1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "CallGraphSort.h" 12 #include "Config.h" 13 #include "LinkerScript.h" 14 #include "MapFile.h" 15 #include "OutputSections.h" 16 #include "Relocations.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "lld/Common/Filesystem.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "lld/Common/Threads.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include <climits> 28 29 using namespace llvm; 30 using namespace llvm::ELF; 31 using namespace llvm::object; 32 using namespace llvm::support; 33 using namespace llvm::support::endian; 34 35 using namespace lld; 36 using namespace lld::elf; 37 38 namespace { 39 // The writer writes a SymbolTable result to a file. 40 template <class ELFT> class Writer { 41 public: 42 Writer() : Buffer(errorHandler().OutputBuffer) {} 43 typedef typename ELFT::Shdr Elf_Shdr; 44 typedef typename ELFT::Ehdr Elf_Ehdr; 45 typedef typename ELFT::Phdr Elf_Phdr; 46 47 void run(); 48 49 private: 50 void copyLocalSymbols(); 51 void addSectionSymbols(); 52 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> Fn); 53 void sortSections(); 54 void resolveShfLinkOrder(); 55 void maybeAddThunks(); 56 void sortInputSections(); 57 void finalizeSections(); 58 void checkExecuteOnly(); 59 void setReservedSymbolSections(); 60 61 std::vector<PhdrEntry *> createPhdrs(); 62 void removeEmptyPTLoad(); 63 void addPhdrForSection(std::vector<PhdrEntry *> &Phdrs, unsigned ShType, 64 unsigned PType, unsigned PFlags); 65 void assignFileOffsets(); 66 void assignFileOffsetsBinary(); 67 void setPhdrs(); 68 void checkSections(); 69 void fixSectionAlignments(); 70 void openFile(); 71 void writeTrapInstr(); 72 void writeHeader(); 73 void writeSections(); 74 void writeSectionsBinary(); 75 void writeBuildId(); 76 77 std::unique_ptr<FileOutputBuffer> &Buffer; 78 79 void addRelIpltSymbols(); 80 void addStartEndSymbols(); 81 void addStartStopSymbols(OutputSection *Sec); 82 83 std::vector<PhdrEntry *> Phdrs; 84 85 uint64_t FileSize; 86 uint64_t SectionHeaderOff; 87 }; 88 } // anonymous namespace 89 90 static bool isSectionPrefix(StringRef Prefix, StringRef Name) { 91 return Name.startswith(Prefix) || Name == Prefix.drop_back(); 92 } 93 94 StringRef elf::getOutputSectionName(const InputSectionBase *S) { 95 if (Config->Relocatable) 96 return S->Name; 97 98 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 99 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 100 // technically required, but not doing it is odd). This code guarantees that. 101 if (auto *IS = dyn_cast<InputSection>(S)) { 102 if (InputSectionBase *Rel = IS->getRelocatedSection()) { 103 OutputSection *Out = Rel->getOutputSection(); 104 if (S->Type == SHT_RELA) 105 return Saver.save(".rela" + Out->Name); 106 return Saver.save(".rel" + Out->Name); 107 } 108 } 109 110 // This check is for -z keep-text-section-prefix. This option separates text 111 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or 112 // ".text.exit". 113 // When enabled, this allows identifying the hot code region (.text.hot) in 114 // the final binary which can be selectively mapped to huge pages or mlocked, 115 // for instance. 116 if (Config->ZKeepTextSectionPrefix) 117 for (StringRef V : 118 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) 119 if (isSectionPrefix(V, S->Name)) 120 return V.drop_back(); 121 122 for (StringRef V : 123 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 124 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 125 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 126 if (isSectionPrefix(V, S->Name)) 127 return V.drop_back(); 128 129 // CommonSection is identified as "COMMON" in linker scripts. 130 // By default, it should go to .bss section. 131 if (S->Name == "COMMON") 132 return ".bss"; 133 134 return S->Name; 135 } 136 137 static bool needsInterpSection() { 138 return !SharedFiles.empty() && !Config->DynamicLinker.empty() && 139 Script->needsInterpSection(); 140 } 141 142 template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } 143 144 template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() { 145 llvm::erase_if(Phdrs, [&](const PhdrEntry *P) { 146 if (P->p_type != PT_LOAD) 147 return false; 148 if (!P->FirstSec) 149 return true; 150 uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr; 151 return Size == 0; 152 }); 153 } 154 155 template <class ELFT> static void combineEhFrameSections() { 156 for (InputSectionBase *&S : InputSections) { 157 EhInputSection *ES = dyn_cast<EhInputSection>(S); 158 if (!ES || !ES->Live) 159 continue; 160 161 In.EhFrame->addSection<ELFT>(ES); 162 S = nullptr; 163 } 164 165 std::vector<InputSectionBase *> &V = InputSections; 166 V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); 167 } 168 169 static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec, 170 uint64_t Val, uint8_t StOther = STV_HIDDEN, 171 uint8_t Binding = STB_GLOBAL) { 172 Symbol *S = Symtab->find(Name); 173 if (!S || S->isDefined()) 174 return nullptr; 175 return Symtab->addDefined(Name, StOther, STT_NOTYPE, Val, 176 /*Size=*/0, Binding, Sec, 177 /*File=*/nullptr); 178 } 179 180 static Defined *addAbsolute(StringRef Name) { 181 return Symtab->addDefined(Name, STV_HIDDEN, STT_NOTYPE, 0, 0, STB_GLOBAL, 182 nullptr, nullptr); 183 } 184 185 // The linker is expected to define some symbols depending on 186 // the linking result. This function defines such symbols. 187 void elf::addReservedSymbols() { 188 if (Config->EMachine == EM_MIPS) { 189 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 190 // so that it points to an absolute address which by default is relative 191 // to GOT. Default offset is 0x7ff0. 192 // See "Global Data Symbols" in Chapter 6 in the following document: 193 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 194 ElfSym::MipsGp = addAbsolute("_gp"); 195 196 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 197 // start of function and 'gp' pointer into GOT. 198 if (Symtab->find("_gp_disp")) 199 ElfSym::MipsGpDisp = addAbsolute("_gp_disp"); 200 201 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 202 // pointer. This symbol is used in the code generated by .cpload pseudo-op 203 // in case of using -mno-shared option. 204 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 205 if (Symtab->find("__gnu_local_gp")) 206 ElfSym::MipsLocalGp = addAbsolute("__gnu_local_gp"); 207 } 208 209 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 210 // combines the typical ELF GOT with the small data sections. It commonly 211 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 212 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 213 // represent the TOC base which is offset by 0x8000 bytes from the start of 214 // the .got section. 215 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 216 // correctness of some relocations depends on its value. 217 StringRef GotTableSymName = 218 (Config->EMachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 219 if (Symbol *S = Symtab->find(GotTableSymName)) { 220 if (S->isDefined()) 221 error(toString(S->File) + " cannot redefine linker defined symbol '" + 222 GotTableSymName + "'"); 223 else 224 ElfSym::GlobalOffsetTable = Symtab->addDefined( 225 GotTableSymName, STV_HIDDEN, STT_NOTYPE, Target->GotBaseSymOff, 226 /*Size=*/0, STB_GLOBAL, Out::ElfHeader, 227 /*File=*/nullptr); 228 } 229 230 // __ehdr_start is the location of ELF file headers. Note that we define 231 // this symbol unconditionally even when using a linker script, which 232 // differs from the behavior implemented by GNU linker which only define 233 // this symbol if ELF headers are in the memory mapped segment. 234 addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN); 235 236 // __executable_start is not documented, but the expectation of at 237 // least the Android libc is that it points to the ELF header. 238 addOptionalRegular("__executable_start", Out::ElfHeader, 0, STV_HIDDEN); 239 240 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 241 // each DSO. The address of the symbol doesn't matter as long as they are 242 // different in different DSOs, so we chose the start address of the DSO. 243 addOptionalRegular("__dso_handle", Out::ElfHeader, 0, STV_HIDDEN); 244 245 // If linker script do layout we do not need to create any standart symbols. 246 if (Script->HasSectionsCommand) 247 return; 248 249 auto Add = [](StringRef S, int64_t Pos) { 250 return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT); 251 }; 252 253 ElfSym::Bss = Add("__bss_start", 0); 254 ElfSym::End1 = Add("end", -1); 255 ElfSym::End2 = Add("_end", -1); 256 ElfSym::Etext1 = Add("etext", -1); 257 ElfSym::Etext2 = Add("_etext", -1); 258 ElfSym::Edata1 = Add("edata", -1); 259 ElfSym::Edata2 = Add("_edata", -1); 260 } 261 262 static OutputSection *findSection(StringRef Name) { 263 for (BaseCommand *Base : Script->SectionCommands) 264 if (auto *Sec = dyn_cast<OutputSection>(Base)) 265 if (Sec->Name == Name) 266 return Sec; 267 return nullptr; 268 } 269 270 // Initialize Out members. 271 template <class ELFT> static void createSyntheticSections() { 272 // Initialize all pointers with NULL. This is needed because 273 // you can call lld::elf::main more than once as a library. 274 memset(&Out::First, 0, sizeof(Out)); 275 276 auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; 277 278 In.DynStrTab = make<StringTableSection>(".dynstr", true); 279 In.Dynamic = make<DynamicSection<ELFT>>(); 280 if (Config->AndroidPackDynRelocs) { 281 In.RelaDyn = make<AndroidPackedRelocationSection<ELFT>>( 282 Config->IsRela ? ".rela.dyn" : ".rel.dyn"); 283 } else { 284 In.RelaDyn = make<RelocationSection<ELFT>>( 285 Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); 286 } 287 In.ShStrTab = make<StringTableSection>(".shstrtab", false); 288 289 Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC); 290 Out::ProgramHeaders->Alignment = Config->Wordsize; 291 292 if (needsInterpSection()) 293 Add(createInterpSection()); 294 295 if (Config->Strip != StripPolicy::All) { 296 In.StrTab = make<StringTableSection>(".strtab", false); 297 In.SymTab = make<SymbolTableSection<ELFT>>(*In.StrTab); 298 In.SymTabShndx = make<SymtabShndxSection>(); 299 } 300 301 if (Config->BuildId != BuildIdKind::None) { 302 In.BuildId = make<BuildIdSection>(); 303 Add(In.BuildId); 304 } 305 306 In.Bss = make<BssSection>(".bss", 0, 1); 307 Add(In.Bss); 308 309 // If there is a SECTIONS command and a .data.rel.ro section name use name 310 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 311 // This makes sure our relro is contiguous. 312 bool HasDataRelRo = Script->HasSectionsCommand && findSection(".data.rel.ro"); 313 In.BssRelRo = 314 make<BssSection>(HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 315 Add(In.BssRelRo); 316 317 // Add MIPS-specific sections. 318 if (Config->EMachine == EM_MIPS) { 319 if (!Config->Shared && Config->HasDynSymTab) { 320 In.MipsRldMap = make<MipsRldMapSection>(); 321 Add(In.MipsRldMap); 322 } 323 if (auto *Sec = MipsAbiFlagsSection<ELFT>::create()) 324 Add(Sec); 325 if (auto *Sec = MipsOptionsSection<ELFT>::create()) 326 Add(Sec); 327 if (auto *Sec = MipsReginfoSection<ELFT>::create()) 328 Add(Sec); 329 } 330 331 if (Config->HasDynSymTab) { 332 In.DynSymTab = make<SymbolTableSection<ELFT>>(*In.DynStrTab); 333 Add(In.DynSymTab); 334 335 In.VerSym = make<VersionTableSection>(); 336 Add(In.VerSym); 337 338 if (!Config->VersionDefinitions.empty()) { 339 In.VerDef = make<VersionDefinitionSection>(); 340 Add(In.VerDef); 341 } 342 343 In.VerNeed = make<VersionNeedSection<ELFT>>(); 344 Add(In.VerNeed); 345 346 if (Config->GnuHash) { 347 In.GnuHashTab = make<GnuHashTableSection>(); 348 Add(In.GnuHashTab); 349 } 350 351 if (Config->SysvHash) { 352 In.HashTab = make<HashTableSection>(); 353 Add(In.HashTab); 354 } 355 356 Add(In.Dynamic); 357 Add(In.DynStrTab); 358 Add(In.RelaDyn); 359 } 360 361 if (Config->RelrPackDynRelocs) { 362 In.RelrDyn = make<RelrSection<ELFT>>(); 363 Add(In.RelrDyn); 364 } 365 366 // Add .got. MIPS' .got is so different from the other archs, 367 // it has its own class. 