part.phdrs) 2517 if (p->p_type == PT_LOAD && p->firstSec) { 2518 pageAlign(p); 2519 prev = p; 2520 } 2521 } 2522 } 2523 2524 // Compute an in-file position for a given section. The file offset must be the 2525 // same with its virtual address modulo the page size, so that the loader can 2526 // load executables without any address adjustment. 2527 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2528 // The first section in a PT_LOAD has to have congruent offset and address 2529 // modulo the maximum page size. 2530 if (os->ptLoad && os->ptLoad->firstSec == os) 2531 return alignTo(off, os->ptLoad->p_align, os->addr); 2532 2533 // File offsets are not significant for .bss sections other than the first one 2534 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically 2535 // increasing rather than setting to zero. 2536 if (os->type == SHT_NOBITS && 2537 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) 2538 return off; 2539 2540 // If the section is not in a PT_LOAD, we just have to align it. 2541 if (!os->ptLoad) 2542 return alignTo(off, os->alignment); 2543 2544 // If two sections share the same PT_LOAD the file offset is calculated 2545 // using this formula: Off2 = Off1 + (VA2 - VA1). 2546 OutputSection *first = os->ptLoad->firstSec; 2547 return first->offset + os->addr - first->addr; 2548 } 2549 2550 // Set an in-file position to a given section and returns the end position of 2551 // the section. 2552 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2553 off = computeFileOffset(os, off); 2554 os->offset = off; 2555 2556 if (os->type == SHT_NOBITS) 2557 return off; 2558 return off + os->size; 2559 } 2560 2561 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2562 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2563 auto needsOffset = [](OutputSection &sec) { 2564 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2565 }; 2566 uint64_t minAddr = UINT64_MAX; 2567 for (OutputSection *sec : outputSections) 2568 if (needsOffset(*sec)) { 2569 sec->offset = sec->getLMA(); 2570 minAddr = std::min(minAddr, sec->offset); 2571 } 2572 2573 // Sections are laid out at LMA minus minAddr. 2574 fileSize = 0; 2575 for (OutputSection *sec : outputSections) 2576 if (needsOffset(*sec)) { 2577 sec->offset -= minAddr; 2578 fileSize = std::max(fileSize, sec->offset + sec->size); 2579 } 2580 } 2581 2582 static std::string rangeToString(uint64_t addr, uint64_t len) { 2583 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2584 } 2585 2586 // Assign file offsets to output sections. 2587 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2588 uint64_t off = 0; 2589 off = setFileOffset(Out::elfHeader, off); 2590 off = setFileOffset(Out::programHeaders, off); 2591 2592 PhdrEntry *lastRX = nullptr; 2593 for (Partition &part : partitions) 2594 for (PhdrEntry *p : part.phdrs) 2595 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2596 lastRX = p; 2597 2598 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2599 // will not occupy file offsets contained by a PT_LOAD. 2600 for (OutputSection *sec : outputSections) { 2601 if (!(sec->flags & SHF_ALLOC)) 2602 continue; 2603 off = setFileOffset(sec, off); 2604 2605 // If this is a last section of the last executable segment and that 2606 // segment is the last loadable segment, align the offset of the 2607 // following section to avoid loading non-segments parts of the file. 2608 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2609 lastRX->lastSec == sec) 2610 off = alignTo(off, config->commonPageSize); 2611 } 2612 for (OutputSection *sec : outputSections) 2613 if (!(sec->flags & SHF_ALLOC)) 2614 off = setFileOffset(sec, off); 2615 2616 sectionHeaderOff = alignTo(off, config->wordsize); 2617 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2618 2619 // Our logic assumes that sections have rising VA within the same segment. 2620 // With use of linker scripts it is possible to violate this rule and get file 2621 // offset overlaps or overflows. That should never happen with a valid script 2622 // which does not move the location counter backwards and usually scripts do 2623 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2624 // kernel, which control segment distribution explicitly and move the counter 2625 // backwards, so we have to allow doing that to support linking them. We 2626 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2627 // we want to prevent file size overflows because it would crash the linker. 