1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "MapFile.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SymbolTable.h" 20 #include "Symbols.h" 21 #include "SyntheticSections.h" 22 #include "Target.h" 23 #include "lld/Common/Arrays.h" 24 #include "lld/Common/CommonLinkerContext.h" 25 #include "lld/Common/Filesystem.h" 26 #include "lld/Common/Strings.h" 27 #include "llvm/ADT/StringMap.h" 28 #include "llvm/Support/BLAKE3.h" 29 #include "llvm/Support/Parallel.h" 30 #include "llvm/Support/RandomNumberGenerator.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include "llvm/Support/xxhash.h" 33 #include <climits> 34 35 #define DEBUG_TYPE "lld" 36 37 using namespace llvm; 38 using namespace llvm::ELF; 39 using namespace llvm::object; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::elf; 44 45 namespace { 46 // The writer writes a SymbolTable result to a file. 47 template <class ELFT> class Writer { 48 public: 49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 50 51 Writer() : buffer(errorHandler().outputBuffer) {} 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void sortSections(); 59 void resolveShfLinkOrder(); 60 void finalizeAddressDependentContent(); 61 void optimizeBasicBlockJumps(); 62 void sortInputSections(); 63 void finalizeSections(); 64 void checkExecuteOnly(); 65 void setReservedSymbolSections(); 66 67 SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part); 68 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 69 unsigned pFlags); 70 void assignFileOffsets(); 71 void assignFileOffsetsBinary(); 72 void setPhdrs(Partition &part); 73 void checkSections(); 74 void fixSectionAlignments(); 75 void openFile(); 76 void writeTrapInstr(); 77 void writeHeader(); 78 void writeSections(); 79 void writeSectionsBinary(); 80 void writeBuildId(); 81 82 std::unique_ptr<FileOutputBuffer> &buffer; 83 84 void addRelIpltSymbols(); 85 void addStartEndSymbols(); 86 void addStartStopSymbols(OutputSection &osec); 87 88 uint64_t fileSize; 89 uint64_t sectionHeaderOff; 90 }; 91 } // anonymous namespace 92 93 static bool needsInterpSection() { 94 return !config->relocatable && !config->shared && 95 !config->dynamicLinker.empty() && script->needsInterpSection(); 96 } 97 98 template <class ELFT> void elf::writeResult() { 99 Writer<ELFT>().run(); 100 } 101 102 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) { 103 auto it = std::stable_partition( 104 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 105 if (p->p_type != PT_LOAD) 106 return true; 107 if (!p->firstSec) 108 return false; 109 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 110 return size != 0; 111 }); 112 113 // Clear OutputSection::ptLoad for sections contained in removed 114 // segments. 115 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 116 for (OutputSection *sec : outputSections) 117 if (removed.count(sec->ptLoad)) 118 sec->ptLoad = nullptr; 119 phdrs.erase(it, phdrs.end()); 120 } 121 122 void elf::copySectionsIntoPartitions() { 123 SmallVector<InputSectionBase *, 0> newSections; 124 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 125 for (InputSectionBase *s : inputSections) { 126 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 127 continue; 128 InputSectionBase *copy; 129 if (s->type == SHT_NOTE) 130 copy = make<InputSection>(cast<InputSection>(*s)); 131 else if (auto *es = dyn_cast<EhInputSection>(s)) 132 copy = make<EhInputSection>(*es); 133 else 134 continue; 135 copy->partition = part; 136 newSections.push_back(copy); 137 } 138 } 139 140 inputSections.insert(inputSections.end(), newSections.begin(), 141 newSections.end()); 142 } 143 144 void elf::combineEhSections() { 145 llvm::TimeTraceScope timeScope("Combine EH sections"); 146 for (InputSectionBase *&s : inputSections) { 147 // Ignore dead sections and the partition end marker (.part.end), 148 // whose partition number is out of bounds. 149 if (!s->isLive() || s->partition == 255) 150 continue; 151 152 Partition &part = s->getPartition(); 153 if (auto *es = dyn_cast<EhInputSection>(s)) { 154 part.ehFrame->addSection(es); 155 s = nullptr; 156 } else if (s->kind() == SectionBase::Regular && part.armExidx && 157 part.armExidx->addSection(cast<InputSection>(s))) { 158 s = nullptr; 159 } 160 } 161 162 llvm::erase_value(inputSections, nullptr); 163 } 164 165 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 166 uint64_t val, uint8_t stOther = STV_HIDDEN) { 167 Symbol *s = symtab->find(name); 168 if (!s || s->isDefined() || s->isCommon()) 169 return nullptr; 170 171 s->resolve(Defined{nullptr, StringRef(), STB_GLOBAL, stOther, STT_NOTYPE, val, 172 /*size=*/0, sec}); 173 s->isUsedInRegularObj = true; 174 return cast<Defined>(s); 175 } 176 177 static Defined *addAbsolute(StringRef name) { 178 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 179 STT_NOTYPE, 0, 0, nullptr}); 180 sym->isUsedInRegularObj = true; 181 return cast<Defined>(sym); 182 } 183 184 // The linker is expected to define some symbols depending on 185 // the linking result. This function defines such symbols. 186 void elf::addReservedSymbols() { 187 if (config->emachine == EM_MIPS) { 188 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 189 // so that it points to an absolute address which by default is relative 190 // to GOT. Default offset is 0x7ff0. 191 // See "Global Data Symbols" in Chapter 6 in the following document: 192 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 193 ElfSym::mipsGp = addAbsolute("_gp"); 194 195 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 196 // start of function and 'gp' pointer into GOT. 197 if (symtab->find("_gp_disp")) 198 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 199 200 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 201 // pointer. This symbol is used in the code generated by .cpload pseudo-op 202 // in case of using -mno-shared option. 203 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 204 if (symtab->find("__gnu_local_gp")) 205 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 206 } else if (config->emachine == EM_PPC) { 207 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 208 // support Small Data Area, define it arbitrarily as 0. 209 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 210 } else if (config->emachine == EM_PPC64) { 211 addPPC64SaveRestore(); 212 } 213 214 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 215 // combines the typical ELF GOT with the small data sections. It commonly 216 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 217 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 218 // represent the TOC base which is offset by 0x8000 bytes from the start of 219 // the .got section. 220 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 221 // correctness of some relocations depends on its value. 222 StringRef gotSymName = 223 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 224 225 if (Symbol *s = symtab->find(gotSymName)) { 226 if (s->isDefined()) { 227 error(toString(s->file) + " cannot redefine linker defined symbol '" + 228 gotSymName + "'"); 229 return; 230 } 231 232 uint64_t gotOff = 0; 233 if (config->emachine == EM_PPC64) 234 gotOff = 0x8000; 235 236 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN, 237 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 238 ElfSym::globalOffsetTable = cast<Defined>(s); 239 } 240 241 // __ehdr_start is the location of ELF file headers. Note that we define 242 // this symbol unconditionally even when using a linker script, which 243 // differs from the behavior implemented by GNU linker which only define 244 // this symbol if ELF headers are in the memory mapped segment. 245 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 246 247 // __executable_start is not documented, but the expectation of at 248 // least the Android libc is that it points to the ELF header. 249 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 250 251 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 252 // each DSO. The address of the symbol doesn't matter as long as they are 253 // different in different DSOs, so we chose the start address of the DSO. 254 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 255 256 // If linker script do layout we do not need to create any standard symbols. 257 if (script->hasSectionsCommand) 258 return; 259 260 auto add = [](StringRef s, int64_t pos) { 261 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 262 }; 263 264 ElfSym::bss = add("__bss_start", 0); 265 ElfSym::end1 = add("end", -1); 266 ElfSym::end2 = add("_end", -1); 267 ElfSym::etext1 = add("etext", -1); 268 ElfSym::etext2 = add("_etext", -1); 269 ElfSym::edata1 = add("edata", -1); 270 ElfSym::edata2 = add("_edata", -1); 271 } 272 273 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 274 for (SectionCommand *cmd : script->sectionCommands) 275 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 276 if (osd->osec.name == name && osd->osec.partition == partition) 277 return &osd->osec; 278 return nullptr; 279 } 280 281 template <class ELFT> void elf::createSyntheticSections() { 282 // Initialize all pointers with NULL. This is needed because 283 // you can call lld::elf::main more than once as a library. 284 Out::tlsPhdr = nullptr; 285 Out::preinitArray = nullptr; 286 Out::initArray = nullptr; 287 Out::finiArray = nullptr; 288 289 // Add the .interp section first because it is not a SyntheticSection. 290 // The removeUnusedSyntheticSections() function relies on the 291 // SyntheticSections coming last. 292 if (needsInterpSection()) { 293 for (size_t i = 1; i <= partitions.size(); ++i) { 294 InputSection *sec = createInterpSection(); 295 sec->partition = i; 296 inputSections.push_back(sec); 297 } 298 } 299 300 auto add = [](SyntheticSection &sec) { inputSections.push_back(&sec); }; 301 302 in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false); 303 304 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 305 Out::programHeaders->alignment = config->wordsize; 306 307 if (config->strip != StripPolicy::All) { 308 in.strTab = std::make_unique<StringTableSection>(".strtab", false); 309 in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab); 310 in.symTabShndx = std::make_unique<SymtabShndxSection>(); 311 } 312 313 in.bss = std::make_unique<BssSection>(".bss", 0, 1); 314 add(*in.bss); 315 316 // If there is a SECTIONS command and a .data.rel.ro section name use name 317 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 318 // This makes sure our relro is contiguous. 319 bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro"); 320 in.bssRelRo = std::make_unique<BssSection>( 321 hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 322 add(*in.bssRelRo); 323 324 // Add MIPS-specific sections. 325 if (config->emachine == EM_MIPS) { 326 if (!config->shared && config->hasDynSymTab) { 327 in.mipsRldMap = std::make_unique<MipsRldMapSection>(); 328 add(*in.mipsRldMap); 329 } 330 if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create())) 331 add(*in.mipsAbiFlags); 332 if ((in.mipsOptions = MipsOptionsSection<ELFT>::create())) 333 add(*in.mipsOptions); 334 if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create())) 335 add(*in.mipsReginfo); 336 } 337 338 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 339 340 for (Partition &part : partitions) { 341 auto add = [&](SyntheticSection &sec) { 342 sec.partition = part.getNumber(); 343 inputSections.push_back(&sec); 344 }; 345 346 if (!part.name.empty()) { 347 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(); 348 part.elfHeader->name = part.name; 349 add(*part.elfHeader); 350 351 part.programHeaders = 352 std::make_unique<PartitionProgramHeadersSection<ELFT>>(); 353 add(*part.programHeaders); 354 } 355 356 if (config->buildId != BuildIdKind::None) { 357 part.buildId = std::make_unique<BuildIdSection>(); 358 add(*part.buildId); 359 } 360 361 part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true); 362 part.dynSymTab = 363 std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab); 364 part.dynamic = std::make_unique<DynamicSection<ELFT>>(); 365 366 if (config->emachine == EM_AARCH64 && 367 config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE) { 368 part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>(); 369 add(*part.memtagAndroidNote); 370 } 371 372 if (config->androidPackDynRelocs) 373 part.relaDyn = 374 std::make_unique<AndroidPackedRelocationSection<ELFT>>(relaDynName); 375 else 376 part.relaDyn = std::make_unique<RelocationSection<ELFT>>( 377 relaDynName, config->zCombreloc); 378 379 if (config->hasDynSymTab) { 380 add(*part.dynSymTab); 381 382 part.verSym = std::make_unique<VersionTableSection>(); 383 add(*part.verSym); 384 385 if (!namedVersionDefs().empty()) { 386 part.verDef = std::make_unique<VersionDefinitionSection>(); 387 add(*part.verDef); 388 } 389 390 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(); 391 add(*part.verNeed); 392 393 if (config->gnuHash) { 394 part.gnuHashTab = std::make_unique<GnuHashTableSection>(); 395 add(*part.gnuHashTab); 396 } 397 398 if (config->sysvHash) { 399 part.hashTab = std::make_unique<HashTableSection>(); 400 add(*part.hashTab); 401 } 402 403 add(*part.dynamic); 404 add(*part.dynStrTab); 405 add(*part.relaDyn); 406 } 407 408 if (config->relrPackDynRelocs) { 409 part.relrDyn = std::make_unique<RelrSection<ELFT>>(); 410 add(*part.relrDyn); 411 } 412 413 if (!config->relocatable) { 414 if (config->ehFrameHdr) { 415 part.ehFrameHdr = std::make_unique<EhFrameHeader>(); 416 add(*part.ehFrameHdr); 417 } 418 part.ehFrame = std::make_unique<EhFrameSection>(); 419 add(*part.ehFrame); 420 } 421 422 if (config->emachine == EM_ARM && !config->relocatable) { 423 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 424 // InputSections. 425 part.armExidx = std::make_unique<ARMExidxSyntheticSection>(); 426 add(*part.armExidx); 427 } 428 } 429 430 if (partitions.size() != 1) { 431 // Create the partition end marker. This needs to be in partition number 255 432 // so that it is sorted after all other partitions. It also has other 433 // special handling (see createPhdrs() and combineEhSections()). 