1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Filesystem.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/Parallel.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/TimeProfiler.h" 31 #include "llvm/Support/xxhash.h" 32 #include <climits> 33 34 #define DEBUG_TYPE "lld" 35 36 using namespace llvm; 37 using namespace llvm::ELF; 38 using namespace llvm::object; 39 using namespace llvm::support; 40 using namespace llvm::support::endian; 41 using namespace lld; 42 using namespace lld::elf; 43 44 namespace { 45 // The writer writes a SymbolTable result to a file. 46 template <class ELFT> class Writer { 47 public: 48 Writer() : buffer(errorHandler().outputBuffer) {} 49 using Elf_Shdr = typename ELFT::Shdr; 50 using Elf_Ehdr = typename ELFT::Ehdr; 51 using Elf_Phdr = typename ELFT::Phdr; 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 59 void sortSections(); 60 void resolveShfLinkOrder(); 61 void finalizeAddressDependentContent(); 62 void optimizeBasicBlockJumps(); 63 void sortInputSections(); 64 void finalizeSections(); 65 void checkExecuteOnly(); 66 void setReservedSymbolSections(); 67 68 std::vector<PhdrEntry *> createPhdrs(Partition &part); 69 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 70 unsigned pFlags); 71 void assignFileOffsets(); 72 void assignFileOffsetsBinary(); 73 void setPhdrs(Partition &part); 74 void checkSections(); 75 void fixSectionAlignments(); 76 void openFile(); 77 void writeTrapInstr(); 78 void writeHeader(); 79 void writeSections(); 80 void writeSectionsBinary(); 81 void writeBuildId(); 82 83 std::unique_ptr<FileOutputBuffer> &buffer; 84 85 void addRelIpltSymbols(); 86 void addStartEndSymbols(); 87 void addStartStopSymbols(OutputSection *sec); 88 89 uint64_t fileSize; 90 uint64_t sectionHeaderOff; 91 }; 92 } // anonymous namespace 93 94 static bool isSectionPrefix(StringRef prefix, StringRef name) { 95 return name.startswith(prefix) || name == prefix.drop_back(); 96 } 97 98 StringRef elf::getOutputSectionName(const InputSectionBase *s) { 99 if (config->relocatable) 100 return s->name; 101 102 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 103 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 104 // technically required, but not doing it is odd). This code guarantees that. 105 if (auto *isec = dyn_cast<InputSection>(s)) { 106 if (InputSectionBase *rel = isec->getRelocatedSection()) { 107 OutputSection *out = rel->getOutputSection(); 108 if (s->type == SHT_RELA) 109 return saver.save(".rela" + out->name); 110 return saver.save(".rel" + out->name); 111 } 112 } 113 114 // A BssSection created for a common symbol is identified as "COMMON" in 115 // linker scripts. It should go to .bss section. 116 if (s->name == "COMMON") 117 return ".bss"; 118 119 if (script->hasSectionsCommand) 120 return s->name; 121 122 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 123 // by grouping sections with certain prefixes. 124 125 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 126 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 127 // We provide an option -z keep-text-section-prefix to group such sections 128 // into separate output sections. This is more flexible. See also 129 // sortISDBySectionOrder(). 130 // ".text.unknown" means the hotness of the section is unknown. When 131 // SampleFDO is used, if a function doesn't have sample, it could be very 132 // cold or it could be a new function never being sampled. Those functions 133 // will be kept in the ".text.unknown" section. 134 // ".text.split." holds symbols which are split out from functions in other 135 // input sections. For example, with -fsplit-machine-functions, placing the 136 // cold parts in .text.split instead of .text.unlikely mitigates against poor 137 // profile inaccuracy. Techniques such as hugepage remapping can make 138 // conservative decisions at the section granularity. 139 if (config->zKeepTextSectionPrefix) 140 for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", 141 ".text.startup.", ".text.exit.", ".text.split."}) 142 if (isSectionPrefix(v, s->name)) 143 return v.drop_back(); 144 145 for (StringRef v : 146 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 147 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 148 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 149 if (isSectionPrefix(v, s->name)) 150 return v.drop_back(); 151 152 return s->name; 153 } 154 155 static bool needsInterpSection() { 156 return !config->relocatable && !config->shared && 157 !config->dynamicLinker.empty() && script->needsInterpSection(); 158 } 159 160 template <class ELFT> void elf::writeResult() { 161 llvm::TimeTraceScope timeScope("Write output file"); 162 Writer<ELFT>().run(); 163 } 164 165 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 166 auto it = std::stable_partition( 167 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 168 if (p->p_type != PT_LOAD) 169 return true; 170 if (!p->firstSec) 171 return false; 172 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 173 return size != 0; 174 }); 175 176 // Clear OutputSection::ptLoad for sections contained in removed 177 // segments. 178 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 179 for (OutputSection *sec : outputSections) 180 if (removed.count(sec->ptLoad)) 181 sec->ptLoad = nullptr; 182 phdrs.erase(it, phdrs.end()); 183 } 184 185 void elf::copySectionsIntoPartitions() { 186 std::vector<InputSectionBase *> newSections; 187 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 188 for (InputSectionBase *s : inputSections) { 189 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 190 continue; 191 InputSectionBase *copy; 192 if (s->type == SHT_NOTE) 193 copy = make<InputSection>(cast<InputSection>(*s)); 194 else if (auto *es = dyn_cast<EhInputSection>(s)) 195 copy = make<EhInputSection>(*es); 196 else 197 continue; 198 copy->partition = part; 199 newSections.push_back(copy); 200 } 201 } 202 203 inputSections.insert(inputSections.end(), newSections.begin(), 204 newSections.end()); 205 } 206 207 void elf::combineEhSections() { 208 for (InputSectionBase *&s : inputSections) { 209 // Ignore dead sections and the partition end marker (.part.end), 210 // whose partition number is out of bounds. 211 if (!s->isLive() || s->partition == 255) 212 continue; 213 214 Partition &part = s->getPartition(); 215 if (auto *es = dyn_cast<EhInputSection>(s)) { 216 part.ehFrame->addSection(es); 217 s = nullptr; 218 } else if (s->kind() == SectionBase::Regular && part.armExidx && 219 part.armExidx->addSection(cast<InputSection>(s))) { 220 s = nullptr; 221 } 222 } 223 224 std::vector<InputSectionBase *> &v = inputSections; 225 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 226 } 227 228 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 229 uint64_t val, uint8_t stOther = STV_HIDDEN, 230 uint8_t binding = STB_GLOBAL) { 231 Symbol *s = symtab->find(name); 232 if (!s || s->isDefined()) 233 return nullptr; 234 235 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 236 /*size=*/0, sec}); 237 return cast<Defined>(s); 238 } 239 240 static Defined *addAbsolute(StringRef name) { 241 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 242 STT_NOTYPE, 0, 0, nullptr}); 243 return cast<Defined>(sym); 244 } 245 246 // The linker is expected to define some symbols depending on 247 // the linking result. This function defines such symbols. 248 void elf::addReservedSymbols() { 249 if (config->emachine == EM_MIPS) { 250 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 251 // so that it points to an absolute address which by default is relative 252 // to GOT. Default offset is 0x7ff0. 253 // See "Global Data Symbols" in Chapter 6 in the following document: 254 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 255 ElfSym::mipsGp = addAbsolute("_gp"); 256 257 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 258 // start of function and 'gp' pointer into GOT. 259 if (symtab->find("_gp_disp")) 260 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 261 262 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 263 // pointer. This symbol is used in the code generated by .cpload pseudo-op 264 // in case of using -mno-shared option. 265 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 266 if (symtab->find("__gnu_local_gp")) 267 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 268 } else if (config->emachine == EM_PPC) { 269 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 270 // support Small Data Area, define it arbitrarily as 0. 271 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 272 } else if (config->emachine == EM_PPC64) { 273 addPPC64SaveRestore(); 274 } 275 276 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 277 // combines the typical ELF GOT with the small data sections. It commonly 278 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 279 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 280 // represent the TOC base which is offset by 0x8000 bytes from the start of 281 // the .got section. 282 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 283 // correctness of some relocations depends on its value. 284 StringRef gotSymName = 285 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 286 287 if (Symbol *s = symtab->find(gotSymName)) { 288 if (s->isDefined()) { 289 error(toString(s->file) + " cannot redefine linker defined symbol '" + 290 gotSymName + "'"); 291 return; 292 } 293 294 uint64_t gotOff = 0; 295 if (config->emachine == EM_PPC64) 296 gotOff = 0x8000; 297 298 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 299 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 300 ElfSym::globalOffsetTable = cast<Defined>(s); 301 } 302 303 // __ehdr_start is the location of ELF file headers. Note that we define 304 // this symbol unconditionally even when using a linker script, which 305 // differs from the behavior implemented by GNU linker which only define 306 // this symbol if ELF headers are in the memory mapped segment. 307 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 308 309 // __executable_start is not documented, but the expectation of at 310 // least the Android libc is that it points to the ELF header. 311 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 312 313 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 314 // each DSO. The address of the symbol doesn't matter as long as they are 315 // different in different DSOs, so we chose the start address of the DSO. 316 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 317 318 // If linker script do layout we do not need to create any standard symbols. 319 if (script->hasSectionsCommand) 320 return; 321 322 auto add = [](StringRef s, int64_t pos) { 323 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 324 }; 325 326 ElfSym::bss = add("__bss_start", 0); 327 ElfSym::end1 = add("end", -1); 328 ElfSym::end2 = add("_end", -1); 329 ElfSym::etext1 = add("etext", -1); 330 ElfSym::etext2 = add("_etext", -1); 331 ElfSym::edata1 = add("edata", -1); 332 ElfSym::edata2 = add("_edata", -1); 333 } 334 335 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 336 for (BaseCommand *base : script->sectionCommands) 337 if (auto *sec = dyn_cast<OutputSection>(base)) 338 if (sec->name == name && sec->partition == partition) 339 return sec; 340 return nullptr; 341 } 342 343 template <class ELFT> void elf::createSyntheticSections() { 344 // Initialize all pointers with NULL. This is needed because 345 // you can call lld::elf::main more than once as a library. 346 memset(&Out::first, 0, sizeof(Out)); 347 348 // Add the .interp section first because it is not a SyntheticSection. 349 // The removeUnusedSyntheticSections() function relies on the 350 // SyntheticSections coming last. 351 if (needsInterpSection()) { 352 for (size_t i = 1; i <= partitions.size(); ++i) { 353 InputSection *sec = createInterpSection(); 354 sec->partition = i; 355 inputSections.push_back(sec); 356 } 357 } 358 359 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 360 361 in.shStrTab = make<StringTableSection>(".shstrtab", false); 362 363 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 364 Out::programHeaders->alignment = config->wordsize; 365 366 if (config->strip != StripPolicy::All) { 367 in.strTab = make<StringTableSection>(".strtab", false); 368 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 369 in.symTabShndx = make<SymtabShndxSection>(); 370 } 371 372 in.bss = make<BssSection>(".bss", 0, 1); 373 add(in.bss); 374 375 // If there is a SECTIONS command and a .data.rel.ro section name use name 376 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 377 // This makes sure our relro is contiguous. 378 bool hasDataRelRo = 379 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 380 in.bssRelRo = 381 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 382 add(in.bssRelRo); 383 384 // Add MIPS-specific sections. 