368 if (Config->EMachine == EM_MIPS) { 369 In.MipsGot = make<MipsGotSection>(); 370 Add(In.MipsGot); 371 } else { 372 In.Got = make<GotSection>(); 373 Add(In.Got); 374 } 375 376 if (Config->EMachine == EM_PPC64) { 377 In.PPC64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 378 Add(In.PPC64LongBranchTarget); 379 } 380 381 In.GotPlt = make<GotPltSection>(); 382 Add(In.GotPlt); 383 In.IgotPlt = make<IgotPltSection>(); 384 Add(In.IgotPlt); 385 386 if (Config->GdbIndex) 387 Add(GdbIndexSection::create<ELFT>()); 388 389 // We always need to add rel[a].plt to output if it has entries. 390 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 391 In.RelaPlt = make<RelocationSection<ELFT>>( 392 Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); 393 Add(In.RelaPlt); 394 395 // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure 396 // that the IRelative relocations are processed last by the dynamic loader. 397 // We cannot place the iplt section in .rel.dyn when Android relocation 398 // packing is enabled because that would cause a section type mismatch. 399 // However, because the Android dynamic loader reads .rel.plt after .rel.dyn, 400 // we can get the desired behaviour by placing the iplt section in .rel.plt. 401 In.RelaIplt = make<RelocationSection<ELFT>>( 402 (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs) 403 ? ".rel.dyn" 404 : In.RelaPlt->Name, 405 false /*Sort*/); 406 Add(In.RelaIplt); 407 408 In.Plt = make<PltSection>(false); 409 Add(In.Plt); 410 In.Iplt = make<PltSection>(true); 411 Add(In.Iplt); 412 413 // .note.GNU-stack is always added when we are creating a re-linkable 414 // object file. Other linkers are using the presence of this marker 415 // section to control the executable-ness of the stack area, but that 416 // is irrelevant these days. Stack area should always be non-executable 417 // by default. So we emit this section unconditionally. 418 if (Config->Relocatable) 419 Add(make<GnuStackSection>()); 420 421 if (!Config->Relocatable) { 422 if (Config->EhFrameHdr) { 423 In.EhFrameHdr = make<EhFrameHeader>(); 424 Add(In.EhFrameHdr); 425 } 426 In.EhFrame = make<EhFrameSection>(); 427 Add(In.EhFrame); 428 } 429 430 if (In.SymTab) 431 Add(In.SymTab); 432 if (In.SymTabShndx) 433 Add(In.SymTabShndx); 434 Add(In.ShStrTab); 435 if (In.StrTab) 436 Add(In.StrTab); 437 438 if (Config->EMachine == EM_ARM && !Config->Relocatable) 439 // Add a sentinel to terminate .ARM.exidx. It helps an unwinder 440 // to find the exact address range of the last entry. 441 Add(make<ARMExidxSentinelSection>()); 442 } 443 444 // The main function of the writer. 445 template <class ELFT> void Writer<ELFT>::run() { 446 // Create linker-synthesized sections such as .got or .plt. 447 // Such sections are of type input section. 448 createSyntheticSections<ELFT>(); 449 450 if (!Config->Relocatable) 451 combineEhFrameSections<ELFT>(); 452 453 // We want to process linker script commands. When SECTIONS command 454 // is given we let it create sections. 455 Script->processSectionCommands(); 456 457 // Linker scripts controls how input sections are assigned to output sections. 458 // Input sections that were not handled by scripts are called "orphans", and 459 // they are assigned to output sections by the default rule. Process that. 460 Script->addOrphanSections(); 461 462 if (Config->Discard != DiscardPolicy::All) 463 copyLocalSymbols(); 464 465 if (Config->CopyRelocs) 466 addSectionSymbols(); 467 468 // Now that we have a complete set of output sections. This function 469 // completes section contents. For example, we need to add strings 470 // to the string table, and add entries to .got and .plt. 471 // finalizeSections does that. 472 finalizeSections(); 473 checkExecuteOnly(); 474 if (errorCount()) 475 return; 476 477 Script->assignAddresses(); 478 479 // If -compressed-debug-sections is specified, we need to compress 480 // .debug_* sections. Do it right now because it changes the size of 481 // output sections. 482 for (OutputSection *Sec : OutputSections) 483 Sec->maybeCompress<ELFT>(); 484 485 Script->allocateHeaders(Phdrs); 486 487 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 488 // 0 sized region. This has to be done late since only after assignAddresses 489 // we know the size of the sections. 490 removeEmptyPTLoad(); 491 492 if (!Config->OFormatBinary) 493 assignFileOffsets(); 494 else 495 assignFileOffsetsBinary(); 496 497 setPhdrs(); 498 499 if (Config->Relocatable) 500 for (OutputSection *Sec : OutputSections) 501 Sec->Addr = 0; 502 503 if (Config->CheckSections) 504 checkSections(); 505 506 // It does not make sense try to open the file if we have error already. 507 if (errorCount()) 508 return; 509 // Write the result down to a file. 510 openFile(); 511 if (errorCount()) 512 return; 513 514 if (!Config->OFormatBinary) { 515 writeTrapInstr(); 516 writeHeader(); 517 writeSections(); 518 } else { 519 writeSectionsBinary(); 520 } 521 522 // Backfill .note.gnu.build-id section content. This is done at last 523 // because the content is usually a hash value of the entire output file. 524 writeBuildId(); 525 if (errorCount()) 526 return; 527 528 // Handle -Map and -cref options. 529 writeMapFile(); 530 writeCrossReferenceTable(); 531 if (errorCount()) 532 return; 533 534 if (auto E = Buffer->commit()) 535 error("failed to write to the output file: " + toString(std::move(E))); 536 } 537 538 static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName, 539 const Symbol &B) { 540 if (B.isSection()) 541 return false; 542 543 if (Config->Discard == DiscardPolicy::None) 544 return true; 545 546 // In ELF assembly .L symbols are normally discarded by the assembler. 547 // If the assembler fails to do so, the linker discards them if 548 // * --discard-locals is used. 549 // * The symbol is in a SHF_MERGE section, which is normally the reason for 550 // the assembler keeping the .L symbol. 551 if (!SymName.startswith(".L") && !SymName.empty()) 552 return true; 553 554 if (Config->Discard == DiscardPolicy::Locals) 555 return false; 556 557 return !Sec || !(Sec->Flags & SHF_MERGE); 558 } 559 560 static bool includeInSymtab(const Symbol &B) { 561 if (!B.isLocal() && !B.IsUsedInRegularObj) 562 return false; 563 564 if (auto *D = dyn_cast<Defined>(&B)) { 565 // Always include absolute symbols. 566 SectionBase *Sec = D->Section; 567 if (!Sec) 568 return true; 569 Sec = Sec->Repl; 570 571 // Exclude symbols pointing to garbage-collected sections. 572 if (isa<InputSectionBase>(Sec) && !Sec->Live) 573 return false; 574 575 if (auto *S = dyn_cast<MergeInputSection>(Sec)) 576 if (!S->getSectionPiece(D->Value)->Live) 577 return false; 578 return true; 579 } 580 return B.Used; 581 } 582 583 // Local symbols are not in the linker's symbol table. This function scans 584 // each object file's symbol table to copy local symbols to the output. 585 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 586 if (!In.SymTab) 587 return; 588 for (InputFile *File : ObjectFiles) { 589 ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File); 590 for (Symbol *B : F->getLocalSymbols()) { 591 if (!B->isLocal()) 592 fatal(toString(F) + 593 ": broken object: getLocalSymbols returns a non-local symbol"); 594 auto *DR = dyn_cast<Defined>(B); 595 596 // No reason to keep local undefined symbol in symtab. 597 if (!DR) 598 continue; 599 if (!includeInSymtab(*B)) 600 continue; 601 602 SectionBase *Sec = DR->Section; 603 if (!shouldKeepInSymtab(Sec, B->getName(), *B)) 604 continue; 605 In.SymTab->addSymbol(B); 606 } 607 } 608 } 609 610 // Create a section symbol for each output section so that we can represent 611 // relocations that point to the section. If we know that no relocation is 612 // referring to a section (that happens if the section is a synthetic one), we 613 // don't create a section symbol for that section. 614 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 615 for (BaseCommand *Base : Script->SectionCommands) { 616 auto *Sec = dyn_cast<OutputSection>(Base); 617 if (!Sec) 618 continue; 619 auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) { 620 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 621 return !ISD->Sections.empty(); 622 return false; 623 }); 624 if (I == Sec->SectionCommands.end()) 625 continue; 626 InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0]; 627 628 // Relocations are not using REL[A] section symbols. 629 if (IS->Type == SHT_REL || IS->Type == SHT_RELA) 630 continue; 631 632 // Unlike other synthetic sections, mergeable output sections contain data 633 // copied from input sections, and there may be a relocation pointing to its 634 // contents if -r or -emit-reloc are given. 635 if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE)) 636 continue; 637 638 auto *Sym = 639 make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION, 640 /*Value=*/0, /*Size=*/0, IS); 641 In.SymTab->addSymbol(Sym); 642 } 643 } 644 645 // Today's loaders have a feature to make segments read-only after 646 // processing dynamic relocations to enhance security. PT_GNU_RELRO 647 // is defined for that. 648 // 649 // This function returns true if a section needs to be put into a 650 // PT_GNU_RELRO segment. 651 static bool isRelroSection(const OutputSection *Sec) { 652 if (!Config->ZRelro) 653 return false; 654 655 uint64_t Flags = Sec->Flags; 656 657 // Non-allocatable or non-writable sections don't need RELRO because 658 // they are not writable or not even mapped to memory in the first place. 659 // RELRO is for sections that are essentially read-only but need to 660 // be writable only at process startup to allow dynamic linker to 661 // apply relocations. 662 if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) 663 return false; 664 665 // Once initialized, TLS data segments are used as data templates 666 // for a thread-local storage. For each new thread, runtime 667 // allocates memory for a TLS and copy templates there. No thread 668 // are supposed to use templates directly. Thus, it can be in RELRO. 669 if (Flags & SHF_TLS) 670 return true; 671 672 // .init_array, .preinit_array and .fini_array contain pointers to 673 // functions that are executed on process startup or exit. These 674 // pointers are set by the static linker, and they are not expected 675 // to change at runtime. But if you are an attacker, you could do 676 // interesting things by manipulating pointers in .fini_array, for 677 // example. So they are put into RELRO. 678 uint32_t Type = Sec->Type; 679 if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || 680 Type == SHT_PREINIT_ARRAY) 681 return true; 682 683 // .got contains pointers to external symbols. They are resolved by 684 // the dynamic linker when a module is loaded into memory, and after 685 // that they are not expected to change. So, it can be in RELRO. 686 if (In.Got && Sec == In.Got->getParent()) 687 return true; 688 689 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 690 // through r2 register, which is reserved for that purpose. Since r2 is used 691 // for accessing .got as well, .got and .toc need to be close enough in the 692 // virtual address space. Usually, .toc comes just after .got. Since we place 693 // .got into RELRO, .toc needs to be placed into RELRO too. 694 if (Sec->Name.equals(".toc")) 695 return true; 696 697 // .got.plt contains pointers to external function symbols. They are 698 // by default resolved lazily, so we usually cannot put it into RELRO. 