434 in.partEnd = 435 std::make_unique<BssSection>(".part.end", config->maxPageSize, 1); 436 in.partEnd->partition = 255; 437 add(*in.partEnd); 438 439 in.partIndex = std::make_unique<PartitionIndexSection>(); 440 addOptionalRegular("__part_index_begin", in.partIndex.get(), 0); 441 addOptionalRegular("__part_index_end", in.partIndex.get(), 442 in.partIndex->getSize()); 443 add(*in.partIndex); 444 } 445 446 // Add .got. MIPS' .got is so different from the other archs, 447 // it has its own class. 448 if (config->emachine == EM_MIPS) { 449 in.mipsGot = std::make_unique<MipsGotSection>(); 450 add(*in.mipsGot); 451 } else { 452 in.got = std::make_unique<GotSection>(); 453 add(*in.got); 454 } 455 456 if (config->emachine == EM_PPC) { 457 in.ppc32Got2 = std::make_unique<PPC32Got2Section>(); 458 add(*in.ppc32Got2); 459 } 460 461 if (config->emachine == EM_PPC64) { 462 in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>(); 463 add(*in.ppc64LongBranchTarget); 464 } 465 466 in.gotPlt = std::make_unique<GotPltSection>(); 467 add(*in.gotPlt); 468 in.igotPlt = std::make_unique<IgotPltSection>(); 469 add(*in.igotPlt); 470 471 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 472 // it as a relocation and ensure the referenced section is created. 473 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 474 if (target->gotBaseSymInGotPlt) 475 in.gotPlt->hasGotPltOffRel = true; 476 else 477 in.got->hasGotOffRel = true; 478 } 479 480 if (config->gdbIndex) 481 add(*GdbIndexSection::create<ELFT>()); 482 483 // We always need to add rel[a].plt to output if it has entries. 484 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 485 in.relaPlt = std::make_unique<RelocationSection<ELFT>>( 486 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 487 add(*in.relaPlt); 488 489 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 490 // relocations are processed last by the dynamic loader. We cannot place the 491 // iplt section in .rel.dyn when Android relocation packing is enabled because 492 // that would cause a section type mismatch. However, because the Android 493 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 494 // behaviour by placing the iplt section in .rel.plt. 495 in.relaIplt = std::make_unique<RelocationSection<ELFT>>( 496 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 497 /*sort=*/false); 498 add(*in.relaIplt); 499 500 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 501 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 502 in.ibtPlt = std::make_unique<IBTPltSection>(); 503 add(*in.ibtPlt); 504 } 505 506 if (config->emachine == EM_PPC) 507 in.plt = std::make_unique<PPC32GlinkSection>(); 508 else 509 in.plt = std::make_unique<PltSection>(); 510 add(*in.plt); 511 in.iplt = std::make_unique<IpltSection>(); 512 add(*in.iplt); 513 514 if (config->andFeatures) 515 add(*make<GnuPropertySection>()); 516 517 // .note.GNU-stack is always added when we are creating a re-linkable 518 // object file. Other linkers are using the presence of this marker 519 // section to control the executable-ness of the stack area, but that 520 // is irrelevant these days. Stack area should always be non-executable 521 // by default. So we emit this section unconditionally. 522 if (config->relocatable) 523 add(*make<GnuStackSection>()); 524 525 if (in.symTab) 526 add(*in.symTab); 527 if (in.symTabShndx) 528 add(*in.symTabShndx); 529 add(*in.shStrTab); 530 if (in.strTab) 531 add(*in.strTab); 532 } 533 534 // The main function of the writer. 535 template <class ELFT> void Writer<ELFT>::run() { 536 copyLocalSymbols(); 537 538 if (config->copyRelocs) 539 addSectionSymbols(); 540 541 // Now that we have a complete set of output sections. This function 542 // completes section contents. For example, we need to add strings 543 // to the string table, and add entries to .got and .plt. 544 // finalizeSections does that. 545 finalizeSections(); 546 checkExecuteOnly(); 547 548 // If --compressed-debug-sections is specified, compress .debug_* sections. 549 // Do it right now because it changes the size of output sections. 550 for (OutputSection *sec : outputSections) 551 sec->maybeCompress<ELFT>(); 552 553 if (script->hasSectionsCommand) 554 script->allocateHeaders(mainPart->phdrs); 555 556 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 557 // 0 sized region. This has to be done late since only after assignAddresses 558 // we know the size of the sections. 559 for (Partition &part : partitions) 560 removeEmptyPTLoad(part.phdrs); 561 562 if (!config->oFormatBinary) 563 assignFileOffsets(); 564 else 565 assignFileOffsetsBinary(); 566 567 for (Partition &part : partitions) 568 setPhdrs(part); 569 570 // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections() 571 // because the files may be useful in case checkSections() or openFile() 572 // fails, for example, due to an erroneous file size. 573 writeMapAndCref(); 574 575 if (config->checkSections) 576 checkSections(); 577 578 // It does not make sense try to open the file if we have error already. 579 if (errorCount()) 580 return; 581 582 { 583 llvm::TimeTraceScope timeScope("Write output file"); 584 // Write the result down to a file. 585 openFile(); 586 if (errorCount()) 587 return; 588 589 if (!config->oFormatBinary) { 590 if (config->zSeparate != SeparateSegmentKind::None) 591 writeTrapInstr(); 592 writeHeader(); 593 writeSections(); 594 } else { 595 writeSectionsBinary(); 596 } 597 598 // Backfill .note.gnu.build-id section content. This is done at last 599 // because the content is usually a hash value of the entire output file. 600 writeBuildId(); 601 if (errorCount()) 602 return; 603 604 if (auto e = buffer->commit()) 605 error("failed to write to the output file: " + toString(std::move(e))); 606 } 607 } 608 609 template <class ELFT, class RelTy> 610 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 611 llvm::ArrayRef<RelTy> rels) { 612 for (const RelTy &rel : rels) { 613 Symbol &sym = file->getRelocTargetSym(rel); 614 if (sym.isLocal()) 615 sym.used = true; 616 } 617 } 618 619 // The function ensures that the "used" field of local symbols reflects the fact 620 // that the symbol is used in a relocation from a live section. 621 template <class ELFT> static void markUsedLocalSymbols() { 622 // With --gc-sections, the field is already filled. 623 // See MarkLive<ELFT>::resolveReloc(). 624 if (config->gcSections) 625 return; 626 for (ELFFileBase *file : objectFiles) { 627 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 628 for (InputSectionBase *s : f->getSections()) { 629 InputSection *isec = dyn_cast_or_null<InputSection>(s); 630 if (!isec) 631 continue; 632 if (isec->type == SHT_REL) 633 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 634 else if (isec->type == SHT_RELA) 635 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 636 } 637 } 638 } 639 640 static bool shouldKeepInSymtab(const Defined &sym) { 641 if (sym.isSection()) 642 return false; 643 644 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 645 // from live sections. 646 if (sym.used && config->copyRelocs) 647 return true; 648 649 // Exclude local symbols pointing to .ARM.exidx sections. 650 // They are probably mapping symbols "$d", which are optional for these 651 // sections. After merging the .ARM.exidx sections, some of these symbols 652 // may become dangling. The easiest way to avoid the issue is not to add 653 // them to the symbol table from the beginning. 654 if (config->emachine == EM_ARM && sym.section && 655 sym.section->type == SHT_ARM_EXIDX) 656 return false; 657 658 if (config->discard == DiscardPolicy::None) 659 return true; 660 if (config->discard == DiscardPolicy::All) 661 return false; 662 663 // In ELF assembly .L symbols are normally discarded by the assembler. 664 // If the assembler fails to do so, the linker discards them if 665 // * --discard-locals is used. 666 // * The symbol is in a SHF_MERGE section, which is normally the reason for 667 // the assembler keeping the .L symbol. 668 if (sym.getName().startswith(".L") && 669 (config->discard == DiscardPolicy::Locals || 670 (sym.section && (sym.section->flags & SHF_MERGE)))) 671 return false; 672 return true; 673 } 674 675 static bool includeInSymtab(const Symbol &b) { 676 if (auto *d = dyn_cast<Defined>(&b)) { 677 // Always include absolute symbols. 678 SectionBase *sec = d->section; 679 if (!sec) 680 return true; 681 682 if (auto *s = dyn_cast<MergeInputSection>(sec)) 683 return s->getSectionPiece(d->value).live; 684 return sec->isLive(); 685 } 686 return b.used || !config->gcSections; 687 } 688 689 // Local symbols are not in the linker's symbol table. This function scans 690 // each object file's symbol table to copy local symbols to the output. 691 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 692 if (!in.symTab) 693 return; 694 llvm::TimeTraceScope timeScope("Add local symbols"); 695 if (config->copyRelocs && config->discard != DiscardPolicy::None) 696 markUsedLocalSymbols<ELFT>(); 697 for (ELFFileBase *file : objectFiles) { 698 for (Symbol *b : file->getLocalSymbols()) { 699 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 700 auto *dr = dyn_cast<Defined>(b); 701 702 // No reason to keep local undefined symbol in symtab. 703 if (!dr) 704 continue; 705 if (includeInSymtab(*b) && shouldKeepInSymtab(*dr)) 706 in.symTab->addSymbol(b); 707 } 708 } 709 } 710 711 // Create a section symbol for each output section so that we can represent 712 // relocations that point to the section. If we know that no relocation is 713 // referring to a section (that happens if the section is a synthetic one), we 714 // don't create a section symbol for that section. 715 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 716 for (SectionCommand *cmd : script->sectionCommands) { 717 auto *osd = dyn_cast<OutputDesc>(cmd); 718 if (!osd) 719 continue; 720 OutputSection &osec = osd->osec; 721 InputSectionBase *isec = nullptr; 722 // Iterate over all input sections and add a STT_SECTION symbol if any input 723 // section may be a relocation target. 724 for (SectionCommand *cmd : osec.commands) { 725 auto *isd = dyn_cast<InputSectionDescription>(cmd); 726 if (!isd) 727 continue; 728 for (InputSectionBase *s : isd->sections) { 729 // Relocations are not using REL[A] section symbols. 730 if (s->type == SHT_REL || s->type == SHT_RELA) 731 continue; 732 733 // Unlike other synthetic sections, mergeable output sections contain 734 // data copied from input sections, and there may be a relocation 735 // pointing to its contents if -r or --emit-reloc is given. 736 if (isa<SyntheticSection>(s) && !(s->flags & SHF_MERGE)) 737 continue; 738 739 isec = s; 740 break; 741 } 742 } 743 if (!isec) 744 continue; 745 746 // Set the symbol to be relative to the output section so that its st_value 747 // equals the output section address. Note, there may be a gap between the 748 // start of the output section and isec. 749 in.symTab->addSymbol(makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0, 750 STT_SECTION, 751 /*value=*/0, /*size=*/0, &osec)); 752 } 753 } 754 755 // Today's loaders have a feature to make segments read-only after 756 // processing dynamic relocations to enhance security. PT_GNU_RELRO 757 // is defined for that. 758 // 759 // This function returns true if a section needs to be put into a 760 // PT_GNU_RELRO segment. 761 static bool isRelroSection(const OutputSection *sec) { 762 if (!config->zRelro) 763 return false; 764 765 uint64_t flags = sec->flags; 766 767 // Non-allocatable or non-writable sections don't need RELRO because 768 // they are not writable or not even mapped to memory in the first place. 769 // RELRO is for sections that are essentially read-only but need to 770 // be writable only at process startup to allow dynamic linker to 771 // apply relocations. 772 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 773 return false; 774 775 // Once initialized, TLS data segments are used as data templates 776 // for a thread-local storage. For each new thread, runtime 777 // allocates memory for a TLS and copy templates there. No thread 778 // are supposed to use templates directly. Thus, it can be in RELRO. 779 if (flags & SHF_TLS) 780 return true; 781 782 // .init_array, .preinit_array and .fini_array contain pointers to 783 // functions that are executed on process startup or exit. These 784 // pointers are set by the static linker, and they are not expected 785 // to change at runtime. But if you are an attacker, you could do 786 // interesting things by manipulating pointers in .fini_array, for 787 // example. So they are put into RELRO. 788 uint32_t type = sec->type; 789 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 790 type == SHT_PREINIT_ARRAY) 791 return true; 792 793 // .got contains pointers to external symbols. They are resolved by 794 // the dynamic linker when a module is loaded into memory, and after 795 // that they are not expected to change. So, it can be in RELRO. 796 if (in.got && sec == in.got->getParent()) 797 return true; 798 799 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 800 // through r2 register, which is reserved for that purpose. Since r2 is used 801 // for accessing .got as well, .got and .toc need to be close enough in the 802 // virtual address space. Usually, .toc comes just after .got. Since we place 803 // .got into RELRO, .toc needs to be placed into RELRO too. 804 if (sec->name.equals(".toc")) 805 return true; 806 807 // .got.plt contains pointers to external function symbols. They are 808 // by default resolved lazily, so we usually cannot put it into RELRO. 809 // However, if "-z now" is given, the lazy symbol resolution is 810 // disabled, which enables us to put it into RELRO. 811 if (sec == in.gotPlt->getParent()) 812 return config->zNow; 813 814 // .dynamic section contains data for the dynamic linker, and 815 // there's no need to write to it at runtime, so it's better to put 816 // it into RELRO. 817 if (sec->name == ".dynamic") 818 return true; 819 820 // Sections with some special names are put into RELRO. This is a 821 // bit unfortunate because section names shouldn't be significant in 822 // ELF in spirit. But in reality many linker features depend on 823 // magic section names. 