385 if (config->emachine == EM_MIPS) { 386 if (!config->shared && config->hasDynSymTab) { 387 in.mipsRldMap = make<MipsRldMapSection>(); 388 add(in.mipsRldMap); 389 } 390 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 391 add(sec); 392 if (auto *sec = MipsOptionsSection<ELFT>::create()) 393 add(sec); 394 if (auto *sec = MipsReginfoSection<ELFT>::create()) 395 add(sec); 396 } 397 398 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 399 400 for (Partition &part : partitions) { 401 auto add = [&](SyntheticSection *sec) { 402 sec->partition = part.getNumber(); 403 inputSections.push_back(sec); 404 }; 405 406 if (!part.name.empty()) { 407 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 408 part.elfHeader->name = part.name; 409 add(part.elfHeader); 410 411 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 412 add(part.programHeaders); 413 } 414 415 if (config->buildId != BuildIdKind::None) { 416 part.buildId = make<BuildIdSection>(); 417 add(part.buildId); 418 } 419 420 part.dynStrTab = make<StringTableSection>(".dynstr", true); 421 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 422 part.dynamic = make<DynamicSection<ELFT>>(); 423 if (config->androidPackDynRelocs) 424 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 425 else 426 part.relaDyn = 427 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 428 429 if (config->hasDynSymTab) { 430 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 431 add(part.dynSymTab); 432 433 part.verSym = make<VersionTableSection>(); 434 add(part.verSym); 435 436 if (!namedVersionDefs().empty()) { 437 part.verDef = make<VersionDefinitionSection>(); 438 add(part.verDef); 439 } 440 441 part.verNeed = make<VersionNeedSection<ELFT>>(); 442 add(part.verNeed); 443 444 if (config->gnuHash) { 445 part.gnuHashTab = make<GnuHashTableSection>(); 446 add(part.gnuHashTab); 447 } 448 449 if (config->sysvHash) { 450 part.hashTab = make<HashTableSection>(); 451 add(part.hashTab); 452 } 453 454 add(part.dynamic); 455 add(part.dynStrTab); 456 add(part.relaDyn); 457 } 458 459 if (config->relrPackDynRelocs) { 460 part.relrDyn = make<RelrSection<ELFT>>(); 461 add(part.relrDyn); 462 } 463 464 if (!config->relocatable) { 465 if (config->ehFrameHdr) { 466 part.ehFrameHdr = make<EhFrameHeader>(); 467 add(part.ehFrameHdr); 468 } 469 part.ehFrame = make<EhFrameSection>(); 470 add(part.ehFrame); 471 } 472 473 if (config->emachine == EM_ARM && !config->relocatable) { 474 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 475 // InputSections. 476 part.armExidx = make<ARMExidxSyntheticSection>(); 477 add(part.armExidx); 478 } 479 } 480 481 if (partitions.size() != 1) { 482 // Create the partition end marker. This needs to be in partition number 255 483 // so that it is sorted after all other partitions. It also has other 484 // special handling (see createPhdrs() and combineEhSections()). 485 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 486 in.partEnd->partition = 255; 487 add(in.partEnd); 488 489 in.partIndex = make<PartitionIndexSection>(); 490 addOptionalRegular("__part_index_begin", in.partIndex, 0); 491 addOptionalRegular("__part_index_end", in.partIndex, 492 in.partIndex->getSize()); 493 add(in.partIndex); 494 } 495 496 // Add .got. MIPS' .got is so different from the other archs, 497 // it has its own class. 498 if (config->emachine == EM_MIPS) { 499 in.mipsGot = make<MipsGotSection>(); 500 add(in.mipsGot); 501 } else { 502 in.got = make<GotSection>(); 503 add(in.got); 504 } 505 506 if (config->emachine == EM_PPC) { 507 in.ppc32Got2 = make<PPC32Got2Section>(); 508 add(in.ppc32Got2); 509 } 510 511 if (config->emachine == EM_PPC64) { 512 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 513 add(in.ppc64LongBranchTarget); 514 } 515 516 in.gotPlt = make<GotPltSection>(); 517 add(in.gotPlt); 518 in.igotPlt = make<IgotPltSection>(); 519 add(in.igotPlt); 520 521 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 522 // it as a relocation and ensure the referenced section is created. 523 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 524 if (target->gotBaseSymInGotPlt) 525 in.gotPlt->hasGotPltOffRel = true; 526 else 527 in.got->hasGotOffRel = true; 528 } 529 530 if (config->gdbIndex) 531 add(GdbIndexSection::create<ELFT>()); 532 533 // We always need to add rel[a].plt to output if it has entries. 534 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 535 in.relaPlt = make<RelocationSection<ELFT>>( 536 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 537 add(in.relaPlt); 538 539 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 540 // relocations are processed last by the dynamic loader. We cannot place the 541 // iplt section in .rel.dyn when Android relocation packing is enabled because 542 // that would cause a section type mismatch. However, because the Android 543 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 544 // behaviour by placing the iplt section in .rel.plt. 545 in.relaIplt = make<RelocationSection<ELFT>>( 546 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 547 /*sort=*/false); 548 add(in.relaIplt); 549 550 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 551 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 552 in.ibtPlt = make<IBTPltSection>(); 553 add(in.ibtPlt); 554 } 555 556 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 557 : make<PltSection>(); 558 add(in.plt); 559 in.iplt = make<IpltSection>(); 560 add(in.iplt); 561 562 if (config->andFeatures) 563 add(make<GnuPropertySection>()); 564 565 // .note.GNU-stack is always added when we are creating a re-linkable 566 // object file. Other linkers are using the presence of this marker 567 // section to control the executable-ness of the stack area, but that 568 // is irrelevant these days. Stack area should always be non-executable 569 // by default. So we emit this section unconditionally. 570 if (config->relocatable) 571 add(make<GnuStackSection>()); 572 573 if (in.symTab) 574 add(in.symTab); 575 if (in.symTabShndx) 576 add(in.symTabShndx); 577 add(in.shStrTab); 578 if (in.strTab) 579 add(in.strTab); 580 } 581 582 // The main function of the writer. 583 template <class ELFT> void Writer<ELFT>::run() { 584 copyLocalSymbols(); 585 586 if (config->copyRelocs) 587 addSectionSymbols(); 588 589 // Now that we have a complete set of output sections. This function 590 // completes section contents. For example, we need to add strings 591 // to the string table, and add entries to .got and .plt. 592 // finalizeSections does that. 593 finalizeSections(); 594 checkExecuteOnly(); 595 if (errorCount()) 596 return; 597 598 // If -compressed-debug-sections is specified, we need to compress 599 // .debug_* sections. Do it right now because it changes the size of 600 // output sections. 601 for (OutputSection *sec : outputSections) 602 sec->maybeCompress<ELFT>(); 603 604 if (script->hasSectionsCommand) 605 script->allocateHeaders(mainPart->phdrs); 606 607 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 608 // 0 sized region. This has to be done late since only after assignAddresses 609 // we know the size of the sections. 610 for (Partition &part : partitions) 611 removeEmptyPTLoad(part.phdrs); 612 613 if (!config->oFormatBinary) 614 assignFileOffsets(); 615 else 616 assignFileOffsetsBinary(); 617 618 for (Partition &part : partitions) 619 setPhdrs(part); 620 621 if (config->relocatable) 622 for (OutputSection *sec : outputSections) 623 sec->addr = 0; 624 625 // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them 626 // before checkSections() because the files may be useful in case 627 // checkSections() or openFile() fails, for example, due to an erroneous file 628 // size. 629 writeMapFile(); 630 writeCrossReferenceTable(); 631 writeArchiveStats(); 632 633 if (config->checkSections) 634 checkSections(); 635 636 // It does not make sense try to open the file if we have error already. 637 if (errorCount()) 638 return; 639 // Write the result down to a file. 640 openFile(); 641 if (errorCount()) 642 return; 643 644 if (!config->oFormatBinary) { 645 if (config->zSeparate != SeparateSegmentKind::None) 646 writeTrapInstr(); 647 writeHeader(); 648 writeSections(); 649 } else { 650 writeSectionsBinary(); 651 } 652 653 // Backfill .note.gnu.build-id section content. This is done at last 654 // because the content is usually a hash value of the entire output file. 655 writeBuildId(); 656 if (errorCount()) 657 return; 658 659 if (auto e = buffer->commit()) 660 error("failed to write to the output file: " + toString(std::move(e))); 661 } 662 663 template <class ELFT, class RelTy> 664 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 665 llvm::ArrayRef<RelTy> rels) { 666 for (const RelTy &rel : rels) { 667 Symbol &sym = file->getRelocTargetSym(rel); 668 if (sym.isLocal()) 669 sym.used = true; 670 } 671 } 672 673 // The function ensures that the "used" field of local symbols reflects the fact 674 // that the symbol is used in a relocation from a live section. 675 template <class ELFT> static void markUsedLocalSymbols() { 676 // With --gc-sections, the field is already filled. 677 // See MarkLive<ELFT>::resolveReloc(). 678 if (config->gcSections) 679 return; 680 // Without --gc-sections, the field is initialized with "true". 681 // Drop the flag first and then rise for symbols referenced in relocations. 682 for (InputFile *file : objectFiles) { 683 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 684 for (Symbol *b : f->getLocalSymbols()) 685 b->used = false; 686 for (InputSectionBase *s : f->getSections()) { 687 InputSection *isec = dyn_cast_or_null<InputSection>(s); 688 if (!isec) 689 continue; 690 if (isec->type == SHT_REL) 691 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 692 else if (isec->type == SHT_RELA) 693 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 694 } 695 } 696 } 697 698 static bool shouldKeepInSymtab(const Defined &sym) { 699 if (sym.isSection()) 700 return false; 701 702 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 703 // from live sections. 704 if (config->copyRelocs && sym.used) 705 return true; 706 707 // Exclude local symbols pointing to .ARM.exidx sections. 708 // They are probably mapping symbols "$d", which are optional for these 709 // sections. After merging the .ARM.exidx sections, some of these symbols 710 // may become dangling. The easiest way to avoid the issue is not to add 711 // them to the symbol table from the beginning. 712 if (config->emachine == EM_ARM && sym.section && 713 sym.section->type == SHT_ARM_EXIDX) 714 return false; 715 716 if (config->discard == DiscardPolicy::None) 717 return true; 718 if (config->discard == DiscardPolicy::All) 719 return false; 720 721 // In ELF assembly .L symbols are normally discarded by the assembler. 722 // If the assembler fails to do so, the linker discards them if 723 // * --discard-locals is used. 724 // * The symbol is in a SHF_MERGE section, which is normally the reason for 725 // the assembler keeping the .L symbol. 726 StringRef name = sym.getName(); 727 bool isLocal = name.startswith(".L") || name.empty(); 728 if (!isLocal) 729 return true; 730 731 if (config->discard == DiscardPolicy::Locals) 732 return false; 733 734 SectionBase *sec = sym.section; 735 return !sec || !(sec->flags & SHF_MERGE); 736 } 737 738 static bool includeInSymtab(const Symbol &b) { 739 if (!b.isLocal() && !b.isUsedInRegularObj) 740 return false; 741 742 if (auto *d = dyn_cast<Defined>(&b)) { 743 // Always include absolute symbols. 744 SectionBase *sec = d->section; 745 if (!sec) 746 return true; 747 sec = sec->repl; 748 749 // Exclude symbols pointing to garbage-collected sections. 750 if (isa<InputSectionBase>(sec) && !sec->isLive()) 751 return false; 752 753 if (auto *s = dyn_cast<MergeInputSection>(sec)) 754 if (!s->getSectionPiece(d->value)->live) 755 return false; 756 return true; 757 } 758 return b.used; 759 } 760 761 // Local symbols are not in the linker's symbol table. This function scans 762 // each object file's symbol table to copy local symbols to the output. 763 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 764 if (!in.symTab) 765 return; 766 if (config->copyRelocs && config->discard != DiscardPolicy::None) 767 markUsedLocalSymbols<ELFT>(); 768 for (InputFile *file : objectFiles) { 769 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 770 for (Symbol *b : f->getLocalSymbols()) { 771 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 772 auto *dr = dyn_cast<Defined>(b); 773 774 // No reason to keep local undefined symbol in symtab. 775 if (!dr) 776 continue; 777 if (!includeInSymtab(*b)) 778 continue; 779 if (!shouldKeepInSymtab(*dr)) 780 continue; 781 in.symTab->addSymbol(b); 782 } 783 } 784 } 785 786 // Create a section symbol for each output section so that we can represent 787 // relocations that point to the section. If we know that no relocation is 788 // referring to a section (that happens if the section is a synthetic one), we 789 // don't create a section symbol for that section. 790 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 791 for (BaseCommand *base : script->sectionCommands) { 792 auto *sec = dyn_cast<OutputSection>(base); 793 if (!sec) 794 continue; 795 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 796 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 797 return !isd->sections.empty(); 798 return false; 799 }); 800 if (i == sec->sectionCommands.end()) 801 continue; 802 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 803 804 // Relocations are not using REL[A] section symbols. 805 if (isec->type == SHT_REL || isec->type == SHT_RELA) 806 continue; 807 808 // Unlike other synthetic sections, mergeable output sections contain data 809 // copied from input sections, and there may be a relocation pointing to its 810 // contents if -r or -emit-reloc are given. 811 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 812 continue; 813 814 auto *sym = 815 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 816 /*value=*/0, /*size=*/0, isec); 817 in.symTab->addSymbol(sym); 818 } 819 } 820 821 // Today's loaders have a feature to make segments read-only after 822 // processing dynamic relocations to enhance security. PT_GNU_RELRO 823 // is defined for that. 824 // 825 // This function returns true if a section needs to be put into a 826 // PT_GNU_RELRO segment. 827 static bool isRelroSection(const OutputSection *sec) { 828 if (!config->zRelro) 829 return false; 830 831 uint64_t flags = sec->flags; 832 833 // Non-allocatable or non-writable sections don't need RELRO because 834 // they are not writable or not even mapped to memory in the first place. 835 // RELRO is for sections that are essentially read-only but need to 836 // be writable only at process startup to allow dynamic linker to 837 // apply relocations. 838 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 839 return false; 840 841 // Once initialized, TLS data segments are used as data templates 842 // for a thread-local storage. For each new thread, runtime 843 // allocates memory for a TLS and copy templates there. No thread 844 // are supposed to use templates directly. Thus, it can be in RELRO. 