699 // However, if "-z now" is given, the lazy symbol resolution is 700 // disabled, which enables us to put it into RELRO. 701 if (Sec == In.GotPlt->getParent()) 702 return Config->ZNow; 703 704 // .dynamic section contains data for the dynamic linker, and 705 // there's no need to write to it at runtime, so it's better to put 706 // it into RELRO. 707 if (Sec == In.Dynamic->getParent()) 708 return true; 709 710 // Sections with some special names are put into RELRO. This is a 711 // bit unfortunate because section names shouldn't be significant in 712 // ELF in spirit. But in reality many linker features depend on 713 // magic section names. 714 StringRef S = Sec->Name; 715 return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" || 716 S == ".dtors" || S == ".jcr" || S == ".eh_frame" || 717 S == ".openbsd.randomdata"; 718 } 719 720 // We compute a rank for each section. The rank indicates where the 721 // section should be placed in the file. Instead of using simple 722 // numbers (0,1,2...), we use a series of flags. One for each decision 723 // point when placing the section. 724 // Using flags has two key properties: 725 // * It is easy to check if a give branch was taken. 726 // * It is easy two see how similar two ranks are (see getRankProximity). 727 enum RankFlags { 728 RF_NOT_ADDR_SET = 1 << 18, 729 RF_NOT_ALLOC = 1 << 17, 730 RF_NOT_INTERP = 1 << 16, 731 RF_NOT_NOTE = 1 << 15, 732 RF_WRITE = 1 << 14, 733 RF_EXEC_WRITE = 1 << 13, 734 RF_EXEC = 1 << 12, 735 RF_RODATA = 1 << 11, 736 RF_NON_TLS_BSS = 1 << 10, 737 RF_NON_TLS_BSS_RO = 1 << 9, 738 RF_NOT_TLS = 1 << 8, 739 RF_BSS = 1 << 7, 740 RF_PPC_NOT_TOCBSS = 1 << 6, 741 RF_PPC_TOCL = 1 << 5, 742 RF_PPC_TOC = 1 << 4, 743 RF_PPC_GOT = 1 << 3, 744 RF_PPC_BRANCH_LT = 1 << 2, 745 RF_MIPS_GPREL = 1 << 1, 746 RF_MIPS_NOT_GOT = 1 << 0 747 }; 748 749 static unsigned getSectionRank(const OutputSection *Sec) { 750 unsigned Rank = 0; 751 752 // We want to put section specified by -T option first, so we 753 // can start assigning VA starting from them later. 754 if (Config->SectionStartMap.count(Sec->Name)) 755 return Rank; 756 Rank |= RF_NOT_ADDR_SET; 757 758 // Allocatable sections go first to reduce the total PT_LOAD size and 759 // so debug info doesn't change addresses in actual code. 760 if (!(Sec->Flags & SHF_ALLOC)) 761 return Rank | RF_NOT_ALLOC; 762 763 // Put .interp first because some loaders want to see that section 764 // on the first page of the executable file when loaded into memory. 765 if (Sec->Name == ".interp") 766 return Rank; 767 Rank |= RF_NOT_INTERP; 768 769 // Put .note sections (which make up one PT_NOTE) at the beginning so that 770 // they are likely to be included in a core file even if core file size is 771 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 772 // included in a core to match core files with executables. 773 if (Sec->Type == SHT_NOTE) 774 return Rank; 775 Rank |= RF_NOT_NOTE; 776 777 // Sort sections based on their access permission in the following 778 // order: R, RX, RWX, RW. This order is based on the following 779 // considerations: 780 // * Read-only sections come first such that they go in the 781 // PT_LOAD covering the program headers at the start of the file. 782 // * Read-only, executable sections come next. 783 // * Writable, executable sections follow such that .plt on 784 // architectures where it needs to be writable will be placed 785 // between .text and .data. 786 // * Writable sections come last, such that .bss lands at the very 787 // end of the last PT_LOAD. 788 bool IsExec = Sec->Flags & SHF_EXECINSTR; 789 bool IsWrite = Sec->Flags & SHF_WRITE; 790 791 if (IsExec) { 792 if (IsWrite) 793 Rank |= RF_EXEC_WRITE; 794 else 795 Rank |= RF_EXEC; 796 } else if (IsWrite) { 797 Rank |= RF_WRITE; 798 } else if (Sec->Type == SHT_PROGBITS) { 799 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 800 // .eh_frame) closer to .text. They likely contain PC or GOT relative 801 // relocations and there could be relocation overflow if other huge sections 802 // (.dynstr .dynsym) were placed in between. 803 Rank |= RF_RODATA; 804 } 805 806 // If we got here we know that both A and B are in the same PT_LOAD. 807 808 bool IsTls = Sec->Flags & SHF_TLS; 809 bool IsNoBits = Sec->Type == SHT_NOBITS; 810 811 // The first requirement we have is to put (non-TLS) nobits sections last. The 812 // reason is that the only thing the dynamic linker will see about them is a 813 // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the 814 // PT_LOAD, so that has to correspond to the nobits sections. 815 bool IsNonTlsNoBits = IsNoBits && !IsTls; 816 if (IsNonTlsNoBits) 817 Rank |= RF_NON_TLS_BSS; 818 819 // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo 820 // sections after r/w ones, so that the RelRo sections are contiguous. 821 bool IsRelRo = isRelroSection(Sec); 822 if (IsNonTlsNoBits && !IsRelRo) 823 Rank |= RF_NON_TLS_BSS_RO; 824 if (!IsNonTlsNoBits && IsRelRo) 825 Rank |= RF_NON_TLS_BSS_RO; 826 827 // The TLS initialization block needs to be a single contiguous block in a R/W 828 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 829 // sections. The TLS NOBITS sections are placed here as they don't take up 830 // virtual address space in the PT_LOAD. 831 if (!IsTls) 832 Rank |= RF_NOT_TLS; 833 834 // Within the TLS initialization block, the non-nobits sections need to appear 835 // first. 836 if (IsNoBits) 837 Rank |= RF_BSS; 838 839 // Some architectures have additional ordering restrictions for sections 840 // within the same PT_LOAD. 841 if (Config->EMachine == EM_PPC64) { 842 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 843 // that we would like to make sure appear is a specific order to maximize 844 // their coverage by a single signed 16-bit offset from the TOC base 845 // pointer. Conversely, the special .tocbss section should be first among 846 // all SHT_NOBITS sections. This will put it next to the loaded special 847 // PPC64 sections (and, thus, within reach of the TOC base pointer). 848 StringRef Name = Sec->Name; 849 if (Name != ".tocbss") 850 Rank |= RF_PPC_NOT_TOCBSS; 851 852 if (Name == ".toc1") 853 Rank |= RF_PPC_TOCL; 854 855 if (Name == ".toc") 856 Rank |= RF_PPC_TOC; 857 858 if (Name == ".got") 859 Rank |= RF_PPC_GOT; 860 861 if (Name == ".branch_lt") 862 Rank |= RF_PPC_BRANCH_LT; 863 } 864 865 if (Config->EMachine == EM_MIPS) { 866 // All sections with SHF_MIPS_GPREL flag should be grouped together 867 // because data in these sections is addressable with a gp relative address. 868 if (Sec->Flags & SHF_MIPS_GPREL) 869 Rank |= RF_MIPS_GPREL; 870 871 if (Sec->Name != ".got") 872 Rank |= RF_MIPS_NOT_GOT; 873 } 874 875 return Rank; 876 } 877 878 static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) { 879 const OutputSection *A = cast<OutputSection>(ACmd); 880 const OutputSection *B = cast<OutputSection>(BCmd); 881 882 if (A->SortRank != B->SortRank) 883 return A->SortRank < B->SortRank; 884 885 if (!(A->SortRank & RF_NOT_ADDR_SET)) 886 return Config->SectionStartMap.lookup(A->Name) < 887 Config->SectionStartMap.lookup(B->Name); 888 return false; 889 } 890 891 void PhdrEntry::add(OutputSection *Sec) { 892 LastSec = Sec; 893 if (!FirstSec) 894 FirstSec = Sec; 895 p_align = std::max(p_align, Sec->Alignment); 896 if (p_type == PT_LOAD) 897 Sec->PtLoad = this; 898 } 899 900 // The beginning and the ending of .rel[a].plt section are marked 901 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 902 // executable. The runtime needs these symbols in order to resolve 903 // all IRELATIVE relocs on startup. For dynamic executables, we don't 904 // need these symbols, since IRELATIVE relocs are resolved through GOT 905 // and PLT. For details, see http://www.airs.com/blog/archives/403. 906 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 907 if (Config->Relocatable || needsInterpSection()) 908 return; 909 910 // By default, __rela_iplt_{start,end} belong to a dummy section 0 911 // because .rela.plt might be empty and thus removed from output. 912 // We'll override Out::ElfHeader with In.RelaIplt later when we are 913 // sure that .rela.plt exists in output. 914 ElfSym::RelaIpltStart = addOptionalRegular( 915 Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start", 916 Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK); 917 918 ElfSym::RelaIpltEnd = addOptionalRegular( 919 Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end", 920 Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK); 921 } 922 923 template <class ELFT> 924 void Writer<ELFT>::forEachRelSec( 925 llvm::function_ref<void(InputSectionBase &)> Fn) { 926 // Scan all relocations. Each relocation goes through a series 927 // of tests to determine if it needs special treatment, such as 928 // creating GOT, PLT, copy relocations, etc. 929 // Note that relocations for non-alloc sections are directly 930 // processed by InputSection::relocateNonAlloc. 931 for (InputSectionBase *IS : InputSections) 932 if (IS->Live && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC)) 933 Fn(*IS); 934 for (EhInputSection *ES : In.EhFrame->Sections) 935 Fn(*ES); 936 } 937 938 // This function generates assignments for predefined symbols (e.g. _end or 939 // _etext) and inserts them into the commands sequence to be processed at the 940 // appropriate time. This ensures that the value is going to be correct by the 941 // time any references to these symbols are processed and is equivalent to 942 // defining these symbols explicitly in the linker script. 943 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 944 if (ElfSym::GlobalOffsetTable) { 945 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 946 // to the start of the .got or .got.plt section. 947 InputSection *GotSection = In.GotPlt; 948 if (!Target->GotBaseSymInGotPlt) 949 GotSection = In.MipsGot ? cast<InputSection>(In.MipsGot) 950 : cast<InputSection>(In.Got); 951 ElfSym::GlobalOffsetTable->Section = GotSection; 952 } 953 954 // .rela_iplt_{start,end} mark the start and the end of .rela.plt section. 955 if (ElfSym::RelaIpltStart && !In.RelaIplt->empty()) { 956 ElfSym::RelaIpltStart->Section = In.RelaIplt; 957 ElfSym::RelaIpltEnd->Section = In.RelaIplt; 958 ElfSym::RelaIpltEnd->Value = In.RelaIplt->getSize(); 959 } 960 961 PhdrEntry *Last = nullptr; 962 PhdrEntry *LastRO = nullptr; 963 964 for (PhdrEntry *P : Phdrs) { 965 if (P->p_type != PT_LOAD) 966 continue; 967 Last = P; 968 if (!(P->p_flags & PF_W)) 969 LastRO = P; 970 } 971 972 if (LastRO) { 973 // _etext is the first location after the last read-only loadable segment. 974 if (ElfSym::Etext1) 975 ElfSym::Etext1->Section = LastRO->LastSec; 976 if (ElfSym::Etext2) 977 ElfSym::Etext2->Section = LastRO->LastSec; 978 } 979 980 if (Last) { 981 // _edata points to the end of the last mapped initialized section. 982 OutputSection *Edata = nullptr; 983 for (OutputSection *OS : OutputSections) { 984 if (OS->Type != SHT_NOBITS) 985 Edata = OS; 986 if (OS == Last->LastSec) 987 break; 988 } 989 990 if (ElfSym::Edata1) 991 ElfSym::Edata1->Section = Edata; 992 if (ElfSym::Edata2) 993 ElfSym::Edata2->Section = Edata; 994 995 // _end is the first location after the uninitialized data region. 996 if (ElfSym::End1) 997 ElfSym::End1->Section = Last->LastSec; 998 if (ElfSym::End2) 999 ElfSym::End2->Section = Last->LastSec; 1000 } 1001 1002 if (ElfSym::Bss) 1003 ElfSym::Bss->Section = findSection(".bss"); 1004 1005 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1006 // be equal to the _gp symbol's value. 