824 StringRef s = sec->name; 825 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 826 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 827 s == ".fini_array" || s == ".init_array" || 828 s == ".openbsd.randomdata" || s == ".preinit_array"; 829 } 830 831 // We compute a rank for each section. The rank indicates where the 832 // section should be placed in the file. Instead of using simple 833 // numbers (0,1,2...), we use a series of flags. One for each decision 834 // point when placing the section. 835 // Using flags has two key properties: 836 // * It is easy to check if a give branch was taken. 837 // * It is easy two see how similar two ranks are (see getRankProximity). 838 enum RankFlags { 839 RF_NOT_ADDR_SET = 1 << 27, 840 RF_NOT_ALLOC = 1 << 26, 841 RF_PARTITION = 1 << 18, // Partition number (8 bits) 842 RF_NOT_PART_EHDR = 1 << 17, 843 RF_NOT_PART_PHDR = 1 << 16, 844 RF_NOT_INTERP = 1 << 15, 845 RF_NOT_NOTE = 1 << 14, 846 RF_WRITE = 1 << 13, 847 RF_EXEC_WRITE = 1 << 12, 848 RF_EXEC = 1 << 11, 849 RF_RODATA = 1 << 10, 850 RF_NOT_RELRO = 1 << 9, 851 RF_NOT_TLS = 1 << 8, 852 RF_BSS = 1 << 7, 853 RF_PPC_NOT_TOCBSS = 1 << 6, 854 RF_PPC_TOCL = 1 << 5, 855 RF_PPC_TOC = 1 << 4, 856 RF_PPC_GOT = 1 << 3, 857 RF_PPC_BRANCH_LT = 1 << 2, 858 RF_MIPS_GPREL = 1 << 1, 859 RF_MIPS_NOT_GOT = 1 << 0 860 }; 861 862 static unsigned getSectionRank(const OutputSection &osec) { 863 unsigned rank = osec.partition * RF_PARTITION; 864 865 // We want to put section specified by -T option first, so we 866 // can start assigning VA starting from them later. 867 if (config->sectionStartMap.count(osec.name)) 868 return rank; 869 rank |= RF_NOT_ADDR_SET; 870 871 // Allocatable sections go first to reduce the total PT_LOAD size and 872 // so debug info doesn't change addresses in actual code. 873 if (!(osec.flags & SHF_ALLOC)) 874 return rank | RF_NOT_ALLOC; 875 876 if (osec.type == SHT_LLVM_PART_EHDR) 877 return rank; 878 rank |= RF_NOT_PART_EHDR; 879 880 if (osec.type == SHT_LLVM_PART_PHDR) 881 return rank; 882 rank |= RF_NOT_PART_PHDR; 883 884 // Put .interp first because some loaders want to see that section 885 // on the first page of the executable file when loaded into memory. 886 if (osec.name == ".interp") 887 return rank; 888 rank |= RF_NOT_INTERP; 889 890 // Put .note sections (which make up one PT_NOTE) at the beginning so that 891 // they are likely to be included in a core file even if core file size is 892 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 893 // included in a core to match core files with executables. 894 if (osec.type == SHT_NOTE) 895 return rank; 896 rank |= RF_NOT_NOTE; 897 898 // Sort sections based on their access permission in the following 899 // order: R, RX, RWX, RW. This order is based on the following 900 // considerations: 901 // * Read-only sections come first such that they go in the 902 // PT_LOAD covering the program headers at the start of the file. 903 // * Read-only, executable sections come next. 904 // * Writable, executable sections follow such that .plt on 905 // architectures where it needs to be writable will be placed 906 // between .text and .data. 907 // * Writable sections come last, such that .bss lands at the very 908 // end of the last PT_LOAD. 909 bool isExec = osec.flags & SHF_EXECINSTR; 910 bool isWrite = osec.flags & SHF_WRITE; 911 912 if (isExec) { 913 if (isWrite) 914 rank |= RF_EXEC_WRITE; 915 else 916 rank |= RF_EXEC; 917 } else if (isWrite) { 918 rank |= RF_WRITE; 919 } else if (osec.type == SHT_PROGBITS) { 920 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 921 // .eh_frame) closer to .text. They likely contain PC or GOT relative 922 // relocations and there could be relocation overflow if other huge sections 923 // (.dynstr .dynsym) were placed in between. 924 rank |= RF_RODATA; 925 } 926 927 // Place RelRo sections first. After considering SHT_NOBITS below, the 928 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 929 // where | marks where page alignment happens. An alternative ordering is 930 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 931 // waste more bytes due to 2 alignment places. 932 if (!isRelroSection(&osec)) 933 rank |= RF_NOT_RELRO; 934 935 // If we got here we know that both A and B are in the same PT_LOAD. 936 937 // The TLS initialization block needs to be a single contiguous block in a R/W 938 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 939 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 940 // after PROGBITS. 941 if (!(osec.flags & SHF_TLS)) 942 rank |= RF_NOT_TLS; 943 944 // Within TLS sections, or within other RelRo sections, or within non-RelRo 945 // sections, place non-NOBITS sections first. 946 if (osec.type == SHT_NOBITS) 947 rank |= RF_BSS; 948 949 // Some architectures have additional ordering restrictions for sections 950 // within the same PT_LOAD. 951 if (config->emachine == EM_PPC64) { 952 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 953 // that we would like to make sure appear is a specific order to maximize 954 // their coverage by a single signed 16-bit offset from the TOC base 955 // pointer. Conversely, the special .tocbss section should be first among 956 // all SHT_NOBITS sections. This will put it next to the loaded special 957 // PPC64 sections (and, thus, within reach of the TOC base pointer). 958 StringRef name = osec.name; 959 if (name != ".tocbss") 960 rank |= RF_PPC_NOT_TOCBSS; 961 962 if (name == ".toc1") 963 rank |= RF_PPC_TOCL; 964 965 if (name == ".toc") 966 rank |= RF_PPC_TOC; 967 968 if (name == ".got") 969 rank |= RF_PPC_GOT; 970 971 if (name == ".branch_lt") 972 rank |= RF_PPC_BRANCH_LT; 973 } 974 975 if (config->emachine == EM_MIPS) { 976 // All sections with SHF_MIPS_GPREL flag should be grouped together 977 // because data in these sections is addressable with a gp relative address. 978 if (osec.flags & SHF_MIPS_GPREL) 979 rank |= RF_MIPS_GPREL; 980 981 if (osec.name != ".got") 982 rank |= RF_MIPS_NOT_GOT; 983 } 984 985 return rank; 986 } 987 988 static bool compareSections(const SectionCommand *aCmd, 989 const SectionCommand *bCmd) { 990 const OutputSection *a = &cast<OutputDesc>(aCmd)->osec; 991 const OutputSection *b = &cast<OutputDesc>(bCmd)->osec; 992 993 if (a->sortRank != b->sortRank) 994 return a->sortRank < b->sortRank; 995 996 if (!(a->sortRank & RF_NOT_ADDR_SET)) 997 return config->sectionStartMap.lookup(a->name) < 998 config->sectionStartMap.lookup(b->name); 999 return false; 1000 } 1001 1002 void PhdrEntry::add(OutputSection *sec) { 1003 lastSec = sec; 1004 if (!firstSec) 1005 firstSec = sec; 1006 p_align = std::max(p_align, sec->alignment); 1007 if (p_type == PT_LOAD) 1008 sec->ptLoad = this; 1009 } 1010 1011 // The beginning and the ending of .rel[a].plt section are marked 1012 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1013 // executable. The runtime needs these symbols in order to resolve 1014 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1015 // need these symbols, since IRELATIVE relocs are resolved through GOT 1016 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1017 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1018 if (config->relocatable || config->isPic) 1019 return; 1020 1021 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1022 // because .rela.plt might be empty and thus removed from output. 1023 // We'll override Out::elfHeader with In.relaIplt later when we are 1024 // sure that .rela.plt exists in output. 1025 ElfSym::relaIpltStart = addOptionalRegular( 1026 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1027 Out::elfHeader, 0, STV_HIDDEN); 1028 1029 ElfSym::relaIpltEnd = addOptionalRegular( 1030 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1031 Out::elfHeader, 0, STV_HIDDEN); 1032 } 1033 1034 // This function generates assignments for predefined symbols (e.g. _end or 1035 // _etext) and inserts them into the commands sequence to be processed at the 1036 // appropriate time. This ensures that the value is going to be correct by the 1037 // time any references to these symbols are processed and is equivalent to 1038 // defining these symbols explicitly in the linker script. 1039 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1040 if (ElfSym::globalOffsetTable) { 1041 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1042 // to the start of the .got or .got.plt section. 1043 InputSection *sec = in.gotPlt.get(); 1044 if (!target->gotBaseSymInGotPlt) 1045 sec = in.mipsGot.get() ? cast<InputSection>(in.mipsGot.get()) 1046 : cast<InputSection>(in.got.get()); 1047 ElfSym::globalOffsetTable->section = sec; 1048 } 1049 1050 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1051 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1052 ElfSym::relaIpltStart->section = in.relaIplt.get(); 1053 ElfSym::relaIpltEnd->section = in.relaIplt.get(); 1054 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1055 } 1056 1057 PhdrEntry *last = nullptr; 1058 PhdrEntry *lastRO = nullptr; 1059 1060 for (Partition &part : partitions) { 1061 for (PhdrEntry *p : part.phdrs) { 1062 if (p->p_type != PT_LOAD) 1063 continue; 1064 last = p; 1065 if (!(p->p_flags & PF_W)) 1066 lastRO = p; 1067 } 1068 } 1069 1070 if (lastRO) { 1071 // _etext is the first location after the last read-only loadable segment. 1072 if (ElfSym::etext1) 1073 ElfSym::etext1->section = lastRO->lastSec; 1074 if (ElfSym::etext2) 1075 ElfSym::etext2->section = lastRO->lastSec; 1076 } 1077 1078 if (last) { 1079 // _edata points to the end of the last mapped initialized section. 1080 OutputSection *edata = nullptr; 1081 for (OutputSection *os : outputSections) { 1082 if (os->type != SHT_NOBITS) 1083 edata = os; 1084 if (os == last->lastSec) 1085 break; 1086 } 1087 1088 if (ElfSym::edata1) 1089 ElfSym::edata1->section = edata; 1090 if (ElfSym::edata2) 1091 ElfSym::edata2->section = edata; 1092 1093 // _end is the first location after the uninitialized data region. 1094 if (ElfSym::end1) 1095 ElfSym::end1->section = last->lastSec; 1096 if (ElfSym::end2) 1097 ElfSym::end2->section = last->lastSec; 1098 } 1099 1100 if (ElfSym::bss) 1101 ElfSym::bss->section = findSection(".bss"); 1102 1103 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1104 // be equal to the _gp symbol's value. 1105 if (ElfSym::mipsGp) { 1106 // Find GP-relative section with the lowest address 1107 // and use this address to calculate default _gp value. 1108 for (OutputSection *os : outputSections) { 1109 if (os->flags & SHF_MIPS_GPREL) { 1110 ElfSym::mipsGp->section = os; 1111 ElfSym::mipsGp->value = 0x7ff0; 1112 break; 1113 } 1114 } 1115 } 1116 } 1117 1118 // We want to find how similar two ranks are. 1119 // The more branches in getSectionRank that match, the more similar they are. 1120 // Since each branch corresponds to a bit flag, we can just use 1121 // countLeadingZeros. 1122 static int getRankProximityAux(const OutputSection &a, const OutputSection &b) { 1123 return countLeadingZeros(a.sortRank ^ b.sortRank); 1124 } 1125 1126 static int getRankProximity(OutputSection *a, SectionCommand *b) { 1127 auto *osd = dyn_cast<OutputDesc>(b); 1128 return (osd && osd->osec.hasInputSections) 1129 ? getRankProximityAux(*a, osd->osec) 1130 : -1; 1131 } 1132 1133 // When placing orphan sections, we want to place them after symbol assignments 1134 // so that an orphan after 1135 // begin_foo = .; 1136 // foo : { *(foo) } 1137 // end_foo = .; 1138 // doesn't break the intended meaning of the begin/end symbols. 1139 // We don't want to go over sections since findOrphanPos is the 1140 // one in charge of deciding the order of the sections. 1141 // We don't want to go over changes to '.', since doing so in 1142 // rx_sec : { *(rx_sec) } 1143 // . = ALIGN(0x1000); 1144 // /* The RW PT_LOAD starts here*/ 1145 // rw_sec : { *(rw_sec) } 1146 // would mean that the RW PT_LOAD would become unaligned. 1147 static bool shouldSkip(SectionCommand *cmd) { 1148 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1149 return assign->name != "."; 1150 return false; 1151 } 1152 1153 // We want to place orphan sections so that they share as much 1154 // characteristics with their neighbors as possible. For example, if 1155 // both are rw, or both are tls. 1156 static SmallVectorImpl<SectionCommand *>::iterator 1157 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b, 1158 SmallVectorImpl<SectionCommand *>::iterator e) { 1159 OutputSection *sec = &cast<OutputDesc>(*e)->osec; 1160 1161 // Find the first element that has as close a rank as possible. 1162 auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) { 1163 return getRankProximity(sec, a) < getRankProximity(sec, b); 1164 }); 1165 if (i == e) 1166 return e; 1167 if (!isa<OutputDesc>(*i)) 1168 return e; 1169 auto foundSec = &cast<OutputDesc>(*i)->osec; 1170 1171 // Consider all existing sections with the same proximity. 1172 int proximity = getRankProximity(sec, *i); 1173 unsigned sortRank = sec->sortRank; 1174 if (script->hasPhdrsCommands() || !script->memoryRegions.empty()) 1175 // Prevent the orphan section to be placed before the found section. If 1176 // custom program headers are defined, that helps to avoid adding it to a 1177 // previous segment and changing flags of that segment, for example, making 1178 // a read-only segment writable. If memory regions are defined, an orphan 1179 // section should continue the same region as the found section to better 1180 // resemble the behavior of GNU ld. 1181 sortRank = std::max(sortRank, foundSec->sortRank); 1182 for (; i != e; ++i) { 1183 auto *curSecDesc = dyn_cast<OutputDesc>(*i); 1184 if (!curSecDesc || !curSecDesc->osec.hasInputSections) 1185 continue; 1186 if (getRankProximity(sec, curSecDesc) != proximity || 1187 sortRank < curSecDesc->osec.sortRank) 1188 break; 1189 } 1190 1191 auto isOutputSecWithInputSections = [](SectionCommand *cmd) { 1192 auto *osd = dyn_cast<OutputDesc>(cmd); 1193 return osd && osd->osec.hasInputSections; 1194 }; 1195 auto j = 1196 std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b), 1197 isOutputSecWithInputSections); 1198 i = j.base(); 1199 1200 // As a special case, if the orphan section is the last section, put 1201 // it at the very end, past any other commands. 