845 if (flags & SHF_TLS) 846 return true; 847 848 // .init_array, .preinit_array and .fini_array contain pointers to 849 // functions that are executed on process startup or exit. These 850 // pointers are set by the static linker, and they are not expected 851 // to change at runtime. But if you are an attacker, you could do 852 // interesting things by manipulating pointers in .fini_array, for 853 // example. So they are put into RELRO. 854 uint32_t type = sec->type; 855 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 856 type == SHT_PREINIT_ARRAY) 857 return true; 858 859 // .got contains pointers to external symbols. They are resolved by 860 // the dynamic linker when a module is loaded into memory, and after 861 // that they are not expected to change. So, it can be in RELRO. 862 if (in.got && sec == in.got->getParent()) 863 return true; 864 865 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 866 // through r2 register, which is reserved for that purpose. Since r2 is used 867 // for accessing .got as well, .got and .toc need to be close enough in the 868 // virtual address space. Usually, .toc comes just after .got. Since we place 869 // .got into RELRO, .toc needs to be placed into RELRO too. 870 if (sec->name.equals(".toc")) 871 return true; 872 873 // .got.plt contains pointers to external function symbols. They are 874 // by default resolved lazily, so we usually cannot put it into RELRO. 875 // However, if "-z now" is given, the lazy symbol resolution is 876 // disabled, which enables us to put it into RELRO. 877 if (sec == in.gotPlt->getParent()) 878 return config->zNow; 879 880 // .dynamic section contains data for the dynamic linker, and 881 // there's no need to write to it at runtime, so it's better to put 882 // it into RELRO. 883 if (sec->name == ".dynamic") 884 return true; 885 886 // Sections with some special names are put into RELRO. This is a 887 // bit unfortunate because section names shouldn't be significant in 888 // ELF in spirit. But in reality many linker features depend on 889 // magic section names. 890 StringRef s = sec->name; 891 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 892 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 893 s == ".fini_array" || s == ".init_array" || 894 s == ".openbsd.randomdata" || s == ".preinit_array"; 895 } 896 897 // We compute a rank for each section. The rank indicates where the 898 // section should be placed in the file. Instead of using simple 899 // numbers (0,1,2...), we use a series of flags. One for each decision 900 // point when placing the section. 901 // Using flags has two key properties: 902 // * It is easy to check if a give branch was taken. 903 // * It is easy two see how similar two ranks are (see getRankProximity). 904 enum RankFlags { 905 RF_NOT_ADDR_SET = 1 << 27, 906 RF_NOT_ALLOC = 1 << 26, 907 RF_PARTITION = 1 << 18, // Partition number (8 bits) 908 RF_NOT_PART_EHDR = 1 << 17, 909 RF_NOT_PART_PHDR = 1 << 16, 910 RF_NOT_INTERP = 1 << 15, 911 RF_NOT_NOTE = 1 << 14, 912 RF_WRITE = 1 << 13, 913 RF_EXEC_WRITE = 1 << 12, 914 RF_EXEC = 1 << 11, 915 RF_RODATA = 1 << 10, 916 RF_NOT_RELRO = 1 << 9, 917 RF_NOT_TLS = 1 << 8, 918 RF_BSS = 1 << 7, 919 RF_PPC_NOT_TOCBSS = 1 << 6, 920 RF_PPC_TOCL = 1 << 5, 921 RF_PPC_TOC = 1 << 4, 922 RF_PPC_GOT = 1 << 3, 923 RF_PPC_BRANCH_LT = 1 << 2, 924 RF_MIPS_GPREL = 1 << 1, 925 RF_MIPS_NOT_GOT = 1 << 0 926 }; 927 928 static unsigned getSectionRank(const OutputSection *sec) { 929 unsigned rank = sec->partition * RF_PARTITION; 930 931 // We want to put section specified by -T option first, so we 932 // can start assigning VA starting from them later. 933 if (config->sectionStartMap.count(sec->name)) 934 return rank; 935 rank |= RF_NOT_ADDR_SET; 936 937 // Allocatable sections go first to reduce the total PT_LOAD size and 938 // so debug info doesn't change addresses in actual code. 939 if (!(sec->flags & SHF_ALLOC)) 940 return rank | RF_NOT_ALLOC; 941 942 if (sec->type == SHT_LLVM_PART_EHDR) 943 return rank; 944 rank |= RF_NOT_PART_EHDR; 945 946 if (sec->type == SHT_LLVM_PART_PHDR) 947 return rank; 948 rank |= RF_NOT_PART_PHDR; 949 950 // Put .interp first because some loaders want to see that section 951 // on the first page of the executable file when loaded into memory. 952 if (sec->name == ".interp") 953 return rank; 954 rank |= RF_NOT_INTERP; 955 956 // Put .note sections (which make up one PT_NOTE) at the beginning so that 957 // they are likely to be included in a core file even if core file size is 958 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 959 // included in a core to match core files with executables. 960 if (sec->type == SHT_NOTE) 961 return rank; 962 rank |= RF_NOT_NOTE; 963 964 // Sort sections based on their access permission in the following 965 // order: R, RX, RWX, RW. This order is based on the following 966 // considerations: 967 // * Read-only sections come first such that they go in the 968 // PT_LOAD covering the program headers at the start of the file. 969 // * Read-only, executable sections come next. 970 // * Writable, executable sections follow such that .plt on 971 // architectures where it needs to be writable will be placed 972 // between .text and .data. 973 // * Writable sections come last, such that .bss lands at the very 974 // end of the last PT_LOAD. 975 bool isExec = sec->flags & SHF_EXECINSTR; 976 bool isWrite = sec->flags & SHF_WRITE; 977 978 if (isExec) { 979 if (isWrite) 980 rank |= RF_EXEC_WRITE; 981 else 982 rank |= RF_EXEC; 983 } else if (isWrite) { 984 rank |= RF_WRITE; 985 } else if (sec->type == SHT_PROGBITS) { 986 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 987 // .eh_frame) closer to .text. They likely contain PC or GOT relative 988 // relocations and there could be relocation overflow if other huge sections 989 // (.dynstr .dynsym) were placed in between. 990 rank |= RF_RODATA; 991 } 992 993 // Place RelRo sections first. After considering SHT_NOBITS below, the 994 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 995 // where | marks where page alignment happens. An alternative ordering is 996 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 997 // waste more bytes due to 2 alignment places. 998 if (!isRelroSection(sec)) 999 rank |= RF_NOT_RELRO; 1000 1001 // If we got here we know that both A and B are in the same PT_LOAD. 1002 1003 // The TLS initialization block needs to be a single contiguous block in a R/W 1004 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 1005 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 1006 // after PROGBITS. 1007 if (!(sec->flags & SHF_TLS)) 1008 rank |= RF_NOT_TLS; 1009 1010 // Within TLS sections, or within other RelRo sections, or within non-RelRo 1011 // sections, place non-NOBITS sections first. 1012 if (sec->type == SHT_NOBITS) 1013 rank |= RF_BSS; 1014 1015 // Some architectures have additional ordering restrictions for sections 1016 // within the same PT_LOAD. 1017 if (config->emachine == EM_PPC64) { 1018 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 1019 // that we would like to make sure appear is a specific order to maximize 1020 // their coverage by a single signed 16-bit offset from the TOC base 1021 // pointer. Conversely, the special .tocbss section should be first among 1022 // all SHT_NOBITS sections. This will put it next to the loaded special 1023 // PPC64 sections (and, thus, within reach of the TOC base pointer). 1024 StringRef name = sec->name; 1025 if (name != ".tocbss") 1026 rank |= RF_PPC_NOT_TOCBSS; 1027 1028 if (name == ".toc1") 1029 rank |= RF_PPC_TOCL; 1030 1031 if (name == ".toc") 1032 rank |= RF_PPC_TOC; 1033 1034 if (name == ".got") 1035 rank |= RF_PPC_GOT; 1036 1037 if (name == ".branch_lt") 1038 rank |= RF_PPC_BRANCH_LT; 1039 } 1040 1041 if (config->emachine == EM_MIPS) { 1042 // All sections with SHF_MIPS_GPREL flag should be grouped together 1043 // because data in these sections is addressable with a gp relative address. 1044 if (sec->flags & SHF_MIPS_GPREL) 1045 rank |= RF_MIPS_GPREL; 1046 1047 if (sec->name != ".got") 1048 rank |= RF_MIPS_NOT_GOT; 1049 } 1050 1051 return rank; 1052 } 1053 1054 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 1055 const OutputSection *a = cast<OutputSection>(aCmd); 1056 const OutputSection *b = cast<OutputSection>(bCmd); 1057 1058 if (a->sortRank != b->sortRank) 1059 return a->sortRank < b->sortRank; 1060 1061 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1062 return config->sectionStartMap.lookup(a->name) < 1063 config->sectionStartMap.lookup(b->name); 1064 return false; 1065 } 1066 1067 void PhdrEntry::add(OutputSection *sec) { 1068 lastSec = sec; 1069 if (!firstSec) 1070 firstSec = sec; 1071 p_align = std::max(p_align, sec->alignment); 1072 if (p_type == PT_LOAD) 1073 sec->ptLoad = this; 1074 } 1075 1076 // The beginning and the ending of .rel[a].plt section are marked 1077 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1078 // executable. The runtime needs these symbols in order to resolve 1079 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1080 // need these symbols, since IRELATIVE relocs are resolved through GOT 1081 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1082 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1083 if (config->relocatable || needsInterpSection()) 1084 return; 1085 1086 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1087 // because .rela.plt might be empty and thus removed from output. 1088 // We'll override Out::elfHeader with In.relaIplt later when we are 1089 // sure that .rela.plt exists in output. 1090 ElfSym::relaIpltStart = addOptionalRegular( 1091 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1092 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1093 1094 ElfSym::relaIpltEnd = addOptionalRegular( 1095 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1096 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1097 } 1098 1099 template <class ELFT> 1100 void Writer<ELFT>::forEachRelSec( 1101 llvm::function_ref<void(InputSectionBase &)> fn) { 1102 // Scan all relocations. Each relocation goes through a series 1103 // of tests to determine if it needs special treatment, such as 1104 // creating GOT, PLT, copy relocations, etc. 1105 // Note that relocations for non-alloc sections are directly 1106 // processed by InputSection::relocateNonAlloc. 1107 for (InputSectionBase *isec : inputSections) 1108 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1109 fn(*isec); 1110 for (Partition &part : partitions) { 1111 for (EhInputSection *es : part.ehFrame->sections) 1112 fn(*es); 1113 if (part.armExidx && part.armExidx->isLive()) 1114 for (InputSection *ex : part.armExidx->exidxSections) 1115 fn(*ex); 1116 } 1117 } 1118 1119 // This function generates assignments for predefined symbols (e.g. _end or 1120 // _etext) and inserts them into the commands sequence to be processed at the 1121 // appropriate time. This ensures that the value is going to be correct by the 1122 // time any references to these symbols are processed and is equivalent to 1123 // defining these symbols explicitly in the linker script. 1124 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1125 if (ElfSym::globalOffsetTable) { 1126 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1127 // to the start of the .got or .got.plt section. 1128 InputSection *gotSection = in.gotPlt; 1129 if (!target->gotBaseSymInGotPlt) 1130 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1131 : cast<InputSection>(in.got); 1132 ElfSym::globalOffsetTable->section = gotSection; 1133 } 1134 1135 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1136 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1137 ElfSym::relaIpltStart->section = in.relaIplt; 1138 ElfSym::relaIpltEnd->section = in.relaIplt; 1139 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1140 } 1141 1142 PhdrEntry *last = nullptr; 1143 PhdrEntry *lastRO = nullptr; 1144 1145 for (Partition &part : partitions) { 1146 for (PhdrEntry *p : part.phdrs) { 1147 if (p->p_type != PT_LOAD) 1148 continue; 1149 last = p; 1150 if (!(p->p_flags & PF_W)) 1151 lastRO = p; 1152 } 1153 } 1154 1155 if (lastRO) { 1156 // _etext is the first location after the last read-only loadable segment. 1157 if (ElfSym::etext1) 1158 ElfSym::etext1->section = lastRO->lastSec; 1159 if (ElfSym::etext2) 1160 ElfSym::etext2->section = lastRO->lastSec; 1161 } 1162 1163 if (last) { 1164 // _edata points to the end of the last mapped initialized section. 1165 OutputSection *edata = nullptr; 1166 for (OutputSection *os : outputSections) { 1167 if (os->type != SHT_NOBITS) 1168 edata = os; 1169 if (os == last->lastSec) 1170 break; 1171 } 1172 1173 if (ElfSym::edata1) 1174 ElfSym::edata1->section = edata; 1175 if (ElfSym::edata2) 1176 ElfSym::edata2->section = edata; 1177 1178 // _end is the first location after the uninitialized data region. 1179 if (ElfSym::end1) 1180 ElfSym::end1->section = last->lastSec; 1181 if (ElfSym::end2) 1182 ElfSym::end2->section = last->lastSec; 1183 } 1184 1185 if (ElfSym::bss) 1186 ElfSym::bss->section = findSection(".bss"); 1187 1188 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1189 // be equal to the _gp symbol's value. 1190 if (ElfSym::mipsGp) { 1191 // Find GP-relative section with the lowest address 1192 // and use this address to calculate default _gp value. 1193 for (OutputSection *os : outputSections) { 1194 if (os->flags & SHF_MIPS_GPREL) { 1195 ElfSym::mipsGp->section = os; 1196 ElfSym::mipsGp->value = 0x7ff0; 1197 break; 1198 } 1199 } 1200 } 1201 } 1202 1203 // We want to find how similar two ranks are. 1204 // The more branches in getSectionRank that match, the more similar they are. 1205 // Since each branch corresponds to a bit flag, we can just use 1206 // countLeadingZeros. 