1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "Writer.h" 11 #include "AArch64ErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "Filesystem.h" 15 #include "LinkerScript.h" 16 #include "MapFile.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SymbolTable.h" 20 #include "Symbols.h" 21 #include "SyntheticSections.h" 22 #include "Target.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "lld/Common/Threads.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include <climits> 29 30 using namespace llvm; 31 using namespace llvm::ELF; 32 using namespace llvm::object; 33 using namespace llvm::support; 34 using namespace llvm::support::endian; 35 36 using namespace lld; 37 using namespace lld::elf; 38 39 namespace { 40 // The writer writes a SymbolTable result to a file. 41 template <class ELFT> class Writer { 42 public: 43 Writer() : Buffer(errorHandler().OutputBuffer) {} 44 typedef typename ELFT::Shdr Elf_Shdr; 45 typedef typename ELFT::Ehdr Elf_Ehdr; 46 typedef typename ELFT::Phdr Elf_Phdr; 47 48 void run(); 49 50 private: 51 void copyLocalSymbols(); 52 void addSectionSymbols(); 53 void forEachRelSec(std::function<void(InputSectionBase &)> Fn); 54 void sortSections(); 55 void resolveShfLinkOrder(); 56 void sortInputSections(); 57 void finalizeSections(); 58 void setReservedSymbolSections(); 59 60 std::vector<PhdrEntry *> createPhdrs(); 61 void removeEmptyPTLoad(); 62 void addPtArmExid(std::vector<PhdrEntry *> &Phdrs); 63 void assignFileOffsets(); 64 void assignFileOffsetsBinary(); 65 void setPhdrs(); 66 void checkSections(); 67 void fixSectionAlignments(); 68 void openFile(); 69 void writeTrapInstr(); 70 void writeHeader(); 71 void writeSections(); 72 void writeSectionsBinary(); 73 void writeBuildId(); 74 75 std::unique_ptr<FileOutputBuffer> &Buffer; 76 77 void addRelIpltSymbols(); 78 void addStartEndSymbols(); 79 void addStartStopSymbols(OutputSection *Sec); 80 uint64_t getEntryAddr(); 81 82 std::vector<PhdrEntry *> Phdrs; 83 84 uint64_t FileSize; 85 uint64_t SectionHeaderOff; 86 87 bool HasGotBaseSym = false; 88 }; 89 } // anonymous namespace 90 91 static bool isSectionPrefix(StringRef Prefix, StringRef Name) { 92 return Name.startswith(Prefix) || Name == Prefix.drop_back(); 93 } 94 95 StringRef elf::getOutputSectionName(InputSectionBase *S) { 96 if (Config->Relocatable) 97 return S->Name; 98 99 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 100 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 101 // technically required, but not doing it is odd). This code guarantees that. 102 if (auto *IS = dyn_cast<InputSection>(S)) { 103 if (InputSectionBase *Rel = IS->getRelocatedSection()) { 104 OutputSection *Out = Rel->getOutputSection(); 105 if (S->Type == SHT_RELA) 106 return Saver.save(".rela" + Out->Name); 107 return Saver.save(".rel" + Out->Name); 108 } 109 } 110 111 // This check is for -z keep-text-section-prefix. This option separates text 112 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or 113 // ".text.exit". 114 // When enabled, this allows identifying the hot code region (.text.hot) in 115 // the final binary which can be selectively mapped to huge pages or mlocked, 116 // for instance. 117 if (Config->ZKeepTextSectionPrefix) 118 for (StringRef V : 119 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) { 120 if (isSectionPrefix(V, S->Name)) 121 return V.drop_back(); 122 } 123 124 for (StringRef V : 125 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 126 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 127 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) { 128 if (isSectionPrefix(V, S->Name)) 129 return V.drop_back(); 130 } 131 132 // CommonSection is identified as "COMMON" in linker scripts. 133 // By default, it should go to .bss section. 134 if (S->Name == "COMMON") 135 return ".bss"; 136 137 return S->Name; 138 } 139 140 static bool needsInterpSection() { 141 return !SharedFiles.empty() && !Config->DynamicLinker.empty() && 142 Script->needsInterpSection(); 143 } 144 145 template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } 146 147 template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() { 148 llvm::erase_if(Phdrs, [&](const PhdrEntry *P) { 149 if (P->p_type != PT_LOAD) 150 return false; 151 if (!P->FirstSec) 152 return true; 153 uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr; 154 return Size == 0; 155 }); 156 } 157 158 template <class ELFT> static void combineEhFrameSections() { 159 for (InputSectionBase *&S : InputSections) { 160 EhInputSection *ES = dyn_cast<EhInputSection>(S); 161 if (!ES || !ES->Live) 162 continue; 163 164 InX::EhFrame->addSection<ELFT>(ES); 165 S = nullptr; 166 } 167 168 std::vector<InputSectionBase *> &V = InputSections; 169 V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); 170 } 171 172 static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec, 173 uint64_t Val, uint8_t StOther = STV_HIDDEN, 174 uint8_t Binding = STB_GLOBAL) { 175 Symbol *S = Symtab->find(Name); 176 if (!S || S->isDefined()) 177 return nullptr; 178 Symbol *Sym = Symtab->addRegular(Name, StOther, STT_NOTYPE, Val, 179 /*Size=*/0, Binding, Sec, 180 /*File=*/nullptr); 181 return cast<Defined>(Sym); 182 } 183 184 // The linker is expected to define some symbols depending on 185 // the linking result. This function defines such symbols. 186 void elf::addReservedSymbols() { 187 if (Config->EMachine == EM_MIPS) { 188 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 189 // so that it points to an absolute address which by default is relative 190 // to GOT. Default offset is 0x7ff0. 191 // See "Global Data Symbols" in Chapter 6 in the following document: 192 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 193 ElfSym::MipsGp = Symtab->addAbsolute("_gp", STV_HIDDEN, STB_GLOBAL); 194 195 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 196 // start of function and 'gp' pointer into GOT. 197 if (Symtab->find("_gp_disp")) 198 ElfSym::MipsGpDisp = 199 Symtab->addAbsolute("_gp_disp", STV_HIDDEN, STB_GLOBAL); 200 201 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 202 // pointer. This symbol is used in the code generated by .cpload pseudo-op 203 // in case of using -mno-shared option. 204 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 205 if (Symtab->find("__gnu_local_gp")) 206 ElfSym::MipsLocalGp = 207 Symtab->addAbsolute("__gnu_local_gp", STV_HIDDEN, STB_GLOBAL); 208 } 209 210 // The 64-bit PowerOpen ABI defines a TableOfContents (TOC) which combines the 211 // typical ELF GOT with the small data sections. It commonly includes .got 212 // .toc .sdata .sbss. The .TOC. symbol replaces both _GLOBAL_OFFSET_TABLE_ and 213 // _SDA_BASE_ from the 32-bit ABI. It is used to represent the TOC base which 214 // is offset by 0x8000 bytes from the start of the .got section. 215 ElfSym::GlobalOffsetTable = addOptionalRegular( 216 (Config->EMachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_", 217 Out::ElfHeader, Target->GotBaseSymOff); 218 219 // __ehdr_start is the location of ELF file headers. Note that we define 220 // this symbol unconditionally even when using a linker script, which 221 // differs from the behavior implemented by GNU linker which only define 222 // this symbol if ELF headers are in the memory mapped segment. 223 addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN); 224 225 // __executable_start is not documented, but the expectation of at 226 // least the Android libc is that it points to the ELF header. 227 addOptionalRegular("__executable_start", Out::ElfHeader, 0, STV_HIDDEN); 228 229 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 230 // each DSO. The address of the symbol doesn't matter as long as they are 231 // different in different DSOs, so we chose the start address of the DSO. 232 addOptionalRegular("__dso_handle", Out::ElfHeader, 0, STV_HIDDEN); 233 234 // If linker script do layout we do not need to create any standart symbols. 235 if (Script->HasSectionsCommand) 236 return; 237 238 auto Add = [](StringRef S, int64_t Pos) { 239 return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT); 240 }; 241 242 ElfSym::Bss = Add("__bss_start", 0); 243 ElfSym::End1 = Add("end", -1); 244 ElfSym::End2 = Add("_end", -1); 245 ElfSym::Etext1 = Add("etext", -1); 246 ElfSym::Etext2 = Add("_etext", -1); 247 ElfSym::Edata1 = Add("edata", -1); 248 ElfSym::Edata2 = Add("_edata", -1); 249 } 250 251 static OutputSection *findSection(StringRef Name) { 252 for (BaseCommand *Base : Script->SectionCommands) 253 if (auto *Sec = dyn_cast<OutputSection>(Base)) 254 if (Sec->Name == Name) 255 return Sec; 256 return nullptr; 257 } 258 259 // Initialize Out members. 260 template <class ELFT> static void createSyntheticSections() { 261 // Initialize all pointers with NULL. This is needed because 262 // you can call lld::elf::main more than once as a library. 263 memset(&Out::First, 0, sizeof(Out)); 264 265 auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; 266 267 InX::DynStrTab = make<StringTableSection>(".dynstr", true); 268 InX::Dynamic = make<DynamicSection<ELFT>>(); 269 if (Config->AndroidPackDynRelocs) { 270 InX::RelaDyn = make<AndroidPackedRelocationSection<ELFT>>( 271 Config->IsRela ? ".rela.dyn" : ".rel.dyn"); 272 } else { 273 InX::RelaDyn = make<RelocationSection<ELFT>>( 274 Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); 275 } 276 InX::ShStrTab = make<StringTableSection>(".shstrtab", false); 277 278 Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC); 279 Out::ProgramHeaders->Alignment = Config->Wordsize; 280 281 if (needsInterpSection()) { 282 InX::Interp = createInterpSection(); 283 Add(InX::Interp); 284 } else { 285 InX::Interp = nullptr; 286 } 287 288 if (Config->Strip != StripPolicy::All) { 289 InX::StrTab = make<StringTableSection>(".strtab", false); 290 InX::SymTab = make<SymbolTableSection<ELFT>>(*InX::StrTab); 291 } 292 293 if (Config->BuildId != BuildIdKind::None) { 294 InX::BuildId = make<BuildIdSection>(); 295 Add(InX::BuildId); 296 } 297 298 InX::Bss = make<BssSection>(".bss", 0, 1); 299 Add(InX::Bss); 300 301 // If there is a SECTIONS command and a .data.rel.ro section name use name 302 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 303 // This makes sure our relro is contiguous. 304 bool HasDataRelRo = Script->HasSectionsCommand && findSection(".data.rel.ro"); 305 InX::BssRelRo = 306 make<BssSection>(HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 307 Add(InX::BssRelRo); 308 309 // Add MIPS-specific sections. 