1007 if (ElfSym::MipsGp) { 1008 // Find GP-relative section with the lowest address 1009 // and use this address to calculate default _gp value. 1010 for (OutputSection *OS : OutputSections) { 1011 if (OS->Flags & SHF_MIPS_GPREL) { 1012 ElfSym::MipsGp->Section = OS; 1013 ElfSym::MipsGp->Value = 0x7ff0; 1014 break; 1015 } 1016 } 1017 } 1018 } 1019 1020 // We want to find how similar two ranks are. 1021 // The more branches in getSectionRank that match, the more similar they are. 1022 // Since each branch corresponds to a bit flag, we can just use 1023 // countLeadingZeros. 1024 static int getRankProximityAux(OutputSection *A, OutputSection *B) { 1025 return countLeadingZeros(A->SortRank ^ B->SortRank); 1026 } 1027 1028 static int getRankProximity(OutputSection *A, BaseCommand *B) { 1029 if (auto *Sec = dyn_cast<OutputSection>(B)) 1030 return getRankProximityAux(A, Sec); 1031 return -1; 1032 } 1033 1034 // When placing orphan sections, we want to place them after symbol assignments 1035 // so that an orphan after 1036 // begin_foo = .; 1037 // foo : { *(foo) } 1038 // end_foo = .; 1039 // doesn't break the intended meaning of the begin/end symbols. 1040 // We don't want to go over sections since findOrphanPos is the 1041 // one in charge of deciding the order of the sections. 1042 // We don't want to go over changes to '.', since doing so in 1043 // rx_sec : { *(rx_sec) } 1044 // . = ALIGN(0x1000); 1045 // /* The RW PT_LOAD starts here*/ 1046 // rw_sec : { *(rw_sec) } 1047 // would mean that the RW PT_LOAD would become unaligned. 1048 static bool shouldSkip(BaseCommand *Cmd) { 1049 if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd)) 1050 return Assign->Name != "."; 1051 return false; 1052 } 1053 1054 // We want to place orphan sections so that they share as much 1055 // characteristics with their neighbors as possible. For example, if 1056 // both are rw, or both are tls. 1057 template <typename ELFT> 1058 static std::vector<BaseCommand *>::iterator 1059 findOrphanPos(std::vector<BaseCommand *>::iterator B, 1060 std::vector<BaseCommand *>::iterator E) { 1061 OutputSection *Sec = cast<OutputSection>(*E); 1062 1063 // Find the first element that has as close a rank as possible. 1064 auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) { 1065 return getRankProximity(Sec, A) < getRankProximity(Sec, B); 1066 }); 1067 if (I == E) 1068 return E; 1069 1070 // Consider all existing sections with the same proximity. 1071 int Proximity = getRankProximity(Sec, *I); 1072 for (; I != E; ++I) { 1073 auto *CurSec = dyn_cast<OutputSection>(*I); 1074 if (!CurSec) 1075 continue; 1076 if (getRankProximity(Sec, CurSec) != Proximity || 1077 Sec->SortRank < CurSec->SortRank) 1078 break; 1079 } 1080 1081 auto IsOutputSec = [](BaseCommand *Cmd) { return isa<OutputSection>(Cmd); }; 1082 auto J = std::find_if(llvm::make_reverse_iterator(I), 1083 llvm::make_reverse_iterator(B), IsOutputSec); 1084 I = J.base(); 1085 1086 // As a special case, if the orphan section is the last section, put 1087 // it at the very end, past any other commands. 1088 // This matches bfd's behavior and is convenient when the linker script fully 1089 // specifies the start of the file, but doesn't care about the end (the non 1090 // alloc sections for example). 1091 auto NextSec = std::find_if(I, E, IsOutputSec); 1092 if (NextSec == E) 1093 return E; 1094 1095 while (I != E && shouldSkip(*I)) 1096 ++I; 1097 return I; 1098 } 1099 1100 // Builds section order for handling --symbol-ordering-file. 1101 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1102 DenseMap<const InputSectionBase *, int> SectionOrder; 1103 // Use the rarely used option -call-graph-ordering-file to sort sections. 1104 if (!Config->CallGraphProfile.empty()) 1105 return computeCallGraphProfileOrder(); 1106 1107 if (Config->SymbolOrderingFile.empty()) 1108 return SectionOrder; 1109 1110 struct SymbolOrderEntry { 1111 int Priority; 1112 bool Present; 1113 }; 1114 1115 // Build a map from symbols to their priorities. Symbols that didn't 1116 // appear in the symbol ordering file have the lowest priority 0. 1117 // All explicitly mentioned symbols have negative (higher) priorities. 1118 DenseMap<StringRef, SymbolOrderEntry> SymbolOrder; 1119 int Priority = -Config->SymbolOrderingFile.size(); 1120 for (StringRef S : Config->SymbolOrderingFile) 1121 SymbolOrder.insert({S, {Priority++, false}}); 1122 1123 // Build a map from sections to their priorities. 1124 auto AddSym = [&](Symbol &Sym) { 1125 auto It = SymbolOrder.find(Sym.getName()); 1126 if (It == SymbolOrder.end()) 1127 return; 1128 SymbolOrderEntry &Ent = It->second; 1129 Ent.Present = true; 1130 1131 maybeWarnUnorderableSymbol(&Sym); 1132 1133 if (auto *D = dyn_cast<Defined>(&Sym)) { 1134 if (auto *Sec = dyn_cast_or_null<InputSectionBase>(D->Section)) { 1135 int &Priority = SectionOrder[cast<InputSectionBase>(Sec->Repl)]; 1136 Priority = std::min(Priority, Ent.Priority); 1137 } 1138 } 1139 }; 1140 1141 // We want both global and local symbols. We get the global ones from the 1142 // symbol table and iterate the object files for the local ones. 1143 for (Symbol *Sym : Symtab->getSymbols()) 1144 if (!Sym->isLazy()) 1145 AddSym(*Sym); 1146 for (InputFile *File : ObjectFiles) 1147 for (Symbol *Sym : File->getSymbols()) 1148 if (Sym->isLocal()) 1149 AddSym(*Sym); 1150 1151 if (Config->WarnSymbolOrdering) 1152 for (auto OrderEntry : SymbolOrder) 1153 if (!OrderEntry.second.Present) 1154 warn("symbol ordering file: no such symbol: " + OrderEntry.first); 1155 1156 return SectionOrder; 1157 } 1158 1159 // Sorts the sections in ISD according to the provided section order. 1160 static void 1161 sortISDBySectionOrder(InputSectionDescription *ISD, 1162 const DenseMap<const InputSectionBase *, int> &Order) { 1163 std::vector<InputSection *> UnorderedSections; 1164 std::vector<std::pair<InputSection *, int>> OrderedSections; 1165 uint64_t UnorderedSize = 0; 1166 1167 for (InputSection *IS : ISD->Sections) { 1168 auto I = Order.find(IS); 1169 if (I == Order.end()) { 1170 UnorderedSections.push_back(IS); 1171 UnorderedSize += IS->getSize(); 1172 continue; 1173 } 1174 OrderedSections.push_back({IS, I->second}); 1175 } 1176 llvm::sort(OrderedSections, [&](std::pair<InputSection *, int> A, 1177 std::pair<InputSection *, int> B) { 1178 return A.second < B.second; 1179 }); 1180 1181 // Find an insertion point for the ordered section list in the unordered 1182 // section list. On targets with limited-range branches, this is the mid-point 1183 // of the unordered section list. This decreases the likelihood that a range 1184 // extension thunk will be needed to enter or exit the ordered region. If the 1185 // ordered section list is a list of hot functions, we can generally expect 1186 // the ordered functions to be called more often than the unordered functions, 1187 // making it more likely that any particular call will be within range, and 1188 // therefore reducing the number of thunks required. 1189 // 1190 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1191 // If the layout is: 1192 // 1193 // 8MB hot 1194 // 32MB cold 1195 // 1196 // only the first 8-16MB of the cold code (depending on which hot function it 1197 // is actually calling) can call the hot code without a range extension thunk. 1198 // However, if we use this layout: 1199 // 1200 // 16MB cold 1201 // 8MB hot 1202 // 16MB cold 1203 // 1204 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1205 // of the second block of cold code can call the hot code without a thunk. So 1206 // we effectively double the amount of code that could potentially call into 1207 // the hot code without a thunk. 1208 size_t InsPt = 0; 1209 if (Target->getThunkSectionSpacing() && !OrderedSections.empty()) { 1210 uint64_t UnorderedPos = 0; 1211 for (; InsPt != UnorderedSections.size(); ++InsPt) { 1212 UnorderedPos += UnorderedSections[InsPt]->getSize(); 1213 if (UnorderedPos > UnorderedSize / 2) 1214 break; 1215 } 1216 } 1217 1218 ISD->Sections.clear(); 1219 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(0, InsPt)) 1220 ISD->Sections.push_back(IS); 1221 for (std::pair<InputSection *, int> P : OrderedSections) 1222 ISD->Sections.push_back(P.first); 1223 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(InsPt)) 1224 ISD->Sections.push_back(IS); 1225 } 1226 1227 static void sortSection(OutputSection *Sec, 1228 const DenseMap<const InputSectionBase *, int> &Order) { 1229 StringRef Name = Sec->Name; 1230 1231 // Sort input sections by section name suffixes for 1232 // __attribute__((init_priority(N))). 1233 if (Name == ".init_array" || Name == ".fini_array") { 1234 if (!Script->HasSectionsCommand) 1235 Sec->sortInitFini(); 1236 return; 1237 } 1238 1239 // Sort input sections by the special rule for .ctors and .dtors. 1240 if (Name == ".ctors" || Name == ".dtors") { 1241 if (!Script->HasSectionsCommand) 1242 Sec->sortCtorsDtors(); 1243 return; 1244 } 1245 1246 // Never sort these. 1247 if (Name == ".init" || Name == ".fini") 1248 return; 1249 1250 // .toc is allocated just after .got and is accessed using GOT-relative 1251 // relocations. Object files compiled with small code model have an 1252 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1253 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1254 // sections having smaller relocation offsets are at beginning of .toc 1255 if (Config->EMachine == EM_PPC64 && Name == ".toc") { 1256 if (Script->HasSectionsCommand) 1257 return; 1258 assert(Sec->SectionCommands.size() == 1); 1259 auto *ISD = cast<InputSectionDescription>(Sec->SectionCommands[0]); 1260 std::stable_sort(ISD->Sections.begin(), ISD->Sections.end(), 1261 [](const InputSection *A, const InputSection *B) -> bool { 1262 return A->File->PPC64SmallCodeModelTocRelocs && 1263 !B->File->PPC64SmallCodeModelTocRelocs; 1264 }); 1265 return; 1266 } 1267 1268 // Sort input sections by priority using the list provided 1269 // by --symbol-ordering-file. 1270 if (!Order.empty()) 1271 for (BaseCommand *B : Sec->SectionCommands) 1272 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1273 sortISDBySectionOrder(ISD, Order); 1274 } 1275 1276 // If no layout was provided by linker script, we want to apply default 1277 // sorting for special input sections. This also handles --symbol-ordering-file. 1278 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1279 // Build the order once since it is expensive. 1280 DenseMap<const InputSectionBase *, int> Order = buildSectionOrder(); 1281 for (BaseCommand *Base : Script->SectionCommands) 1282 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1283 sortSection(Sec, Order); 1284 } 1285 1286 template <class ELFT> void Writer<ELFT>::sortSections() { 1287 Script->adjustSectionsBeforeSorting(); 1288 1289 // Don't sort if using -r. It is not necessary and we want to preserve the 1290 // relative order for SHF_LINK_ORDER sections. 1291 if (Config->Relocatable) 1292 return; 1293 1294 sortInputSections(); 1295 1296 for (BaseCommand *Base : Script->SectionCommands) { 1297 auto *OS = dyn_cast<OutputSection>(Base); 1298 if (!OS) 1299 continue; 1300 OS->SortRank = getSectionRank(OS); 1301 1302 // We want to assign rude approximation values to OutSecOff fields 1303 // to know the relative order of the input sections. We use it for 1304 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1305 uint64_t I = 0; 1306 for (InputSection *Sec : getInputSections(OS)) 1307 Sec->OutSecOff = I++; 1308 } 1309 1310 if (!Script->HasSectionsCommand) { 1311 // We know that all the OutputSections are contiguous in this case. 1312 auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); }; 1313 std::stable_sort( 1314 llvm::find_if(Script->SectionCommands, IsSection), 1315 llvm::find_if(llvm::reverse(Script->SectionCommands), IsSection).base(), 1316 compareSections); 1317 return; 1318 } 1319 1320 // Orphan sections are sections present in the input files which are 1321 // not explicitly placed into the output file by the linker script. 