1207 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1208 return countLeadingZeros(a->sortRank ^ b->sortRank); 1209 } 1210 1211 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1212 auto *sec = dyn_cast<OutputSection>(b); 1213 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1214 } 1215 1216 // When placing orphan sections, we want to place them after symbol assignments 1217 // so that an orphan after 1218 // begin_foo = .; 1219 // foo : { *(foo) } 1220 // end_foo = .; 1221 // doesn't break the intended meaning of the begin/end symbols. 1222 // We don't want to go over sections since findOrphanPos is the 1223 // one in charge of deciding the order of the sections. 1224 // We don't want to go over changes to '.', since doing so in 1225 // rx_sec : { *(rx_sec) } 1226 // . = ALIGN(0x1000); 1227 // /* The RW PT_LOAD starts here*/ 1228 // rw_sec : { *(rw_sec) } 1229 // would mean that the RW PT_LOAD would become unaligned. 1230 static bool shouldSkip(BaseCommand *cmd) { 1231 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1232 return assign->name != "."; 1233 return false; 1234 } 1235 1236 // We want to place orphan sections so that they share as much 1237 // characteristics with their neighbors as possible. For example, if 1238 // both are rw, or both are tls. 1239 static std::vector<BaseCommand *>::iterator 1240 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1241 std::vector<BaseCommand *>::iterator e) { 1242 OutputSection *sec = cast<OutputSection>(*e); 1243 1244 // Find the first element that has as close a rank as possible. 1245 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1246 return getRankProximity(sec, a) < getRankProximity(sec, b); 1247 }); 1248 if (i == e) 1249 return e; 1250 1251 // Consider all existing sections with the same proximity. 1252 int proximity = getRankProximity(sec, *i); 1253 for (; i != e; ++i) { 1254 auto *curSec = dyn_cast<OutputSection>(*i); 1255 if (!curSec || !curSec->hasInputSections) 1256 continue; 1257 if (getRankProximity(sec, curSec) != proximity || 1258 sec->sortRank < curSec->sortRank) 1259 break; 1260 } 1261 1262 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1263 auto *os = dyn_cast<OutputSection>(cmd); 1264 return os && os->hasInputSections; 1265 }; 1266 auto j = std::find_if(llvm::make_reverse_iterator(i), 1267 llvm::make_reverse_iterator(b), 1268 isOutputSecWithInputSections); 1269 i = j.base(); 1270 1271 // As a special case, if the orphan section is the last section, put 1272 // it at the very end, past any other commands. 1273 // This matches bfd's behavior and is convenient when the linker script fully 1274 // specifies the start of the file, but doesn't care about the end (the non 1275 // alloc sections for example). 1276 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1277 if (nextSec == e) 1278 return e; 1279 1280 while (i != e && shouldSkip(*i)) 1281 ++i; 1282 return i; 1283 } 1284 1285 // Adds random priorities to sections not already in the map. 1286 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1287 if (!config->shuffleSectionSeed) 1288 return; 1289 1290 std::vector<int> priorities(inputSections.size() - order.size()); 1291 // Existing priorities are < 0, so use priorities >= 0 for the missing 1292 // sections. 1293 int curPrio = 0; 1294 for (int &prio : priorities) 1295 prio = curPrio++; 1296 uint32_t seed = *config->shuffleSectionSeed; 1297 std::mt19937 g(seed ? seed : std::random_device()()); 1298 llvm::shuffle(priorities.begin(), priorities.end(), g); 1299 int prioIndex = 0; 1300 for (InputSectionBase *sec : inputSections) { 1301 if (order.try_emplace(sec, priorities[prioIndex]).second) 1302 ++prioIndex; 1303 } 1304 } 1305 1306 // Builds section order for handling --symbol-ordering-file. 1307 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1308 DenseMap<const InputSectionBase *, int> sectionOrder; 1309 // Use the rarely used option -call-graph-ordering-file to sort sections. 1310 if (!config->callGraphProfile.empty()) 1311 return computeCallGraphProfileOrder(); 1312 1313 if (config->symbolOrderingFile.empty()) 1314 return sectionOrder; 1315 1316 struct SymbolOrderEntry { 1317 int priority; 1318 bool present; 1319 }; 1320 1321 // Build a map from symbols to their priorities. Symbols that didn't 1322 // appear in the symbol ordering file have the lowest priority 0. 1323 // All explicitly mentioned symbols have negative (higher) priorities. 1324 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1325 int priority = -config->symbolOrderingFile.size(); 1326 for (StringRef s : config->symbolOrderingFile) 1327 symbolOrder.insert({s, {priority++, false}}); 1328 1329 // Build a map from sections to their priorities. 1330 auto addSym = [&](Symbol &sym) { 1331 auto it = symbolOrder.find(sym.getName()); 1332 if (it == symbolOrder.end()) 1333 return; 1334 SymbolOrderEntry &ent = it->second; 1335 ent.present = true; 1336 1337 maybeWarnUnorderableSymbol(&sym); 1338 1339 if (auto *d = dyn_cast<Defined>(&sym)) { 1340 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1341 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1342 priority = std::min(priority, ent.priority); 1343 } 1344 } 1345 }; 1346 1347 // We want both global and local symbols. We get the global ones from the 1348 // symbol table and iterate the object files for the local ones. 1349 for (Symbol *sym : symtab->symbols()) 1350 if (!sym->isLazy()) 1351 addSym(*sym); 1352 1353 for (InputFile *file : objectFiles) 1354 for (Symbol *sym : file->getSymbols()) { 1355 if (!sym->isLocal()) 1356 break; 1357 addSym(*sym); 1358 } 1359 1360 if (config->warnSymbolOrdering) 1361 for (auto orderEntry : symbolOrder) 1362 if (!orderEntry.second.present) 1363 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1364 1365 return sectionOrder; 1366 } 1367 1368 // Sorts the sections in ISD according to the provided section order. 1369 static void 1370 sortISDBySectionOrder(InputSectionDescription *isd, 1371 const DenseMap<const InputSectionBase *, int> &order) { 1372 std::vector<InputSection *> unorderedSections; 1373 std::vector<std::pair<InputSection *, int>> orderedSections; 1374 uint64_t unorderedSize = 0; 1375 1376 for (InputSection *isec : isd->sections) { 1377 auto i = order.find(isec); 1378 if (i == order.end()) { 1379 unorderedSections.push_back(isec); 1380 unorderedSize += isec->getSize(); 1381 continue; 1382 } 1383 orderedSections.push_back({isec, i->second}); 1384 } 1385 llvm::sort(orderedSections, llvm::less_second()); 1386 1387 // Find an insertion point for the ordered section list in the unordered 1388 // section list. On targets with limited-range branches, this is the mid-point 1389 // of the unordered section list. This decreases the likelihood that a range 1390 // extension thunk will be needed to enter or exit the ordered region. If the 1391 // ordered section list is a list of hot functions, we can generally expect 1392 // the ordered functions to be called more often than the unordered functions, 1393 // making it more likely that any particular call will be within range, and 1394 // therefore reducing the number of thunks required. 1395 // 1396 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1397 // If the layout is: 1398 // 1399 // 8MB hot 1400 // 32MB cold 1401 // 1402 // only the first 8-16MB of the cold code (depending on which hot function it 1403 // is actually calling) can call the hot code without a range extension thunk. 1404 // However, if we use this layout: 1405 // 1406 // 16MB cold 1407 // 8MB hot 1408 // 16MB cold 1409 // 1410 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1411 // of the second block of cold code can call the hot code without a thunk. So 1412 // we effectively double the amount of code that could potentially call into 1413 // the hot code without a thunk. 1414 size_t insPt = 0; 1415 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1416 uint64_t unorderedPos = 0; 1417 for (; insPt != unorderedSections.size(); ++insPt) { 1418 unorderedPos += unorderedSections[insPt]->getSize(); 1419 if (unorderedPos > unorderedSize / 2) 1420 break; 1421 } 1422 } 1423 1424 isd->sections.clear(); 1425 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1426 isd->sections.push_back(isec); 1427 for (std::pair<InputSection *, int> p : orderedSections) 1428 isd->sections.push_back(p.first); 1429 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1430 isd->sections.push_back(isec); 1431 } 1432 1433 static void sortSection(OutputSection *sec, 1434 const DenseMap<const InputSectionBase *, int> &order) { 1435 StringRef name = sec->name; 1436 1437 // Never sort these. 1438 if (name == ".init" || name == ".fini") 1439 return; 1440 1441 // IRelative relocations that usually live in the .rel[a].dyn section should 1442 // be proccessed last by the dynamic loader. To achieve that we add synthetic 1443 // sections in the required order from the begining so that the in.relaIplt 1444 // section is placed last in an output section. Here we just do not apply 1445 // sorting for an output section which holds the in.relaIplt section. 1446 if (in.relaIplt->getParent() == sec) 1447 return; 1448 1449 // Sort input sections by priority using the list provided by 1450 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1451 // digit radix sort. The sections may be sorted stably again by a more 1452 // significant key. 1453 if (!order.empty()) 1454 for (BaseCommand *b : sec->sectionCommands) 1455 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1456 sortISDBySectionOrder(isd, order); 1457 1458 // Sort input sections by section name suffixes for 1459 // __attribute__((init_priority(N))). 1460 if (name == ".init_array" || name == ".fini_array") { 1461 if (!script->hasSectionsCommand) 1462 sec->sortInitFini(); 1463 return; 1464 } 1465 1466 // Sort input sections by the special rule for .ctors and .dtors. 1467 if (name == ".ctors" || name == ".dtors") { 1468 if (!script->hasSectionsCommand) 1469 sec->sortCtorsDtors(); 1470 return; 1471 } 1472 1473 // .toc is allocated just after .got and is accessed using GOT-relative 1474 // relocations. Object files compiled with small code model have an 1475 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1476 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1477 // sections having smaller relocation offsets are at beginning of .toc 1478 if (config->emachine == EM_PPC64 && name == ".toc") { 1479 if (script->hasSectionsCommand) 1480 return; 1481 assert(sec->sectionCommands.size() == 1); 1482 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1483 llvm::stable_sort(isd->sections, 1484 [](const InputSection *a, const InputSection *b) -> bool { 1485 return a->file->ppc64SmallCodeModelTocRelocs && 1486 !b->file->ppc64SmallCodeModelTocRelocs; 1487 }); 1488 return; 1489 } 1490 } 1491 1492 // If no layout was provided by linker script, we want to apply default 1493 // sorting for special input sections. This also handles --symbol-ordering-file. 1494 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1495 // Build the order once since it is expensive. 1496 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1497 maybeShuffle(order); 1498 for (BaseCommand *base : script->sectionCommands) 1499 if (auto *sec = dyn_cast<OutputSection>(base)) 1500 sortSection(sec, order); 1501 } 1502 1503 template <class ELFT> void Writer<ELFT>::sortSections() { 1504 script->adjustSectionsBeforeSorting(); 1505 1506 // Don't sort if using -r. It is not necessary and we want to preserve the 1507 // relative order for SHF_LINK_ORDER sections. 1508 if (config->relocatable) 1509 return; 1510 1511 sortInputSections(); 1512 1513 for (BaseCommand *base : script->sectionCommands) { 1514 auto *os = dyn_cast<OutputSection>(base); 1515 if (!os) 1516 continue; 1517 os->sortRank = getSectionRank(os); 1518 1519 // We want to assign rude approximation values to outSecOff fields 1520 // to know the relative order of the input sections. We use it for 1521 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1522 uint64_t i = 0; 1523 for (InputSection *sec : getInputSections(os)) 1524 sec->outSecOff = i++; 1525 } 1526 1527 if (!script->hasSectionsCommand) { 1528 // We know that all the OutputSections are contiguous in this case. 1529 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1530 std::stable_sort( 1531 llvm::find_if(script->sectionCommands, isSection), 1532 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1533 compareSections); 1534 1535 // Process INSERT commands. From this point onwards the order of 1536 // script->sectionCommands is fixed. 1537 script->processInsertCommands(); 1538 return; 1539 } 1540 1541 script->processInsertCommands(); 1542 1543 // Orphan sections are sections present in the input files which are 1544 // not explicitly placed into the output file by the linker script. 1545 // 1546 // The sections in the linker script are already in the correct 1547 // order. We have to figuere out where to insert the orphan 1548 // sections. 1549 // 1550 // The order of the sections in the script is arbitrary and may not agree with 1551 // compareSections. This means that we cannot easily define a strict weak 1552 // ordering. To see why, consider a comparison of a section in the script and 1553 // one not in the script. We have a two simple options: 1554 // * Make them equivalent (a is not less than b, and b is not less than a). 1555 // The problem is then that equivalence has to be transitive and we can 1556 // have sections a, b and c with only b in a script and a less than c 1557 // which breaks this property. 