1202 // This matches bfd's behavior and is convenient when the linker script fully 1203 // specifies the start of the file, but doesn't care about the end (the non 1204 // alloc sections for example). 1205 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1206 if (nextSec == e) 1207 return e; 1208 1209 while (i != e && shouldSkip(*i)) 1210 ++i; 1211 return i; 1212 } 1213 1214 // Adds random priorities to sections not already in the map. 1215 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1216 if (config->shuffleSections.empty()) 1217 return; 1218 1219 SmallVector<InputSectionBase *, 0> matched, sections = inputSections; 1220 matched.reserve(sections.size()); 1221 for (const auto &patAndSeed : config->shuffleSections) { 1222 matched.clear(); 1223 for (InputSectionBase *sec : sections) 1224 if (patAndSeed.first.match(sec->name)) 1225 matched.push_back(sec); 1226 const uint32_t seed = patAndSeed.second; 1227 if (seed == UINT32_MAX) { 1228 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1229 // section order is stable even if the number of sections changes. This is 1230 // useful to catch issues like static initialization order fiasco 1231 // reliably. 1232 std::reverse(matched.begin(), matched.end()); 1233 } else { 1234 std::mt19937 g(seed ? seed : std::random_device()()); 1235 llvm::shuffle(matched.begin(), matched.end(), g); 1236 } 1237 size_t i = 0; 1238 for (InputSectionBase *&sec : sections) 1239 if (patAndSeed.first.match(sec->name)) 1240 sec = matched[i++]; 1241 } 1242 1243 // Existing priorities are < 0, so use priorities >= 0 for the missing 1244 // sections. 1245 int prio = 0; 1246 for (InputSectionBase *sec : sections) { 1247 if (order.try_emplace(sec, prio).second) 1248 ++prio; 1249 } 1250 } 1251 1252 // Builds section order for handling --symbol-ordering-file. 1253 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1254 DenseMap<const InputSectionBase *, int> sectionOrder; 1255 // Use the rarely used option --call-graph-ordering-file to sort sections. 1256 if (!config->callGraphProfile.empty()) 1257 return computeCallGraphProfileOrder(); 1258 1259 if (config->symbolOrderingFile.empty()) 1260 return sectionOrder; 1261 1262 struct SymbolOrderEntry { 1263 int priority; 1264 bool present; 1265 }; 1266 1267 // Build a map from symbols to their priorities. Symbols that didn't 1268 // appear in the symbol ordering file have the lowest priority 0. 1269 // All explicitly mentioned symbols have negative (higher) priorities. 1270 DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder; 1271 int priority = -config->symbolOrderingFile.size(); 1272 for (StringRef s : config->symbolOrderingFile) 1273 symbolOrder.insert({CachedHashStringRef(s), {priority++, false}}); 1274 1275 // Build a map from sections to their priorities. 1276 auto addSym = [&](Symbol &sym) { 1277 auto it = symbolOrder.find(CachedHashStringRef(sym.getName())); 1278 if (it == symbolOrder.end()) 1279 return; 1280 SymbolOrderEntry &ent = it->second; 1281 ent.present = true; 1282 1283 maybeWarnUnorderableSymbol(&sym); 1284 1285 if (auto *d = dyn_cast<Defined>(&sym)) { 1286 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1287 int &priority = sectionOrder[cast<InputSectionBase>(sec)]; 1288 priority = std::min(priority, ent.priority); 1289 } 1290 } 1291 }; 1292 1293 // We want both global and local symbols. We get the global ones from the 1294 // symbol table and iterate the object files for the local ones. 1295 for (Symbol *sym : symtab->symbols()) 1296 addSym(*sym); 1297 1298 for (ELFFileBase *file : objectFiles) 1299 for (Symbol *sym : file->getLocalSymbols()) 1300 addSym(*sym); 1301 1302 if (config->warnSymbolOrdering) 1303 for (auto orderEntry : symbolOrder) 1304 if (!orderEntry.second.present) 1305 warn("symbol ordering file: no such symbol: " + orderEntry.first.val()); 1306 1307 return sectionOrder; 1308 } 1309 1310 // Sorts the sections in ISD according to the provided section order. 1311 static void 1312 sortISDBySectionOrder(InputSectionDescription *isd, 1313 const DenseMap<const InputSectionBase *, int> &order) { 1314 SmallVector<InputSection *, 0> unorderedSections; 1315 SmallVector<std::pair<InputSection *, int>, 0> orderedSections; 1316 uint64_t unorderedSize = 0; 1317 1318 for (InputSection *isec : isd->sections) { 1319 auto i = order.find(isec); 1320 if (i == order.end()) { 1321 unorderedSections.push_back(isec); 1322 unorderedSize += isec->getSize(); 1323 continue; 1324 } 1325 orderedSections.push_back({isec, i->second}); 1326 } 1327 llvm::sort(orderedSections, llvm::less_second()); 1328 1329 // Find an insertion point for the ordered section list in the unordered 1330 // section list. On targets with limited-range branches, this is the mid-point 1331 // of the unordered section list. This decreases the likelihood that a range 1332 // extension thunk will be needed to enter or exit the ordered region. If the 1333 // ordered section list is a list of hot functions, we can generally expect 1334 // the ordered functions to be called more often than the unordered functions, 1335 // making it more likely that any particular call will be within range, and 1336 // therefore reducing the number of thunks required. 1337 // 1338 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1339 // If the layout is: 1340 // 1341 // 8MB hot 1342 // 32MB cold 1343 // 1344 // only the first 8-16MB of the cold code (depending on which hot function it 1345 // is actually calling) can call the hot code without a range extension thunk. 1346 // However, if we use this layout: 1347 // 1348 // 16MB cold 1349 // 8MB hot 1350 // 16MB cold 1351 // 1352 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1353 // of the second block of cold code can call the hot code without a thunk. So 1354 // we effectively double the amount of code that could potentially call into 1355 // the hot code without a thunk. 1356 size_t insPt = 0; 1357 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1358 uint64_t unorderedPos = 0; 1359 for (; insPt != unorderedSections.size(); ++insPt) { 1360 unorderedPos += unorderedSections[insPt]->getSize(); 1361 if (unorderedPos > unorderedSize / 2) 1362 break; 1363 } 1364 } 1365 1366 isd->sections.clear(); 1367 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1368 isd->sections.push_back(isec); 1369 for (std::pair<InputSection *, int> p : orderedSections) 1370 isd->sections.push_back(p.first); 1371 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1372 isd->sections.push_back(isec); 1373 } 1374 1375 static void sortSection(OutputSection &osec, 1376 const DenseMap<const InputSectionBase *, int> &order) { 1377 StringRef name = osec.name; 1378 1379 // Never sort these. 1380 if (name == ".init" || name == ".fini") 1381 return; 1382 1383 // IRelative relocations that usually live in the .rel[a].dyn section should 1384 // be processed last by the dynamic loader. To achieve that we add synthetic 1385 // sections in the required order from the beginning so that the in.relaIplt 1386 // section is placed last in an output section. Here we just do not apply 1387 // sorting for an output section which holds the in.relaIplt section. 1388 if (in.relaIplt->getParent() == &osec) 1389 return; 1390 1391 // Sort input sections by priority using the list provided by 1392 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1393 // digit radix sort. The sections may be sorted stably again by a more 1394 // significant key. 1395 if (!order.empty()) 1396 for (SectionCommand *b : osec.commands) 1397 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1398 sortISDBySectionOrder(isd, order); 1399 1400 if (script->hasSectionsCommand) 1401 return; 1402 1403 if (name == ".init_array" || name == ".fini_array") { 1404 osec.sortInitFini(); 1405 } else if (name == ".ctors" || name == ".dtors") { 1406 osec.sortCtorsDtors(); 1407 } else if (config->emachine == EM_PPC64 && name == ".toc") { 1408 // .toc is allocated just after .got and is accessed using GOT-relative 1409 // relocations. Object files compiled with small code model have an 1410 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1411 // To reduce the risk of relocation overflow, .toc contents are sorted so 1412 // that sections having smaller relocation offsets are at beginning of .toc 1413 assert(osec.commands.size() == 1); 1414 auto *isd = cast<InputSectionDescription>(osec.commands[0]); 1415 llvm::stable_sort(isd->sections, 1416 [](const InputSection *a, const InputSection *b) -> bool { 1417 return a->file->ppc64SmallCodeModelTocRelocs && 1418 !b->file->ppc64SmallCodeModelTocRelocs; 1419 }); 1420 } 1421 } 1422 1423 // If no layout was provided by linker script, we want to apply default 1424 // sorting for special input sections. This also handles --symbol-ordering-file. 1425 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1426 // Build the order once since it is expensive. 1427 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1428 maybeShuffle(order); 1429 for (SectionCommand *cmd : script->sectionCommands) 1430 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1431 sortSection(osd->osec, order); 1432 } 1433 1434 template <class ELFT> void Writer<ELFT>::sortSections() { 1435 llvm::TimeTraceScope timeScope("Sort sections"); 1436 1437 // Don't sort if using -r. It is not necessary and we want to preserve the 1438 // relative order for SHF_LINK_ORDER sections. 1439 if (config->relocatable) { 1440 script->adjustOutputSections(); 1441 return; 1442 } 1443 1444 sortInputSections(); 1445 1446 for (SectionCommand *cmd : script->sectionCommands) 1447 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1448 osd->osec.sortRank = getSectionRank(osd->osec); 1449 if (!script->hasSectionsCommand) { 1450 // We know that all the OutputSections are contiguous in this case. 1451 auto isSection = [](SectionCommand *cmd) { return isa<OutputDesc>(cmd); }; 1452 std::stable_sort( 1453 llvm::find_if(script->sectionCommands, isSection), 1454 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1455 compareSections); 1456 } 1457 1458 // Process INSERT commands and update output section attributes. From this 1459 // point onwards the order of script->sectionCommands is fixed. 1460 script->processInsertCommands(); 1461 script->adjustOutputSections(); 1462 1463 if (!script->hasSectionsCommand) 1464 return; 1465 1466 // Orphan sections are sections present in the input files which are 1467 // not explicitly placed into the output file by the linker script. 1468 // 1469 // The sections in the linker script are already in the correct 1470 // order. We have to figuere out where to insert the orphan 1471 // sections. 1472 // 1473 // The order of the sections in the script is arbitrary and may not agree with 1474 // compareSections. This means that we cannot easily define a strict weak 1475 // ordering. To see why, consider a comparison of a section in the script and 1476 // one not in the script. We have a two simple options: 1477 // * Make them equivalent (a is not less than b, and b is not less than a). 1478 // The problem is then that equivalence has to be transitive and we can 1479 // have sections a, b and c with only b in a script and a less than c 1480 // which breaks this property. 1481 // * Use compareSectionsNonScript. Given that the script order doesn't have 1482 // to match, we can end up with sections a, b, c, d where b and c are in the 1483 // script and c is compareSectionsNonScript less than b. In which case d 1484 // can be equivalent to c, a to b and d < a. As a concrete example: 1485 // .a (rx) # not in script 1486 // .b (rx) # in script 1487 // .c (ro) # in script 1488 // .d (ro) # not in script 1489 // 1490 // The way we define an order then is: 1491 // * Sort only the orphan sections. They are in the end right now. 1492 // * Move each orphan section to its preferred position. We try 1493 // to put each section in the last position where it can share 1494 // a PT_LOAD. 1495 // 1496 // There is some ambiguity as to where exactly a new entry should be 1497 // inserted, because Commands contains not only output section 1498 // commands but also other types of commands such as symbol assignment 1499 // expressions. There's no correct answer here due to the lack of the 1500 // formal specification of the linker script. We use heuristics to 1501 // determine whether a new output command should be added before or 1502 // after another commands. For the details, look at shouldSkip 1503 // function. 1504 1505 auto i = script->sectionCommands.begin(); 1506 auto e = script->sectionCommands.end(); 1507 auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) { 1508 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1509 return osd->osec.sectionIndex == UINT32_MAX; 1510 return false; 1511 }); 1512 1513 // Sort the orphan sections. 1514 std::stable_sort(nonScriptI, e, compareSections); 1515 1516 // As a horrible special case, skip the first . assignment if it is before any 1517 // section. We do this because it is common to set a load address by starting 1518 // the script with ". = 0xabcd" and the expectation is that every section is 1519 // after that. 1520 auto firstSectionOrDotAssignment = 1521 std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); }); 1522 if (firstSectionOrDotAssignment != e && 1523 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1524 ++firstSectionOrDotAssignment; 1525 i = firstSectionOrDotAssignment; 1526 1527 while (nonScriptI != e) { 1528 auto pos = findOrphanPos(i, nonScriptI); 1529 OutputSection *orphan = &cast<OutputDesc>(*nonScriptI)->osec; 1530 1531 // As an optimization, find all sections with the same sort rank 1532 // and insert them with one rotate. 