1322 // 1323 // The sections in the linker script are already in the correct 1324 // order. We have to figuere out where to insert the orphan 1325 // sections. 1326 // 1327 // The order of the sections in the script is arbitrary and may not agree with 1328 // compareSections. This means that we cannot easily define a strict weak 1329 // ordering. To see why, consider a comparison of a section in the script and 1330 // one not in the script. We have a two simple options: 1331 // * Make them equivalent (a is not less than b, and b is not less than a). 1332 // The problem is then that equivalence has to be transitive and we can 1333 // have sections a, b and c with only b in a script and a less than c 1334 // which breaks this property. 1335 // * Use compareSectionsNonScript. Given that the script order doesn't have 1336 // to match, we can end up with sections a, b, c, d where b and c are in the 1337 // script and c is compareSectionsNonScript less than b. In which case d 1338 // can be equivalent to c, a to b and d < a. As a concrete example: 1339 // .a (rx) # not in script 1340 // .b (rx) # in script 1341 // .c (ro) # in script 1342 // .d (ro) # not in script 1343 // 1344 // The way we define an order then is: 1345 // * Sort only the orphan sections. They are in the end right now. 1346 // * Move each orphan section to its preferred position. We try 1347 // to put each section in the last position where it can share 1348 // a PT_LOAD. 1349 // 1350 // There is some ambiguity as to where exactly a new entry should be 1351 // inserted, because Commands contains not only output section 1352 // commands but also other types of commands such as symbol assignment 1353 // expressions. There's no correct answer here due to the lack of the 1354 // formal specification of the linker script. We use heuristics to 1355 // determine whether a new output command should be added before or 1356 // after another commands. For the details, look at shouldSkip 1357 // function. 1358 1359 auto I = Script->SectionCommands.begin(); 1360 auto E = Script->SectionCommands.end(); 1361 auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) { 1362 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1363 return Sec->SectionIndex == UINT32_MAX; 1364 return false; 1365 }); 1366 1367 // Sort the orphan sections. 1368 std::stable_sort(NonScriptI, E, compareSections); 1369 1370 // As a horrible special case, skip the first . assignment if it is before any 1371 // section. We do this because it is common to set a load address by starting 1372 // the script with ". = 0xabcd" and the expectation is that every section is 1373 // after that. 1374 auto FirstSectionOrDotAssignment = 1375 std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); 1376 if (FirstSectionOrDotAssignment != E && 1377 isa<SymbolAssignment>(**FirstSectionOrDotAssignment)) 1378 ++FirstSectionOrDotAssignment; 1379 I = FirstSectionOrDotAssignment; 1380 1381 while (NonScriptI != E) { 1382 auto Pos = findOrphanPos<ELFT>(I, NonScriptI); 1383 OutputSection *Orphan = cast<OutputSection>(*NonScriptI); 1384 1385 // As an optimization, find all sections with the same sort rank 1386 // and insert them with one rotate. 1387 unsigned Rank = Orphan->SortRank; 1388 auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) { 1389 return cast<OutputSection>(Cmd)->SortRank != Rank; 1390 }); 1391 std::rotate(Pos, NonScriptI, End); 1392 NonScriptI = End; 1393 } 1394 1395 Script->adjustSectionsAfterSorting(); 1396 } 1397 1398 static bool compareByFilePosition(InputSection *A, InputSection *B) { 1399 // Synthetic, i. e. a sentinel section, should go last. 1400 if (A->kind() == InputSectionBase::Synthetic || 1401 B->kind() == InputSectionBase::Synthetic) 1402 return A->kind() != InputSectionBase::Synthetic; 1403 1404 InputSection *LA = A->getLinkOrderDep(); 1405 InputSection *LB = B->getLinkOrderDep(); 1406 OutputSection *AOut = LA->getParent(); 1407 OutputSection *BOut = LB->getParent(); 1408 1409 if (AOut != BOut) 1410 return AOut->SectionIndex < BOut->SectionIndex; 1411 return LA->OutSecOff < LB->OutSecOff; 1412 } 1413 1414 // This function is used by the --merge-exidx-entries to detect duplicate 1415 // .ARM.exidx sections. It is Arm only. 1416 // 1417 // The .ARM.exidx section is of the form: 1418 // | PREL31 offset to function | Unwind instructions for function | 1419 // where the unwind instructions are either a small number of unwind 1420 // instructions inlined into the table entry, the special CANT_UNWIND value of 1421 // 0x1 or a PREL31 offset into a .ARM.extab Section that contains unwind 1422 // instructions. 1423 // 1424 // We return true if all the unwind instructions in the .ARM.exidx entries of 1425 // Cur can be merged into the last entry of Prev. 1426 static bool isDuplicateArmExidxSec(InputSection *Prev, InputSection *Cur) { 1427 1428 // References to .ARM.Extab Sections have bit 31 clear and are not the 1429 // special EXIDX_CANTUNWIND bit-pattern. 1430 auto IsExtabRef = [](uint32_t Unwind) { 1431 return (Unwind & 0x80000000) == 0 && Unwind != 0x1; 1432 }; 1433 1434 struct ExidxEntry { 1435 ulittle32_t Fn; 1436 ulittle32_t Unwind; 1437 }; 1438 1439 // Get the last table Entry from the previous .ARM.exidx section. 1440 const ExidxEntry &PrevEntry = Prev->getDataAs<ExidxEntry>().back(); 1441 if (IsExtabRef(PrevEntry.Unwind)) 1442 return false; 1443 1444 // We consider the unwind instructions of an .ARM.exidx table entry 1445 // a duplicate if the previous unwind instructions if: 1446 // - Both are the special EXIDX_CANTUNWIND. 1447 // - Both are the same inline unwind instructions. 1448 // We do not attempt to follow and check links into .ARM.extab tables as 1449 // consecutive identical entries are rare and the effort to check that they 1450 // are identical is high. 1451 1452 for (const ExidxEntry Entry : Cur->getDataAs<ExidxEntry>()) 1453 if (IsExtabRef(Entry.Unwind) || Entry.Unwind != PrevEntry.Unwind) 1454 return false; 1455 1456 // All table entries in this .ARM.exidx Section can be merged into the 1457 // previous Section. 1458 return true; 1459 } 1460 1461 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1462 for (OutputSection *Sec : OutputSections) { 1463 if (!(Sec->Flags & SHF_LINK_ORDER)) 1464 continue; 1465 1466 // Link order may be distributed across several InputSectionDescriptions 1467 // but sort must consider them all at once. 1468 std::vector<InputSection **> ScriptSections; 1469 std::vector<InputSection *> Sections; 1470 for (BaseCommand *Base : Sec->SectionCommands) { 1471 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) { 1472 for (InputSection *&IS : ISD->Sections) { 1473 ScriptSections.push_back(&IS); 1474 Sections.push_back(IS); 1475 } 1476 } 1477 } 1478 std::stable_sort(Sections.begin(), Sections.end(), compareByFilePosition); 1479 1480 if (!Config->Relocatable && Config->EMachine == EM_ARM && 1481 Sec->Type == SHT_ARM_EXIDX) { 1482 1483 if (auto *Sentinel = dyn_cast<ARMExidxSentinelSection>(Sections.back())) { 1484 assert(Sections.size() >= 2 && 1485 "We should create a sentinel section only if there are " 1486 "alive regular exidx sections."); 1487 1488 // The last executable section is required to fill the sentinel. 1489 // Remember it here so that we don't have to find it again. 1490 Sentinel->Highest = Sections[Sections.size() - 2]->getLinkOrderDep(); 1491 } 1492 1493 // The EHABI for the Arm Architecture permits consecutive identical 1494 // table entries to be merged. We use a simple implementation that 1495 // removes a .ARM.exidx Input Section if it can be merged into the 1496 // previous one. This does not require any rewriting of InputSection 1497 // contents but misses opportunities for fine grained deduplication 1498 // where only a subset of the InputSection contents can be merged. 1499 if (Config->MergeArmExidx) { 1500 size_t Prev = 0; 1501 // The last one is a sentinel entry which should not be removed. 1502 for (size_t I = 1; I < Sections.size() - 1; ++I) { 1503 if (isDuplicateArmExidxSec(Sections[Prev], Sections[I])) 1504 Sections[I] = nullptr; 1505 else 1506 Prev = I; 1507 } 1508 } 1509 } 1510 1511 for (int I = 0, N = Sections.size(); I < N; ++I) 1512 *ScriptSections[I] = Sections[I]; 1513 1514 // Remove the Sections we marked as duplicate earlier. 1515 for (BaseCommand *Base : Sec->SectionCommands) 1516 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 1517 llvm::erase_if(ISD->Sections, [](InputSection *IS) { return !IS; }); 1518 } 1519 } 1520 1521 // For most RISC ISAs, we need to generate content that depends on the address 1522 // of InputSections. For example some architectures such as AArch64 use small 1523 // displacements for jump instructions that is the linker's responsibility for 1524 // creating range extension thunks for. As the generation of the content may 1525 // also alter InputSection addresses we must converge to a fixed point. 1526 template <class ELFT> void Writer<ELFT>::maybeAddThunks() { 1527 if (!Target->NeedsThunks && !Config->AndroidPackDynRelocs && 1528 !Config->RelrPackDynRelocs) 1529 return; 1530 1531 ThunkCreator TC; 1532 AArch64Err843419Patcher A64P; 1533 1534 for (;;) { 1535 bool Changed = false; 1536 1537 Script->assignAddresses(); 1538 1539 if (Target->NeedsThunks) 1540 Changed |= TC.createThunks(OutputSections); 1541 1542 if (Config->FixCortexA53Errata843419) { 1543 if (Changed) 1544 Script->assignAddresses(); 1545 Changed |= A64P.createFixes(); 1546 } 1547 1548 if (In.MipsGot) 1549 In.MipsGot->updateAllocSize(); 1550 1551 Changed |= In.RelaDyn->updateAllocSize(); 1552 1553 if (In.RelrDyn) 1554 Changed |= In.RelrDyn->updateAllocSize(); 1555 1556 if (!Changed) 1557 return; 1558 } 1559 } 1560 1561 static void finalizeSynthetic(SyntheticSection *Sec) { 1562 if (Sec && !Sec->empty() && Sec->getParent()) 1563 Sec->finalizeContents(); 1564 } 1565 1566 // In order to allow users to manipulate linker-synthesized sections, 1567 // we had to add synthetic sections to the input section list early, 1568 // even before we make decisions whether they are needed. This allows 1569 // users to write scripts like this: ".mygot : { .got }". 1570 // 1571 // Doing it has an unintended side effects. If it turns out that we 1572 // don't need a .got (for example) at all because there's no 1573 // relocation that needs a .got, we don't want to emit .got. 1574 // 1575 // To deal with the above problem, this function is called after 1576 // scanRelocations is called to remove synthetic sections that turn 1577 // out to be empty. 1578 static void removeUnusedSyntheticSections() { 1579 // All input synthetic sections that can be empty are placed after 1580 // all regular ones. We iterate over them all and exit at first 1581 // non-synthetic. 1582 for (InputSectionBase *S : llvm::reverse(InputSections)) { 1583 SyntheticSection *SS = dyn_cast<SyntheticSection>(S); 1584 if (!SS) 1585 return; 1586 OutputSection *OS = SS->getParent(); 1587 if (!OS || !SS->empty()) 1588 continue; 1589 1590 // If we reach here, then SS is an unused synthetic section and we want to 1591 // remove it from corresponding input section description of output section. 