1558 // * Use compareSectionsNonScript. Given that the script order doesn't have 1559 // to match, we can end up with sections a, b, c, d where b and c are in the 1560 // script and c is compareSectionsNonScript less than b. In which case d 1561 // can be equivalent to c, a to b and d < a. As a concrete example: 1562 // .a (rx) # not in script 1563 // .b (rx) # in script 1564 // .c (ro) # in script 1565 // .d (ro) # not in script 1566 // 1567 // The way we define an order then is: 1568 // * Sort only the orphan sections. They are in the end right now. 1569 // * Move each orphan section to its preferred position. We try 1570 // to put each section in the last position where it can share 1571 // a PT_LOAD. 1572 // 1573 // There is some ambiguity as to where exactly a new entry should be 1574 // inserted, because Commands contains not only output section 1575 // commands but also other types of commands such as symbol assignment 1576 // expressions. There's no correct answer here due to the lack of the 1577 // formal specification of the linker script. We use heuristics to 1578 // determine whether a new output command should be added before or 1579 // after another commands. For the details, look at shouldSkip 1580 // function. 1581 1582 auto i = script->sectionCommands.begin(); 1583 auto e = script->sectionCommands.end(); 1584 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1585 if (auto *sec = dyn_cast<OutputSection>(base)) 1586 return sec->sectionIndex == UINT32_MAX; 1587 return false; 1588 }); 1589 1590 // Sort the orphan sections. 1591 std::stable_sort(nonScriptI, e, compareSections); 1592 1593 // As a horrible special case, skip the first . assignment if it is before any 1594 // section. We do this because it is common to set a load address by starting 1595 // the script with ". = 0xabcd" and the expectation is that every section is 1596 // after that. 1597 auto firstSectionOrDotAssignment = 1598 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1599 if (firstSectionOrDotAssignment != e && 1600 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1601 ++firstSectionOrDotAssignment; 1602 i = firstSectionOrDotAssignment; 1603 1604 while (nonScriptI != e) { 1605 auto pos = findOrphanPos(i, nonScriptI); 1606 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1607 1608 // As an optimization, find all sections with the same sort rank 1609 // and insert them with one rotate. 1610 unsigned rank = orphan->sortRank; 1611 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1612 return cast<OutputSection>(cmd)->sortRank != rank; 1613 }); 1614 std::rotate(pos, nonScriptI, end); 1615 nonScriptI = end; 1616 } 1617 1618 script->adjustSectionsAfterSorting(); 1619 } 1620 1621 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1622 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1623 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1624 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1625 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1626 if (!la || !lb) 1627 return la && !lb; 1628 OutputSection *aOut = la->getParent(); 1629 OutputSection *bOut = lb->getParent(); 1630 1631 if (aOut != bOut) 1632 return aOut->addr < bOut->addr; 1633 return la->outSecOff < lb->outSecOff; 1634 } 1635 1636 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1637 for (OutputSection *sec : outputSections) { 1638 if (!(sec->flags & SHF_LINK_ORDER)) 1639 continue; 1640 1641 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1642 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1643 if (!config->relocatable && config->emachine == EM_ARM && 1644 sec->type == SHT_ARM_EXIDX) 1645 continue; 1646 1647 // Link order may be distributed across several InputSectionDescriptions. 1648 // Sorting is performed separately. 1649 std::vector<InputSection **> scriptSections; 1650 std::vector<InputSection *> sections; 1651 for (BaseCommand *base : sec->sectionCommands) { 1652 auto *isd = dyn_cast<InputSectionDescription>(base); 1653 if (!isd) 1654 continue; 1655 bool hasLinkOrder = false; 1656 scriptSections.clear(); 1657 sections.clear(); 1658 for (InputSection *&isec : isd->sections) { 1659 if (isec->flags & SHF_LINK_ORDER) { 1660 InputSection *link = isec->getLinkOrderDep(); 1661 if (link && !link->getParent()) 1662 error(toString(isec) + ": sh_link points to discarded section " + 1663 toString(link)); 1664 hasLinkOrder = true; 1665 } 1666 scriptSections.push_back(&isec); 1667 sections.push_back(isec); 1668 } 1669 if (hasLinkOrder && errorCount() == 0) { 1670 llvm::stable_sort(sections, compareByFilePosition); 1671 for (int i = 0, n = sections.size(); i != n; ++i) 1672 *scriptSections[i] = sections[i]; 1673 } 1674 } 1675 } 1676 } 1677 1678 static void finalizeSynthetic(SyntheticSection *sec) { 1679 if (sec && sec->isNeeded() && sec->getParent()) 1680 sec->finalizeContents(); 1681 } 1682 1683 // We need to generate and finalize the content that depends on the address of 1684 // InputSections. As the generation of the content may also alter InputSection 1685 // addresses we must converge to a fixed point. We do that here. See the comment 1686 // in Writer<ELFT>::finalizeSections(). 1687 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1688 ThunkCreator tc; 1689 AArch64Err843419Patcher a64p; 1690 ARMErr657417Patcher a32p; 1691 script->assignAddresses(); 1692 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1693 // do require the relative addresses of OutputSections because linker scripts 1694 // can assign Virtual Addresses to OutputSections that are not monotonically 1695 // increasing. 1696 for (Partition &part : partitions) 1697 finalizeSynthetic(part.armExidx); 1698 resolveShfLinkOrder(); 1699 1700 // Converts call x@GDPLT to call __tls_get_addr 1701 if (config->emachine == EM_HEXAGON) 1702 hexagonTLSSymbolUpdate(outputSections); 1703 1704 int assignPasses = 0; 1705 for (;;) { 1706 bool changed = target->needsThunks && tc.createThunks(outputSections); 1707 1708 // With Thunk Size much smaller than branch range we expect to 1709 // converge quickly; if we get to 15 something has gone wrong. 1710 if (changed && tc.pass >= 15) { 1711 error("thunk creation not converged"); 1712 break; 1713 } 1714 1715 if (config->fixCortexA53Errata843419) { 1716 if (changed) 1717 script->assignAddresses(); 1718 changed |= a64p.createFixes(); 1719 } 1720 if (config->fixCortexA8) { 1721 if (changed) 1722 script->assignAddresses(); 1723 changed |= a32p.createFixes(); 1724 } 1725 1726 if (in.mipsGot) 1727 in.mipsGot->updateAllocSize(); 1728 1729 for (Partition &part : partitions) { 1730 changed |= part.relaDyn->updateAllocSize(); 1731 if (part.relrDyn) 1732 changed |= part.relrDyn->updateAllocSize(); 1733 } 1734 1735 const Defined *changedSym = script->assignAddresses(); 1736 if (!changed) { 1737 // Some symbols may be dependent on section addresses. When we break the 1738 // loop, the symbol values are finalized because a previous 1739 // assignAddresses() finalized section addresses. 1740 if (!changedSym) 1741 break; 1742 if (++assignPasses == 5) { 1743 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1744 " does not converge"); 1745 break; 1746 } 1747 } 1748 } 1749 1750 // If addrExpr is set, the address may not be a multiple of the alignment. 1751 // Warn because this is error-prone. 1752 for (BaseCommand *cmd : script->sectionCommands) 1753 if (auto *os = dyn_cast<OutputSection>(cmd)) 1754 if (os->addr % os->alignment != 0) 1755 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1756 os->name + " is not a multiple of alignment (" + 1757 Twine(os->alignment) + ")"); 1758 } 1759 1760 // If Input Sections have been shrinked (basic block sections) then 1761 // update symbol values and sizes associated with these sections. With basic 1762 // block sections, input sections can shrink when the jump instructions at 1763 // the end of the section are relaxed. 1764 static void fixSymbolsAfterShrinking() { 1765 for (InputFile *File : objectFiles) { 1766 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1767 auto *def = dyn_cast<Defined>(Sym); 1768 if (!def) 1769 return; 1770 1771 const SectionBase *sec = def->section; 1772 if (!sec) 1773 return; 1774 1775 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl); 1776 if (!inputSec || !inputSec->bytesDropped) 1777 return; 1778 1779 const size_t OldSize = inputSec->data().size(); 1780 const size_t NewSize = OldSize - inputSec->bytesDropped; 1781 1782 if (def->value > NewSize && def->value <= OldSize) { 1783 LLVM_DEBUG(llvm::dbgs() 1784 << "Moving symbol " << Sym->getName() << " from " 1785 << def->value << " to " 1786 << def->value - inputSec->bytesDropped << " bytes\n"); 1787 def->value -= inputSec->bytesDropped; 1788 return; 1789 } 1790 1791 if (def->value + def->size > NewSize && def->value <= OldSize && 1792 def->value + def->size <= OldSize) { 1793 LLVM_DEBUG(llvm::dbgs() 1794 << "Shrinking symbol " << Sym->getName() << " from " 1795 << def->size << " to " << def->size - inputSec->bytesDropped 1796 << " bytes\n"); 1797 def->size -= inputSec->bytesDropped; 1798 } 1799 }); 1800 } 1801 } 1802 1803 // If basic block sections exist, there are opportunities to delete fall thru 1804 // jumps and shrink jump instructions after basic block reordering. This 1805 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1806 // option is used. 1807 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1808 assert(config->optimizeBBJumps); 1809 1810 script->assignAddresses(); 1811 // For every output section that has executable input sections, this 1812 // does the following: 1813 // 1. Deletes all direct jump instructions in input sections that 1814 // jump to the following section as it is not required. 1815 // 2. If there are two consecutive jump instructions, it checks 1816 // if they can be flipped and one can be deleted. 1817 for (OutputSection *os : outputSections) { 1818 if (!(os->flags & SHF_EXECINSTR)) 1819 continue; 1820 std::vector<InputSection *> sections = getInputSections(os); 1821 std::vector<unsigned> result(sections.size()); 1822 // Delete all fall through jump instructions. Also, check if two 1823 // consecutive jump instructions can be flipped so that a fall 1824 // through jmp instruction can be deleted. 1825 parallelForEachN(0, sections.size(), [&](size_t i) { 1826 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1827 InputSection &is = *sections[i]; 1828 result[i] = 1829 target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0; 1830 }); 1831 size_t numDeleted = std::count(result.begin(), result.end(), 1); 1832 if (numDeleted > 0) { 1833 script->assignAddresses(); 1834 LLVM_DEBUG(llvm::dbgs() 1835 << "Removing " << numDeleted << " fall through jumps\n"); 1836 } 1837 } 1838 1839 fixSymbolsAfterShrinking(); 1840 1841 for (OutputSection *os : outputSections) { 1842 std::vector<InputSection *> sections = getInputSections(os); 1843 for (InputSection *is : sections) 1844 is->trim(); 1845 } 1846 } 1847 1848 // In order to allow users to manipulate linker-synthesized sections, 1849 // we had to add synthetic sections to the input section list early, 1850 // even before we make decisions whether they are needed. This allows 1851 // users to write scripts like this: ".mygot : { .got }". 1852 // 1853 // Doing it has an unintended side effects. If it turns out that we 1854 // don't need a .got (for example) at all because there's no 1855 // relocation that needs a .got, we don't want to emit .got. 1856 // 1857 // To deal with the above problem, this function is called after 1858 // scanRelocations is called to remove synthetic sections that turn 1859 // out to be empty. 1860 static void removeUnusedSyntheticSections() { 1861 // All input synthetic sections that can be empty are placed after 1862 // all regular ones. We iterate over them all and exit at first 1863 // non-synthetic. 1864 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1865 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1866 if (!ss) 1867 return; 1868 OutputSection *os = ss->getParent(); 1869 if (!os || ss->isNeeded()) 1870 continue; 1871 1872 // If we reach here, then ss is an unused synthetic section and we want to 1873 // remove it from the corresponding input section description, and 1874 // orphanSections. 1875 for (BaseCommand *b : os->sectionCommands) 1876 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1877 llvm::erase_if(isd->sections, 1878 [=](InputSection *isec) { return isec == ss; }); 1879 llvm::erase_if(script->orphanSections, 1880 [=](const InputSectionBase *isec) { return isec == ss; }); 1881 } 1882 } 1883 1884 // Create output section objects and add them to OutputSections. 1885 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1886 Out::preinitArray = findSection(".preinit_array"); 1887 Out::initArray = findSection(".init_array"); 1888 Out::finiArray = findSection(".fini_array"); 1889 1890 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1891 // symbols for sections, so that the runtime can get the start and end 1892 // addresses of each section by section name. Add such symbols. 1893 if (!config->relocatable) { 1894 addStartEndSymbols(); 1895 for (BaseCommand *base : script->sectionCommands) 1896 if (auto *sec = dyn_cast<OutputSection>(base)) 1897 addStartStopSymbols(sec); 1898 } 1899 1900 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1901 // It should be okay as no one seems to care about the type. 1902 // Even the author of gold doesn't remember why gold behaves that way. 1903 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1904 if (mainPart->dynamic->parent) 1905 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1906 STV_HIDDEN, STT_NOTYPE, 1907 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1908 1909 // Define __rel[a]_iplt_{start,end} symbols if needed. 1910 addRelIpltSymbols(); 1911 1912 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1913 // should only be defined in an executable. If .sdata does not exist, its 1914 // value/section does not matter but it has to be relative, so set its 1915 // st_shndx arbitrarily to 1 (Out::elfHeader). 1916 if (config->emachine == EM_RISCV && !config->shared) { 1917 OutputSection *sec = findSection(".sdata"); 1918 ElfSym::riscvGlobalPointer = 1919 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1920 0x800, STV_DEFAULT, STB_GLOBAL); 1921 } 1922 1923 if (config->emachine == EM_X86_64) { 1924 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1925 // way that: 1926 // 1927 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1928 // computes 0. 1929 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1930 // the TLS block). 