1533 unsigned rank = orphan->sortRank; 1534 auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) { 1535 return cast<OutputDesc>(cmd)->osec.sortRank != rank; 1536 }); 1537 std::rotate(pos, nonScriptI, end); 1538 nonScriptI = end; 1539 } 1540 1541 script->adjustSectionsAfterSorting(); 1542 } 1543 1544 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1545 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1546 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1547 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1548 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1549 if (!la || !lb) 1550 return la && !lb; 1551 OutputSection *aOut = la->getParent(); 1552 OutputSection *bOut = lb->getParent(); 1553 1554 if (aOut != bOut) 1555 return aOut->addr < bOut->addr; 1556 return la->outSecOff < lb->outSecOff; 1557 } 1558 1559 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1560 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1561 for (OutputSection *sec : outputSections) { 1562 if (!(sec->flags & SHF_LINK_ORDER)) 1563 continue; 1564 1565 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1566 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1567 if (!config->relocatable && config->emachine == EM_ARM && 1568 sec->type == SHT_ARM_EXIDX) 1569 continue; 1570 1571 // Link order may be distributed across several InputSectionDescriptions. 1572 // Sorting is performed separately. 1573 SmallVector<InputSection **, 0> scriptSections; 1574 SmallVector<InputSection *, 0> sections; 1575 for (SectionCommand *cmd : sec->commands) { 1576 auto *isd = dyn_cast<InputSectionDescription>(cmd); 1577 if (!isd) 1578 continue; 1579 bool hasLinkOrder = false; 1580 scriptSections.clear(); 1581 sections.clear(); 1582 for (InputSection *&isec : isd->sections) { 1583 if (isec->flags & SHF_LINK_ORDER) { 1584 InputSection *link = isec->getLinkOrderDep(); 1585 if (link && !link->getParent()) 1586 error(toString(isec) + ": sh_link points to discarded section " + 1587 toString(link)); 1588 hasLinkOrder = true; 1589 } 1590 scriptSections.push_back(&isec); 1591 sections.push_back(isec); 1592 } 1593 if (hasLinkOrder && errorCount() == 0) { 1594 llvm::stable_sort(sections, compareByFilePosition); 1595 for (int i = 0, n = sections.size(); i != n; ++i) 1596 *scriptSections[i] = sections[i]; 1597 } 1598 } 1599 } 1600 } 1601 1602 static void finalizeSynthetic(SyntheticSection *sec) { 1603 if (sec && sec->isNeeded() && sec->getParent()) { 1604 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1605 sec->finalizeContents(); 1606 } 1607 } 1608 1609 // We need to generate and finalize the content that depends on the address of 1610 // InputSections. As the generation of the content may also alter InputSection 1611 // addresses we must converge to a fixed point. We do that here. See the comment 1612 // in Writer<ELFT>::finalizeSections(). 1613 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1614 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1615 ThunkCreator tc; 1616 AArch64Err843419Patcher a64p; 1617 ARMErr657417Patcher a32p; 1618 script->assignAddresses(); 1619 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1620 // do require the relative addresses of OutputSections because linker scripts 1621 // can assign Virtual Addresses to OutputSections that are not monotonically 1622 // increasing. 1623 for (Partition &part : partitions) 1624 finalizeSynthetic(part.armExidx.get()); 1625 resolveShfLinkOrder(); 1626 1627 // Converts call x@GDPLT to call __tls_get_addr 1628 if (config->emachine == EM_HEXAGON) 1629 hexagonTLSSymbolUpdate(outputSections); 1630 1631 int assignPasses = 0; 1632 for (;;) { 1633 bool changed = target->needsThunks && tc.createThunks(outputSections); 1634 1635 // With Thunk Size much smaller than branch range we expect to 1636 // converge quickly; if we get to 15 something has gone wrong. 1637 if (changed && tc.pass >= 15) { 1638 error("thunk creation not converged"); 1639 break; 1640 } 1641 1642 if (config->fixCortexA53Errata843419) { 1643 if (changed) 1644 script->assignAddresses(); 1645 changed |= a64p.createFixes(); 1646 } 1647 if (config->fixCortexA8) { 1648 if (changed) 1649 script->assignAddresses(); 1650 changed |= a32p.createFixes(); 1651 } 1652 1653 if (in.mipsGot) 1654 in.mipsGot->updateAllocSize(); 1655 1656 for (Partition &part : partitions) { 1657 changed |= part.relaDyn->updateAllocSize(); 1658 if (part.relrDyn) 1659 changed |= part.relrDyn->updateAllocSize(); 1660 } 1661 1662 const Defined *changedSym = script->assignAddresses(); 1663 if (!changed) { 1664 // Some symbols may be dependent on section addresses. When we break the 1665 // loop, the symbol values are finalized because a previous 1666 // assignAddresses() finalized section addresses. 1667 if (!changedSym) 1668 break; 1669 if (++assignPasses == 5) { 1670 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1671 " does not converge"); 1672 break; 1673 } 1674 } 1675 } 1676 1677 if (config->relocatable) 1678 for (OutputSection *sec : outputSections) 1679 sec->addr = 0; 1680 1681 // If addrExpr is set, the address may not be a multiple of the alignment. 1682 // Warn because this is error-prone. 1683 for (SectionCommand *cmd : script->sectionCommands) 1684 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 1685 OutputSection *osec = &osd->osec; 1686 if (osec->addr % osec->alignment != 0) 1687 warn("address (0x" + Twine::utohexstr(osec->addr) + ") of section " + 1688 osec->name + " is not a multiple of alignment (" + 1689 Twine(osec->alignment) + ")"); 1690 } 1691 } 1692 1693 // If Input Sections have been shrunk (basic block sections) then 1694 // update symbol values and sizes associated with these sections. With basic 1695 // block sections, input sections can shrink when the jump instructions at 1696 // the end of the section are relaxed. 1697 static void fixSymbolsAfterShrinking() { 1698 for (InputFile *File : objectFiles) { 1699 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1700 auto *def = dyn_cast<Defined>(Sym); 1701 if (!def) 1702 return; 1703 1704 const SectionBase *sec = def->section; 1705 if (!sec) 1706 return; 1707 1708 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec); 1709 if (!inputSec || !inputSec->bytesDropped) 1710 return; 1711 1712 const size_t OldSize = inputSec->rawData.size(); 1713 const size_t NewSize = OldSize - inputSec->bytesDropped; 1714 1715 if (def->value > NewSize && def->value <= OldSize) { 1716 LLVM_DEBUG(llvm::dbgs() 1717 << "Moving symbol " << Sym->getName() << " from " 1718 << def->value << " to " 1719 << def->value - inputSec->bytesDropped << " bytes\n"); 1720 def->value -= inputSec->bytesDropped; 1721 return; 1722 } 1723 1724 if (def->value + def->size > NewSize && def->value <= OldSize && 1725 def->value + def->size <= OldSize) { 1726 LLVM_DEBUG(llvm::dbgs() 1727 << "Shrinking symbol " << Sym->getName() << " from " 1728 << def->size << " to " << def->size - inputSec->bytesDropped 1729 << " bytes\n"); 1730 def->size -= inputSec->bytesDropped; 1731 } 1732 }); 1733 } 1734 } 1735 1736 // If basic block sections exist, there are opportunities to delete fall thru 1737 // jumps and shrink jump instructions after basic block reordering. This 1738 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1739 // option is used. 1740 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1741 assert(config->optimizeBBJumps); 1742 1743 script->assignAddresses(); 1744 // For every output section that has executable input sections, this 1745 // does the following: 1746 // 1. Deletes all direct jump instructions in input sections that 1747 // jump to the following section as it is not required. 1748 // 2. If there are two consecutive jump instructions, it checks 1749 // if they can be flipped and one can be deleted. 1750 for (OutputSection *osec : outputSections) { 1751 if (!(osec->flags & SHF_EXECINSTR)) 1752 continue; 1753 SmallVector<InputSection *, 0> sections = getInputSections(*osec); 1754 size_t numDeleted = 0; 1755 // Delete all fall through jump instructions. Also, check if two 1756 // consecutive jump instructions can be flipped so that a fall 1757 // through jmp instruction can be deleted. 1758 for (size_t i = 0, e = sections.size(); i != e; ++i) { 1759 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1760 InputSection &sec = *sections[i]; 1761 numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next); 1762 } 1763 if (numDeleted > 0) { 1764 script->assignAddresses(); 1765 LLVM_DEBUG(llvm::dbgs() 1766 << "Removing " << numDeleted << " fall through jumps\n"); 1767 } 1768 } 1769 1770 fixSymbolsAfterShrinking(); 1771 1772 for (OutputSection *osec : outputSections) 1773 for (InputSection *is : getInputSections(*osec)) 1774 is->trim(); 1775 } 1776 1777 // In order to allow users to manipulate linker-synthesized sections, 1778 // we had to add synthetic sections to the input section list early, 1779 // even before we make decisions whether they are needed. This allows 1780 // users to write scripts like this: ".mygot : { .got }". 1781 // 1782 // Doing it has an unintended side effects. If it turns out that we 1783 // don't need a .got (for example) at all because there's no 1784 // relocation that needs a .got, we don't want to emit .got. 1785 // 1786 // To deal with the above problem, this function is called after 1787 // scanRelocations is called to remove synthetic sections that turn 1788 // out to be empty. 1789 static void removeUnusedSyntheticSections() { 1790 // All input synthetic sections that can be empty are placed after 1791 // all regular ones. Reverse iterate to find the first synthetic section 1792 // after a non-synthetic one which will be our starting point. 1793 auto start = std::find_if(inputSections.rbegin(), inputSections.rend(), 1794 [](InputSectionBase *s) { 1795 return !isa<SyntheticSection>(s); 1796 }) 1797 .base(); 1798 1799 // Remove unused synthetic sections from inputSections; 1800 DenseSet<InputSectionBase *> unused; 1801 auto end = 1802 std::remove_if(start, inputSections.end(), [&](InputSectionBase *s) { 1803 auto *sec = cast<SyntheticSection>(s); 1804 if (sec->getParent() && sec->isNeeded()) 1805 return false; 1806 unused.insert(sec); 1807 return true; 1808 }); 1809 inputSections.erase(end, inputSections.end()); 1810 1811 // Remove unused synthetic sections from the corresponding input section 1812 // description and orphanSections. 1813 for (auto *sec : unused) 1814 if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent()) 1815 for (SectionCommand *cmd : osec->commands) 1816 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 1817 llvm::erase_if(isd->sections, [&](InputSection *isec) { 1818 return unused.count(isec); 1819 }); 1820 llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) { 1821 return unused.count(sec); 1822 }); 1823 } 1824 1825 // Create output section objects and add them to OutputSections. 1826 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1827 Out::preinitArray = findSection(".preinit_array"); 1828 Out::initArray = findSection(".init_array"); 1829 Out::finiArray = findSection(".fini_array"); 1830 1831 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1832 // symbols for sections, so that the runtime can get the start and end 1833 // addresses of each section by section name. Add such symbols. 1834 if (!config->relocatable) { 1835 addStartEndSymbols(); 1836 for (SectionCommand *cmd : script->sectionCommands) 1837 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1838 addStartStopSymbols(osd->osec); 1839 } 1840 1841 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1842 // It should be okay as no one seems to care about the type. 1843 // Even the author of gold doesn't remember why gold behaves that way. 1844 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1845 if (mainPart->dynamic->parent) 1846 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE, 1847 /*value=*/0, /*size=*/0, mainPart->dynamic.get()})->isUsedInRegularObj = true; 1848 1849 // Define __rel[a]_iplt_{start,end} symbols if needed. 1850 addRelIpltSymbols(); 1851 1852 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1853 // should only be defined in an executable. If .sdata does not exist, its 1854 // value/section does not matter but it has to be relative, so set its 1855 // st_shndx arbitrarily to 1 (Out::elfHeader). 1856 if (config->emachine == EM_RISCV && !config->shared) { 1857 OutputSection *sec = findSection(".sdata"); 1858 ElfSym::riscvGlobalPointer = 1859 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1860 0x800, STV_DEFAULT); 1861 } 1862 1863 if (config->emachine == EM_386 || config->emachine == EM_X86_64) { 1864 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1865 // way that: 1866 // 1867 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1868 // computes 0. 1869 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1870 // the TLS block). 1871 // 1872 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1873 // an absolute symbol of zero. This is different from GNU linkers which 1874 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1875 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1876 if (s && s->isUndefined()) { 1877 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN, 1878 STT_TLS, /*value=*/0, 0, 1879 /*section=*/nullptr}); 1880 ElfSym::tlsModuleBase = cast<Defined>(s); 1881 } 1882 } 1883 1884 { 1885 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1886 // This responsible for splitting up .eh_frame section into 1887 // pieces. The relocation scan uses those pieces, so this has to be 1888 // earlier. 1889 for (Partition &part : partitions) 1890 finalizeSynthetic(part.ehFrame.get()); 1891 } 1892 1893 if (config->hasDynSymTab) { 1894 parallelForEach(symtab->symbols(), [](Symbol *sym) { 1895 sym->isPreemptible = computeIsPreemptible(*sym); 1896 }); 1897 } 1898 1899 // Change values of linker-script-defined symbols from placeholders (assigned 1900 // by declareSymbols) to actual definitions. 1901 script->processSymbolAssignments(); 1902 1903 { 1904 llvm::TimeTraceScope timeScope("Scan relocations"); 1905 // Scan relocations. This must be done after every symbol is declared so 1906 // that we can correctly decide if a dynamic relocation is needed. This is 1907 // called after processSymbolAssignments() because it needs to know whether 1908 // a linker-script-defined symbol is absolute. 