1592 for (BaseCommand *B : OS->SectionCommands) 1593 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1594 llvm::erase_if(ISD->Sections, 1595 [=](InputSection *IS) { return IS == SS; }); 1596 } 1597 } 1598 1599 // Returns true if a symbol can be replaced at load-time by a symbol 1600 // with the same name defined in other ELF executable or DSO. 1601 static bool computeIsPreemptible(const Symbol &B) { 1602 assert(!B.isLocal()); 1603 1604 // Only symbols that appear in dynsym can be preempted. 1605 if (!B.includeInDynsym()) 1606 return false; 1607 1608 // Only default visibility symbols can be preempted. 1609 if (B.Visibility != STV_DEFAULT) 1610 return false; 1611 1612 // At this point copy relocations have not been created yet, so any 1613 // symbol that is not defined locally is preemptible. 1614 if (!B.isDefined()) 1615 return true; 1616 1617 // If we have a dynamic list it specifies which local symbols are preemptible. 1618 if (Config->HasDynamicList) 1619 return false; 1620 1621 if (!Config->Shared) 1622 return false; 1623 1624 // -Bsymbolic means that definitions are not preempted. 1625 if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc())) 1626 return false; 1627 return true; 1628 } 1629 1630 // Create output section objects and add them to OutputSections. 1631 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1632 Out::PreinitArray = findSection(".preinit_array"); 1633 Out::InitArray = findSection(".init_array"); 1634 Out::FiniArray = findSection(".fini_array"); 1635 1636 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1637 // symbols for sections, so that the runtime can get the start and end 1638 // addresses of each section by section name. Add such symbols. 1639 if (!Config->Relocatable) { 1640 addStartEndSymbols(); 1641 for (BaseCommand *Base : Script->SectionCommands) 1642 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1643 addStartStopSymbols(Sec); 1644 } 1645 1646 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1647 // It should be okay as no one seems to care about the type. 1648 // Even the author of gold doesn't remember why gold behaves that way. 1649 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1650 if (In.Dynamic->Parent) 1651 Symtab->addDefined("_DYNAMIC", STV_HIDDEN, STT_NOTYPE, 0 /*Value*/, 1652 /*Size=*/0, STB_WEAK, In.Dynamic, 1653 /*File=*/nullptr); 1654 1655 // Define __rel[a]_iplt_{start,end} symbols if needed. 1656 addRelIpltSymbols(); 1657 1658 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800 if not defined. 1659 if (Config->EMachine == EM_RISCV) 1660 if (!dyn_cast_or_null<Defined>(Symtab->find("__global_pointer$"))) 1661 addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800); 1662 1663 // This responsible for splitting up .eh_frame section into 1664 // pieces. The relocation scan uses those pieces, so this has to be 1665 // earlier. 1666 finalizeSynthetic(In.EhFrame); 1667 1668 for (Symbol *S : Symtab->getSymbols()) 1669 if (!S->IsPreemptible) 1670 S->IsPreemptible = computeIsPreemptible(*S); 1671 1672 // Scan relocations. This must be done after every symbol is declared so that 1673 // we can correctly decide if a dynamic relocation is needed. 1674 if (!Config->Relocatable) 1675 forEachRelSec(scanRelocations<ELFT>); 1676 1677 addIRelativeRelocs(); 1678 1679 if (In.Plt && !In.Plt->empty()) 1680 In.Plt->addSymbols(); 1681 if (In.Iplt && !In.Iplt->empty()) 1682 In.Iplt->addSymbols(); 1683 1684 if (!Config->AllowShlibUndefined) { 1685 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1686 // entires are seen. These cases would otherwise lead to runtime errors 1687 // reported by the dynamic linker. 1688 // 1689 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1690 // catch more cases. That is too much for us. Our approach resembles the one 1691 // used in ld.gold, achieves a good balance to be useful but not too smart. 1692 for (InputFile *File : SharedFiles) { 1693 SharedFile<ELFT> *F = cast<SharedFile<ELFT>>(File); 1694 F->AllNeededIsKnown = llvm::all_of(F->DtNeeded, [&](StringRef Needed) { 1695 return Symtab->SoNames.count(Needed); 1696 }); 1697 } 1698 for (Symbol *Sym : Symtab->getSymbols()) 1699 if (Sym->isUndefined() && !Sym->isWeak()) 1700 if (auto *F = dyn_cast_or_null<SharedFile<ELFT>>(Sym->File)) 1701 if (F->AllNeededIsKnown) 1702 error(toString(F) + ": undefined reference to " + toString(*Sym)); 1703 } 1704 1705 // Now that we have defined all possible global symbols including linker- 1706 // synthesized ones. Visit all symbols to give the finishing touches. 1707 for (Symbol *Sym : Symtab->getSymbols()) { 1708 if (!includeInSymtab(*Sym)) 1709 continue; 1710 if (In.SymTab) 1711 In.SymTab->addSymbol(Sym); 1712 1713 if (Sym->includeInDynsym()) { 1714 In.DynSymTab->addSymbol(Sym); 1715 if (auto *File = dyn_cast_or_null<SharedFile<ELFT>>(Sym->File)) 1716 if (File->IsNeeded && !Sym->isUndefined()) 1717 In.VerNeed->addSymbol(Sym); 1718 } 1719 } 1720 1721 // Do not proceed if there was an undefined symbol. 1722 if (errorCount()) 1723 return; 1724 1725 if (In.MipsGot) 1726 In.MipsGot->build(); 1727 1728 removeUnusedSyntheticSections(); 1729 1730 sortSections(); 1731 1732 // Now that we have the final list, create a list of all the 1733 // OutputSections for convenience. 1734 for (BaseCommand *Base : Script->SectionCommands) 1735 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1736 OutputSections.push_back(Sec); 1737 1738 // Prefer command line supplied address over other constraints. 1739 for (OutputSection *Sec : OutputSections) { 1740 auto I = Config->SectionStartMap.find(Sec->Name); 1741 if (I != Config->SectionStartMap.end()) 1742 Sec->AddrExpr = [=] { return I->second; }; 1743 } 1744 1745 // This is a bit of a hack. A value of 0 means undef, so we set it 1746 // to 1 to make __ehdr_start defined. The section number is not 1747 // particularly relevant. 1748 Out::ElfHeader->SectionIndex = 1; 1749 1750 for (size_t I = 0, E = OutputSections.size(); I != E; ++I) { 1751 OutputSection *Sec = OutputSections[I]; 1752 Sec->SectionIndex = I + 1; 1753 Sec->ShName = In.ShStrTab->addString(Sec->Name); 1754 } 1755 1756 // Binary and relocatable output does not have PHDRS. 1757 // The headers have to be created before finalize as that can influence the 1758 // image base and the dynamic section on mips includes the image base. 1759 if (!Config->Relocatable && !Config->OFormatBinary) { 1760 Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs(); 1761 if (Config->EMachine == EM_ARM) { 1762 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1763 addPhdrForSection(Phdrs, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 1764 } 1765 if (Config->EMachine == EM_MIPS) { 1766 // Add separate segments for MIPS-specific sections. 1767 addPhdrForSection(Phdrs, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 1768 addPhdrForSection(Phdrs, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 1769 addPhdrForSection(Phdrs, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 1770 } 1771 Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); 1772 1773 // Find the TLS segment. This happens before the section layout loop so that 1774 // Android relocation packing can look up TLS symbol addresses. 1775 for (PhdrEntry *P : Phdrs) 1776 if (P->p_type == PT_TLS) 1777 Out::TlsPhdr = P; 1778 } 1779 1780 // Some symbols are defined in term of program headers. Now that we 1781 // have the headers, we can find out which sections they point to. 1782 setReservedSymbolSections(); 1783 1784 // Dynamic section must be the last one in this list and dynamic 1785 // symbol table section (DynSymTab) must be the first one. 1786 finalizeSynthetic(In.DynSymTab); 1787 finalizeSynthetic(In.Bss); 1788 finalizeSynthetic(In.BssRelRo); 1789 finalizeSynthetic(In.GnuHashTab); 1790 finalizeSynthetic(In.HashTab); 1791 finalizeSynthetic(In.SymTabShndx); 1792 finalizeSynthetic(In.ShStrTab); 1793 finalizeSynthetic(In.StrTab); 1794 finalizeSynthetic(In.VerDef); 1795 finalizeSynthetic(In.DynStrTab); 1796 finalizeSynthetic(In.Got); 1797 finalizeSynthetic(In.MipsGot); 1798 finalizeSynthetic(In.IgotPlt); 1799 finalizeSynthetic(In.GotPlt); 1800 finalizeSynthetic(In.RelaDyn); 1801 finalizeSynthetic(In.RelrDyn); 1802 finalizeSynthetic(In.RelaIplt); 1803 finalizeSynthetic(In.RelaPlt); 1804 finalizeSynthetic(In.Plt); 1805 finalizeSynthetic(In.Iplt); 1806 finalizeSynthetic(In.EhFrameHdr); 1807 finalizeSynthetic(In.VerSym); 1808 finalizeSynthetic(In.VerNeed); 1809 finalizeSynthetic(In.Dynamic); 1810 1811 if (!Script->HasSectionsCommand && !Config->Relocatable) 1812 fixSectionAlignments(); 1813 1814 // After link order processing .ARM.exidx sections can be deduplicated, which 1815 // needs to be resolved before any other address dependent operation. 1816 resolveShfLinkOrder(); 1817 1818 // Jump instructions in many ISAs have small displacements, and therefore they 1819 // cannot jump to arbitrary addresses in memory. For example, RISC-V JAL 1820 // instruction can target only +-1 MiB from PC. It is a linker's 1821 // responsibility to create and insert small pieces of code between sections 1822 // to extend the ranges if jump targets are out of range. Such code pieces are 1823 // called "thunks". 1824 // 1825 // We add thunks at this stage. We couldn't do this before this point because 1826 // this is the earliest point where we know sizes of sections and their 1827 // layouts (that are needed to determine if jump targets are in range). 1828 maybeAddThunks(); 1829 1830 // maybeAddThunks may have added local symbols to the static symbol table. 1831 finalizeSynthetic(In.SymTab); 1832 finalizeSynthetic(In.PPC64LongBranchTarget); 1833 1834 // Fill other section headers. The dynamic table is finalized 1835 // at the end because some tags like RELSZ depend on result 1836 // of finalizing other sections. 1837 for (OutputSection *Sec : OutputSections) 1838 Sec->finalize(); 1839 } 1840 1841 // Ensure data sections are not mixed with executable sections when 1842 // -execute-only is used. -execute-only is a feature to make pages executable 1843 // but not readable, and the feature is currently supported only on AArch64. 1844 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 1845 if (!Config->ExecuteOnly) 1846 return; 1847 1848 for (OutputSection *OS : OutputSections) 1849 if (OS->Flags & SHF_EXECINSTR) 1850 for (InputSection *IS : getInputSections(OS)) 1851 if (!(IS->Flags & SHF_EXECINSTR)) 1852 error("cannot place " + toString(IS) + " into " + toString(OS->Name) + 1853 ": -execute-only does not support intermingling data and code"); 1854 } 1855 1856 // The linker is expected to define SECNAME_start and SECNAME_end 1857 // symbols for a few sections. This function defines them. 1858 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1859 // If a section does not exist, there's ambiguity as to how we 1860 // define _start and _end symbols for an init/fini section. Since 1861 // the loader assume that the symbols are always defined, we need to 1862 // always define them. But what value? The loader iterates over all 1863 // pointers between _start and _end to run global ctors/dtors, so if 1864 // the section is empty, their symbol values don't actually matter 1865 // as long as _start and _end point to the same location. 1866 // 1867 // That said, we don't want to set the symbols to 0 (which is 1868 // probably the simplest value) because that could cause some 1869 // program to fail to link due to relocation overflow, if their 1870 // program text is above 2 GiB. We use the address of the .text 1871 // section instead to prevent that failure. 1872 // 1873 // In a rare sitaution, .text section may not exist. If that's the 1874 // case, use the image base address as a last resort. 