1931 // 1932 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1933 // an absolute symbol of zero. This is different from GNU linkers which 1934 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1935 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1936 if (s && s->isUndefined()) { 1937 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1938 STT_TLS, /*value=*/0, 0, 1939 /*section=*/nullptr}); 1940 ElfSym::tlsModuleBase = cast<Defined>(s); 1941 } 1942 } 1943 1944 // This responsible for splitting up .eh_frame section into 1945 // pieces. The relocation scan uses those pieces, so this has to be 1946 // earlier. 1947 for (Partition &part : partitions) 1948 finalizeSynthetic(part.ehFrame); 1949 1950 for (Symbol *sym : symtab->symbols()) 1951 sym->isPreemptible = computeIsPreemptible(*sym); 1952 1953 // Change values of linker-script-defined symbols from placeholders (assigned 1954 // by declareSymbols) to actual definitions. 1955 script->processSymbolAssignments(); 1956 1957 // Scan relocations. This must be done after every symbol is declared so that 1958 // we can correctly decide if a dynamic relocation is needed. This is called 1959 // after processSymbolAssignments() because it needs to know whether a 1960 // linker-script-defined symbol is absolute. 1961 ppc64noTocRelax.clear(); 1962 if (!config->relocatable) { 1963 forEachRelSec(scanRelocations<ELFT>); 1964 reportUndefinedSymbols<ELFT>(); 1965 } 1966 1967 if (in.plt && in.plt->isNeeded()) 1968 in.plt->addSymbols(); 1969 if (in.iplt && in.iplt->isNeeded()) 1970 in.iplt->addSymbols(); 1971 1972 if (!config->allowShlibUndefined) { 1973 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1974 // entries are seen. These cases would otherwise lead to runtime errors 1975 // reported by the dynamic linker. 1976 // 1977 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1978 // catch more cases. That is too much for us. Our approach resembles the one 1979 // used in ld.gold, achieves a good balance to be useful but not too smart. 1980 for (SharedFile *file : sharedFiles) 1981 file->allNeededIsKnown = 1982 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1983 return symtab->soNames.count(needed); 1984 }); 1985 1986 for (Symbol *sym : symtab->symbols()) 1987 if (sym->isUndefined() && !sym->isWeak()) 1988 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 1989 if (f->allNeededIsKnown) 1990 errorOrWarn(toString(f) + ": undefined reference to " + 1991 toString(*sym) + " [--no-allow-shlib-undefined]"); 1992 } 1993 1994 // Now that we have defined all possible global symbols including linker- 1995 // synthesized ones. Visit all symbols to give the finishing touches. 1996 for (Symbol *sym : symtab->symbols()) { 1997 if (!includeInSymtab(*sym)) 1998 continue; 1999 if (in.symTab) 2000 in.symTab->addSymbol(sym); 2001 2002 if (sym->includeInDynsym()) { 2003 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 2004 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 2005 if (file->isNeeded && !sym->isUndefined()) 2006 addVerneed(sym); 2007 } 2008 } 2009 2010 // We also need to scan the dynamic relocation tables of the other partitions 2011 // and add any referenced symbols to the partition's dynsym. 2012 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2013 DenseSet<Symbol *> syms; 2014 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2015 syms.insert(e.sym); 2016 for (DynamicReloc &reloc : part.relaDyn->relocs) 2017 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 2018 part.dynSymTab->addSymbol(reloc.sym); 2019 } 2020 2021 // Do not proceed if there was an undefined symbol. 2022 if (errorCount()) 2023 return; 2024 2025 if (in.mipsGot) 2026 in.mipsGot->build(); 2027 2028 removeUnusedSyntheticSections(); 2029 script->diagnoseOrphanHandling(); 2030 2031 sortSections(); 2032 2033 // Now that we have the final list, create a list of all the 2034 // OutputSections for convenience. 2035 for (BaseCommand *base : script->sectionCommands) 2036 if (auto *sec = dyn_cast<OutputSection>(base)) 2037 outputSections.push_back(sec); 2038 2039 // Prefer command line supplied address over other constraints. 2040 for (OutputSection *sec : outputSections) { 2041 auto i = config->sectionStartMap.find(sec->name); 2042 if (i != config->sectionStartMap.end()) 2043 sec->addrExpr = [=] { return i->second; }; 2044 } 2045 2046 // With the outputSections available check for GDPLT relocations 2047 // and add __tls_get_addr symbol if needed. 2048 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2049 Symbol *sym = symtab->addSymbol(Undefined{ 2050 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2051 sym->isPreemptible = true; 2052 partitions[0].dynSymTab->addSymbol(sym); 2053 } 2054 2055 // This is a bit of a hack. A value of 0 means undef, so we set it 2056 // to 1 to make __ehdr_start defined. The section number is not 2057 // particularly relevant. 2058 Out::elfHeader->sectionIndex = 1; 2059 2060 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 2061 OutputSection *sec = outputSections[i]; 2062 sec->sectionIndex = i + 1; 2063 sec->shName = in.shStrTab->addString(sec->name); 2064 } 2065 2066 // Binary and relocatable output does not have PHDRS. 2067 // The headers have to be created before finalize as that can influence the 2068 // image base and the dynamic section on mips includes the image base. 2069 if (!config->relocatable && !config->oFormatBinary) { 2070 for (Partition &part : partitions) { 2071 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2072 : createPhdrs(part); 2073 if (config->emachine == EM_ARM) { 2074 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2075 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2076 } 2077 if (config->emachine == EM_MIPS) { 2078 // Add separate segments for MIPS-specific sections. 2079 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2080 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2081 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2082 } 2083 } 2084 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2085 2086 // Find the TLS segment. This happens before the section layout loop so that 2087 // Android relocation packing can look up TLS symbol addresses. We only need 2088 // to care about the main partition here because all TLS symbols were moved 2089 // to the main partition (see MarkLive.cpp). 2090 for (PhdrEntry *p : mainPart->phdrs) 2091 if (p->p_type == PT_TLS) 2092 Out::tlsPhdr = p; 2093 } 2094 2095 // Some symbols are defined in term of program headers. Now that we 2096 // have the headers, we can find out which sections they point to. 2097 setReservedSymbolSections(); 2098 2099 finalizeSynthetic(in.bss); 2100 finalizeSynthetic(in.bssRelRo); 2101 finalizeSynthetic(in.symTabShndx); 2102 finalizeSynthetic(in.shStrTab); 2103 finalizeSynthetic(in.strTab); 2104 finalizeSynthetic(in.got); 2105 finalizeSynthetic(in.mipsGot); 2106 finalizeSynthetic(in.igotPlt); 2107 finalizeSynthetic(in.gotPlt); 2108 finalizeSynthetic(in.relaIplt); 2109 finalizeSynthetic(in.relaPlt); 2110 finalizeSynthetic(in.plt); 2111 finalizeSynthetic(in.iplt); 2112 finalizeSynthetic(in.ppc32Got2); 2113 finalizeSynthetic(in.partIndex); 2114 2115 // Dynamic section must be the last one in this list and dynamic 2116 // symbol table section (dynSymTab) must be the first one. 2117 for (Partition &part : partitions) { 2118 finalizeSynthetic(part.dynSymTab); 2119 finalizeSynthetic(part.gnuHashTab); 2120 finalizeSynthetic(part.hashTab); 2121 finalizeSynthetic(part.verDef); 2122 finalizeSynthetic(part.relaDyn); 2123 finalizeSynthetic(part.relrDyn); 2124 finalizeSynthetic(part.ehFrameHdr); 2125 finalizeSynthetic(part.verSym); 2126 finalizeSynthetic(part.verNeed); 2127 finalizeSynthetic(part.dynamic); 2128 } 2129 2130 if (!script->hasSectionsCommand && !config->relocatable) 2131 fixSectionAlignments(); 2132 2133 // This is used to: 2134 // 1) Create "thunks": 2135 // Jump instructions in many ISAs have small displacements, and therefore 2136 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2137 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2138 // responsibility to create and insert small pieces of code between 2139 // sections to extend the ranges if jump targets are out of range. Such 2140 // code pieces are called "thunks". 2141 // 2142 // We add thunks at this stage. We couldn't do this before this point 2143 // because this is the earliest point where we know sizes of sections and 2144 // their layouts (that are needed to determine if jump targets are in 2145 // range). 2146 // 2147 // 2) Update the sections. We need to generate content that depends on the 2148 // address of InputSections. For example, MIPS GOT section content or 2149 // android packed relocations sections content. 2150 // 2151 // 3) Assign the final values for the linker script symbols. Linker scripts 2152 // sometimes using forward symbol declarations. We want to set the correct 2153 // values. They also might change after adding the thunks. 2154 finalizeAddressDependentContent(); 2155 if (errorCount()) 2156 return; 2157 2158 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 2159 finalizeSynthetic(in.symTab); 2160 finalizeSynthetic(in.ppc64LongBranchTarget); 2161 2162 // Relaxation to delete inter-basic block jumps created by basic block 2163 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2164 // can relax jump instructions based on symbol offset. 2165 if (config->optimizeBBJumps) 2166 optimizeBasicBlockJumps(); 2167 2168 // Fill other section headers. The dynamic table is finalized 2169 // at the end because some tags like RELSZ depend on result 2170 // of finalizing other sections. 2171 for (OutputSection *sec : outputSections) 2172 sec->finalize(); 2173 } 2174 2175 // Ensure data sections are not mixed with executable sections when 2176 // -execute-only is used. -execute-only is a feature to make pages executable 2177 // but not readable, and the feature is currently supported only on AArch64. 2178 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2179 if (!config->executeOnly) 2180 return; 2181 2182 for (OutputSection *os : outputSections) 2183 if (os->flags & SHF_EXECINSTR) 2184 for (InputSection *isec : getInputSections(os)) 2185 if (!(isec->flags & SHF_EXECINSTR)) 2186 error("cannot place " + toString(isec) + " into " + toString(os->name) + 2187 ": -execute-only does not support intermingling data and code"); 2188 } 2189 2190 // The linker is expected to define SECNAME_start and SECNAME_end 2191 // symbols for a few sections. This function defines them. 2192 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2193 // If a section does not exist, there's ambiguity as to how we 2194 // define _start and _end symbols for an init/fini section. Since 2195 // the loader assume that the symbols are always defined, we need to 2196 // always define them. But what value? The loader iterates over all 2197 // pointers between _start and _end to run global ctors/dtors, so if 2198 // the section is empty, their symbol values don't actually matter 2199 // as long as _start and _end point to the same location. 2200 // 2201 // That said, we don't want to set the symbols to 0 (which is 2202 // probably the simplest value) because that could cause some 2203 // program to fail to link due to relocation overflow, if their 2204 // program text is above 2 GiB. We use the address of the .text 2205 // section instead to prevent that failure. 2206 // 2207 // In rare situations, the .text section may not exist. If that's the 2208 // case, use the image base address as a last resort. 2209 OutputSection *Default = findSection(".text"); 2210 if (!Default) 2211 Default = Out::elfHeader; 2212 2213 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2214 if (os) { 2215 addOptionalRegular(start, os, 0); 2216 addOptionalRegular(end, os, -1); 2217 } else { 2218 addOptionalRegular(start, Default, 0); 2219 addOptionalRegular(end, Default, 0); 2220 } 2221 }; 2222 2223 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2224 define("__init_array_start", "__init_array_end", Out::initArray); 2225 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2226 2227 if (OutputSection *sec = findSection(".ARM.exidx")) 2228 define("__exidx_start", "__exidx_end", sec); 2229 } 2230 2231 // If a section name is valid as a C identifier (which is rare because of 2232 // the leading '.'), linkers are expected to define __start_<secname> and 2233 // __stop_<secname> symbols. They are at beginning and end of the section, 2234 // respectively. This is not requested by the ELF standard, but GNU ld and 2235 // gold provide the feature, and used by many programs. 2236 template <class ELFT> 2237 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2238 StringRef s = sec->name; 2239 if (!isValidCIdentifier(s)) 2240 return; 2241 addOptionalRegular(saver.save("__start_" + s), sec, 0, 2242 config->zStartStopVisibility); 2243 addOptionalRegular(saver.save("__stop_" + s), sec, -1, 2244 config->zStartStopVisibility); 2245 } 2246 2247 static bool needsPtLoad(OutputSection *sec) { 2248 if (!(sec->flags & SHF_ALLOC) || sec->noload) 2249 return false; 2250 2251 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2252 // responsible for allocating space for them, not the PT_LOAD that 2253 // contains the TLS initialization image. 2254 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2255 return false; 2256 return true; 2257 } 2258 2259 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2260 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2261 // RW. This means that there is no alignment in the RO to RX transition and we 2262 // cannot create a PT_LOAD there. 2263 static uint64_t computeFlags(uint64_t flags) { 2264 if (config->omagic) 2265 return PF_R | PF_W | PF_X; 2266 if (config->executeOnly && (flags & PF_X)) 2267 return flags & ~PF_R; 2268 if (config->singleRoRx && !