310 if (Config->EMachine == EM_MIPS) { 311 if (!Config->Shared && Config->HasDynSymTab) { 312 InX::MipsRldMap = make<MipsRldMapSection>(); 313 Add(InX::MipsRldMap); 314 } 315 if (auto *Sec = MipsAbiFlagsSection<ELFT>::create()) 316 Add(Sec); 317 if (auto *Sec = MipsOptionsSection<ELFT>::create()) 318 Add(Sec); 319 if (auto *Sec = MipsReginfoSection<ELFT>::create()) 320 Add(Sec); 321 } 322 323 if (Config->HasDynSymTab) { 324 InX::DynSymTab = make<SymbolTableSection<ELFT>>(*InX::DynStrTab); 325 Add(InX::DynSymTab); 326 327 In<ELFT>::VerSym = make<VersionTableSection<ELFT>>(); 328 Add(In<ELFT>::VerSym); 329 330 if (!Config->VersionDefinitions.empty()) { 331 In<ELFT>::VerDef = make<VersionDefinitionSection<ELFT>>(); 332 Add(In<ELFT>::VerDef); 333 } 334 335 In<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>(); 336 Add(In<ELFT>::VerNeed); 337 338 if (Config->GnuHash) { 339 InX::GnuHashTab = make<GnuHashTableSection>(); 340 Add(InX::GnuHashTab); 341 } 342 343 if (Config->SysvHash) { 344 InX::HashTab = make<HashTableSection>(); 345 Add(InX::HashTab); 346 } 347 348 Add(InX::Dynamic); 349 Add(InX::DynStrTab); 350 Add(InX::RelaDyn); 351 } 352 353 // Add .got. MIPS' .got is so different from the other archs, 354 // it has its own class. 355 if (Config->EMachine == EM_MIPS) { 356 InX::MipsGot = make<MipsGotSection>(); 357 Add(InX::MipsGot); 358 } else { 359 InX::Got = make<GotSection>(); 360 Add(InX::Got); 361 } 362 363 InX::GotPlt = make<GotPltSection>(); 364 Add(InX::GotPlt); 365 InX::IgotPlt = make<IgotPltSection>(); 366 Add(InX::IgotPlt); 367 368 if (Config->GdbIndex) { 369 InX::GdbIndex = createGdbIndex<ELFT>(); 370 Add(InX::GdbIndex); 371 } 372 373 // We always need to add rel[a].plt to output if it has entries. 374 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 375 InX::RelaPlt = make<RelocationSection<ELFT>>( 376 Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); 377 Add(InX::RelaPlt); 378 379 // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure 380 // that the IRelative relocations are processed last by the dynamic loader. 381 // We cannot place the iplt section in .rel.dyn when Android relocation 382 // packing is enabled because that would cause a section type mismatch. 383 // However, because the Android dynamic loader reads .rel.plt after .rel.dyn, 384 // we can get the desired behaviour by placing the iplt section in .rel.plt. 385 InX::RelaIplt = make<RelocationSection<ELFT>>( 386 (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs) 387 ? ".rel.dyn" 388 : InX::RelaPlt->Name, 389 false /*Sort*/); 390 Add(InX::RelaIplt); 391 392 InX::Plt = make<PltSection>(false); 393 Add(InX::Plt); 394 InX::Iplt = make<PltSection>(true); 395 Add(InX::Iplt); 396 397 if (!Config->Relocatable) { 398 if (Config->EhFrameHdr) { 399 InX::EhFrameHdr = make<EhFrameHeader>(); 400 Add(InX::EhFrameHdr); 401 } 402 InX::EhFrame = make<EhFrameSection>(); 403 Add(InX::EhFrame); 404 } 405 406 if (InX::SymTab) 407 Add(InX::SymTab); 408 Add(InX::ShStrTab); 409 if (InX::StrTab) 410 Add(InX::StrTab); 411 412 if (Config->EMachine == EM_ARM && !Config->Relocatable) 413 // Add a sentinel to terminate .ARM.exidx. It helps an unwinder 414 // to find the exact address range of the last entry. 415 Add(make<ARMExidxSentinelSection>()); 416 } 417 418 // The main function of the writer. 419 template <class ELFT> void Writer<ELFT>::run() { 420 // Create linker-synthesized sections such as .got or .plt. 421 // Such sections are of type input section. 422 createSyntheticSections<ELFT>(); 423 424 if (!Config->Relocatable) 425 combineEhFrameSections<ELFT>(); 426 427 // We want to process linker script commands. When SECTIONS command 428 // is given we let it create sections. 429 Script->processSectionCommands(); 430 431 // Linker scripts controls how input sections are assigned to output sections. 432 // Input sections that were not handled by scripts are called "orphans", and 433 // they are assigned to output sections by the default rule. Process that. 434 Script->addOrphanSections(); 435 436 if (Config->Discard != DiscardPolicy::All) 437 copyLocalSymbols(); 438 439 if (Config->CopyRelocs) 440 addSectionSymbols(); 441 442 // Now that we have a complete set of output sections. This function 443 // completes section contents. For example, we need to add strings 444 // to the string table, and add entries to .got and .plt. 445 // finalizeSections does that. 446 finalizeSections(); 447 if (errorCount()) 448 return; 449 450 Script->assignAddresses(); 451 452 // If -compressed-debug-sections is specified, we need to compress 453 // .debug_* sections. Do it right now because it changes the size of 454 // output sections. 455 for (OutputSection *Sec : OutputSections) 456 Sec->maybeCompress<ELFT>(); 457 458 Script->allocateHeaders(Phdrs); 459 460 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 461 // 0 sized region. This has to be done late since only after assignAddresses 462 // we know the size of the sections. 463 removeEmptyPTLoad(); 464 465 if (!Config->OFormatBinary) 466 assignFileOffsets(); 467 else 468 assignFileOffsetsBinary(); 469 470 setPhdrs(); 471 472 if (Config->Relocatable) { 473 for (OutputSection *Sec : OutputSections) 474 Sec->Addr = 0; 475 } 476 477 if (Config->CheckSections) 478 checkSections(); 479 480 // It does not make sense try to open the file if we have error already. 481 if (errorCount()) 482 return; 483 // Write the result down to a file. 484 openFile(); 485 if (errorCount()) 486 return; 487 488 if (!Config->OFormatBinary) { 489 writeTrapInstr(); 490 writeHeader(); 491 writeSections(); 492 } else { 493 writeSectionsBinary(); 494 } 495 496 // Backfill .note.gnu.build-id section content. This is done at last 497 // because the content is usually a hash value of the entire output file. 498 writeBuildId(); 499 if (errorCount()) 500 return; 501 502 // Handle -Map and -cref options. 503 writeMapFile(); 504 writeCrossReferenceTable(); 505 if (errorCount()) 506 return; 507 508 if (auto E = Buffer->commit()) 509 error("failed to write to the output file: " + toString(std::move(E))); 510 } 511 512 static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName, 513 const Symbol &B) { 514 if (B.isSection()) 515 return false; 516 517 // If sym references a section in a discarded group, don't keep it. 518 if (Sec == &InputSection::Discarded) 519 return false; 520 521 if (Config->Discard == DiscardPolicy::None) 522 return true; 523 524 // In ELF assembly .L symbols are normally discarded by the assembler. 525 // If the assembler fails to do so, the linker discards them if 526 // * --discard-locals is used. 527 // * The symbol is in a SHF_MERGE section, which is normally the reason for 528 // the assembler keeping the .L symbol. 529 if (!SymName.startswith(".L") && !SymName.empty()) 530 return true; 531 532 if (Config->Discard == DiscardPolicy::Locals) 533 return false; 534 535 return !Sec || !(Sec->Flags & SHF_MERGE); 536 } 537 538 static bool includeInSymtab(const Symbol &B) { 539 if (!B.isLocal() && !B.IsUsedInRegularObj) 540 return false; 541 542 if (auto *D = dyn_cast<Defined>(&B)) { 543 // Always include absolute symbols. 544 SectionBase *Sec = D->Section; 545 if (!Sec) 546 return true; 547 Sec = Sec->Repl; 548 // Exclude symbols pointing to garbage-collected sections. 549 if (isa<InputSectionBase>(Sec) && !Sec->Live) 550 return false; 551 if (auto *S = dyn_cast<MergeInputSection>(Sec)) 552 if (!S->getSectionPiece(D->Value)->Live) 553 return false; 554 return true; 555 } 556 return B.Used; 557 } 558 559 // Local symbols are not in the linker's symbol table. This function scans 560 // each object file's symbol table to copy local symbols to the output. 561 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 562 if (!InX::SymTab) 563 return; 564 for (InputFile *File : ObjectFiles) { 565 ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File); 566 for (Symbol *B : F->getLocalSymbols()) { 567 if (!B->isLocal()) 568 fatal(toString(F) + 569 ": broken object: getLocalSymbols returns a non-local symbol"); 570 auto *DR = dyn_cast<Defined>(B); 571 572 // No reason to keep local undefined symbol in symtab. 573 if (!DR) 574 continue; 575 if (!includeInSymtab(*B)) 576 continue; 577 578 SectionBase *Sec = DR->Section; 579 if (!shouldKeepInSymtab(Sec, B->getName(), *B)) 580 continue; 581 InX::SymTab->addSymbol(B); 582 } 583 } 584 } 585 586 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 587 // Create a section symbol for each output section so that we can represent 588 // relocations that point to the section. If we know that no relocation is 589 // referring to a section (that happens if the section is a synthetic one), we 590 // don't create a section symbol for that section. 591 for (BaseCommand *Base : Script->SectionCommands) { 592 auto *Sec = dyn_cast<OutputSection>(Base); 593 if (!Sec) 594 continue; 595 auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) { 596 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 597 return !ISD->Sections.empty(); 598 return false; 599 }); 600 if (I == Sec->SectionCommands.end()) 601 continue; 602 InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0]; 603 604 // Relocations are not using REL[A] section symbols. 605 if (IS->Type == SHT_REL || IS->Type == SHT_RELA) 606 continue; 607 608 // Unlike other synthetic sections, mergeable output sections contain data 609 // copied from input sections, and there may be a relocation pointing to its 610 // contents if -r or -emit-reloc are given. 611 if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE)) 612 continue; 613 614 auto *Sym = 615 make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION, 616 /*Value=*/0, /*Size=*/0, IS); 617 InX::SymTab->addSymbol(Sym); 618 } 619 } 620 621 // Today's loaders have a feature to make segments read-only after 622 // processing dynamic relocations to enhance security. PT_GNU_RELRO 623 // is defined for that. 624 // 625 // This function returns true if a section needs to be put into a 626 // PT_GNU_RELRO segment. 627 static bool isRelroSection(const OutputSection *Sec) { 628 if (!Config->ZRelro) 629 return false; 630 631 uint64_t Flags = Sec->Flags; 632 633 // Non-allocatable or non-writable sections don't need RELRO because 634 // they are not writable or not even mapped to memory in the first place. 635 // RELRO is for sections that are essentially read-only but need to 636 // be writable only at process startup to allow dynamic linker to 637 // apply relocations. 638 if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) 639 return false; 640 641 // Once initialized, TLS data segments are used as data templates 642 // for a thread-local storage. For each new thread, runtime 643 // allocates memory for a TLS and copy templates there. No thread 644 // are supposed to use templates directly. Thus, it can be in RELRO. 645 if (Flags & SHF_TLS) 646 return true; 647 648 // .init_array, .preinit_array and .fini_array contain pointers to 649 // functions that are executed on process startup or exit. These 650 // pointers are set by the static linker, and they are not expected 651 // to change at runtime. But if you are an attacker, you could do 652 // interesting things by manipulating pointers in .fini_array, for 653 // example. So they are put into RELRO. 654 uint32_t Type = Sec->Type; 655 if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || 656 Type == SHT_PREINIT_ARRAY) 657 return true; 658 659 // .got contains pointers to external symbols. They are resolved by 660 // the dynamic linker when a module is loaded into memory, and after 661 // that they are not expected to change. So, it can be in RELRO. 