1909 ppc64noTocRelax.clear(); 1910 if (!config->relocatable) { 1911 // Scan all relocations. Each relocation goes through a series of tests to 1912 // determine if it needs special treatment, such as creating GOT, PLT, 1913 // copy relocations, etc. Note that relocations for non-alloc sections are 1914 // directly processed by InputSection::relocateNonAlloc. 1915 for (InputSectionBase *sec : inputSections) 1916 if (sec->isLive() && isa<InputSection>(sec) && (sec->flags & SHF_ALLOC)) 1917 scanRelocations<ELFT>(*sec); 1918 for (Partition &part : partitions) { 1919 for (EhInputSection *sec : part.ehFrame->sections) 1920 scanRelocations<ELFT>(*sec); 1921 if (part.armExidx && part.armExidx->isLive()) 1922 for (InputSection *sec : part.armExidx->exidxSections) 1923 scanRelocations<ELFT>(*sec); 1924 } 1925 1926 reportUndefinedSymbols(); 1927 postScanRelocations(); 1928 } 1929 } 1930 1931 if (in.plt && in.plt->isNeeded()) 1932 in.plt->addSymbols(); 1933 if (in.iplt && in.iplt->isNeeded()) 1934 in.iplt->addSymbols(); 1935 1936 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 1937 auto diagnose = 1938 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 1939 ? errorOrWarn 1940 : warn; 1941 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1942 // entries are seen. These cases would otherwise lead to runtime errors 1943 // reported by the dynamic linker. 1944 // 1945 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1946 // catch more cases. That is too much for us. Our approach resembles the one 1947 // used in ld.gold, achieves a good balance to be useful but not too smart. 1948 for (SharedFile *file : sharedFiles) { 1949 bool allNeededIsKnown = 1950 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1951 return symtab->soNames.count(CachedHashStringRef(needed)); 1952 }); 1953 if (!allNeededIsKnown) 1954 continue; 1955 for (Symbol *sym : file->requiredSymbols) 1956 if (sym->isUndefined() && !sym->isWeak()) 1957 diagnose(toString(file) + ": undefined reference to " + 1958 toString(*sym) + " [--no-allow-shlib-undefined]"); 1959 } 1960 } 1961 1962 { 1963 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 1964 // Now that we have defined all possible global symbols including linker- 1965 // synthesized ones. Visit all symbols to give the finishing touches. 1966 for (Symbol *sym : symtab->symbols()) { 1967 if (!sym->isUsedInRegularObj || !includeInSymtab(*sym)) 1968 continue; 1969 if (!config->relocatable) 1970 sym->binding = sym->computeBinding(); 1971 if (in.symTab) 1972 in.symTab->addSymbol(sym); 1973 1974 if (sym->includeInDynsym()) { 1975 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1976 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1977 if (file->isNeeded && !sym->isUndefined()) 1978 addVerneed(sym); 1979 } 1980 } 1981 1982 // We also need to scan the dynamic relocation tables of the other 1983 // partitions and add any referenced symbols to the partition's dynsym. 1984 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 1985 DenseSet<Symbol *> syms; 1986 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 1987 syms.insert(e.sym); 1988 for (DynamicReloc &reloc : part.relaDyn->relocs) 1989 if (reloc.sym && reloc.needsDynSymIndex() && 1990 syms.insert(reloc.sym).second) 1991 part.dynSymTab->addSymbol(reloc.sym); 1992 } 1993 } 1994 1995 if (in.mipsGot) 1996 in.mipsGot->build(); 1997 1998 removeUnusedSyntheticSections(); 1999 script->diagnoseOrphanHandling(); 2000 2001 sortSections(); 2002 2003 // Create a list of OutputSections, assign sectionIndex, and populate 2004 // in.shStrTab. 2005 for (SectionCommand *cmd : script->sectionCommands) 2006 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 2007 OutputSection *osec = &osd->osec; 2008 outputSections.push_back(osec); 2009 osec->sectionIndex = outputSections.size(); 2010 osec->shName = in.shStrTab->addString(osec->name); 2011 } 2012 2013 // Prefer command line supplied address over other constraints. 2014 for (OutputSection *sec : outputSections) { 2015 auto i = config->sectionStartMap.find(sec->name); 2016 if (i != config->sectionStartMap.end()) 2017 sec->addrExpr = [=] { return i->second; }; 2018 } 2019 2020 // With the outputSections available check for GDPLT relocations 2021 // and add __tls_get_addr symbol if needed. 2022 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2023 Symbol *sym = symtab->addSymbol(Undefined{ 2024 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2025 sym->isPreemptible = true; 2026 partitions[0].dynSymTab->addSymbol(sym); 2027 } 2028 2029 // This is a bit of a hack. A value of 0 means undef, so we set it 2030 // to 1 to make __ehdr_start defined. The section number is not 2031 // particularly relevant. 2032 Out::elfHeader->sectionIndex = 1; 2033 Out::elfHeader->size = sizeof(typename ELFT::Ehdr); 2034 2035 // Binary and relocatable output does not have PHDRS. 2036 // The headers have to be created before finalize as that can influence the 2037 // image base and the dynamic section on mips includes the image base. 2038 if (!config->relocatable && !config->oFormatBinary) { 2039 for (Partition &part : partitions) { 2040 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2041 : createPhdrs(part); 2042 if (config->emachine == EM_ARM) { 2043 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2044 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2045 } 2046 if (config->emachine == EM_MIPS) { 2047 // Add separate segments for MIPS-specific sections. 2048 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2049 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2050 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2051 } 2052 } 2053 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2054 2055 // Find the TLS segment. This happens before the section layout loop so that 2056 // Android relocation packing can look up TLS symbol addresses. We only need 2057 // to care about the main partition here because all TLS symbols were moved 2058 // to the main partition (see MarkLive.cpp). 2059 for (PhdrEntry *p : mainPart->phdrs) 2060 if (p->p_type == PT_TLS) 2061 Out::tlsPhdr = p; 2062 } 2063 2064 // Some symbols are defined in term of program headers. Now that we 2065 // have the headers, we can find out which sections they point to. 2066 setReservedSymbolSections(); 2067 2068 { 2069 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2070 2071 finalizeSynthetic(in.bss.get()); 2072 finalizeSynthetic(in.bssRelRo.get()); 2073 finalizeSynthetic(in.symTabShndx.get()); 2074 finalizeSynthetic(in.shStrTab.get()); 2075 finalizeSynthetic(in.strTab.get()); 2076 finalizeSynthetic(in.got.get()); 2077 finalizeSynthetic(in.mipsGot.get()); 2078 finalizeSynthetic(in.igotPlt.get()); 2079 finalizeSynthetic(in.gotPlt.get()); 2080 finalizeSynthetic(in.relaIplt.get()); 2081 finalizeSynthetic(in.relaPlt.get()); 2082 finalizeSynthetic(in.plt.get()); 2083 finalizeSynthetic(in.iplt.get()); 2084 finalizeSynthetic(in.ppc32Got2.get()); 2085 finalizeSynthetic(in.partIndex.get()); 2086 2087 // Dynamic section must be the last one in this list and dynamic 2088 // symbol table section (dynSymTab) must be the first one. 2089 for (Partition &part : partitions) { 2090 if (part.relaDyn) { 2091 // Compute DT_RELACOUNT to be used by part.dynamic. 2092 part.relaDyn->partitionRels(); 2093 finalizeSynthetic(part.relaDyn.get()); 2094 } 2095 2096 finalizeSynthetic(part.dynSymTab.get()); 2097 finalizeSynthetic(part.gnuHashTab.get()); 2098 finalizeSynthetic(part.hashTab.get()); 2099 finalizeSynthetic(part.verDef.get()); 2100 finalizeSynthetic(part.relrDyn.get()); 2101 finalizeSynthetic(part.ehFrameHdr.get()); 2102 finalizeSynthetic(part.verSym.get()); 2103 finalizeSynthetic(part.verNeed.get()); 2104 finalizeSynthetic(part.dynamic.get()); 2105 } 2106 } 2107 2108 if (!script->hasSectionsCommand && !config->relocatable) 2109 fixSectionAlignments(); 2110 2111 // This is used to: 2112 // 1) Create "thunks": 2113 // Jump instructions in many ISAs have small displacements, and therefore 2114 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2115 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2116 // responsibility to create and insert small pieces of code between 2117 // sections to extend the ranges if jump targets are out of range. Such 2118 // code pieces are called "thunks". 2119 // 2120 // We add thunks at this stage. We couldn't do this before this point 2121 // because this is the earliest point where we know sizes of sections and 2122 // their layouts (that are needed to determine if jump targets are in 2123 // range). 2124 // 2125 // 2) Update the sections. We need to generate content that depends on the 2126 // address of InputSections. For example, MIPS GOT section content or 2127 // android packed relocations sections content. 2128 // 2129 // 3) Assign the final values for the linker script symbols. Linker scripts 2130 // sometimes using forward symbol declarations. We want to set the correct 2131 // values. They also might change after adding the thunks. 2132 finalizeAddressDependentContent(); 2133 2134 // All information needed for OutputSection part of Map file is available. 2135 if (errorCount()) 2136 return; 2137 2138 { 2139 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2140 // finalizeAddressDependentContent may have added local symbols to the 2141 // static symbol table. 2142 finalizeSynthetic(in.symTab.get()); 2143 finalizeSynthetic(in.ppc64LongBranchTarget.get()); 2144 } 2145 2146 // Relaxation to delete inter-basic block jumps created by basic block 2147 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2148 // can relax jump instructions based on symbol offset. 2149 if (config->optimizeBBJumps) 2150 optimizeBasicBlockJumps(); 2151 2152 // Fill other section headers. The dynamic table is finalized 2153 // at the end because some tags like RELSZ depend on result 2154 // of finalizing other sections. 2155 for (OutputSection *sec : outputSections) 2156 sec->finalize(); 2157 } 2158 2159 // Ensure data sections are not mixed with executable sections when 2160 // --execute-only is used. --execute-only make pages executable but not 2161 // readable. 2162 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2163 if (!config->executeOnly) 2164 return; 2165 2166 for (OutputSection *osec : outputSections) 2167 if (osec->flags & SHF_EXECINSTR) 2168 for (InputSection *isec : getInputSections(*osec)) 2169 if (!(isec->flags & SHF_EXECINSTR)) 2170 error("cannot place " + toString(isec) + " into " + 2171 toString(osec->name) + 2172 ": --execute-only does not support intermingling data and code"); 2173 } 2174 2175 // The linker is expected to define SECNAME_start and SECNAME_end 2176 // symbols for a few sections. This function defines them. 2177 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2178 // If a section does not exist, there's ambiguity as to how we 2179 // define _start and _end symbols for an init/fini section. Since 2180 // the loader assume that the symbols are always defined, we need to 2181 // always define them. But what value? The loader iterates over all 2182 // pointers between _start and _end to run global ctors/dtors, so if 2183 // the section is empty, their symbol values don't actually matter 2184 // as long as _start and _end point to the same location. 2185 // 2186 // That said, we don't want to set the symbols to 0 (which is 2187 // probably the simplest value) because that could cause some 2188 // program to fail to link due to relocation overflow, if their 2189 // program text is above 2 GiB. We use the address of the .text 2190 // section instead to prevent that failure. 2191 // 2192 // In rare situations, the .text section may not exist. If that's the 2193 // case, use the image base address as a last resort. 2194 OutputSection *Default = findSection(".text"); 2195 if (!Default) 2196 Default = Out::elfHeader; 2197 2198 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2199 if (os && !script->isDiscarded(os)) { 2200 addOptionalRegular(start, os, 0); 2201 addOptionalRegular(end, os, -1); 2202 } else { 2203 addOptionalRegular(start, Default, 0); 2204 addOptionalRegular(end, Default, 0); 2205 } 2206 }; 2207 2208 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2209 define("__init_array_start", "__init_array_end", Out::initArray); 2210 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2211 2212 if (OutputSection *sec = findSection(".ARM.exidx")) 2213 define("__exidx_start", "__exidx_end", sec); 2214 } 2215 2216 // If a section name is valid as a C identifier (which is rare because of 2217 // the leading '.'), linkers are expected to define __start_<secname> and 2218 // __stop_<secname> symbols. They are at beginning and end of the section, 2219 // respectively. This is not requested by the ELF standard, but GNU ld and 2220 // gold provide the feature, and used by many programs. 2221 template <class ELFT> 2222 void Writer<ELFT>::addStartStopSymbols(OutputSection &osec) { 2223 StringRef s = osec.name; 2224 if (!isValidCIdentifier(s)) 2225 return; 2226 addOptionalRegular(saver().save("__start_" + s), &osec, 0, 2227 config->zStartStopVisibility); 2228 addOptionalRegular(saver().save("__stop_" + s), &osec, -1, 2229 config->zStartStopVisibility); 2230 } 2231 2232 static bool needsPtLoad(OutputSection *sec) { 2233 if (!(sec->flags & SHF_ALLOC)) 2234 return false; 2235 2236 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2237 // responsible for allocating space for them, not the PT_LOAD that 2238 // contains the TLS initialization image. 2239 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2240 return false; 2241 return true; 2242 } 2243 2244 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2245 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2246 // RW. This means that there is no alignment in the RO to RX transition and we 2247 // cannot create a PT_LOAD there. 2248 static uint64_t computeFlags(uint64_t flags) { 2249 if (config->omagic) 2250 return PF_R | PF_W | PF_X; 2251 if (config->executeOnly && (flags & PF_X)) 2252 return flags & ~PF_R; 2253 if (config->singleRoRx && !