1875 OutputSection *Default = findSection(".text"); 1876 if (!Default) 1877 Default = Out::ElfHeader; 1878 1879 auto Define = [=](StringRef Start, StringRef End, OutputSection *OS) { 1880 if (OS) { 1881 addOptionalRegular(Start, OS, 0); 1882 addOptionalRegular(End, OS, -1); 1883 } else { 1884 addOptionalRegular(Start, Default, 0); 1885 addOptionalRegular(End, Default, 0); 1886 } 1887 }; 1888 1889 Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); 1890 Define("__init_array_start", "__init_array_end", Out::InitArray); 1891 Define("__fini_array_start", "__fini_array_end", Out::FiniArray); 1892 1893 if (OutputSection *Sec = findSection(".ARM.exidx")) 1894 Define("__exidx_start", "__exidx_end", Sec); 1895 } 1896 1897 // If a section name is valid as a C identifier (which is rare because of 1898 // the leading '.'), linkers are expected to define __start_<secname> and 1899 // __stop_<secname> symbols. They are at beginning and end of the section, 1900 // respectively. This is not requested by the ELF standard, but GNU ld and 1901 // gold provide the feature, and used by many programs. 1902 template <class ELFT> 1903 void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) { 1904 StringRef S = Sec->Name; 1905 if (!isValidCIdentifier(S)) 1906 return; 1907 addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_PROTECTED); 1908 addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_PROTECTED); 1909 } 1910 1911 static bool needsPtLoad(OutputSection *Sec) { 1912 if (!(Sec->Flags & SHF_ALLOC) || Sec->Noload) 1913 return false; 1914 1915 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 1916 // responsible for allocating space for them, not the PT_LOAD that 1917 // contains the TLS initialization image. 1918 if ((Sec->Flags & SHF_TLS) && Sec->Type == SHT_NOBITS) 1919 return false; 1920 return true; 1921 } 1922 1923 // Linker scripts are responsible for aligning addresses. Unfortunately, most 1924 // linker scripts are designed for creating two PT_LOADs only, one RX and one 1925 // RW. This means that there is no alignment in the RO to RX transition and we 1926 // cannot create a PT_LOAD there. 1927 static uint64_t computeFlags(uint64_t Flags) { 1928 if (Config->Omagic) 1929 return PF_R | PF_W | PF_X; 1930 if (Config->ExecuteOnly && (Flags & PF_X)) 1931 return Flags & ~PF_R; 1932 if (Config->SingleRoRx && !(Flags & PF_W)) 1933 return Flags | PF_X; 1934 return Flags; 1935 } 1936 1937 // Decide which program headers to create and which sections to include in each 1938 // one. 1939 template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() { 1940 std::vector<PhdrEntry *> Ret; 1941 auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { 1942 Ret.push_back(make<PhdrEntry>(Type, Flags)); 1943 return Ret.back(); 1944 }; 1945 1946 // The first phdr entry is PT_PHDR which describes the program header itself. 1947 AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); 1948 1949 // PT_INTERP must be the second entry if exists. 1950 if (OutputSection *Cmd = findSection(".interp")) 1951 AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd); 1952 1953 // Add the first PT_LOAD segment for regular output sections. 1954 uint64_t Flags = computeFlags(PF_R); 1955 PhdrEntry *Load = AddHdr(PT_LOAD, Flags); 1956 1957 // Add the headers. We will remove them if they don't fit. 1958 Load->add(Out::ElfHeader); 1959 Load->add(Out::ProgramHeaders); 1960 1961 for (OutputSection *Sec : OutputSections) { 1962 if (!(Sec->Flags & SHF_ALLOC)) 1963 break; 1964 if (!needsPtLoad(Sec)) 1965 continue; 1966 1967 // Segments are contiguous memory regions that has the same attributes 1968 // (e.g. executable or writable). There is one phdr for each segment. 1969 // Therefore, we need to create a new phdr when the next section has 1970 // different flags or is loaded at a discontiguous address or memory 1971 // region using AT or AT> linker script command, respectively. At the same 1972 // time, we don't want to create a separate load segment for the headers, 1973 // even if the first output section has an AT or AT> attribute. 1974 uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); 1975 if (((Sec->LMAExpr || 1976 (Sec->LMARegion && (Sec->LMARegion != Load->FirstSec->LMARegion))) && 1977 Load->LastSec != Out::ProgramHeaders) || 1978 Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags) { 1979 1980 Load = AddHdr(PT_LOAD, NewFlags); 1981 Flags = NewFlags; 1982 } 1983 1984 Load->add(Sec); 1985 } 1986 1987 // Add a TLS segment if any. 1988 PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 1989 for (OutputSection *Sec : OutputSections) 1990 if (Sec->Flags & SHF_TLS) 1991 TlsHdr->add(Sec); 1992 if (TlsHdr->FirstSec) 1993 Ret.push_back(TlsHdr); 1994 1995 // Add an entry for .dynamic. 1996 if (OutputSection *Sec = In.Dynamic->getParent()) 1997 AddHdr(PT_DYNAMIC, Sec->getPhdrFlags())->add(Sec); 1998 1999 // PT_GNU_RELRO includes all sections that should be marked as 2000 // read-only by dynamic linker after proccessing relocations. 2001 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2002 // an error message if more than one PT_GNU_RELRO PHDR is required. 2003 PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2004 bool InRelroPhdr = false; 2005 bool IsRelroFinished = false; 2006 for (OutputSection *Sec : OutputSections) { 2007 if (!needsPtLoad(Sec)) 2008 continue; 2009 if (isRelroSection(Sec)) { 2010 InRelroPhdr = true; 2011 if (!IsRelroFinished) 2012 RelRo->add(Sec); 2013 else 2014 error("section: " + Sec->Name + " is not contiguous with other relro" + 2015 " sections"); 2016 } else if (InRelroPhdr) { 2017 InRelroPhdr = false; 2018 IsRelroFinished = true; 2019 } 2020 } 2021 if (RelRo->FirstSec) 2022 Ret.push_back(RelRo); 2023 2024 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2025 if (!In.EhFrame->empty() && In.EhFrameHdr && In.EhFrame->getParent() && 2026 In.EhFrameHdr->getParent()) 2027 AddHdr(PT_GNU_EH_FRAME, In.EhFrameHdr->getParent()->getPhdrFlags()) 2028 ->add(In.EhFrameHdr->getParent()); 2029 2030 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2031 // the dynamic linker fill the segment with random data. 2032 if (OutputSection *Cmd = findSection(".openbsd.randomdata")) 2033 AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd); 2034 2035 // PT_GNU_STACK is a special section to tell the loader to make the 2036 // pages for the stack non-executable. If you really want an executable 2037 // stack, you can pass -z execstack, but that's not recommended for 2038 // security reasons. 2039 unsigned Perm = PF_R | PF_W; 2040 if (Config->ZExecstack) 2041 Perm |= PF_X; 2042 AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; 2043 2044 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2045 // is expected to perform W^X violations, such as calling mprotect(2) or 2046 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2047 // OpenBSD. 2048 if (Config->ZWxneeded) 2049 AddHdr(PT_OPENBSD_WXNEEDED, PF_X); 2050 2051 // Create one PT_NOTE per a group of contiguous .note sections. 2052 PhdrEntry *Note = nullptr; 2053 for (OutputSection *Sec : OutputSections) { 2054 if (Sec->Type == SHT_NOTE && (Sec->Flags & SHF_ALLOC)) { 2055 if (!Note || Sec->LMAExpr) 2056 Note = AddHdr(PT_NOTE, PF_R); 2057 Note->add(Sec); 2058 } else { 2059 Note = nullptr; 2060 } 2061 } 2062 return Ret; 2063 } 2064 2065 template <class ELFT> 2066 void Writer<ELFT>::addPhdrForSection(std::vector<PhdrEntry *> &Phdrs, 2067 unsigned ShType, unsigned PType, 2068 unsigned PFlags) { 2069 auto I = llvm::find_if( 2070 OutputSections, [=](OutputSection *Cmd) { return Cmd->Type == ShType; }); 2071 if (I == OutputSections.end()) 2072 return; 2073 2074 PhdrEntry *Entry = make<PhdrEntry>(PType, PFlags); 2075 Entry->add(*I); 2076 Phdrs.push_back(Entry); 2077 } 2078 2079 // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the 2080 // first section after PT_GNU_RELRO have to be page aligned so that the dynamic 2081 // linker can set the permissions. 2082 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2083 auto PageAlign = [](OutputSection *Cmd) { 2084 if (Cmd && !Cmd->AddrExpr) 2085 Cmd->AddrExpr = [=] { 2086 return alignTo(Script->getDot(), Config->MaxPageSize); 2087 }; 2088 }; 2089 2090 for (const PhdrEntry *P : Phdrs) 2091 if (P->p_type == PT_LOAD && P->FirstSec) 2092 PageAlign(P->FirstSec); 2093 2094 for (const PhdrEntry *P : Phdrs) { 2095 if (P->p_type != PT_GNU_RELRO) 2096 continue; 2097 2098 if (P->FirstSec) 2099 PageAlign(P->FirstSec); 2100 2101 // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we 2102 // have to align it to a page. 2103 auto End = OutputSections.end(); 2104 auto I = std::find(OutputSections.begin(), End, P->LastSec); 2105 if (I == End || (I + 1) == End) 2106 continue; 2107 2108 OutputSection *Cmd = (*(I + 1)); 2109 if (needsPtLoad(Cmd)) 2110 PageAlign(Cmd); 2111 } 2112 } 2113 2114 // Compute an in-file position for a given section. The file offset must be the 2115 // same with its virtual address modulo the page size, so that the loader can 2116 // load executables without any address adjustment. 2117 static uint64_t computeFileOffset(OutputSection *OS, uint64_t Off) { 2118 // File offsets are not significant for .bss sections. By convention, we keep 2119 // section offsets monotonically increasing rather than setting to zero. 2120 if (OS->Type == SHT_NOBITS) 2121 return Off; 2122 2123 // If the section is not in a PT_LOAD, we just have to align it. 2124 if (!OS->PtLoad) 2125 return alignTo(Off, OS->Alignment); 2126 2127 // The first section in a PT_LOAD has to have congruent offset and address 2128 // module the page size. 2129 OutputSection *First = OS->PtLoad->FirstSec; 2130 if (OS == First) { 2131 uint64_t Alignment = std::max<uint64_t>(OS->Alignment, Config->MaxPageSize); 2132 return alignTo(Off, Alignment, OS->Addr); 2133 } 2134 2135 // If two sections share the same PT_LOAD the file offset is calculated 2136 // using this formula: Off2 = Off1 + (VA2 - VA1). 2137 return First->Offset + OS->Addr - First->Addr; 2138 } 2139 2140 // Set an in-file position to a given section and returns the end position of 2141 // the section. 2142 static uint64_t setFileOffset(OutputSection *OS, uint64_t Off) { 2143 Off = computeFileOffset(OS, Off); 2144 OS->Offset = Off; 2145 2146 if (OS->Type == SHT_NOBITS) 2147 return Off; 2148 return Off + OS->Size; 2149 } 2150 2151 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2152 uint64_t Off = 0; 2153 for (OutputSection *Sec : OutputSections) 2154 if (Sec->Flags & SHF_ALLOC) 2155 Off = setFileOffset(Sec, Off); 2156 FileSize = alignTo(Off, Config->Wordsize); 2157 } 2158 2159 static std::string rangeToString(uint64_t Addr, uint64_t Len) { 2160 return "[0x" + utohexstr(Addr) + ", 0x" + utohexstr(Addr + Len - 1) + "]"; 2161 } 2162 2163 // Assign file offsets to output sections. 2164 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2165 uint64_t Off = 0; 2166 Off = setFileOffset(Out::ElfHeader, Off); 2167 Off = setFileOffset(Out::ProgramHeaders, Off); 2168 2169 PhdrEntry *LastRX = nullptr; 2170 for (PhdrEntry *P : Phdrs) 2171 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2172 LastRX = P; 2173 2174 for (OutputSection *Sec : OutputSections) { 2175 Off = setFileOffset(Sec, Off); 2176 if (Script->HasSectionsCommand) 2177 continue; 2178 2179 // If this is a last section of the last executable segment and that 2180 // segment is the last loadable segment, align the offset of the 2181 // following section to avoid loading non-segments parts of the file. 2182 if (LastRX && LastRX->LastSec == Sec) 2183 Off = alignTo(Off, Target->PageSize); 2184 } 2185 2186 SectionHeaderOff = alignTo(Off, Config->Wordsize); 2187 FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); 2188 2189 // Our logic assumes that sections have rising VA within the same segment. 