662 if (InX::Got && Sec == InX::Got->getParent()) 663 return true; 664 665 // .got.plt contains pointers to external function symbols. They are 666 // by default resolved lazily, so we usually cannot put it into RELRO. 667 // However, if "-z now" is given, the lazy symbol resolution is 668 // disabled, which enables us to put it into RELRO. 669 if (Sec == InX::GotPlt->getParent()) 670 return Config->ZNow; 671 672 // .dynamic section contains data for the dynamic linker, and 673 // there's no need to write to it at runtime, so it's better to put 674 // it into RELRO. 675 if (Sec == InX::Dynamic->getParent()) 676 return true; 677 678 // Sections with some special names are put into RELRO. This is a 679 // bit unfortunate because section names shouldn't be significant in 680 // ELF in spirit. But in reality many linker features depend on 681 // magic section names. 682 StringRef S = Sec->Name; 683 return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" || 684 S == ".dtors" || S == ".jcr" || S == ".eh_frame" || 685 S == ".openbsd.randomdata"; 686 } 687 688 // We compute a rank for each section. The rank indicates where the 689 // section should be placed in the file. Instead of using simple 690 // numbers (0,1,2...), we use a series of flags. One for each decision 691 // point when placing the section. 692 // Using flags has two key properties: 693 // * It is easy to check if a give branch was taken. 694 // * It is easy two see how similar two ranks are (see getRankProximity). 695 enum RankFlags { 696 RF_NOT_ADDR_SET = 1 << 18, 697 RF_NOT_INTERP = 1 << 17, 698 RF_NOT_ALLOC = 1 << 16, 699 RF_WRITE = 1 << 15, 700 RF_EXEC_WRITE = 1 << 13, 701 RF_EXEC = 1 << 12, 702 RF_NON_TLS_BSS = 1 << 11, 703 RF_NON_TLS_BSS_RO = 1 << 10, 704 RF_NOT_TLS = 1 << 9, 705 RF_BSS = 1 << 8, 706 RF_NOTE = 1 << 7, 707 RF_PPC_NOT_TOCBSS = 1 << 6, 708 RF_PPC_TOCL = 1 << 4, 709 RF_PPC_TOC = 1 << 3, 710 RF_PPC_BRANCH_LT = 1 << 2, 711 RF_MIPS_GPREL = 1 << 1, 712 RF_MIPS_NOT_GOT = 1 << 0 713 }; 714 715 static unsigned getSectionRank(const OutputSection *Sec) { 716 unsigned Rank = 0; 717 718 // We want to put section specified by -T option first, so we 719 // can start assigning VA starting from them later. 720 if (Config->SectionStartMap.count(Sec->Name)) 721 return Rank; 722 Rank |= RF_NOT_ADDR_SET; 723 724 // Put .interp first because some loaders want to see that section 725 // on the first page of the executable file when loaded into memory. 726 if (Sec->Name == ".interp") 727 return Rank; 728 Rank |= RF_NOT_INTERP; 729 730 // Allocatable sections go first to reduce the total PT_LOAD size and 731 // so debug info doesn't change addresses in actual code. 732 if (!(Sec->Flags & SHF_ALLOC)) 733 return Rank | RF_NOT_ALLOC; 734 735 // Sort sections based on their access permission in the following 736 // order: R, RX, RWX, RW. This order is based on the following 737 // considerations: 738 // * Read-only sections come first such that they go in the 739 // PT_LOAD covering the program headers at the start of the file. 740 // * Read-only, executable sections come next, unless the 741 // -no-rosegment option is used. 742 // * Writable, executable sections follow such that .plt on 743 // architectures where it needs to be writable will be placed 744 // between .text and .data. 745 // * Writable sections come last, such that .bss lands at the very 746 // end of the last PT_LOAD. 747 bool IsExec = Sec->Flags & SHF_EXECINSTR; 748 bool IsWrite = Sec->Flags & SHF_WRITE; 749 750 if (IsExec) { 751 if (IsWrite) 752 Rank |= RF_EXEC_WRITE; 753 else if (!Config->SingleRoRx) 754 Rank |= RF_EXEC; 755 } else { 756 if (IsWrite) 757 Rank |= RF_WRITE; 758 } 759 760 // If we got here we know that both A and B are in the same PT_LOAD. 761 762 bool IsTls = Sec->Flags & SHF_TLS; 763 bool IsNoBits = Sec->Type == SHT_NOBITS; 764 765 // The first requirement we have is to put (non-TLS) nobits sections last. The 766 // reason is that the only thing the dynamic linker will see about them is a 767 // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the 768 // PT_LOAD, so that has to correspond to the nobits sections. 769 bool IsNonTlsNoBits = IsNoBits && !IsTls; 770 if (IsNonTlsNoBits) 771 Rank |= RF_NON_TLS_BSS; 772 773 // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo 774 // sections after r/w ones, so that the RelRo sections are contiguous. 775 bool IsRelRo = isRelroSection(Sec); 776 if (IsNonTlsNoBits && !IsRelRo) 777 Rank |= RF_NON_TLS_BSS_RO; 778 if (!IsNonTlsNoBits && IsRelRo) 779 Rank |= RF_NON_TLS_BSS_RO; 780 781 // The TLS initialization block needs to be a single contiguous block in a R/W 782 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 783 // sections. The TLS NOBITS sections are placed here as they don't take up 784 // virtual address space in the PT_LOAD. 785 if (!IsTls) 786 Rank |= RF_NOT_TLS; 787 788 // Within the TLS initialization block, the non-nobits sections need to appear 789 // first. 790 if (IsNoBits) 791 Rank |= RF_BSS; 792 793 // We create a NOTE segment for contiguous .note sections, so make 794 // them contigous if there are more than one .note section with the 795 // same attributes. 796 if (Sec->Type == SHT_NOTE) 797 Rank |= RF_NOTE; 798 799 // Some architectures have additional ordering restrictions for sections 800 // within the same PT_LOAD. 801 if (Config->EMachine == EM_PPC64) { 802 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 803 // that we would like to make sure appear is a specific order to maximize 804 // their coverage by a single signed 16-bit offset from the TOC base 805 // pointer. Conversely, the special .tocbss section should be first among 806 // all SHT_NOBITS sections. This will put it next to the loaded special 807 // PPC64 sections (and, thus, within reach of the TOC base pointer). 808 StringRef Name = Sec->Name; 809 if (Name != ".tocbss") 810 Rank |= RF_PPC_NOT_TOCBSS; 811 812 if (Name == ".toc1") 813 Rank |= RF_PPC_TOCL; 814 815 if (Name == ".toc") 816 Rank |= RF_PPC_TOC; 817 818 if (Name == ".branch_lt") 819 Rank |= RF_PPC_BRANCH_LT; 820 } 821 822 if (Config->EMachine == EM_MIPS) { 823 // All sections with SHF_MIPS_GPREL flag should be grouped together 824 // because data in these sections is addressable with a gp relative address. 825 if (Sec->Flags & SHF_MIPS_GPREL) 826 Rank |= RF_MIPS_GPREL; 827 828 if (Sec->Name != ".got") 829 Rank |= RF_MIPS_NOT_GOT; 830 } 831 832 return Rank; 833 } 834 835 static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) { 836 const OutputSection *A = cast<OutputSection>(ACmd); 837 const OutputSection *B = cast<OutputSection>(BCmd); 838 if (A->SortRank != B->SortRank) 839 return A->SortRank < B->SortRank; 840 if (!(A->SortRank & RF_NOT_ADDR_SET)) 841 return Config->SectionStartMap.lookup(A->Name) < 842 Config->SectionStartMap.lookup(B->Name); 843 return false; 844 } 845 846 void PhdrEntry::add(OutputSection *Sec) { 847 LastSec = Sec; 848 if (!FirstSec) 849 FirstSec = Sec; 850 p_align = std::max(p_align, Sec->Alignment); 851 if (p_type == PT_LOAD) 852 Sec->PtLoad = this; 853 } 854 855 // The beginning and the ending of .rel[a].plt section are marked 856 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 857 // executable. The runtime needs these symbols in order to resolve 858 // all IRELATIVE relocs on startup. For dynamic executables, we don't 859 // need these symbols, since IRELATIVE relocs are resolved through GOT 860 // and PLT. For details, see http://www.airs.com/blog/archives/403. 861 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 862 if (needsInterpSection()) 863 return; 864 StringRef S = Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start"; 865 addOptionalRegular(S, InX::RelaIplt, 0, STV_HIDDEN, STB_WEAK); 866 867 S = Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end"; 868 ElfSym::RelaIpltEnd = 869 addOptionalRegular(S, InX::RelaIplt, 0, STV_HIDDEN, STB_WEAK); 870 } 871 872 template <class ELFT> 873 void Writer<ELFT>::forEachRelSec(std::function<void(InputSectionBase &)> Fn) { 874 // Scan all relocations. Each relocation goes through a series 875 // of tests to determine if it needs special treatment, such as 876 // creating GOT, PLT, copy relocations, etc. 877 // Note that relocations for non-alloc sections are directly 878 // processed by InputSection::relocateNonAlloc. 879 for (InputSectionBase *IS : InputSections) 880 if (IS->Live && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC)) 881 Fn(*IS); 882 for (EhInputSection *ES : InX::EhFrame->Sections) 883 Fn(*ES); 884 } 885 886 // This function generates assignments for predefined symbols (e.g. _end or 887 // _etext) and inserts them into the commands sequence to be processed at the 888 // appropriate time. This ensures that the value is going to be correct by the 889 // time any references to these symbols are processed and is equivalent to 890 // defining these symbols explicitly in the linker script. 891 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 892 if (ElfSym::GlobalOffsetTable) { 893 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 894 // to the start of the .got or .got.plt section. 895 InputSection *GotSection = InX::GotPlt; 896 if (!Target->GotBaseSymInGotPlt) 897 GotSection = InX::MipsGot ? cast<InputSection>(InX::MipsGot) 898 : cast<InputSection>(InX::Got); 899 ElfSym::GlobalOffsetTable->Section = GotSection; 900 } 901 902 if (ElfSym::RelaIpltEnd) 903 ElfSym::RelaIpltEnd->Value = InX::RelaIplt->getSize(); 904 905 PhdrEntry *Last = nullptr; 906 PhdrEntry *LastRO = nullptr; 907 908 for (PhdrEntry *P : Phdrs) { 909 if (P->p_type != PT_LOAD) 910 continue; 911 Last = P; 912 if (!(P->p_flags & PF_W)) 913 LastRO = P; 914 } 915 916 if (LastRO) { 917 // _etext is the first location after the last read-only loadable segment. 918 if (ElfSym::Etext1) 919 ElfSym::Etext1->Section = LastRO->LastSec; 920 if (ElfSym::Etext2) 921 ElfSym::Etext2->Section = LastRO->LastSec; 922 } 923 924 if (Last) { 925 // _edata points to the end of the last mapped initialized section. 926 OutputSection *Edata = nullptr; 927 for (OutputSection *OS : OutputSections) { 928 if (OS->Type != SHT_NOBITS) 929 Edata = OS; 930 if (OS == Last->LastSec) 931 break; 932 } 933 934 if (ElfSym::Edata1) 935 ElfSym::Edata1->Section = Edata; 936 if (ElfSym::Edata2) 937 ElfSym::Edata2->Section = Edata; 938 939 // _end is the first location after the uninitialized data region. 940 if (ElfSym::End1) 941 ElfSym::End1->Section = Last->LastSec; 942 if (ElfSym::End2) 943 ElfSym::End2->Section = Last->LastSec; 944 } 945 946 if (ElfSym::Bss) 947 ElfSym::Bss->Section = findSection(".bss"); 948 949 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 950 // be equal to the _gp symbol's value. 951 if (ElfSym::MipsGp) { 952 // Find GP-relative section with the lowest address 953 // and use this address to calculate default _gp value. 