(flags & PF_W)) 2269 return flags | PF_X; 2270 return flags; 2271 } 2272 2273 // Decide which program headers to create and which sections to include in each 2274 // one. 2275 template <class ELFT> 2276 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2277 std::vector<PhdrEntry *> ret; 2278 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2279 ret.push_back(make<PhdrEntry>(type, flags)); 2280 return ret.back(); 2281 }; 2282 2283 unsigned partNo = part.getNumber(); 2284 bool isMain = partNo == 1; 2285 2286 // Add the first PT_LOAD segment for regular output sections. 2287 uint64_t flags = computeFlags(PF_R); 2288 PhdrEntry *load = nullptr; 2289 2290 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2291 // PT_LOAD. 2292 if (!config->nmagic && !config->omagic) { 2293 // The first phdr entry is PT_PHDR which describes the program header 2294 // itself. 2295 if (isMain) 2296 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2297 else 2298 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2299 2300 // PT_INTERP must be the second entry if exists. 2301 if (OutputSection *cmd = findSection(".interp", partNo)) 2302 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2303 2304 // Add the headers. We will remove them if they don't fit. 2305 // In the other partitions the headers are ordinary sections, so they don't 2306 // need to be added here. 2307 if (isMain) { 2308 load = addHdr(PT_LOAD, flags); 2309 load->add(Out::elfHeader); 2310 load->add(Out::programHeaders); 2311 } 2312 } 2313 2314 // PT_GNU_RELRO includes all sections that should be marked as 2315 // read-only by dynamic linker after processing relocations. 2316 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2317 // an error message if more than one PT_GNU_RELRO PHDR is required. 2318 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2319 bool inRelroPhdr = false; 2320 OutputSection *relroEnd = nullptr; 2321 for (OutputSection *sec : outputSections) { 2322 if (sec->partition != partNo || !needsPtLoad(sec)) 2323 continue; 2324 if (isRelroSection(sec)) { 2325 inRelroPhdr = true; 2326 if (!relroEnd) 2327 relRo->add(sec); 2328 else 2329 error("section: " + sec->name + " is not contiguous with other relro" + 2330 " sections"); 2331 } else if (inRelroPhdr) { 2332 inRelroPhdr = false; 2333 relroEnd = sec; 2334 } 2335 } 2336 2337 for (OutputSection *sec : outputSections) { 2338 if (!needsPtLoad(sec)) 2339 continue; 2340 2341 // Normally, sections in partitions other than the current partition are 2342 // ignored. But partition number 255 is a special case: it contains the 2343 // partition end marker (.part.end). It needs to be added to the main 2344 // partition so that a segment is created for it in the main partition, 2345 // which will cause the dynamic loader to reserve space for the other 2346 // partitions. 2347 if (sec->partition != partNo) { 2348 if (isMain && sec->partition == 255) 2349 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2350 continue; 2351 } 2352 2353 // Segments are contiguous memory regions that has the same attributes 2354 // (e.g. executable or writable). There is one phdr for each segment. 2355 // Therefore, we need to create a new phdr when the next section has 2356 // different flags or is loaded at a discontiguous address or memory 2357 // region using AT or AT> linker script command, respectively. At the same 2358 // time, we don't want to create a separate load segment for the headers, 2359 // even if the first output section has an AT or AT> attribute. 2360 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2361 bool sameLMARegion = 2362 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2363 if (!(load && newFlags == flags && sec != relroEnd && 2364 sec->memRegion == load->firstSec->memRegion && 2365 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2366 load = addHdr(PT_LOAD, newFlags); 2367 flags = newFlags; 2368 } 2369 2370 load->add(sec); 2371 } 2372 2373 // Add a TLS segment if any. 2374 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2375 for (OutputSection *sec : outputSections) 2376 if (sec->partition == partNo && sec->flags & SHF_TLS) 2377 tlsHdr->add(sec); 2378 if (tlsHdr->firstSec) 2379 ret.push_back(tlsHdr); 2380 2381 // Add an entry for .dynamic. 2382 if (OutputSection *sec = part.dynamic->getParent()) 2383 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2384 2385 if (relRo->firstSec) 2386 ret.push_back(relRo); 2387 2388 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2389 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2390 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2391 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2392 ->add(part.ehFrameHdr->getParent()); 2393 2394 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2395 // the dynamic linker fill the segment with random data. 2396 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2397 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2398 2399 if (config->zGnustack != GnuStackKind::None) { 2400 // PT_GNU_STACK is a special section to tell the loader to make the 2401 // pages for the stack non-executable. If you really want an executable 2402 // stack, you can pass -z execstack, but that's not recommended for 2403 // security reasons. 2404 unsigned perm = PF_R | PF_W; 2405 if (config->zGnustack == GnuStackKind::Exec) 2406 perm |= PF_X; 2407 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2408 } 2409 2410 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2411 // is expected to perform W^X violations, such as calling mprotect(2) or 2412 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2413 // OpenBSD. 2414 if (config->zWxneeded) 2415 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2416 2417 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2418 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2419 2420 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2421 // same alignment. 2422 PhdrEntry *note = nullptr; 2423 for (OutputSection *sec : outputSections) { 2424 if (sec->partition != partNo) 2425 continue; 2426 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2427 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2428 note = addHdr(PT_NOTE, PF_R); 2429 note->add(sec); 2430 } else { 2431 note = nullptr; 2432 } 2433 } 2434 return ret; 2435 } 2436 2437 template <class ELFT> 2438 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2439 unsigned pType, unsigned pFlags) { 2440 unsigned partNo = part.getNumber(); 2441 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2442 return cmd->partition == partNo && cmd->type == shType; 2443 }); 2444 if (i == outputSections.end()) 2445 return; 2446 2447 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2448 entry->add(*i); 2449 part.phdrs.push_back(entry); 2450 } 2451 2452 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2453 // This is achieved by assigning an alignment expression to addrExpr of each 2454 // such section. 2455 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2456 const PhdrEntry *prev; 2457 auto pageAlign = [&](const PhdrEntry *p) { 2458 OutputSection *cmd = p->firstSec; 2459 if (!cmd) 2460 return; 2461 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2462 if (!cmd->addrExpr) { 2463 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2464 // padding in the file contents. 2465 // 2466 // When -z separate-code is used we must not have any overlap in pages 2467 // between an executable segment and a non-executable segment. We align to 2468 // the next maximum page size boundary on transitions between executable 2469 // and non-executable segments. 2470 // 2471 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2472 // sections will be extracted to a separate file. Align to the next 2473 // maximum page size boundary so that we can find the ELF header at the 2474 // start. We cannot benefit from overlapping p_offset ranges with the 2475 // previous segment anyway. 2476 if (config->zSeparate == SeparateSegmentKind::Loadable || 2477 (config->zSeparate == SeparateSegmentKind::Code && prev && 2478 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2479 cmd->type == SHT_LLVM_PART_EHDR) 2480 cmd->addrExpr = [] { 2481 return alignTo(script->getDot(), config->maxPageSize); 2482 }; 2483 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2484 // it must be the RW. Align to p_align(PT_TLS) to make sure 2485 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2486 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2487 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2488 // be congruent to 0 modulo p_align(PT_TLS). 2489 // 2490 // Technically this is not required, but as of 2019, some dynamic loaders 2491 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2492 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2493 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2494 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2495 // blocks correctly. We need to keep the workaround for a while. 2496 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2497 cmd->addrExpr = [] { 2498 return alignTo(script->getDot(), config->maxPageSize) + 2499 alignTo(script->getDot() % config->maxPageSize, 2500 Out::tlsPhdr->p_align); 2501 }; 2502 else 2503 cmd->addrExpr = [] { 2504 return alignTo(script->getDot(), config->maxPageSize) + 2505 script->getDot() % config->maxPageSize; 2506 }; 2507 } 2508 }; 2509 2510 for (Partition &part : partitions) { 2511 prev = nullptr; 2512 for (const PhdrEntry *p : part.phdrs) 2513 if (p->p_type == PT_LOAD && p->firstSec) { 2514 pageAlign(p); 2515 prev = p; 2516 } 2517 } 2518 } 2519 2520 // Compute an in-file position for a given section. The file offset must be the 2521 // same with its virtual address modulo the page size, so that the loader can 2522 // load executables without any address adjustment. 2523 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2524 // The first section in a PT_LOAD has to have congruent offset and address 2525 // modulo the maximum page size. 2526 if (os->ptLoad && os->ptLoad->firstSec == os) 2527 return alignTo(off, os->ptLoad->p_align, os->addr); 2528 2529 // File offsets are not significant for .bss sections other than the first one 2530 // in a PT_LOAD. By convention, we keep section offsets monotonically 2531 // increasing rather than setting to zero. 2532 if (os->type == SHT_NOBITS) 2533 return off; 2534 2535 // If the section is not in a PT_LOAD, we just have to align it. 2536 if (!os->ptLoad) 2537 return alignTo(off, os->alignment); 2538 2539 // If two sections share the same PT_LOAD the file offset is calculated 2540 // using this formula: Off2 = Off1 + (VA2 - VA1). 2541 OutputSection *first = os->ptLoad->firstSec; 2542 return first->offset + os->addr - first->addr; 2543 } 2544 2545 // Set an in-file position to a given section and returns the end position of 2546 // the section. 2547 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2548 off = computeFileOffset(os, off); 2549 os->offset = off; 2550 2551 if (os->type == SHT_NOBITS) 2552 return off; 2553 return off + os->size; 2554 } 2555 2556 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2557 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2558 auto needsOffset = [](OutputSection &sec) { 2559 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2560 }; 2561 uint64_t minAddr = UINT64_MAX; 2562 for (OutputSection *sec : outputSections) 2563 if (needsOffset(*sec)) { 2564 sec->offset = sec->getLMA(); 2565 minAddr = std::min(minAddr, sec->offset); 2566 } 2567 2568 // Sections are laid out at LMA minus minAddr. 2569 fileSize = 0; 2570 for (OutputSection *sec : outputSections) 2571 if (needsOffset(*sec)) { 2572 sec->offset -= minAddr; 2573 fileSize = std::max(fileSize, sec->offset + sec->size); 2574 } 2575 } 2576 2577 static std::string rangeToString(uint64_t addr, uint64_t len) { 2578 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2579 } 2580 2581 // Assign file offsets to output sections. 2582 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2583 uint64_t off = 0; 2584 off = setFileOffset(Out::elfHeader, off); 2585 off = setFileOffset(Out::programHeaders, off); 2586 2587 PhdrEntry *lastRX = nullptr; 2588 for (Partition &part : partitions) 2589 for (PhdrEntry *p : part.phdrs) 2590 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2591 lastRX = p; 2592 2593 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2594 // will not occupy file offsets contained by a PT_LOAD. 2595 for (OutputSection *sec : outputSections) { 2596 if (!(sec->flags & SHF_ALLOC)) 2597 continue; 2598 off = setFileOffset(sec, off); 2599 2600 // If this is a last section of the last executable segment and that 2601 // segment is the last loadable segment, align the offset of the 2602 // following section to avoid loading non-segments parts of the file. 2603 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2604 lastRX->lastSec == sec) 2605 off = alignTo(off, config->commonPageSize); 2606 } 2607 for (OutputSection *sec : outputSections) 2608 if (!(sec->flags & SHF_ALLOC)) 2609 off = setFileOffset(sec, off); 2610 2611 sectionHeaderOff = alignTo(off, config->wordsize); 2612 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2613 2614 // Our logic assumes that sections have rising VA within the same segment. 2615 // With use of linker scripts it is possible to violate this rule and get file 2616 // offset overlaps or overflows. That should never happen with a valid script 2617 // which does not move the location counter backwards and usually scripts do 2618 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2619 // kernel, which control segment distribution explicitly and move the counter 2620 // backwards, so we have to allow doing that to support linking them. We 2621 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2622 // we want to prevent file size overflows because it would crash the linker. 