(flags & PF_W)) 2254 return flags | PF_X; 2255 return flags; 2256 } 2257 2258 // Decide which program headers to create and which sections to include in each 2259 // one. 2260 template <class ELFT> 2261 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) { 2262 SmallVector<PhdrEntry *, 0> ret; 2263 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2264 ret.push_back(make<PhdrEntry>(type, flags)); 2265 return ret.back(); 2266 }; 2267 2268 unsigned partNo = part.getNumber(); 2269 bool isMain = partNo == 1; 2270 2271 // Add the first PT_LOAD segment for regular output sections. 2272 uint64_t flags = computeFlags(PF_R); 2273 PhdrEntry *load = nullptr; 2274 2275 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2276 // PT_LOAD. 2277 if (!config->nmagic && !config->omagic) { 2278 // The first phdr entry is PT_PHDR which describes the program header 2279 // itself. 2280 if (isMain) 2281 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2282 else 2283 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2284 2285 // PT_INTERP must be the second entry if exists. 2286 if (OutputSection *cmd = findSection(".interp", partNo)) 2287 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2288 2289 // Add the headers. We will remove them if they don't fit. 2290 // In the other partitions the headers are ordinary sections, so they don't 2291 // need to be added here. 2292 if (isMain) { 2293 load = addHdr(PT_LOAD, flags); 2294 load->add(Out::elfHeader); 2295 load->add(Out::programHeaders); 2296 } 2297 } 2298 2299 // PT_GNU_RELRO includes all sections that should be marked as 2300 // read-only by dynamic linker after processing relocations. 2301 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2302 // an error message if more than one PT_GNU_RELRO PHDR is required. 2303 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2304 bool inRelroPhdr = false; 2305 OutputSection *relroEnd = nullptr; 2306 for (OutputSection *sec : outputSections) { 2307 if (sec->partition != partNo || !needsPtLoad(sec)) 2308 continue; 2309 if (isRelroSection(sec)) { 2310 inRelroPhdr = true; 2311 if (!relroEnd) 2312 relRo->add(sec); 2313 else 2314 error("section: " + sec->name + " is not contiguous with other relro" + 2315 " sections"); 2316 } else if (inRelroPhdr) { 2317 inRelroPhdr = false; 2318 relroEnd = sec; 2319 } 2320 } 2321 2322 for (OutputSection *sec : outputSections) { 2323 if (!needsPtLoad(sec)) 2324 continue; 2325 2326 // Normally, sections in partitions other than the current partition are 2327 // ignored. But partition number 255 is a special case: it contains the 2328 // partition end marker (.part.end). It needs to be added to the main 2329 // partition so that a segment is created for it in the main partition, 2330 // which will cause the dynamic loader to reserve space for the other 2331 // partitions. 2332 if (sec->partition != partNo) { 2333 if (isMain && sec->partition == 255) 2334 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2335 continue; 2336 } 2337 2338 // Segments are contiguous memory regions that has the same attributes 2339 // (e.g. executable or writable). There is one phdr for each segment. 2340 // Therefore, we need to create a new phdr when the next section has 2341 // different flags or is loaded at a discontiguous address or memory 2342 // region using AT or AT> linker script command, respectively. At the same 2343 // time, we don't want to create a separate load segment for the headers, 2344 // even if the first output section has an AT or AT> attribute. 2345 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2346 bool sameLMARegion = 2347 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2348 if (!(load && newFlags == flags && sec != relroEnd && 2349 sec->memRegion == load->firstSec->memRegion && 2350 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2351 load = addHdr(PT_LOAD, newFlags); 2352 flags = newFlags; 2353 } 2354 2355 load->add(sec); 2356 } 2357 2358 // Add a TLS segment if any. 2359 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2360 for (OutputSection *sec : outputSections) 2361 if (sec->partition == partNo && sec->flags & SHF_TLS) 2362 tlsHdr->add(sec); 2363 if (tlsHdr->firstSec) 2364 ret.push_back(tlsHdr); 2365 2366 // Add an entry for .dynamic. 2367 if (OutputSection *sec = part.dynamic->getParent()) 2368 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2369 2370 if (relRo->firstSec) 2371 ret.push_back(relRo); 2372 2373 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2374 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2375 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2376 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2377 ->add(part.ehFrameHdr->getParent()); 2378 2379 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2380 // the dynamic linker fill the segment with random data. 2381 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2382 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2383 2384 if (config->zGnustack != GnuStackKind::None) { 2385 // PT_GNU_STACK is a special section to tell the loader to make the 2386 // pages for the stack non-executable. If you really want an executable 2387 // stack, you can pass -z execstack, but that's not recommended for 2388 // security reasons. 2389 unsigned perm = PF_R | PF_W; 2390 if (config->zGnustack == GnuStackKind::Exec) 2391 perm |= PF_X; 2392 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2393 } 2394 2395 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2396 // is expected to perform W^X violations, such as calling mprotect(2) or 2397 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2398 // OpenBSD. 2399 if (config->zWxneeded) 2400 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2401 2402 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2403 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2404 2405 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2406 // same alignment. 2407 PhdrEntry *note = nullptr; 2408 for (OutputSection *sec : outputSections) { 2409 if (sec->partition != partNo) 2410 continue; 2411 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2412 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2413 note = addHdr(PT_NOTE, PF_R); 2414 note->add(sec); 2415 } else { 2416 note = nullptr; 2417 } 2418 } 2419 return ret; 2420 } 2421 2422 template <class ELFT> 2423 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2424 unsigned pType, unsigned pFlags) { 2425 unsigned partNo = part.getNumber(); 2426 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2427 return cmd->partition == partNo && cmd->type == shType; 2428 }); 2429 if (i == outputSections.end()) 2430 return; 2431 2432 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2433 entry->add(*i); 2434 part.phdrs.push_back(entry); 2435 } 2436 2437 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2438 // This is achieved by assigning an alignment expression to addrExpr of each 2439 // such section. 2440 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2441 const PhdrEntry *prev; 2442 auto pageAlign = [&](const PhdrEntry *p) { 2443 OutputSection *cmd = p->firstSec; 2444 if (!cmd) 2445 return; 2446 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2447 if (!cmd->addrExpr) { 2448 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2449 // padding in the file contents. 2450 // 2451 // When -z separate-code is used we must not have any overlap in pages 2452 // between an executable segment and a non-executable segment. We align to 2453 // the next maximum page size boundary on transitions between executable 2454 // and non-executable segments. 2455 // 2456 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2457 // sections will be extracted to a separate file. Align to the next 2458 // maximum page size boundary so that we can find the ELF header at the 2459 // start. We cannot benefit from overlapping p_offset ranges with the 2460 // previous segment anyway. 2461 if (config->zSeparate == SeparateSegmentKind::Loadable || 2462 (config->zSeparate == SeparateSegmentKind::Code && prev && 2463 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2464 cmd->type == SHT_LLVM_PART_EHDR) 2465 cmd->addrExpr = [] { 2466 return alignTo(script->getDot(), config->maxPageSize); 2467 }; 2468 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2469 // it must be the RW. Align to p_align(PT_TLS) to make sure 2470 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2471 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2472 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2473 // be congruent to 0 modulo p_align(PT_TLS). 2474 // 2475 // Technically this is not required, but as of 2019, some dynamic loaders 2476 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2477 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2478 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2479 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2480 // blocks correctly. We need to keep the workaround for a while. 2481 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2482 cmd->addrExpr = [] { 2483 return alignTo(script->getDot(), config->maxPageSize) + 2484 alignTo(script->getDot() % config->maxPageSize, 2485 Out::tlsPhdr->p_align); 2486 }; 2487 else 2488 cmd->addrExpr = [] { 2489 return alignTo(script->getDot(), config->maxPageSize) + 2490 script->getDot() % config->maxPageSize; 2491 }; 2492 } 2493 }; 2494 2495 for (Partition &part : partitions) { 2496 prev = nullptr; 2497 for (const PhdrEntry *p : part.phdrs) 2498 if (p->p_type == PT_LOAD && p->firstSec) { 2499 pageAlign(p); 2500 prev = p; 2501 } 2502 } 2503 } 2504 2505 // Compute an in-file position for a given section. The file offset must be the 2506 // same with its virtual address modulo the page size, so that the loader can 2507 // load executables without any address adjustment. 2508 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2509 // The first section in a PT_LOAD has to have congruent offset and address 2510 // modulo the maximum page size. 2511 if (os->ptLoad && os->ptLoad->firstSec == os) 2512 return alignTo(off, os->ptLoad->p_align, os->addr); 2513 2514 // File offsets are not significant for .bss sections other than the first one 2515 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically 2516 // increasing rather than setting to zero. 2517 if (os->type == SHT_NOBITS && 2518 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) 2519 return off; 2520 2521 // If the section is not in a PT_LOAD, we just have to align it. 2522 if (!os->ptLoad) 2523 return alignTo(off, os->alignment); 2524 2525 // If two sections share the same PT_LOAD the file offset is calculated 2526 // using this formula: Off2 = Off1 + (VA2 - VA1). 2527 OutputSection *first = os->ptLoad->firstSec; 2528 return first->offset + os->addr - first->addr; 2529 } 2530 2531 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2532 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2533 auto needsOffset = [](OutputSection &sec) { 2534 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2535 }; 2536 uint64_t minAddr = UINT64_MAX; 2537 for (OutputSection *sec : outputSections) 2538 if (needsOffset(*sec)) { 2539 sec->offset = sec->getLMA(); 2540 minAddr = std::min(minAddr, sec->offset); 2541 } 2542 2543 // Sections are laid out at LMA minus minAddr. 2544 fileSize = 0; 2545 for (OutputSection *sec : outputSections) 2546 if (needsOffset(*sec)) { 2547 sec->offset -= minAddr; 2548 fileSize = std::max(fileSize, sec->offset + sec->size); 2549 } 2550 } 2551 2552 static std::string rangeToString(uint64_t addr, uint64_t len) { 2553 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2554 } 2555 2556 // Assign file offsets to output sections. 2557 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2558 Out::programHeaders->offset = Out::elfHeader->size; 2559 uint64_t off = Out::elfHeader->size + Out::programHeaders->size; 2560 2561 PhdrEntry *lastRX = nullptr; 2562 for (Partition &part : partitions) 2563 for (PhdrEntry *p : part.phdrs) 2564 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2565 lastRX = p; 2566 2567 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2568 // will not occupy file offsets contained by a PT_LOAD. 2569 for (OutputSection *sec : outputSections) { 2570 if (!(sec->flags & SHF_ALLOC)) 2571 continue; 2572 off = computeFileOffset(sec, off); 2573 sec->offset = off; 2574 if (sec->type != SHT_NOBITS) 2575 off += sec->size; 2576 2577 // If this is a last section of the last executable segment and that 2578 // segment is the last loadable segment, align the offset of the 2579 // following section to avoid loading non-segments parts of the file. 2580 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2581 lastRX->lastSec == sec) 2582 off = alignTo(off, config->maxPageSize); 2583 } 2584 for (OutputSection *osec : outputSections) 2585 if (!(osec->flags & SHF_ALLOC)) { 2586 osec->offset = alignTo(off, osec->alignment); 2587 off = osec->offset + osec->size; 2588 } 2589 2590 sectionHeaderOff = alignTo(off, config->wordsize); 2591 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2592 2593 // Our logic assumes that sections have rising VA within the same segment. 2594 // With use of linker scripts it is possible to violate this rule and get file 2595 // offset overlaps or overflows. That should never happen with a valid script 2596 // which does not move the location counter backwards and usually scripts do 2597 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2598 // kernel, which control segment distribution explicitly and move the counter 2599 // backwards, so we have to allow doing that to support linking them. We 2600 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2601 // we want to prevent file size overflows because it would crash the linker. 2602 for (OutputSection *sec : outputSections) { 2603 if (sec->type == SHT_NOBITS) 2604 continue; 2605 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2606 error("unable to place section " + sec->name + " at file offset " + 2607 rangeToString(sec->offset, sec->size) + 2608 "; check your linker script for overflows"); 2609 } 2610 } 2611 2612 // Finalize the program headers. We call this function after we assign 2613 // file offsets and VAs to all sections. 