954 for (OutputSection *OS : OutputSections) { 955 if (OS->Flags & SHF_MIPS_GPREL) { 956 ElfSym::MipsGp->Section = OS; 957 ElfSym::MipsGp->Value = 0x7ff0; 958 break; 959 } 960 } 961 } 962 } 963 964 // We want to find how similar two ranks are. 965 // The more branches in getSectionRank that match, the more similar they are. 966 // Since each branch corresponds to a bit flag, we can just use 967 // countLeadingZeros. 968 static int getRankProximityAux(OutputSection *A, OutputSection *B) { 969 return countLeadingZeros(A->SortRank ^ B->SortRank); 970 } 971 972 static int getRankProximity(OutputSection *A, BaseCommand *B) { 973 if (auto *Sec = dyn_cast<OutputSection>(B)) 974 return getRankProximityAux(A, Sec); 975 return -1; 976 } 977 978 // When placing orphan sections, we want to place them after symbol assignments 979 // so that an orphan after 980 // begin_foo = .; 981 // foo : { *(foo) } 982 // end_foo = .; 983 // doesn't break the intended meaning of the begin/end symbols. 984 // We don't want to go over sections since findOrphanPos is the 985 // one in charge of deciding the order of the sections. 986 // We don't want to go over changes to '.', since doing so in 987 // rx_sec : { *(rx_sec) } 988 // . = ALIGN(0x1000); 989 // /* The RW PT_LOAD starts here*/ 990 // rw_sec : { *(rw_sec) } 991 // would mean that the RW PT_LOAD would become unaligned. 992 static bool shouldSkip(BaseCommand *Cmd) { 993 if (isa<OutputSection>(Cmd)) 994 return false; 995 if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd)) 996 return Assign->Name != "."; 997 return true; 998 } 999 1000 // We want to place orphan sections so that they share as much 1001 // characteristics with their neighbors as possible. For example, if 1002 // both are rw, or both are tls. 1003 template <typename ELFT> 1004 static std::vector<BaseCommand *>::iterator 1005 findOrphanPos(std::vector<BaseCommand *>::iterator B, 1006 std::vector<BaseCommand *>::iterator E) { 1007 OutputSection *Sec = cast<OutputSection>(*E); 1008 1009 // Find the first element that has as close a rank as possible. 1010 auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) { 1011 return getRankProximity(Sec, A) < getRankProximity(Sec, B); 1012 }); 1013 if (I == E) 1014 return E; 1015 1016 // Consider all existing sections with the same proximity. 1017 int Proximity = getRankProximity(Sec, *I); 1018 for (; I != E; ++I) { 1019 auto *CurSec = dyn_cast<OutputSection>(*I); 1020 if (!CurSec) 1021 continue; 1022 if (getRankProximity(Sec, CurSec) != Proximity || 1023 Sec->SortRank < CurSec->SortRank) 1024 break; 1025 } 1026 1027 auto IsOutputSec = [](BaseCommand *Cmd) { return isa<OutputSection>(Cmd); }; 1028 auto J = std::find_if(llvm::make_reverse_iterator(I), 1029 llvm::make_reverse_iterator(B), IsOutputSec); 1030 I = J.base(); 1031 1032 // As a special case, if the orphan section is the last section, put 1033 // it at the very end, past any other commands. 1034 // This matches bfd's behavior and is convenient when the linker script fully 1035 // specifies the start of the file, but doesn't care about the end (the non 1036 // alloc sections for example). 1037 auto NextSec = std::find_if(I, E, IsOutputSec); 1038 if (NextSec == E) 1039 return E; 1040 1041 while (I != E && shouldSkip(*I)) 1042 ++I; 1043 return I; 1044 } 1045 1046 // Builds section order for handling --symbol-ordering-file. 1047 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1048 DenseMap<const InputSectionBase *, int> SectionOrder; 1049 // Use the rarely used option -call-graph-ordering-file to sort sections. 1050 if (!Config->CallGraphProfile.empty()) 1051 return computeCallGraphProfileOrder(); 1052 1053 if (Config->SymbolOrderingFile.empty()) 1054 return SectionOrder; 1055 1056 struct SymbolOrderEntry { 1057 int Priority; 1058 bool Present; 1059 }; 1060 1061 // Build a map from symbols to their priorities. Symbols that didn't 1062 // appear in the symbol ordering file have the lowest priority 0. 1063 // All explicitly mentioned symbols have negative (higher) priorities. 1064 DenseMap<StringRef, SymbolOrderEntry> SymbolOrder; 1065 int Priority = -Config->SymbolOrderingFile.size(); 1066 for (StringRef S : Config->SymbolOrderingFile) 1067 SymbolOrder.insert({S, {Priority++, false}}); 1068 1069 // Build a map from sections to their priorities. 1070 auto AddSym = [&](Symbol &Sym) { 1071 auto It = SymbolOrder.find(Sym.getName()); 1072 if (It == SymbolOrder.end()) 1073 return; 1074 SymbolOrderEntry &Ent = It->second; 1075 Ent.Present = true; 1076 1077 warnUnorderableSymbol(&Sym); 1078 1079 if (auto *D = dyn_cast<Defined>(&Sym)) { 1080 if (auto *Sec = dyn_cast_or_null<InputSectionBase>(D->Section)) { 1081 int &Priority = SectionOrder[cast<InputSectionBase>(Sec->Repl)]; 1082 Priority = std::min(Priority, Ent.Priority); 1083 } 1084 } 1085 }; 1086 // We want both global and local symbols. We get the global ones from the 1087 // symbol table and iterate the object files for the local ones. 1088 for (Symbol *Sym : Symtab->getSymbols()) 1089 if (!Sym->isLazy()) 1090 AddSym(*Sym); 1091 for (InputFile *File : ObjectFiles) 1092 for (Symbol *Sym : File->getSymbols()) 1093 if (Sym->isLocal()) 1094 AddSym(*Sym); 1095 1096 if (Config->WarnSymbolOrdering) 1097 for (auto OrderEntry : SymbolOrder) 1098 if (!OrderEntry.second.Present) 1099 warn("symbol ordering file: no such symbol: " + OrderEntry.first); 1100 1101 return SectionOrder; 1102 } 1103 1104 // Sorts the sections in ISD according to the provided section order. 1105 static void 1106 sortISDBySectionOrder(InputSectionDescription *ISD, 1107 const DenseMap<const InputSectionBase *, int> &Order) { 1108 std::vector<InputSection *> UnorderedSections; 1109 std::vector<std::pair<InputSection *, int>> OrderedSections; 1110 uint64_t UnorderedSize = 0; 1111 1112 for (InputSection *IS : ISD->Sections) { 1113 auto I = Order.find(IS); 1114 if (I == Order.end()) { 1115 UnorderedSections.push_back(IS); 1116 UnorderedSize += IS->getSize(); 1117 continue; 1118 } 1119 OrderedSections.push_back({IS, I->second}); 1120 } 1121 llvm::sort( 1122 OrderedSections.begin(), OrderedSections.end(), 1123 [&](std::pair<InputSection *, int> A, std::pair<InputSection *, int> B) { 1124 return A.second < B.second; 1125 }); 1126 1127 // Find an insertion point for the ordered section list in the unordered 1128 // section list. On targets with limited-range branches, this is the mid-point 1129 // of the unordered section list. This decreases the likelihood that a range 1130 // extension thunk will be needed to enter or exit the ordered region. If the 1131 // ordered section list is a list of hot functions, we can generally expect 1132 // the ordered functions to be called more often than the unordered functions, 1133 // making it more likely that any particular call will be within range, and 1134 // therefore reducing the number of thunks required. 1135 // 1136 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1137 // If the layout is: 1138 // 1139 // 8MB hot 1140 // 32MB cold 1141 // 1142 // only the first 8-16MB of the cold code (depending on which hot function it 1143 // is actually calling) can call the hot code without a range extension thunk. 1144 // However, if we use this layout: 1145 // 1146 // 16MB cold 1147 // 8MB hot 1148 // 16MB cold 1149 // 1150 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1151 // of the second block of cold code can call the hot code without a thunk. So 1152 // we effectively double the amount of code that could potentially call into 1153 // the hot code without a thunk. 1154 size_t InsPt = 0; 1155 if (Target->ThunkSectionSpacing && !OrderedSections.empty()) { 1156 uint64_t UnorderedPos = 0; 1157 for (; InsPt != UnorderedSections.size(); ++InsPt) { 1158 UnorderedPos += UnorderedSections[InsPt]->getSize(); 1159 if (UnorderedPos > UnorderedSize / 2) 1160 break; 1161 } 1162 } 1163 1164 ISD->Sections.clear(); 1165 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(0, InsPt)) 1166 ISD->Sections.push_back(IS); 1167 for (std::pair<InputSection *, int> P : OrderedSections) 1168 ISD->Sections.push_back(P.first); 1169 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(InsPt)) 1170 ISD->Sections.push_back(IS); 1171 } 1172 1173 static void sortSection(OutputSection *Sec, 1174 const DenseMap<const InputSectionBase *, int> &Order) { 1175 StringRef Name = Sec->Name; 1176 1177 // Sort input sections by section name suffixes for 1178 // __attribute__((init_priority(N))). 1179 if (Name == ".init_array" || Name == ".fini_array") { 1180 if (!Script->HasSectionsCommand) 1181 Sec->sortInitFini(); 1182 return; 1183 } 1184 1185 // Sort input sections by the special rule for .ctors and .dtors. 1186 if (Name == ".ctors" || Name == ".dtors") { 1187 if (!Script->HasSectionsCommand) 1188 Sec->sortCtorsDtors(); 1189 return; 1190 } 1191 1192 // Never sort these. 1193 if (Name == ".init" || Name == ".fini") 1194 return; 1195 1196 // Sort input sections by priority using the list provided 1197 // by --symbol-ordering-file. 1198 if (!Order.empty()) 1199 for (BaseCommand *B : Sec->SectionCommands) 1200 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1201 sortISDBySectionOrder(ISD, Order); 1202 } 1203 1204 // If no layout was provided by linker script, we want to apply default 1205 // sorting for special input sections. This also handles --symbol-ordering-file. 1206 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1207 // Build the order once since it is expensive. 1208 DenseMap<const InputSectionBase *, int> Order = buildSectionOrder(); 1209 for (BaseCommand *Base : Script->SectionCommands) 1210 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1211 sortSection(Sec, Order); 1212 } 1213 1214 template <class ELFT> void Writer<ELFT>::sortSections() { 1215 Script->adjustSectionsBeforeSorting(); 1216 1217 // Don't sort if using -r. It is not necessary and we want to preserve the 1218 // relative order for SHF_LINK_ORDER sections. 1219 if (Config->Relocatable) 1220 return; 1221 1222 sortInputSections(); 1223 1224 for (BaseCommand *Base : Script->SectionCommands) { 1225 auto *OS = dyn_cast<OutputSection>(Base); 1226 if (!OS) 1227 continue; 1228 OS->SortRank = getSectionRank(OS); 1229 1230 // We want to assign rude approximation values to OutSecOff fields 1231 // to know the relative order of the input sections. We use it for 1232 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1233 uint64_t I = 0; 1234 for (InputSection *Sec : getInputSections(OS)) 1235 Sec->OutSecOff = I++; 1236 } 1237 1238 if (!Script->HasSectionsCommand) { 1239 // We know that all the OutputSections are contiguous in this case. 1240 auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); }; 1241 std::stable_sort( 1242 llvm::find_if(Script->SectionCommands, IsSection), 1243 llvm::find_if(llvm::reverse(Script->SectionCommands), IsSection).base(), 1244 compareSections); 1245 return; 1246 } 1247 1248 // Orphan sections are sections present in the input files which are 1249 // not explicitly placed into the output file by the linker script. 