2628 for (OutputSection *sec : outputSections) { 2629 if (sec->type == SHT_NOBITS) 2630 continue; 2631 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2632 error("unable to place section " + sec->name + " at file offset " + 2633 rangeToString(sec->offset, sec->size) + 2634 "; check your linker script for overflows"); 2635 } 2636 } 2637 2638 // Finalize the program headers. We call this function after we assign 2639 // file offsets and VAs to all sections. 2640 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2641 for (PhdrEntry *p : part.phdrs) { 2642 OutputSection *first = p->firstSec; 2643 OutputSection *last = p->lastSec; 2644 2645 if (first) { 2646 p->p_filesz = last->offset - first->offset; 2647 if (last->type != SHT_NOBITS) 2648 p->p_filesz += last->size; 2649 2650 p->p_memsz = last->addr + last->size - first->addr; 2651 p->p_offset = first->offset; 2652 p->p_vaddr = first->addr; 2653 2654 // File offsets in partitions other than the main partition are relative 2655 // to the offset of the ELF headers. Perform that adjustment now. 2656 if (part.elfHeader) 2657 p->p_offset -= part.elfHeader->getParent()->offset; 2658 2659 if (!p->hasLMA) 2660 p->p_paddr = first->getLMA(); 2661 } 2662 2663 if (p->p_type == PT_GNU_RELRO) { 2664 p->p_align = 1; 2665 // musl/glibc ld.so rounds the size down, so we need to round up 2666 // to protect the last page. This is a no-op on FreeBSD which always 2667 // rounds up. 2668 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2669 p->p_offset; 2670 } 2671 } 2672 } 2673 2674 // A helper struct for checkSectionOverlap. 2675 namespace { 2676 struct SectionOffset { 2677 OutputSection *sec; 2678 uint64_t offset; 2679 }; 2680 } // namespace 2681 2682 // Check whether sections overlap for a specific address range (file offsets, 2683 // load and virtual addresses). 2684 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2685 bool isVirtualAddr) { 2686 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2687 return a.offset < b.offset; 2688 }); 2689 2690 // Finding overlap is easy given a vector is sorted by start position. 2691 // If an element starts before the end of the previous element, they overlap. 2692 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2693 SectionOffset a = sections[i - 1]; 2694 SectionOffset b = sections[i]; 2695 if (b.offset >= a.offset + a.sec->size) 2696 continue; 2697 2698 // If both sections are in OVERLAY we allow the overlapping of virtual 2699 // addresses, because it is what OVERLAY was designed for. 2700 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2701 continue; 2702 2703 errorOrWarn("section " + a.sec->name + " " + name + 2704 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2705 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2706 b.sec->name + " range is " + 2707 rangeToString(b.offset, b.sec->size)); 2708 } 2709 } 2710 2711 // Check for overlapping sections and address overflows. 2712 // 2713 // In this function we check that none of the output sections have overlapping 2714 // file offsets. For SHF_ALLOC sections we also check that the load address 2715 // ranges and the virtual address ranges don't overlap 2716 template <class ELFT> void Writer<ELFT>::checkSections() { 2717 // First, check that section's VAs fit in available address space for target. 2718 for (OutputSection *os : outputSections) 2719 if ((os->addr + os->size < os->addr) || 2720 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2721 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2722 " of size 0x" + utohexstr(os->size) + 2723 " exceeds available address space"); 2724 2725 // Check for overlapping file offsets. In this case we need to skip any 2726 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2727 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2728 // binary is specified only add SHF_ALLOC sections are added to the output 2729 // file so we skip any non-allocated sections in that case. 2730 std::vector<SectionOffset> fileOffs; 2731 for (OutputSection *sec : outputSections) 2732 if (sec->size > 0 && sec->type != SHT_NOBITS && 2733 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2734 fileOffs.push_back({sec, sec->offset}); 2735 checkOverlap("file", fileOffs, false); 2736 2737 // When linking with -r there is no need to check for overlapping virtual/load 2738 // addresses since those addresses will only be assigned when the final 2739 // executable/shared object is created. 2740 if (config->relocatable) 2741 return; 2742 2743 // Checking for overlapping virtual and load addresses only needs to take 2744 // into account SHF_ALLOC sections since others will not be loaded. 