2614 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2615 for (PhdrEntry *p : part.phdrs) { 2616 OutputSection *first = p->firstSec; 2617 OutputSection *last = p->lastSec; 2618 2619 if (first) { 2620 p->p_filesz = last->offset - first->offset; 2621 if (last->type != SHT_NOBITS) 2622 p->p_filesz += last->size; 2623 2624 p->p_memsz = last->addr + last->size - first->addr; 2625 p->p_offset = first->offset; 2626 p->p_vaddr = first->addr; 2627 2628 // File offsets in partitions other than the main partition are relative 2629 // to the offset of the ELF headers. Perform that adjustment now. 2630 if (part.elfHeader) 2631 p->p_offset -= part.elfHeader->getParent()->offset; 2632 2633 if (!p->hasLMA) 2634 p->p_paddr = first->getLMA(); 2635 } 2636 2637 if (p->p_type == PT_GNU_RELRO) { 2638 p->p_align = 1; 2639 // musl/glibc ld.so rounds the size down, so we need to round up 2640 // to protect the last page. This is a no-op on FreeBSD which always 2641 // rounds up. 2642 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2643 p->p_offset; 2644 } 2645 } 2646 } 2647 2648 // A helper struct for checkSectionOverlap. 2649 namespace { 2650 struct SectionOffset { 2651 OutputSection *sec; 2652 uint64_t offset; 2653 }; 2654 } // namespace 2655 2656 // Check whether sections overlap for a specific address range (file offsets, 2657 // load and virtual addresses). 2658 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2659 bool isVirtualAddr) { 2660 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2661 return a.offset < b.offset; 2662 }); 2663 2664 // Finding overlap is easy given a vector is sorted by start position. 2665 // If an element starts before the end of the previous element, they overlap. 2666 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2667 SectionOffset a = sections[i - 1]; 2668 SectionOffset b = sections[i]; 2669 if (b.offset >= a.offset + a.sec->size) 2670 continue; 2671 2672 // If both sections are in OVERLAY we allow the overlapping of virtual 2673 // addresses, because it is what OVERLAY was designed for. 2674 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2675 continue; 2676 2677 errorOrWarn("section " + a.sec->name + " " + name + 2678 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2679 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2680 b.sec->name + " range is " + 2681 rangeToString(b.offset, b.sec->size)); 2682 } 2683 } 2684 2685 // Check for overlapping sections and address overflows. 2686 // 2687 // In this function we check that none of the output sections have overlapping 2688 // file offsets. For SHF_ALLOC sections we also check that the load address 2689 // ranges and the virtual address ranges don't overlap 2690 template <class ELFT> void Writer<ELFT>::checkSections() { 2691 // First, check that section's VAs fit in available address space for target. 2692 for (OutputSection *os : outputSections) 2693 if ((os->addr + os->size < os->addr) || 2694 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2695 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2696 " of size 0x" + utohexstr(os->size) + 2697 " exceeds available address space"); 2698 2699 // Check for overlapping file offsets. In this case we need to skip any 2700 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2701 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2702 // binary is specified only add SHF_ALLOC sections are added to the output 2703 // file so we skip any non-allocated sections in that case. 2704 std::vector<SectionOffset> fileOffs; 2705 for (OutputSection *sec : outputSections) 2706 if (sec->size > 0 && sec->type != SHT_NOBITS && 2707 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2708 fileOffs.push_back({sec, sec->offset}); 2709 checkOverlap("file", fileOffs, false); 2710 2711 // When linking with -r there is no need to check for overlapping virtual/load 2712 // addresses since those addresses will only be assigned when the final 2713 // executable/shared object is created. 2714 if (config->relocatable) 2715 return; 2716 2717 // Checking for overlapping virtual and load addresses only needs to take 2718 // into account SHF_ALLOC sections since others will not be loaded. 2719 // Furthermore, we also need to skip SHF_TLS sections since these will be 2720 // mapped to other addresses at runtime and can therefore have overlapping 2721 // ranges in the file. 2722 std::vector<SectionOffset> vmas; 2723 for (OutputSection *sec : outputSections) 2724 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2725 vmas.push_back({sec, sec->addr}); 2726 checkOverlap("virtual address", vmas, true); 2727 2728 // Finally, check that the load addresses don't overlap. This will usually be 2729 // the same as the virtual addresses but can be different when using a linker 2730 // script with AT(). 2731 std::vector<SectionOffset> lmas; 2732 for (OutputSection *sec : outputSections) 2733 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2734 lmas.push_back({sec, sec->getLMA()}); 2735 checkOverlap("load address", lmas, false); 2736 } 2737 2738 // The entry point address is chosen in the following ways. 2739 // 2740 // 1. the '-e' entry command-line option; 2741 // 2. the ENTRY(symbol) command in a linker control script; 2742 // 3. the value of the symbol _start, if present; 2743 // 4. the number represented by the entry symbol, if it is a number; 2744 // 5. the address 0. 2745 static uint64_t getEntryAddr() { 2746 // Case 1, 2 or 3 2747 if (Symbol *b = symtab->find(config->entry)) 2748 return b->getVA(); 2749 2750 // Case 4 2751 uint64_t addr; 2752 if (to_integer(config->entry, addr)) 2753 return addr; 2754 2755 // Case 5 2756 if (config->warnMissingEntry) 2757 warn("cannot find entry symbol " + config->entry + 2758 "; not setting start address"); 2759 return 0; 2760 } 2761 2762 static uint16_t getELFType() { 2763 if (config->isPic) 2764 return ET_DYN; 2765 if (config->relocatable) 2766 return ET_REL; 2767 return ET_EXEC; 2768 } 2769 2770 template <class ELFT> void Writer<ELFT>::writeHeader() { 2771 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2772 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2773 2774 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2775 eHdr->e_type = getELFType(); 2776 eHdr->e_entry = getEntryAddr(); 2777 eHdr->e_shoff = sectionHeaderOff; 2778 2779 // Write the section header table. 2780 // 2781 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2782 // and e_shstrndx fields. When the value of one of these fields exceeds 2783 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2784 // use fields in the section header at index 0 to store 2785 // the value. The sentinel values and fields are: 2786 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2787 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2788 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2789 size_t num = outputSections.size() + 1; 2790 if (num >= SHN_LORESERVE) 2791 sHdrs->sh_size = num; 2792 else 2793 eHdr->e_shnum = num; 2794 2795 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2796 if (strTabIndex >= SHN_LORESERVE) { 2797 sHdrs->sh_link = strTabIndex; 2798 eHdr->e_shstrndx = SHN_XINDEX; 2799 } else { 2800 eHdr->e_shstrndx = strTabIndex; 2801 } 2802 2803 for (OutputSection *sec : outputSections) 2804 sec->writeHeaderTo<ELFT>(++sHdrs); 2805 } 2806 2807 // Open a result file. 2808 template <class ELFT> void Writer<ELFT>::openFile() { 2809 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2810 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2811 std::string msg; 2812 raw_string_ostream s(msg); 2813 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2814 << "section sizes:\n"; 2815 for (OutputSection *os : outputSections) 2816 s << os->name << ' ' << os->size << "\n"; 2817 error(s.str()); 2818 return; 2819 } 2820 2821 unlinkAsync(config->outputFile); 2822 unsigned flags = 0; 2823 if (!config->relocatable) 2824 flags |= FileOutputBuffer::F_executable; 2825 if (!config->mmapOutputFile) 2826 flags |= FileOutputBuffer::F_no_mmap; 2827 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2828 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2829 2830 if (!bufferOrErr) { 2831 error("failed to open " + config->outputFile + ": " + 2832 llvm::toString(bufferOrErr.takeError())); 2833 return; 2834 } 2835 buffer = std::move(*bufferOrErr); 2836 Out::bufferStart = buffer->getBufferStart(); 2837 } 2838 2839 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2840 for (OutputSection *sec : outputSections) 2841 if (sec->flags & SHF_ALLOC) 2842 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2843 } 2844 2845 static void fillTrap(uint8_t *i, uint8_t *end) { 2846 for (; i + 4 <= end; i += 4) 2847 memcpy(i, &target->trapInstr, 4); 2848 } 2849 2850 // Fill the last page of executable segments with trap instructions 2851 // instead of leaving them as zero. Even though it is not required by any 2852 // standard, it is in general a good thing to do for security reasons. 2853 // 2854 // We'll leave other pages in segments as-is because the rest will be 2855 // overwritten by output sections. 2856 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2857 for (Partition &part : partitions) { 2858 // Fill the last page. 2859 for (PhdrEntry *p : part.phdrs) 2860 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2861 fillTrap(Out::bufferStart + 2862 alignDown(p->firstSec->offset + p->p_filesz, 4), 2863 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2864 config->maxPageSize)); 2865 2866 // Round up the file size of the last segment to the page boundary iff it is 2867 // an executable segment to ensure that other tools don't accidentally 2868 // trim the instruction padding (e.g. when stripping the file). 2869 PhdrEntry *last = nullptr; 2870 for (PhdrEntry *p : part.phdrs) 2871 if (p->p_type == PT_LOAD) 2872 last = p; 2873 2874 if (last && (last->p_flags & PF_X)) 2875 last->p_memsz = last->p_filesz = 2876 alignTo(last->p_filesz, config->maxPageSize); 2877 } 2878 } 2879 2880 // Write section contents to a mmap'ed file. 2881 template <class ELFT> void Writer<ELFT>::writeSections() { 2882 llvm::TimeTraceScope timeScope("Write sections"); 2883 2884 // In -r or --emit-relocs mode, write the relocation sections first as in 2885 // ELf_Rel targets we might find out that we need to modify the relocated 2886 // section while doing it. 2887 for (OutputSection *sec : outputSections) 2888 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2889 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2890 2891 for (OutputSection *sec : outputSections) 2892 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2893 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2894 2895 // Finally, check that all dynamic relocation addends were written correctly. 2896 if (config->checkDynamicRelocs && config->writeAddends) { 2897 for (OutputSection *sec : outputSections) 2898 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2899 sec->checkDynRelAddends(Out::bufferStart); 2900 } 2901 } 2902 2903 // Computes a hash value of Data using a given hash function. 2904 // In order to utilize multiple cores, we first split data into 1MB 2905 // chunks, compute a hash for each chunk, and then compute a hash value 2906 // of the hash values. 2907 static void 2908 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2909 llvm::ArrayRef<uint8_t> data, 2910 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2911 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2912 const size_t hashesSize = chunks.size() * hashBuf.size(); 2913 std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]); 2914 2915 // Compute hash values. 2916 parallelForEachN(0, chunks.size(), [&](size_t i) { 2917 hashFn(hashes.get() + i * hashBuf.size(), chunks[i]); 2918 }); 2919 2920 // Write to the final output buffer. 2921 hashFn(hashBuf.data(), makeArrayRef(hashes.get(), hashesSize)); 2922 } 2923 2924 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2925 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2926 return; 2927 2928 if (config->buildId == BuildIdKind::Hexstring) { 2929 for (Partition &part : partitions) 2930 part.buildId->writeBuildId(config->buildIdVector); 2931 return; 2932 } 2933 2934 // Compute a hash of all sections of the output file. 2935 size_t hashSize = mainPart->buildId->hashSize; 2936 std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]); 2937 MutableArrayRef<uint8_t> output(buildId.get(), hashSize); 2938 llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)}; 2939 2940 // Fedora introduced build ID as "approximation of true uniqueness across all 2941 // binaries that might be used by overlapping sets of people". It does not 2942 // need some security goals that some hash algorithms strive to provide, e.g. 2943 // (second-)preimage and collision resistance. In practice people use 'md5' 2944 // and 'sha1' just for different lengths. Implement them with the more 2945 // efficient BLAKE3. 2946 switch (config->buildId) { 2947 case BuildIdKind::Fast: 2948 computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2949 write64le(dest, xxHash64(arr)); 2950 }); 2951 break; 2952 case BuildIdKind::Md5: 2953 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2954 memcpy(dest, BLAKE3::hash<16>(arr).data(), hashSize); 2955 }); 2956 break; 2957 case BuildIdKind::Sha1: 2958 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2959 memcpy(dest, BLAKE3::hash<20>(arr).data(), hashSize); 2960 }); 2961 break; 2962 case BuildIdKind::Uuid: 2963 if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize)) 2964 error("entropy source failure: " + ec.message()); 2965 break; 2966 default: 2967 llvm_unreachable("unknown BuildIdKind"); 2968 } 2969 for (Partition &part : partitions) 2970 part.buildId->writeBuildId(output); 2971 } 2972 2973 template void elf::createSyntheticSections<ELF32LE>(); 2974 template void elf::createSyntheticSections<ELF32BE>(); 2975 template void elf::createSyntheticSections<ELF64LE>(); 2976 template void elf::createSyntheticSections<ELF64BE>(); 2977 2978 template void elf::writeResult<ELF32LE>(); 2979 template void elf::writeResult<ELF32BE>(); 2980 template void elf::writeResult<ELF64LE>(); 2981 template void elf::writeResult<ELF64BE>(); 2982