1250 // 1251 // The sections in the linker script are already in the correct 1252 // order. We have to figuere out where to insert the orphan 1253 // sections. 1254 // 1255 // The order of the sections in the script is arbitrary and may not agree with 1256 // compareSections. This means that we cannot easily define a strict weak 1257 // ordering. To see why, consider a comparison of a section in the script and 1258 // one not in the script. We have a two simple options: 1259 // * Make them equivalent (a is not less than b, and b is not less than a). 1260 // The problem is then that equivalence has to be transitive and we can 1261 // have sections a, b and c with only b in a script and a less than c 1262 // which breaks this property. 1263 // * Use compareSectionsNonScript. Given that the script order doesn't have 1264 // to match, we can end up with sections a, b, c, d where b and c are in the 1265 // script and c is compareSectionsNonScript less than b. In which case d 1266 // can be equivalent to c, a to b and d < a. As a concrete example: 1267 // .a (rx) # not in script 1268 // .b (rx) # in script 1269 // .c (ro) # in script 1270 // .d (ro) # not in script 1271 // 1272 // The way we define an order then is: 1273 // * Sort only the orphan sections. They are in the end right now. 1274 // * Move each orphan section to its preferred position. We try 1275 // to put each section in the last position where it can share 1276 // a PT_LOAD. 1277 // 1278 // There is some ambiguity as to where exactly a new entry should be 1279 // inserted, because Commands contains not only output section 1280 // commands but also other types of commands such as symbol assignment 1281 // expressions. There's no correct answer here due to the lack of the 1282 // formal specification of the linker script. We use heuristics to 1283 // determine whether a new output command should be added before or 1284 // after another commands. For the details, look at shouldSkip 1285 // function. 1286 1287 auto I = Script->SectionCommands.begin(); 1288 auto E = Script->SectionCommands.end(); 1289 auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) { 1290 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1291 return Sec->SectionIndex == UINT32_MAX; 1292 return false; 1293 }); 1294 1295 // Sort the orphan sections. 1296 std::stable_sort(NonScriptI, E, compareSections); 1297 1298 // As a horrible special case, skip the first . assignment if it is before any 1299 // section. We do this because it is common to set a load address by starting 1300 // the script with ". = 0xabcd" and the expectation is that every section is 1301 // after that. 1302 auto FirstSectionOrDotAssignment = 1303 std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); 1304 if (FirstSectionOrDotAssignment != E && 1305 isa<SymbolAssignment>(**FirstSectionOrDotAssignment)) 1306 ++FirstSectionOrDotAssignment; 1307 I = FirstSectionOrDotAssignment; 1308 1309 while (NonScriptI != E) { 1310 auto Pos = findOrphanPos<ELFT>(I, NonScriptI); 1311 OutputSection *Orphan = cast<OutputSection>(*NonScriptI); 1312 1313 // As an optimization, find all sections with the same sort rank 1314 // and insert them with one rotate. 1315 unsigned Rank = Orphan->SortRank; 1316 auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) { 1317 return cast<OutputSection>(Cmd)->SortRank != Rank; 1318 }); 1319 std::rotate(Pos, NonScriptI, End); 1320 NonScriptI = End; 1321 } 1322 1323 Script->adjustSectionsAfterSorting(); 1324 } 1325 1326 static bool compareByFilePosition(InputSection *A, InputSection *B) { 1327 // Synthetic, i. e. a sentinel section, should go last. 1328 if (A->kind() == InputSectionBase::Synthetic || 1329 B->kind() == InputSectionBase::Synthetic) 1330 return A->kind() != InputSectionBase::Synthetic; 1331 InputSection *LA = A->getLinkOrderDep(); 1332 InputSection *LB = B->getLinkOrderDep(); 1333 OutputSection *AOut = LA->getParent(); 1334 OutputSection *BOut = LB->getParent(); 1335 if (AOut != BOut) 1336 return AOut->SectionIndex < BOut->SectionIndex; 1337 return LA->OutSecOff < LB->OutSecOff; 1338 } 1339 1340 // This function is used by the --merge-exidx-entries to detect duplicate 1341 // .ARM.exidx sections. It is Arm only. 1342 // 1343 // The .ARM.exidx section is of the form: 1344 // | PREL31 offset to function | Unwind instructions for function | 1345 // where the unwind instructions are either a small number of unwind 1346 // instructions inlined into the table entry, the special CANT_UNWIND value of 1347 // 0x1 or a PREL31 offset into a .ARM.extab Section that contains unwind 1348 // instructions. 1349 // 1350 // We return true if all the unwind instructions in the .ARM.exidx entries of 1351 // Cur can be merged into the last entry of Prev. 1352 static bool isDuplicateArmExidxSec(InputSection *Prev, InputSection *Cur) { 1353 1354 // References to .ARM.Extab Sections have bit 31 clear and are not the 1355 // special EXIDX_CANTUNWIND bit-pattern. 1356 auto IsExtabRef = [](uint32_t Unwind) { 1357 return (Unwind & 0x80000000) == 0 && Unwind != 0x1; 1358 }; 1359 1360 struct ExidxEntry { 1361 ulittle32_t Fn; 1362 ulittle32_t Unwind; 1363 }; 1364 1365 // Get the last table Entry from the previous .ARM.exidx section. 1366 const ExidxEntry &PrevEntry = *reinterpret_cast<const ExidxEntry *>( 1367 Prev->Data.data() + Prev->getSize() - sizeof(ExidxEntry)); 1368 if (IsExtabRef(PrevEntry.Unwind)) 1369 return false; 1370 1371 // We consider the unwind instructions of an .ARM.exidx table entry 1372 // a duplicate if the previous unwind instructions if: 1373 // - Both are the special EXIDX_CANTUNWIND. 1374 // - Both are the same inline unwind instructions. 1375 // We do not attempt to follow and check links into .ARM.extab tables as 1376 // consecutive identical entries are rare and the effort to check that they 1377 // are identical is high. 1378 1379 if (isa<SyntheticSection>(Cur)) 1380 // Exidx sentinel section has implicit EXIDX_CANTUNWIND; 1381 return PrevEntry.Unwind == 0x1; 1382 1383 ArrayRef<const ExidxEntry> Entries( 1384 reinterpret_cast<const ExidxEntry *>(Cur->Data.data()), 1385 Cur->getSize() / sizeof(ExidxEntry)); 1386 for (const ExidxEntry &Entry : Entries) 1387 if (IsExtabRef(Entry.Unwind) || Entry.Unwind != PrevEntry.Unwind) 1388 return false; 1389 // All table entries in this .ARM.exidx Section can be merged into the 1390 // previous Section. 1391 return true; 1392 } 1393 1394 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1395 for (OutputSection *Sec : OutputSections) { 1396 if (!(Sec->Flags & SHF_LINK_ORDER)) 1397 continue; 1398 1399 // Link order may be distributed across several InputSectionDescriptions 1400 // but sort must consider them all at once. 1401 std::vector<InputSection **> ScriptSections; 1402 std::vector<InputSection *> Sections; 1403 for (BaseCommand *Base : Sec->SectionCommands) { 1404 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) { 1405 for (InputSection *&IS : ISD->Sections) { 1406 ScriptSections.push_back(&IS); 1407 Sections.push_back(IS); 1408 } 1409 } 1410 } 1411 std::stable_sort(Sections.begin(), Sections.end(), compareByFilePosition); 1412 1413 if (!Config->Relocatable && Config->EMachine == EM_ARM && 1414 Sec->Type == SHT_ARM_EXIDX) { 1415 1416 if (!Sections.empty() && isa<ARMExidxSentinelSection>(Sections.back())) { 1417 assert(Sections.size() >= 2 && 1418 "We should create a sentinel section only if there are " 1419 "alive regular exidx sections."); 1420 // The last executable section is required to fill the sentinel. 1421 // Remember it here so that we don't have to find it again. 1422 auto *Sentinel = cast<ARMExidxSentinelSection>(Sections.back()); 1423 Sentinel->Highest = Sections[Sections.size() - 2]->getLinkOrderDep(); 1424 } 1425 1426 if (Config->MergeArmExidx) { 1427 // The EHABI for the Arm Architecture permits consecutive identical 1428 // table entries to be merged. We use a simple implementation that 1429 // removes a .ARM.exidx Input Section if it can be merged into the 1430 // previous one. This does not require any rewriting of InputSection 1431 // contents but misses opportunities for fine grained deduplication 1432 // where only a subset of the InputSection contents can be merged. 1433 int Cur = 1; 1434 int Prev = 0; 1435 // The last one is a sentinel entry which should not be removed. 1436 int N = Sections.size() - 1; 1437 while (Cur < N) { 1438 if (isDuplicateArmExidxSec(Sections[Prev], Sections[Cur])) 1439 Sections[Cur] = nullptr; 1440 else 1441 Prev = Cur; 1442 ++Cur; 1443 } 1444 } 1445 } 1446 1447 for (int I = 0, N = Sections.size(); I < N; ++I) 1448 *ScriptSections[I] = Sections[I]; 1449 1450 // Remove the Sections we marked as duplicate earlier. 1451 for (BaseCommand *Base : Sec->SectionCommands) 1452 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 1453 llvm::erase_if(ISD->Sections, [](InputSection *IS) { return !IS; }); 1454 } 1455 } 1456 1457 static void applySynthetic(const std::vector<SyntheticSection *> &Sections, 1458 std::function<void(SyntheticSection *)> Fn) { 1459 for (SyntheticSection *SS : Sections) 1460 if (SS && SS->getParent() && !SS->empty()) 1461 Fn(SS); 1462 } 1463 1464 // In order to allow users to manipulate linker-synthesized sections, 1465 // we had to add synthetic sections to the input section list early, 1466 // even before we make decisions whether they are needed. This allows 1467 // users to write scripts like this: ".mygot : { .got }". 1468 // 1469 // Doing it has an unintended side effects. If it turns out that we 1470 // don't need a .got (for example) at all because there's no 1471 // relocation that needs a .got, we don't want to emit .got. 1472 // 1473 // To deal with the above problem, this function is called after 1474 // scanRelocations is called to remove synthetic sections that turn 1475 // out to be empty. 1476 static void removeUnusedSyntheticSections() { 1477 // All input synthetic sections that can be empty are placed after 1478 // all regular ones. We iterate over them all and exit at first 1479 // non-synthetic. 1480 for (InputSectionBase *S : llvm::reverse(InputSections)) { 1481 SyntheticSection *SS = dyn_cast<SyntheticSection>(S); 1482 if (!SS) 1483 return; 1484 OutputSection *OS = SS->getParent(); 1485 if (!OS || !SS->empty()) 1486 continue; 1487 1488 // If we reach here, then SS is an unused synthetic section and we want to 1489 // remove it from corresponding input section description of output section. 1490 for (BaseCommand *B : OS->SectionCommands) 1491 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1492 llvm::erase_if(ISD->Sections, 1493 [=](InputSection *IS) { return IS == SS; }); 1494 } 1495 } 1496 1497 // Returns true if a symbol can be replaced at load-time by a symbol 1498 // with the same name defined in other ELF executable or DSO. 1499 static bool computeIsPreemptible(const Symbol &B) { 1500 assert(!B.isLocal()); 1501 // Only symbols that appear in dynsym can be preempted. 