2745 // Furthermore, we also need to skip SHF_TLS sections since these will be 2746 // mapped to other addresses at runtime and can therefore have overlapping 2747 // ranges in the file. 2748 std::vector<SectionOffset> vmas; 2749 for (OutputSection *sec : outputSections) 2750 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2751 vmas.push_back({sec, sec->addr}); 2752 checkOverlap("virtual address", vmas, true); 2753 2754 // Finally, check that the load addresses don't overlap. This will usually be 2755 // the same as the virtual addresses but can be different when using a linker 2756 // script with AT(). 2757 std::vector<SectionOffset> lmas; 2758 for (OutputSection *sec : outputSections) 2759 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2760 lmas.push_back({sec, sec->getLMA()}); 2761 checkOverlap("load address", lmas, false); 2762 } 2763 2764 // The entry point address is chosen in the following ways. 2765 // 2766 // 1. the '-e' entry command-line option; 2767 // 2. the ENTRY(symbol) command in a linker control script; 2768 // 3. the value of the symbol _start, if present; 2769 // 4. the number represented by the entry symbol, if it is a number; 2770 // 5. the address 0. 2771 static uint64_t getEntryAddr() { 2772 // Case 1, 2 or 3 2773 if (Symbol *b = symtab->find(config->entry)) 2774 return b->getVA(); 2775 2776 // Case 4 2777 uint64_t addr; 2778 if (to_integer(config->entry, addr)) 2779 return addr; 2780 2781 // Case 5 2782 if (config->warnMissingEntry) 2783 warn("cannot find entry symbol " + config->entry + 2784 "; not setting start address"); 2785 return 0; 2786 } 2787 2788 static uint16_t getELFType() { 2789 if (config->isPic) 2790 return ET_DYN; 2791 if (config->relocatable) 2792 return ET_REL; 2793 return ET_EXEC; 2794 } 2795 2796 template <class ELFT> void Writer<ELFT>::writeHeader() { 2797 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2798 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2799 2800 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2801 eHdr->e_type = getELFType(); 2802 eHdr->e_entry = getEntryAddr(); 2803 eHdr->e_shoff = sectionHeaderOff; 2804 2805 // Write the section header table. 2806 // 2807 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2808 // and e_shstrndx fields. When the value of one of these fields exceeds 2809 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2810 // use fields in the section header at index 0 to store 2811 // the value. The sentinel values and fields are: 2812 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2813 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2814 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2815 size_t num = outputSections.size() + 1; 2816 if (num >= SHN_LORESERVE) 2817 sHdrs->sh_size = num; 2818 else 2819 eHdr->e_shnum = num; 2820 2821 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2822 if (strTabIndex >= SHN_LORESERVE) { 2823 sHdrs->sh_link = strTabIndex; 2824 eHdr->e_shstrndx = SHN_XINDEX; 2825 } else { 2826 eHdr->e_shstrndx = strTabIndex; 2827 } 2828 2829 for (OutputSection *sec : outputSections) 2830 sec->writeHeaderTo<ELFT>(++sHdrs); 2831 } 2832 2833 // Open a result file. 2834 template <class ELFT> void Writer<ELFT>::openFile() { 2835 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2836 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2837 std::string msg; 2838 raw_string_ostream s(msg); 2839 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2840 << "section sizes:\n"; 2841 for (OutputSection *os : outputSections) 2842 s << os->name << ' ' << os->size << "\n"; 2843 error(s.str()); 2844 return; 2845 } 2846 2847 unlinkAsync(config->outputFile); 2848 unsigned flags = 0; 2849 if (!config->relocatable) 2850 flags |= FileOutputBuffer::F_executable; 2851 if (!config->mmapOutputFile) 2852 flags |= FileOutputBuffer::F_no_mmap; 2853 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2854 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2855 2856 if (!bufferOrErr) { 2857 error("failed to open " + config->outputFile + ": " + 2858 llvm::toString(bufferOrErr.takeError())); 2859 return; 2860 } 2861 buffer = std::move(*bufferOrErr); 2862 Out::bufferStart = buffer->getBufferStart(); 2863 } 2864 2865 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2866 for (OutputSection *sec : outputSections) 2867 if (sec->flags & SHF_ALLOC) 2868 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2869 } 2870 2871 static void fillTrap(uint8_t *i, uint8_t *end) { 2872 for (; i + 4 <= end; i += 4) 2873 memcpy(i, &target->trapInstr, 4); 2874 } 2875 2876 // Fill the last page of executable segments with trap instructions 2877 // instead of leaving them as zero. Even though it is not required by any 2878 // standard, it is in general a good thing to do for security reasons. 