2623 for (OutputSection *sec : outputSections) { 2624 if (sec->type == SHT_NOBITS) 2625 continue; 2626 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2627 error("unable to place section " + sec->name + " at file offset " + 2628 rangeToString(sec->offset, sec->size) + 2629 "; check your linker script for overflows"); 2630 } 2631 } 2632 2633 // Finalize the program headers. We call this function after we assign 2634 // file offsets and VAs to all sections. 2635 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2636 for (PhdrEntry *p : part.phdrs) { 2637 OutputSection *first = p->firstSec; 2638 OutputSection *last = p->lastSec; 2639 2640 if (first) { 2641 p->p_filesz = last->offset - first->offset; 2642 if (last->type != SHT_NOBITS) 2643 p->p_filesz += last->size; 2644 2645 p->p_memsz = last->addr + last->size - first->addr; 2646 p->p_offset = first->offset; 2647 p->p_vaddr = first->addr; 2648 2649 // File offsets in partitions other than the main partition are relative 2650 // to the offset of the ELF headers. Perform that adjustment now. 2651 if (part.elfHeader) 2652 p->p_offset -= part.elfHeader->getParent()->offset; 2653 2654 if (!p->hasLMA) 2655 p->p_paddr = first->getLMA(); 2656 } 2657 2658 if (p->p_type == PT_GNU_RELRO) { 2659 p->p_align = 1; 2660 // musl/glibc ld.so rounds the size down, so we need to round up 2661 // to protect the last page. This is a no-op on FreeBSD which always 2662 // rounds up. 2663 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2664 p->p_offset; 2665 } 2666 } 2667 } 2668 2669 // A helper struct for checkSectionOverlap. 2670 namespace { 2671 struct SectionOffset { 2672 OutputSection *sec; 2673 uint64_t offset; 2674 }; 2675 } // namespace 2676 2677 // Check whether sections overlap for a specific address range (file offsets, 2678 // load and virtual addresses). 2679 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2680 bool isVirtualAddr) { 2681 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2682 return a.offset < b.offset; 2683 }); 2684 2685 // Finding overlap is easy given a vector is sorted by start position. 2686 // If an element starts before the end of the previous element, they overlap. 2687 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2688 SectionOffset a = sections[i - 1]; 2689 SectionOffset b = sections[i]; 2690 if (b.offset >= a.offset + a.sec->size) 2691 continue; 2692 2693 // If both sections are in OVERLAY we allow the overlapping of virtual 2694 // addresses, because it is what OVERLAY was designed for. 2695 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2696 continue; 2697 2698 errorOrWarn("section " + a.sec->name + " " + name + 2699 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2700 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2701 b.sec->name + " range is " + 2702 rangeToString(b.offset, b.sec->size)); 2703 } 2704 } 2705 2706 // Check for overlapping sections and address overflows. 2707 // 2708 // In this function we check that none of the output sections have overlapping 2709 // file offsets. For SHF_ALLOC sections we also check that the load address 2710 // ranges and the virtual address ranges don't overlap 2711 template <class ELFT> void Writer<ELFT>::checkSections() { 2712 // First, check that section's VAs fit in available address space for target. 2713 for (OutputSection *os : outputSections) 2714 if ((os->addr + os->size < os->addr) || 2715 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2716 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2717 " of size 0x" + utohexstr(os->size) + 2718 " exceeds available address space"); 2719 2720 // Check for overlapping file offsets. In this case we need to skip any 2721 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2722 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2723 // binary is specified only add SHF_ALLOC sections are added to the output 2724 // file so we skip any non-allocated sections in that case. 2725 std::vector<SectionOffset> fileOffs; 2726 for (OutputSection *sec : outputSections) 2727 if (sec->size > 0 && sec->type != SHT_NOBITS && 2728 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2729 fileOffs.push_back({sec, sec->offset}); 2730 checkOverlap("file", fileOffs, false); 2731 2732 // When linking with -r there is no need to check for overlapping virtual/load 2733 // addresses since those addresses will only be assigned when the final 2734 // executable/shared object is created. 2735 if (config->relocatable) 2736 return; 2737 2738 // Checking for overlapping virtual and load addresses only needs to take 2739 // into account SHF_ALLOC sections since others will not be loaded. 2740 // Furthermore, we also need to skip SHF_TLS sections since these will be 2741 // mapped to other addresses at runtime and can therefore have overlapping 2742 // ranges in the file. 2743 std::vector<SectionOffset> vmas; 2744 for (OutputSection *sec : outputSections) 2745 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2746 vmas.push_back({sec, sec->addr}); 2747 checkOverlap("virtual address", vmas, true); 2748 2749 // Finally, check that the load addresses don't overlap. This will usually be 2750 // the same as the virtual addresses but can be different when using a linker 2751 // script with AT(). 2752 std::vector<SectionOffset> lmas; 2753 for (OutputSection *sec : outputSections) 2754 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2755 lmas.push_back({sec, sec->getLMA()}); 2756 checkOverlap("load address", lmas, false); 2757 } 2758 2759 // The entry point address is chosen in the following ways. 2760 // 2761 // 1. the '-e' entry command-line option; 2762 // 2. the ENTRY(symbol) command in a linker control script; 2763 // 3. the value of the symbol _start, if present; 2764 // 4. the number represented by the entry symbol, if it is a number; 2765 // 5. the address of the first byte of the .text section, if present; 2766 // 6. the address 0. 2767 static uint64_t getEntryAddr() { 2768 // Case 1, 2 or 3 2769 if (Symbol *b = symtab->find(config->entry)) 2770 return b->getVA(); 2771 2772 // Case 4 2773 uint64_t addr; 2774 if (to_integer(config->entry, addr)) 2775 return addr; 2776 2777 // Case 5 2778 if (OutputSection *sec = findSection(".text")) { 2779 if (config->warnMissingEntry) 2780 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2781 utohexstr(sec->addr)); 2782 return sec->addr; 2783 } 2784 2785 // Case 6 2786 if (config->warnMissingEntry) 2787 warn("cannot find entry symbol " + config->entry + 2788 "; not setting start address"); 2789 return 0; 2790 } 2791 2792 static uint16_t getELFType() { 2793 if (config->isPic) 2794 return ET_DYN; 2795 if (config->relocatable) 2796 return ET_REL; 2797 return ET_EXEC; 2798 } 2799 2800 template <class ELFT> void Writer<ELFT>::writeHeader() { 2801 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2802 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2803 2804 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2805 eHdr->e_type = getELFType(); 2806 eHdr->e_entry = getEntryAddr(); 2807 eHdr->e_shoff = sectionHeaderOff; 2808 2809 // Write the section header table. 2810 // 2811 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2812 // and e_shstrndx fields. When the value of one of these fields exceeds 2813 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2814 // use fields in the section header at index 0 to store 2815 // the value. The sentinel values and fields are: 2816 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2817 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2818 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2819 size_t num = outputSections.size() + 1; 2820 if (num >= SHN_LORESERVE) 2821 sHdrs->sh_size = num; 2822 else 2823 eHdr->e_shnum = num; 2824 2825 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2826 if (strTabIndex >= SHN_LORESERVE) { 2827 sHdrs->sh_link = strTabIndex; 2828 eHdr->e_shstrndx = SHN_XINDEX; 2829 } else { 2830 eHdr->e_shstrndx = strTabIndex; 2831 } 2832 2833 for (OutputSection *sec : outputSections) 2834 sec->writeHeaderTo<ELFT>(++sHdrs); 2835 } 2836 2837 // Open a result file. 2838 template <class ELFT> void Writer<ELFT>::openFile() { 2839 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2840 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2841 error("output file too large: " + Twine(fileSize) + " bytes"); 2842 return; 2843 } 2844 2845 unlinkAsync(config->outputFile); 2846 unsigned flags = 0; 2847 if (!config->relocatable) 2848 flags |= FileOutputBuffer::F_executable; 2849 if (!config->mmapOutputFile) 2850 flags |= FileOutputBuffer::F_no_mmap; 2851 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2852 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2853 2854 if (!bufferOrErr) { 2855 error("failed to open " + config->outputFile + ": " + 2856 llvm::toString(bufferOrErr.takeError())); 2857 return; 2858 } 2859 buffer = std::move(*bufferOrErr); 2860 Out::bufferStart = buffer->getBufferStart(); 2861 } 2862 2863 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2864 for (OutputSection *sec : outputSections) 2865 if (sec->flags & SHF_ALLOC) 2866 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2867 } 2868 2869 static void fillTrap(uint8_t *i, uint8_t *end) { 2870 for (; i + 4 <= end; i += 4) 2871 memcpy(i, &target->trapInstr, 4); 2872 } 2873 2874 // Fill the last page of executable segments with trap instructions 2875 // instead of leaving them as zero. Even though it is not required by any 2876 // standard, it is in general a good thing to do for security reasons. 2877 // 2878 // We'll leave other pages in segments as-is because the rest will be 2879 // overwritten by output sections. 2880 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2881 for (Partition &part : partitions) { 2882 // Fill the last page. 2883 for (PhdrEntry *p : part.phdrs) 2884 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2885 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2886 config->commonPageSize), 2887 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2888 config->commonPageSize)); 2889 2890 // Round up the file size of the last segment to the page boundary iff it is 2891 // an executable segment to ensure that other tools don't accidentally 2892 // trim the instruction padding (e.g. when stripping the file). 2893 PhdrEntry *last = nullptr; 2894 for (PhdrEntry *p : part.phdrs) 2895 if (p->p_type == PT_LOAD) 2896 last = p; 2897 2898 if (last && (last->p_flags & PF_X)) 2899 last->p_memsz = last->p_filesz = 2900 alignTo(last->p_filesz, config->commonPageSize); 2901 } 2902 } 2903 2904 // Write section contents to a mmap'ed file. 2905 template <class ELFT> void Writer<ELFT>::writeSections() { 2906 // In -r or -emit-relocs mode, write the relocation sections first as in 2907 // ELf_Rel targets we might find out that we need to modify the relocated 2908 // section while doing it. 2909 for (OutputSection *sec : outputSections) 2910 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2911 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2912 2913 for (OutputSection *sec : outputSections) 2914 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2915 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2916 } 2917 2918 // Split one uint8 array into small pieces of uint8 arrays. 2919 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2920 size_t chunkSize) { 2921 std::vector<ArrayRef<uint8_t>> ret; 2922 while (arr.size() > chunkSize) { 2923 ret.push_back(arr.take_front(chunkSize)); 2924 arr = arr.drop_front(chunkSize); 2925 } 2926 if (!arr.empty()) 2927 ret.push_back(arr); 2928 return ret; 2929 } 2930 2931 // Computes a hash value of Data using a given hash function. 2932 // In order to utilize multiple cores, we first split data into 1MB 2933 // chunks, compute a hash for each chunk, and then compute a hash value 2934 // of the hash values. 2935 static void 2936 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2937 llvm::ArrayRef<uint8_t> data, 2938 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2939 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2940 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2941 2942 // Compute hash values. 2943 parallelForEachN(0, chunks.size(), [&](size_t i) { 2944 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2945 }); 2946 2947 // Write to the final output buffer. 2948 hashFn(hashBuf.data(), hashes); 2949 } 2950 2951 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2952 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2953 return; 2954 2955 if (config->buildId == BuildIdKind::Hexstring) { 2956 for (Partition &part : partitions) 2957 part.buildId->writeBuildId(config->buildIdVector); 2958 return; 2959 } 2960 2961 // Compute a hash of all sections of the output file. 2962 size_t hashSize = mainPart->buildId->hashSize; 2963 std::vector<uint8_t> buildId(hashSize); 2964 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 2965 2966 switch (config->buildId) { 2967 case BuildIdKind::Fast: 2968 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2969 write64le(dest, xxHash64(arr)); 2970 }); 2971 break; 2972 case BuildIdKind::Md5: 2973 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2974 memcpy(dest, MD5::hash(arr).data(), hashSize); 2975 }); 2976 break; 2977 case BuildIdKind::Sha1: 2978 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2979 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2980 }); 2981 break; 2982 case BuildIdKind::Uuid: 2983 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 2984 error("entropy source failure: " + ec.message()); 2985 break; 2986 default: 2987 llvm_unreachable("unknown BuildIdKind"); 2988 } 2989 for (Partition &part : partitions) 2990 part.buildId->writeBuildId(buildId); 2991 } 2992 2993 template void elf::createSyntheticSections<ELF32LE>(); 2994 template void elf::createSyntheticSections<ELF32BE>(); 2995 template void elf::createSyntheticSections<ELF64LE>(); 2996 template void elf::createSyntheticSections<ELF64BE>(); 2997 2998 template void elf::writeResult<ELF32LE>(); 2999 template void elf::writeResult<ELF32BE>(); 3000 template void elf::writeResult<ELF64LE>(); 3001 template void elf::writeResult<ELF64BE>(); 3002