1502 if (!B.includeInDynsym()) 1503 return false; 1504 1505 // Only default visibility symbols can be preempted. 1506 if (B.Visibility != STV_DEFAULT) 1507 return false; 1508 1509 // At this point copy relocations have not been created yet, so any 1510 // symbol that is not defined locally is preemptible. 1511 if (!B.isDefined()) 1512 return true; 1513 1514 // If we have a dynamic list it specifies which local symbols are preemptible. 1515 if (Config->HasDynamicList) 1516 return false; 1517 1518 if (!Config->Shared) 1519 return false; 1520 1521 // -Bsymbolic means that definitions are not preempted. 1522 if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc())) 1523 return false; 1524 return true; 1525 } 1526 1527 // Create output section objects and add them to OutputSections. 1528 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1529 Out::DebugInfo = findSection(".debug_info"); 1530 Out::PreinitArray = findSection(".preinit_array"); 1531 Out::InitArray = findSection(".init_array"); 1532 Out::FiniArray = findSection(".fini_array"); 1533 1534 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1535 // symbols for sections, so that the runtime can get the start and end 1536 // addresses of each section by section name. Add such symbols. 1537 if (!Config->Relocatable) { 1538 addStartEndSymbols(); 1539 for (BaseCommand *Base : Script->SectionCommands) 1540 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1541 addStartStopSymbols(Sec); 1542 } 1543 1544 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1545 // It should be okay as no one seems to care about the type. 1546 // Even the author of gold doesn't remember why gold behaves that way. 1547 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1548 if (InX::DynSymTab) 1549 Symtab->addRegular("_DYNAMIC", STV_HIDDEN, STT_NOTYPE, 0 /*Value*/, 1550 /*Size=*/0, STB_WEAK, InX::Dynamic, 1551 /*File=*/nullptr); 1552 1553 // Define __rel[a]_iplt_{start,end} symbols if needed. 1554 addRelIpltSymbols(); 1555 1556 // This responsible for splitting up .eh_frame section into 1557 // pieces. The relocation scan uses those pieces, so this has to be 1558 // earlier. 1559 applySynthetic({InX::EhFrame}, 1560 [](SyntheticSection *SS) { SS->finalizeContents(); }); 1561 1562 for (Symbol *S : Symtab->getSymbols()) 1563 S->IsPreemptible |= computeIsPreemptible(*S); 1564 1565 // Scan relocations. This must be done after every symbol is declared so that 1566 // we can correctly decide if a dynamic relocation is needed. 1567 if (!Config->Relocatable) 1568 forEachRelSec(scanRelocations<ELFT>); 1569 1570 if (InX::Plt && !InX::Plt->empty()) 1571 InX::Plt->addSymbols(); 1572 if (InX::Iplt && !InX::Iplt->empty()) 1573 InX::Iplt->addSymbols(); 1574 1575 // Now that we have defined all possible global symbols including linker- 1576 // synthesized ones. Visit all symbols to give the finishing touches. 1577 for (Symbol *Sym : Symtab->getSymbols()) { 1578 if (!includeInSymtab(*Sym)) 1579 continue; 1580 if (InX::SymTab) 1581 InX::SymTab->addSymbol(Sym); 1582 1583 if (InX::DynSymTab && Sym->includeInDynsym()) { 1584 InX::DynSymTab->addSymbol(Sym); 1585 if (auto *File = dyn_cast_or_null<SharedFile<ELFT>>(Sym->File)) 1586 if (File->IsNeeded && !Sym->isUndefined()) 1587 In<ELFT>::VerNeed->addSymbol(Sym); 1588 } 1589 } 1590 1591 // Do not proceed if there was an undefined symbol. 1592 if (errorCount()) 1593 return; 1594 1595 removeUnusedSyntheticSections(); 1596 1597 sortSections(); 1598 1599 // Now that we have the final list, create a list of all the 1600 // OutputSections for convenience. 1601 for (BaseCommand *Base : Script->SectionCommands) 1602 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1603 OutputSections.push_back(Sec); 1604 1605 // Prefer command line supplied address over other constraints. 1606 for (OutputSection *Sec : OutputSections) { 1607 auto I = Config->SectionStartMap.find(Sec->Name); 1608 if (I != Config->SectionStartMap.end()) 1609 Sec->AddrExpr = [=] { return I->second; }; 1610 } 1611 1612 // This is a bit of a hack. A value of 0 means undef, so we set it 1613 // to 1 to make __ehdr_start defined. The section number is not 1614 // particularly relevant. 1615 Out::ElfHeader->SectionIndex = 1; 1616 1617 unsigned I = 1; 1618 for (OutputSection *Sec : OutputSections) { 1619 Sec->SectionIndex = I++; 1620 Sec->ShName = InX::ShStrTab->addString(Sec->Name); 1621 } 1622 1623 // Binary and relocatable output does not have PHDRS. 1624 // The headers have to be created before finalize as that can influence the 1625 // image base and the dynamic section on mips includes the image base. 1626 if (!Config->Relocatable && !Config->OFormatBinary) { 1627 Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs(); 1628 addPtArmExid(Phdrs); 1629 Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); 1630 } 1631 1632 // Some symbols are defined in term of program headers. Now that we 1633 // have the headers, we can find out which sections they point to. 1634 setReservedSymbolSections(); 1635 1636 // Dynamic section must be the last one in this list and dynamic 1637 // symbol table section (DynSymTab) must be the first one. 1638 applySynthetic( 1639 {InX::DynSymTab, InX::Bss, InX::BssRelRo, InX::GnuHashTab, 1640 InX::HashTab, InX::SymTab, InX::ShStrTab, InX::StrTab, 1641 In<ELFT>::VerDef, InX::DynStrTab, InX::Got, InX::MipsGot, 1642 InX::IgotPlt, InX::GotPlt, InX::RelaDyn, InX::RelaIplt, 1643 InX::RelaPlt, InX::Plt, InX::Iplt, InX::EhFrameHdr, 1644 In<ELFT>::VerSym, In<ELFT>::VerNeed, InX::Dynamic}, 1645 [](SyntheticSection *SS) { SS->finalizeContents(); }); 1646 1647 if (!Script->HasSectionsCommand && !Config->Relocatable) 1648 fixSectionAlignments(); 1649 1650 // After link order processing .ARM.exidx sections can be deduplicated, which 1651 // needs to be resolved before any other address dependent operation. 1652 resolveShfLinkOrder(); 1653 1654 // Some architectures need to generate content that depends on the address 1655 // of InputSections. For example some architectures use small displacements 1656 // for jump instructions that is the linker's responsibility for creating 1657 // range extension thunks for. As the generation of the content may also 1658 // alter InputSection addresses we must converge to a fixed point. 1659 if (Target->NeedsThunks || Config->AndroidPackDynRelocs) { 1660 ThunkCreator TC; 1661 AArch64Err843419Patcher A64P; 1662 bool Changed; 1663 do { 1664 Script->assignAddresses(); 1665 Changed = false; 1666 if (Target->NeedsThunks) 1667 Changed |= TC.createThunks(OutputSections); 1668 if (Config->FixCortexA53Errata843419) { 1669 if (Changed) 1670 Script->assignAddresses(); 1671 Changed |= A64P.createFixes(); 1672 } 1673 if (InX::MipsGot) 1674 InX::MipsGot->updateAllocSize(); 1675 Changed |= InX::RelaDyn->updateAllocSize(); 1676 } while (Changed); 1677 } 1678 1679 // createThunks may have added local symbols to the static symbol table 1680 applySynthetic({InX::SymTab}, 1681 [](SyntheticSection *SS) { SS->postThunkContents(); }); 1682 1683 // Fill other section headers. The dynamic table is finalized 1684 // at the end because some tags like RELSZ depend on result 1685 // of finalizing other sections. 1686 for (OutputSection *Sec : OutputSections) 1687 Sec->finalize<ELFT>(); 1688 } 1689 1690 // The linker is expected to define SECNAME_start and SECNAME_end 1691 // symbols for a few sections. This function defines them. 1692 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1693 auto Define = [&](StringRef Start, StringRef End, OutputSection *OS) { 1694 // These symbols resolve to the image base if the section does not exist. 1695 // A special value -1 indicates end of the section. 1696 if (OS) { 1697 addOptionalRegular(Start, OS, 0); 1698 addOptionalRegular(End, OS, -1); 1699 } else { 1700 if (Config->Pic) 1701 OS = Out::ElfHeader; 1702 addOptionalRegular(Start, OS, 0); 1703 addOptionalRegular(End, OS, 0); 1704 } 1705 }; 1706 1707 Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); 1708 Define("__init_array_start", "__init_array_end", Out::InitArray); 1709 Define("__fini_array_start", "__fini_array_end", Out::FiniArray); 1710 1711 if (OutputSection *Sec = findSection(".ARM.exidx")) 1712 Define("__exidx_start", "__exidx_end", Sec); 1713 } 1714 1715 // If a section name is valid as a C identifier (which is rare because of 1716 // the leading '.'), linkers are expected to define __start_<secname> and 1717 // __stop_<secname> symbols. They are at beginning and end of the section, 1718 // respectively. This is not requested by the ELF standard, but GNU ld and 1719 // gold provide the feature, and used by many programs. 1720 template <class ELFT> 1721 void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) { 1722 StringRef S = Sec->Name; 1723 if (!isValidCIdentifier(S)) 1724 return; 1725 addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_PROTECTED); 1726 addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_PROTECTED); 1727 } 1728 1729 static bool needsPtLoad(OutputSection *Sec) { 1730 if (!(Sec->Flags & SHF_ALLOC) || Sec->Noload) 1731 return false; 1732 1733 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 1734 // responsible for allocating space for them, not the PT_LOAD that 1735 // contains the TLS initialization image. 1736 if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) 1737 return false; 1738 return true; 1739 } 1740 1741 // Linker scripts are responsible for aligning addresses. Unfortunately, most 1742 // linker scripts are designed for creating two PT_LOADs only, one RX and one 1743 // RW. This means that there is no alignment in the RO to RX transition and we 1744 // cannot create a PT_LOAD there. 1745 static uint64_t computeFlags(uint64_t Flags) { 1746 if (Config->Omagic) 1747 return PF_R | PF_W | PF_X; 1748 if (Config->SingleRoRx && !(Flags & PF_W)) 1749 return Flags | PF_X; 1750 return Flags; 1751 } 1752 1753 // Decide which program headers to create and which sections to include in each 1754 // one. 1755 template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() { 1756 std::vector<PhdrEntry *> Ret; 1757 auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { 1758 Ret.push_back(make<PhdrEntry>(Type, Flags)); 1759 return Ret.back(); 1760 }; 1761 1762 // The first phdr entry is PT_PHDR which describes the program header itself. 1763 AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); 1764 1765 // PT_INTERP must be the second entry if exists. 1766 if (OutputSection *Cmd = findSection(".interp")) 1767 AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd); 1768 1769 // Add the first PT_LOAD segment for regular output sections. 1770 uint64_t Flags = computeFlags(PF_R); 1771 PhdrEntry *Load = AddHdr(PT_LOAD, Flags); 1772 1773 // Add the headers. We will remove them if they don't fit. 1774 Load->add(Out::ElfHeader); 1775 Load->add(Out::ProgramHeaders); 1776 1777 for (OutputSection *Sec : OutputSections) { 1778 if (!