2879 // 2880 // We'll leave other pages in segments as-is because the rest will be 2881 // overwritten by output sections. 2882 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2883 for (Partition &part : partitions) { 2884 // Fill the last page. 2885 for (PhdrEntry *p : part.phdrs) 2886 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2887 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2888 config->commonPageSize), 2889 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2890 config->commonPageSize)); 2891 2892 // Round up the file size of the last segment to the page boundary iff it is 2893 // an executable segment to ensure that other tools don't accidentally 2894 // trim the instruction padding (e.g. when stripping the file). 2895 PhdrEntry *last = nullptr; 2896 for (PhdrEntry *p : part.phdrs) 2897 if (p->p_type == PT_LOAD) 2898 last = p; 2899 2900 if (last && (last->p_flags & PF_X)) 2901 last->p_memsz = last->p_filesz = 2902 alignTo(last->p_filesz, config->commonPageSize); 2903 } 2904 } 2905 2906 // Write section contents to a mmap'ed file. 2907 template <class ELFT> void Writer<ELFT>::writeSections() { 2908 // In -r or --emit-relocs mode, write the relocation sections first as in 2909 // ELf_Rel targets we might find out that we need to modify the relocated 2910 // section while doing it. 2911 for (OutputSection *sec : outputSections) 2912 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2913 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2914 2915 for (OutputSection *sec : outputSections) 2916 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2917 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2918 2919 // Finally, check that all dynamic relocation addends were written correctly. 2920 if (config->checkDynamicRelocs && config->writeAddends) { 2921 for (OutputSection *sec : outputSections) 2922 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2923 sec->checkDynRelAddends(Out::bufferStart); 2924 } 2925 } 2926 2927 // Computes a hash value of Data using a given hash function. 2928 // In order to utilize multiple cores, we first split data into 1MB 2929 // chunks, compute a hash for each chunk, and then compute a hash value 2930 // of the hash values. 2931 static void 2932 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2933 llvm::ArrayRef<uint8_t> data, 2934 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2935 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2936 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2937 2938 // Compute hash values. 2939 parallelForEachN(0, chunks.size(), [&](size_t i) { 2940 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2941 }); 2942 2943 // Write to the final output buffer. 2944 hashFn(hashBuf.data(), hashes); 2945 } 2946 2947 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2948 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2949 return; 2950 2951 if (config->buildId == BuildIdKind::Hexstring) { 2952 for (Partition &part : partitions) 2953 part.buildId->writeBuildId(config->buildIdVector); 2954 return; 2955 } 2956 2957 // Compute a hash of all sections of the output file. 2958 size_t hashSize = mainPart->buildId->hashSize; 2959 std::vector<uint8_t> buildId(hashSize); 2960 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 2961 2962 switch (config->buildId) { 2963 case BuildIdKind::Fast: 2964 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2965 write64le(dest, xxHash64(arr)); 2966 }); 2967 break; 2968 case BuildIdKind::Md5: 2969 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2970 memcpy(dest, MD5::hash(arr).data(), hashSize); 2971 }); 2972 break; 2973 case BuildIdKind::Sha1: 2974 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2975 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2976 }); 2977 break; 2978 case BuildIdKind::Uuid: 2979 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 2980 error("entropy source failure: " + ec.message()); 2981 break; 2982 default: 2983 llvm_unreachable("unknown BuildIdKind"); 2984 } 2985 for (Partition &part : partitions) 2986 part.buildId->writeBuildId(buildId); 2987 } 2988 2989 template void elf::createSyntheticSections<ELF32LE>(); 2990 template void elf::createSyntheticSections<ELF32BE>(); 2991 template void elf::createSyntheticSections<ELF64LE>(); 2992 template void elf::createSyntheticSections<ELF64BE>(); 2993 2994 template void elf::writeResult<ELF32LE>(); 2995 template void elf::writeResult<ELF32BE>(); 2996 template void elf::writeResult<ELF64LE>(); 2997 template void elf::writeResult<ELF64BE>(); 2998