(Sec->Flags & SHF_ALLOC)) 1779 break; 1780 if (!needsPtLoad(Sec)) 1781 continue; 1782 1783 // Segments are contiguous memory regions that has the same attributes 1784 // (e.g. executable or writable). There is one phdr for each segment. 1785 // Therefore, we need to create a new phdr when the next section has 1786 // different flags or is loaded at a discontiguous address using AT linker 1787 // script command. At the same time, we don't want to create a separate 1788 // load segment for the headers, even if the first output section has 1789 // an AT attribute. 1790 uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); 1791 if ((Sec->LMAExpr && Load->LastSec != Out::ProgramHeaders) || 1792 Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags) { 1793 1794 Load = AddHdr(PT_LOAD, NewFlags); 1795 Flags = NewFlags; 1796 } 1797 1798 Load->add(Sec); 1799 } 1800 1801 // Add a TLS segment if any. 1802 PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 1803 for (OutputSection *Sec : OutputSections) 1804 if (Sec->Flags & SHF_TLS) 1805 TlsHdr->add(Sec); 1806 if (TlsHdr->FirstSec) 1807 Ret.push_back(TlsHdr); 1808 1809 // Add an entry for .dynamic. 1810 if (InX::DynSymTab) 1811 AddHdr(PT_DYNAMIC, InX::Dynamic->getParent()->getPhdrFlags()) 1812 ->add(InX::Dynamic->getParent()); 1813 1814 // PT_GNU_RELRO includes all sections that should be marked as 1815 // read-only by dynamic linker after proccessing relocations. 1816 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 1817 // an error message if more than one PT_GNU_RELRO PHDR is required. 1818 PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 1819 bool InRelroPhdr = false; 1820 bool IsRelroFinished = false; 1821 for (OutputSection *Sec : OutputSections) { 1822 if (!needsPtLoad(Sec)) 1823 continue; 1824 if (isRelroSection(Sec)) { 1825 InRelroPhdr = true; 1826 if (!IsRelroFinished) 1827 RelRo->add(Sec); 1828 else 1829 error("section: " + Sec->Name + " is not contiguous with other relro" + 1830 " sections"); 1831 } else if (InRelroPhdr) { 1832 InRelroPhdr = false; 1833 IsRelroFinished = true; 1834 } 1835 } 1836 if (RelRo->FirstSec) 1837 Ret.push_back(RelRo); 1838 1839 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 1840 if (!InX::EhFrame->empty() && InX::EhFrameHdr && InX::EhFrame->getParent() && 1841 InX::EhFrameHdr->getParent()) 1842 AddHdr(PT_GNU_EH_FRAME, InX::EhFrameHdr->getParent()->getPhdrFlags()) 1843 ->add(InX::EhFrameHdr->getParent()); 1844 1845 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 1846 // the dynamic linker fill the segment with random data. 1847 if (OutputSection *Cmd = findSection(".openbsd.randomdata")) 1848 AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd); 1849 1850 // PT_GNU_STACK is a special section to tell the loader to make the 1851 // pages for the stack non-executable. If you really want an executable 1852 // stack, you can pass -z execstack, but that's not recommended for 1853 // security reasons. 1854 unsigned Perm = PF_R | PF_W; 1855 if (Config->ZExecstack) 1856 Perm |= PF_X; 1857 AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; 1858 1859 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 1860 // is expected to perform W^X violations, such as calling mprotect(2) or 1861 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 1862 // OpenBSD. 1863 if (Config->ZWxneeded) 1864 AddHdr(PT_OPENBSD_WXNEEDED, PF_X); 1865 1866 // Create one PT_NOTE per a group of contiguous .note sections. 1867 PhdrEntry *Note = nullptr; 1868 for (OutputSection *Sec : OutputSections) { 1869 if (Sec->Type == SHT_NOTE && (Sec->Flags & SHF_ALLOC)) { 1870 if (!Note || Sec->LMAExpr) 1871 Note = AddHdr(PT_NOTE, PF_R); 1872 Note->add(Sec); 1873 } else { 1874 Note = nullptr; 1875 } 1876 } 1877 return Ret; 1878 } 1879 1880 template <class ELFT> 1881 void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry *> &Phdrs) { 1882 if (Config->EMachine != EM_ARM) 1883 return; 1884 auto I = llvm::find_if(OutputSections, [](OutputSection *Cmd) { 1885 return Cmd->Type == SHT_ARM_EXIDX; 1886 }); 1887 if (I == OutputSections.end()) 1888 return; 1889 1890 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1891 PhdrEntry *ARMExidx = make<PhdrEntry>(PT_ARM_EXIDX, PF_R); 1892 ARMExidx->add(*I); 1893 Phdrs.push_back(ARMExidx); 1894 } 1895 1896 // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the 1897 // first section after PT_GNU_RELRO have to be page aligned so that the dynamic 1898 // linker can set the permissions. 1899 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 1900 auto PageAlign = [](OutputSection *Cmd) { 1901 if (Cmd && !Cmd->AddrExpr) 1902 Cmd->AddrExpr = [=] { 1903 return alignTo(Script->getDot(), Config->MaxPageSize); 1904 }; 1905 }; 1906 1907 for (const PhdrEntry *P : Phdrs) 1908 if (P->p_type == PT_LOAD && P->FirstSec) 1909 PageAlign(P->FirstSec); 1910 1911 for (const PhdrEntry *P : Phdrs) { 1912 if (P->p_type != PT_GNU_RELRO) 1913 continue; 1914 if (P->FirstSec) 1915 PageAlign(P->FirstSec); 1916 // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we 1917 // have to align it to a page. 1918 auto End = OutputSections.end(); 1919 auto I = std::find(OutputSections.begin(), End, P->LastSec); 1920 if (I == End || (I + 1) == End) 1921 continue; 1922 OutputSection *Cmd = (*(I + 1)); 1923 if (needsPtLoad(Cmd)) 1924 PageAlign(Cmd); 1925 } 1926 } 1927 1928 // Adjusts the file alignment for a given output section and returns 1929 // its new file offset. The file offset must be the same with its 1930 // virtual address (modulo the page size) so that the loader can load 1931 // executables without any address adjustment. 1932 static uint64_t getFileAlignment(uint64_t Off, OutputSection *Cmd) { 1933 OutputSection *First = Cmd->PtLoad ? Cmd->PtLoad->FirstSec : nullptr; 1934 // The first section in a PT_LOAD has to have congruent offset and address 1935 // module the page size. 1936 if (Cmd == First) 1937 return alignTo(Off, std::max<uint64_t>(Cmd->Alignment, Config->MaxPageSize), 1938 Cmd->Addr); 1939 1940 // For SHT_NOBITS we don't want the alignment of the section to impact the 1941 // offset of the sections that follow. Since nothing seems to care about the 1942 // sh_offset of the SHT_NOBITS section itself, just ignore it. 1943 if (Cmd->Type == SHT_NOBITS) 1944 return Off; 1945 1946 // If the section is not in a PT_LOAD, we just have to align it. 1947 if (!Cmd->PtLoad) 1948 return alignTo(Off, Cmd->Alignment); 1949 1950 // If two sections share the same PT_LOAD the file offset is calculated 1951 // using this formula: Off2 = Off1 + (VA2 - VA1). 1952 return First->Offset + Cmd->Addr - First->Addr; 1953 } 1954 1955 static uint64_t setOffset(OutputSection *Cmd, uint64_t Off) { 1956 Off = getFileAlignment(Off, Cmd); 1957 Cmd->Offset = Off; 1958 1959 // For SHT_NOBITS we should not count the size. 1960 if (Cmd->Type == SHT_NOBITS) 1961 return Off; 1962 1963 return Off + Cmd->Size; 1964 } 1965 1966 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 1967 uint64_t Off = 0; 1968 for (OutputSection *Sec : OutputSections) 1969 if (Sec->Flags & SHF_ALLOC) 1970 Off = setOffset(Sec, Off); 1971 FileSize = alignTo(Off, Config->Wordsize); 1972 } 1973 1974 static std::string rangeToString(uint64_t Addr, uint64_t Len) { 1975 if (Len == 0) 1976 return "<empty range at 0x" + utohexstr(Addr) + ">"; 1977 return "[0x" + utohexstr(Addr) + ", 0x" + utohexstr(Addr + Len - 1) + "]"; 1978 } 1979 1980 // Assign file offsets to output sections. 1981 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 1982 uint64_t Off = 0; 1983 Off = setOffset(Out::ElfHeader, Off); 1984 Off = setOffset(Out::ProgramHeaders, Off); 1985 1986 PhdrEntry *LastRX = nullptr; 1987 for (PhdrEntry *P : Phdrs) 1988 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 1989 LastRX = P; 1990 1991 for (OutputSection *Sec : OutputSections) { 1992 Off = setOffset(Sec, Off); 1993 if (Script->HasSectionsCommand) 1994 continue; 1995 // If this is a last section of the last executable segment and that 1996 // segment is the last loadable segment, align the offset of the 1997 // following section to avoid loading non-segments parts of the file. 1998 if (LastRX && LastRX->LastSec == Sec) 1999 Off = alignTo(Off, Target->PageSize); 2000 } 2001 2002 SectionHeaderOff = alignTo(Off, Config->Wordsize); 2003 FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); 2004 2005 // Our logic assumes that sections have rising VA within the same segment. 2006 // With use of linker scripts it is possible to violate this rule and get file 2007 // offset overlaps or overflows. That should never happen with a valid script 2008 // which does not move the location counter backwards and usually scripts do 2009 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2010 // kernel, which control segment distribution explicitly and move the counter 2011 // backwards, so we have to allow doing that to support linking them. We 2012 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2013 // we want to prevent file size overflows because it would crash the linker. 2014 for (OutputSection *Sec : OutputSections) { 2015 if (Sec->Type == SHT_NOBITS) 2016 continue; 2017 if ((Sec->Offset > FileSize) || (Sec->Offset + Sec->Size > FileSize)) 2018 error("unable to place section " + Sec->Name + " at file offset " + 2019 rangeToString(Sec->Offset, Sec->Offset + Sec->Size) + 2020 "; check your linker script for overflows"); 2021 } 2022 } 2023 2024 // Finalize the program headers. We call this function after we assign 2025 // file offsets and VAs to all sections. 2026 template <class ELFT> void Writer<ELFT>::setPhdrs() { 2027 for (PhdrEntry *P : Phdrs) { 2028 OutputSection *First = P->FirstSec; 2029 OutputSection *Last = P->LastSec; 2030 if (First) { 2031 P->p_filesz = Last->Offset - First->Offset; 2032 if (Last->Type != SHT_NOBITS) 2033 P->p_filesz += Last->Size; 2034 P->p_memsz = Last->Addr + Last->Size - First->Addr; 2035 P->p_offset = First->Offset; 2036 P->p_vaddr = First->Addr; 2037 if (!P->HasLMA) 2038 P->p_paddr = First->getLMA(); 2039 } 2040 if (P->p_type == PT_LOAD) 2041 P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize); 2042 else if (P->p_type == PT_GNU_RELRO) { 2043 P->p_align = 1; 2044 // The glibc dynamic loader rounds the size down, so we need to round up 2045 // to protect the last page. This is a no-op on FreeBSD which always 2046 // rounds up. 2047 P->p_memsz = alignTo(P->p_memsz, Target->PageSize); 2048 } 2049 2050 // The TLS pointer goes after PT_TLS. At least glibc will align it, 2051 // so round up the size to make sure the offsets are correct. 2052 if (P->p_type == PT_TLS) { 2053 Out::TlsPhdr = P; 2054 if (P->p_memsz) 2055 P->p_memsz = alignTo(P->p_memsz, P->p_align); 2056 } 2057 } 2058 } 2059 2060 // A helper struct for checkSectionOverlap. 2061 namespace { 2062 struct SectionOffset { 2063 OutputSection *Sec; 2064 uint64_t Offset; 2065 }; 2066 } // namespace 2067 2068 // Check whether sections overlap for a specific address range (file offsets, 2069 // load and virtual adresses). 2070 static void checkOverlap(StringRef Name, std::vector<SectionOffset> &Sections) { 2071 llvm::sort(Sections.begin(), Sections.end(), 2072 [=](const SectionOffset &A, const SectionOffset &B) { 2073 return A.Offset < B.Offset; 2074 }); 2075 2076 // Finding overlap is easy given a vector is sorted by start position. 2077 // If an element starts before the end of the previous element, they overlap. 2078 for (size_t I = 1, End = Sections.size(); I < End; ++I) { 2079 SectionOffset A = Sections[I - 1]; 2080 SectionOffset B = Sections[I]; 2081 if (B.Offset < A.Offset + A.Sec->Size) 2082 errorOrWarn( 2083 "section " + A.Sec->Name + " " + Name + " range overlaps with " + 2084 B.Sec->Name + "\n>>> " + A.Sec->Name + " range is " + 2085 rangeToString(A.Offset, A.Sec->Size) + "\n>>> " + B.Sec->Name + 2086 " range is " + rangeToString(B.Offset, B.Sec->Size)); 2087 } 2088 } 2089 2090 // Check for overlapping sections and address overflows. 2091 // 2092 // In this function we check that none of the output sections have overlapping 2093 // file offsets. For SHF_ALLOC sections we also check that the load address 2094 // ranges and the virtual address ranges don't overlap 2095 template <class ELFT> void Writer<ELFT>::checkSections() { 2096 // First, check that section's VAs fit in available address space for target. 2097 for (OutputSection *OS : OutputSections) 2098 if ((OS->Addr + OS->Size < OS->Addr) || 2099 (!ELFT::Is64Bits && OS->Addr + OS->Size > UINT32_MAX)) 2100 errorOrWarn("section " + OS->Name + " at 0x" + utohexstr(OS->Addr) + 2101 " of size 0x" + utohexstr(OS->Size) + 2102 " exceeds available address space"); 2103 2104 // Check for overlapping file offsets. In this case we need to skip any 2105 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2106 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2107 // binary is specified only add SHF_ALLOC sections are added to the output 2108 // file so we skip any non-allocated sections in that case. 2109 std::vector<SectionOffset> FileOffs; 2110 for (OutputSection *Sec : OutputSections) 2111 if (0 < Sec->Size && Sec->Type != SHT_NOBITS && 2112 (!Config->OFormatBinary || (Sec->Flags & SHF_ALLOC))) 2113 FileOffs.push_back({Sec, Sec->Offset}); 2114 checkOverlap("file", FileOffs); 2115 2116 // When linking with -r there is no need to check for overlapping virtual/load 2117 // addresses since those addresses will only be assigned when the final 2118 // executable/shared object is created. 2119 if (Config->Relocatable) 2120 return; 2121 2122 // Checking for overlapping virtual and load addresses only needs to take 2123 // into account SHF_ALLOC sections since others will not be loaded. 2124 // Furthermore, we also need to skip SHF_TLS sections since these will be 2125 // mapped to other addresses at runtime and can therefore have overlapping 2126 // ranges in the file. 2127 std::vector<SectionOffset> VMAs; 2128 for (OutputSection *Sec : OutputSections) 2129 if (0 < Sec->Size && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2130 VMAs.push_back({Sec, Sec->Addr}); 2131 checkOverlap("virtual address", VMAs); 2132 2133 // Finally, check that the load addresses don't overlap. This will usually be 2134 // the same as the virtual addresses but can be different when using a linker 2135 // script with AT(). 2136 std::vector<SectionOffset> LMAs; 2137 for (OutputSection *Sec : OutputSections) 2138 if (0 < Sec->Size && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2139 LMAs.push_back({Sec, Sec->getLMA()}); 2140 checkOverlap("load address", LMAs); 2141 } 2142 2143 // The entry point address is chosen in the following ways. 2144 // 2145 // 1. the '-e' entry command-line option; 2146 // 2. the ENTRY(symbol) command in a linker control script; 2147 // 3. the value of the symbol _start, if present; 2148 // 4. the number represented by the entry symbol, if it is a number; 2149 // 5. the address of the first byte of the .text section, if present; 2150 // 6. the address 0. 2151 template <class ELFT> uint64_t Writer<ELFT>::getEntryAddr() { 2152 // Case 1, 2 or 3 2153 if (Symbol *B = Symtab->find(Config->Entry)) 2154 return B->getVA(); 2155 2156 // Case 4 2157 uint64_t Addr; 2158 if (to_integer(Config->Entry, Addr)) 2159 return Addr; 2160 2161 // Case 5 2162 if (OutputSection *Sec = findSection(".text")) { 2163 if (Config->WarnMissingEntry) 2164 warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + 2165 utohexstr(Sec->Addr)); 2166 return Sec->Addr; 2167 } 2168 2169 // Case 6 2170 if (Config->WarnMissingEntry) 2171 warn("cannot find entry symbol " + Config->Entry + 2172 "; not setting start address"); 2173 return 0; 2174 } 2175 2176 static uint16_t getELFType() { 2177 if (Config->Pic) 2178 return ET_DYN; 2179 if (Config->Relocatable) 2180 return ET_REL; 2181 return ET_EXEC; 2182 } 2183 2184 static uint8_t getAbiVersion() { 2185 // MIPS non-PIC executable gets ABI version 1. 2186 if (Config->EMachine == EM_MIPS && getELFType() == ET_EXEC && 2187 (Config->EFlags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 2188 return 1; 2189 return 0; 2190 } 2191 2192 template <class ELFT> void Writer<ELFT>::writeHeader() { 2193 uint8_t *Buf = Buffer->getBufferStart(); 2194 // For executable segments, the trap instructions are written before writing 2195 // the header. Setting Elf header bytes to zero ensures that any unused bytes 2196 // in header are zero-cleared, instead of having trap instructions. 2197 memset(Buf, 0, sizeof(Elf_Ehdr)); 2198 memcpy(Buf, "\177ELF", 4); 2199 2200 // Write the ELF header. 2201 auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); 2202 EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32; 2203 EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB; 2204 EHdr->e_ident[EI_VERSION] = EV_CURRENT; 2205 EHdr->e_ident[EI_OSABI] = Config->OSABI; 2206 EHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 2207 EHdr->e_type = getELFType(); 2208 EHdr->e_machine = Config->EMachine; 2209 EHdr->e_version = EV_CURRENT; 2210 EHdr->e_entry = getEntryAddr(); 2211 EHdr->e_shoff = SectionHeaderOff; 2212 EHdr->e_flags = Config->EFlags; 2213 EHdr->e_ehsize = sizeof(Elf_Ehdr); 2214 EHdr->e_phnum = Phdrs.size(); 2215 EHdr->e_shentsize = sizeof(Elf_Shdr); 2216 EHdr->e_shnum = OutputSections.size() + 1; 2217 EHdr->e_shstrndx = InX::ShStrTab->getParent()->SectionIndex; 2218 2219 if (!Config->Relocatable) { 2220 EHdr->e_phoff = sizeof(Elf_Ehdr); 2221 EHdr->e_phentsize = sizeof(Elf_Phdr); 2222 } 2223 2224 // Write the program header table. 2225 auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); 2226 for (PhdrEntry *P : Phdrs) { 2227 HBuf->p_type = P->p_type; 2228 HBuf->p_flags = P->p_flags; 2229 HBuf->p_offset = P->p_offset; 2230 HBuf->p_vaddr = P->p_vaddr; 2231 HBuf->p_paddr = P->p_paddr; 2232 HBuf->p_filesz = P->p_filesz; 2233 HBuf->p_memsz = P->p_memsz; 2234 HBuf->p_align = P->p_align; 2235 ++HBuf; 2236 } 2237 2238 // Write the section header table. Note that the first table entry is null. 2239 auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); 2240 for (OutputSection *Sec : OutputSections) 2241 Sec->writeHeaderTo<ELFT>(++SHdrs); 2242 } 2243 2244 // Open a result file. 2245 template <class ELFT> void Writer<ELFT>::openFile() { 2246 if (!Config->Is64 && FileSize > UINT32_MAX) { 2247 error("output file too large: " + Twine(FileSize) + " bytes"); 2248 return; 2249 } 2250 2251 unlinkAsync(Config->OutputFile); 2252 unsigned Flags = 0; 2253 if (!Config->Relocatable) 2254 Flags = FileOutputBuffer::F_executable; 2255 Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr = 2256 FileOutputBuffer::create(Config->OutputFile, FileSize, Flags); 2257 2258 if (!BufferOrErr) 2259 error("failed to open " + Config->OutputFile + ": " + 2260 llvm::toString(BufferOrErr.takeError())); 2261 else 2262 Buffer = std::move(*BufferOrErr); 2263 } 2264 2265 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2266 uint8_t *Buf = Buffer->getBufferStart(); 2267 for (OutputSection *Sec : OutputSections) 2268 if (Sec->Flags & SHF_ALLOC) 2269 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2270 } 2271 2272 static void fillTrap(uint8_t *I, uint8_t *End) { 2273 for (; I + 4 <= End; I += 4) 2274 memcpy(I, &Target->TrapInstr, 4); 2275 } 2276 2277 // Fill the last page of executable segments with trap instructions 2278 // instead of leaving them as zero. Even though it is not required by any 2279 // standard, it is in general a good thing to do for security reasons. 2280 // 2281 // We'll leave other pages in segments as-is because the rest will be 2282 // overwritten by output sections. 2283 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2284 if (Script->HasSectionsCommand) 2285 return; 2286 2287 // Fill the last page. 2288 uint8_t *Buf = Buffer->getBufferStart(); 2289 for (PhdrEntry *P : Phdrs) 2290 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2291 fillTrap(Buf + alignDown(P->p_offset + P->p_filesz, Target->PageSize), 2292 Buf + alignTo(P->p_offset + P->p_filesz, Target->PageSize)); 2293 2294 // Round up the file size of the last segment to the page boundary iff it is 2295 // an executable segment to ensure that other tools don't accidentally 2296 // trim the instruction padding (e.g. when stripping the file). 2297 PhdrEntry *Last = nullptr; 2298 for (PhdrEntry *P : Phdrs) 2299 if (P->p_type == PT_LOAD) 2300 Last = P; 2301 2302 if (Last && (Last->p_flags & PF_X)) 2303 Last->p_memsz = Last->p_filesz = alignTo(Last->p_filesz, Target->PageSize); 2304 } 2305 2306 // Write section contents to a mmap'ed file. 2307 template <class ELFT> void Writer<ELFT>::writeSections() { 2308 uint8_t *Buf = Buffer->getBufferStart(); 2309 2310 OutputSection *EhFrameHdr = nullptr; 2311 if (InX::EhFrameHdr && !InX::EhFrameHdr->empty()) 2312 EhFrameHdr = InX::EhFrameHdr->getParent(); 2313 2314 // In -r or -emit-relocs mode, write the relocation sections first as in 2315 // ELf_Rel targets we might find out that we need to modify the relocated 2316 // section while doing it. 2317 for (OutputSection *Sec : OutputSections) 2318 if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) 2319 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2320 2321 for (OutputSection *Sec : OutputSections) 2322 if (Sec != EhFrameHdr && Sec->Type != SHT_REL && Sec->Type != SHT_RELA) 2323 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2324 2325 // The .eh_frame_hdr depends on .eh_frame section contents, therefore 2326 // it should be written after .eh_frame is written. 2327 if (EhFrameHdr) 2328 EhFrameHdr->writeTo<ELFT>(Buf + EhFrameHdr->Offset); 2329 } 2330 2331 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2332 if (!InX::BuildId || !InX::BuildId->getParent()) 2333 return; 2334 2335 // Compute a hash of all sections of the output file. 2336 uint8_t *Start = Buffer->getBufferStart(); 2337 uint8_t *End = Start + FileSize; 2338 InX::BuildId->writeBuildId({Start, End}); 2339 } 2340 2341 template void elf::writeResult<ELF32LE>(); 2342 template void elf::writeResult<ELF32BE>(); 2343 template void elf::writeResult<ELF64LE>(); 2344 template void elf::writeResult<ELF64BE>(); 2345