2190 // With use of linker scripts it is possible to violate this rule and get file 2191 // offset overlaps or overflows. That should never happen with a valid script 2192 // which does not move the location counter backwards and usually scripts do 2193 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2194 // kernel, which control segment distribution explicitly and move the counter 2195 // backwards, so we have to allow doing that to support linking them. We 2196 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2197 // we want to prevent file size overflows because it would crash the linker. 2198 for (OutputSection *Sec : OutputSections) { 2199 if (Sec->Type == SHT_NOBITS) 2200 continue; 2201 if ((Sec->Offset > FileSize) || (Sec->Offset + Sec->Size > FileSize)) 2202 error("unable to place section " + Sec->Name + " at file offset " + 2203 rangeToString(Sec->Offset, Sec->Size) + 2204 "; check your linker script for overflows"); 2205 } 2206 } 2207 2208 // Finalize the program headers. We call this function after we assign 2209 // file offsets and VAs to all sections. 2210 template <class ELFT> void Writer<ELFT>::setPhdrs() { 2211 for (PhdrEntry *P : Phdrs) { 2212 OutputSection *First = P->FirstSec; 2213 OutputSection *Last = P->LastSec; 2214 2215 if (First) { 2216 P->p_filesz = Last->Offset - First->Offset; 2217 if (Last->Type != SHT_NOBITS) 2218 P->p_filesz += Last->Size; 2219 2220 P->p_memsz = Last->Addr + Last->Size - First->Addr; 2221 P->p_offset = First->Offset; 2222 P->p_vaddr = First->Addr; 2223 2224 if (!P->HasLMA) 2225 P->p_paddr = First->getLMA(); 2226 } 2227 2228 if (P->p_type == PT_LOAD) { 2229 P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize); 2230 } else if (P->p_type == PT_GNU_RELRO) { 2231 P->p_align = 1; 2232 // The glibc dynamic loader rounds the size down, so we need to round up 2233 // to protect the last page. This is a no-op on FreeBSD which always 2234 // rounds up. 2235 P->p_memsz = alignTo(P->p_memsz, Target->PageSize); 2236 } 2237 2238 if (P->p_type == PT_TLS && P->p_memsz) { 2239 if (!Config->Shared && 2240 (Config->EMachine == EM_ARM || Config->EMachine == EM_AARCH64)) { 2241 // On ARM/AArch64, reserve extra space (8 words) between the thread 2242 // pointer and an executable's TLS segment by overaligning the segment. 2243 // This reservation is needed for backwards compatibility with Android's 2244 // TCB, which allocates several slots after the thread pointer (e.g. 2245 // TLS_SLOT_STACK_GUARD==5). For simplicity, this overalignment is also 2246 // done on other operating systems. 2247 P->p_align = std::max<uint64_t>(P->p_align, Config->Wordsize * 8); 2248 } 2249 2250 // The TLS pointer goes after PT_TLS for variant 2 targets. At least glibc 2251 // will align it, so round up the size to make sure the offsets are 2252 // correct. 2253 P->p_memsz = alignTo(P->p_memsz, P->p_align); 2254 } 2255 } 2256 } 2257 2258 // A helper struct for checkSectionOverlap. 2259 namespace { 2260 struct SectionOffset { 2261 OutputSection *Sec; 2262 uint64_t Offset; 2263 }; 2264 } // namespace 2265 2266 // Check whether sections overlap for a specific address range (file offsets, 2267 // load and virtual adresses). 2268 static void checkOverlap(StringRef Name, std::vector<SectionOffset> &Sections, 2269 bool IsVirtualAddr) { 2270 llvm::sort(Sections, [=](const SectionOffset &A, const SectionOffset &B) { 2271 return A.Offset < B.Offset; 2272 }); 2273 2274 // Finding overlap is easy given a vector is sorted by start position. 2275 // If an element starts before the end of the previous element, they overlap. 2276 for (size_t I = 1, End = Sections.size(); I < End; ++I) { 2277 SectionOffset A = Sections[I - 1]; 2278 SectionOffset B = Sections[I]; 2279 if (B.Offset >= A.Offset + A.Sec->Size) 2280 continue; 2281 2282 // If both sections are in OVERLAY we allow the overlapping of virtual 2283 // addresses, because it is what OVERLAY was designed for. 2284 if (IsVirtualAddr && A.Sec->InOverlay && B.Sec->InOverlay) 2285 continue; 2286 2287 errorOrWarn("section " + A.Sec->Name + " " + Name + 2288 " range overlaps with " + B.Sec->Name + "\n>>> " + A.Sec->Name + 2289 " range is " + rangeToString(A.Offset, A.Sec->Size) + "\n>>> " + 2290 B.Sec->Name + " range is " + 2291 rangeToString(B.Offset, B.Sec->Size)); 2292 } 2293 } 2294 2295 // Check for overlapping sections and address overflows. 2296 // 2297 // In this function we check that none of the output sections have overlapping 2298 // file offsets. For SHF_ALLOC sections we also check that the load address 2299 // ranges and the virtual address ranges don't overlap 2300 template <class ELFT> void Writer<ELFT>::checkSections() { 2301 // First, check that section's VAs fit in available address space for target. 2302 for (OutputSection *OS : OutputSections) 2303 if ((OS->Addr + OS->Size < OS->Addr) || 2304 (!ELFT::Is64Bits && OS->Addr + OS->Size > UINT32_MAX)) 2305 errorOrWarn("section " + OS->Name + " at 0x" + utohexstr(OS->Addr) + 2306 " of size 0x" + utohexstr(OS->Size) + 2307 " exceeds available address space"); 2308 2309 // Check for overlapping file offsets. In this case we need to skip any 2310 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2311 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2312 // binary is specified only add SHF_ALLOC sections are added to the output 2313 // file so we skip any non-allocated sections in that case. 2314 std::vector<SectionOffset> FileOffs; 2315 for (OutputSection *Sec : OutputSections) 2316 if (Sec->Size > 0 && Sec->Type != SHT_NOBITS && 2317 (!Config->OFormatBinary || (Sec->Flags & SHF_ALLOC))) 2318 FileOffs.push_back({Sec, Sec->Offset}); 2319 checkOverlap("file", FileOffs, false); 2320 2321 // When linking with -r there is no need to check for overlapping virtual/load 2322 // addresses since those addresses will only be assigned when the final 2323 // executable/shared object is created. 2324 if (Config->Relocatable) 2325 return; 2326 2327 // Checking for overlapping virtual and load addresses only needs to take 2328 // into account SHF_ALLOC sections since others will not be loaded. 2329 // Furthermore, we also need to skip SHF_TLS sections since these will be 2330 // mapped to other addresses at runtime and can therefore have overlapping 2331 // ranges in the file. 2332 std::vector<SectionOffset> VMAs; 2333 for (OutputSection *Sec : OutputSections) 2334 if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2335 VMAs.push_back({Sec, Sec->Addr}); 2336 checkOverlap("virtual address", VMAs, true); 2337 2338 // Finally, check that the load addresses don't overlap. This will usually be 2339 // the same as the virtual addresses but can be different when using a linker 2340 // script with AT(). 2341 std::vector<SectionOffset> LMAs; 2342 for (OutputSection *Sec : OutputSections) 2343 if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2344 LMAs.push_back({Sec, Sec->getLMA()}); 2345 checkOverlap("load address", LMAs, false); 2346 } 2347 2348 // The entry point address is chosen in the following ways. 2349 // 2350 // 1. the '-e' entry command-line option; 2351 // 2. the ENTRY(symbol) command in a linker control script; 2352 // 3. the value of the symbol _start, if present; 2353 // 4. the number represented by the entry symbol, if it is a number; 2354 // 5. the address of the first byte of the .text section, if present; 2355 // 6. the address 0. 2356 static uint64_t getEntryAddr() { 2357 // Case 1, 2 or 3 2358 if (Symbol *B = Symtab->find(Config->Entry)) 2359 return B->getVA(); 2360 2361 // Case 4 2362 uint64_t Addr; 2363 if (to_integer(Config->Entry, Addr)) 2364 return Addr; 2365 2366 // Case 5 2367 if (OutputSection *Sec = findSection(".text")) { 2368 if (Config->WarnMissingEntry) 2369 warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + 2370 utohexstr(Sec->Addr)); 2371 return Sec->Addr; 2372 } 2373 2374 // Case 6 2375 if (Config->WarnMissingEntry) 2376 warn("cannot find entry symbol " + Config->Entry + 2377 "; not setting start address"); 2378 return 0; 2379 } 2380 2381 static uint16_t getELFType() { 2382 if (Config->Pic) 2383 return ET_DYN; 2384 if (Config->Relocatable) 2385 return ET_REL; 2386 return ET_EXEC; 2387 } 2388 2389 static uint8_t getAbiVersion() { 2390 // MIPS non-PIC executable gets ABI version 1. 2391 if (Config->EMachine == EM_MIPS) { 2392 if (getELFType() == ET_EXEC && 2393 (Config->EFlags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 2394 return 1; 2395 return 0; 2396 } 2397 2398 if (Config->EMachine == EM_AMDGPU) { 2399 uint8_t Ver = ObjectFiles[0]->ABIVersion; 2400 for (InputFile *File : makeArrayRef(ObjectFiles).slice(1)) 2401 if (File->ABIVersion != Ver) 2402 error("incompatible ABI version: " + toString(File)); 2403 return Ver; 2404 } 2405 2406 return 0; 2407 } 2408 2409 template <class ELFT> void Writer<ELFT>::writeHeader() { 2410 // For executable segments, the trap instructions are written before writing 2411 // the header. Setting Elf header bytes to zero ensures that any unused bytes 2412 // in header are zero-cleared, instead of having trap instructions. 2413 memset(Out::BufferStart, 0, sizeof(Elf_Ehdr)); 2414 memcpy(Out::BufferStart, "\177ELF", 4); 2415 2416 // Write the ELF header. 2417 auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Out::BufferStart); 2418 EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32; 2419 EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB; 2420 EHdr->e_ident[EI_VERSION] = EV_CURRENT; 2421 EHdr->e_ident[EI_OSABI] = Config->OSABI; 2422 EHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 2423 EHdr->e_type = getELFType(); 2424 EHdr->e_machine = Config->EMachine; 2425 EHdr->e_version = EV_CURRENT; 2426 EHdr->e_entry = getEntryAddr(); 2427 EHdr->e_shoff = SectionHeaderOff; 2428 EHdr->e_flags = Config->EFlags; 2429 EHdr->e_ehsize = sizeof(Elf_Ehdr); 2430 EHdr->e_phnum = Phdrs.size(); 2431 EHdr->e_shentsize = sizeof(Elf_Shdr); 2432 2433 if (!Config->Relocatable) { 2434 EHdr->e_phoff = sizeof(Elf_Ehdr); 2435 EHdr->e_phentsize = sizeof(Elf_Phdr); 2436 } 2437 2438 // Write the program header table. 2439 auto *HBuf = reinterpret_cast<Elf_Phdr *>(Out::BufferStart + EHdr->e_phoff); 2440 for (PhdrEntry *P : Phdrs) { 2441 HBuf->p_type = P->p_type; 2442 HBuf->p_flags = P->p_flags; 2443 HBuf->p_offset = P->p_offset; 2444 HBuf->p_vaddr = P->p_vaddr; 2445 HBuf->p_paddr = P->p_paddr; 2446 HBuf->p_filesz = P->p_filesz; 2447 HBuf->p_memsz = P->p_memsz; 2448 HBuf->p_align = P->p_align; 2449 ++HBuf; 2450 } 2451 2452 // Write the section header table. 2453 // 2454 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2455 // and e_shstrndx fields. When the value of one of these fields exceeds 2456 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2457 // use fields in the section header at index 0 to store 2458 // the value. The sentinel values and fields are: 2459 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2460 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2461 auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Out::BufferStart + EHdr->e_shoff); 2462 size_t Num = OutputSections.size() + 1; 2463 if (Num >= SHN_LORESERVE) 2464 SHdrs->sh_size = Num; 2465 else 2466 EHdr->e_shnum = Num; 2467 2468 uint32_t StrTabIndex = In.ShStrTab->getParent()->SectionIndex; 2469 if (StrTabIndex >= SHN_LORESERVE) { 2470 SHdrs->sh_link = StrTabIndex; 2471 EHdr->e_shstrndx = SHN_XINDEX; 2472 } else { 2473 EHdr->e_shstrndx = StrTabIndex; 2474 } 2475 2476 for (OutputSection *Sec : OutputSections) 2477 Sec->writeHeaderTo<ELFT>(++SHdrs); 2478 } 2479 2480 // Open a result file. 2481 template <class ELFT> void Writer<ELFT>::openFile() { 2482 uint64_t MaxSize = Config->Is64 ? INT64_MAX : UINT32_MAX; 2483 if (FileSize != size_t(FileSize) || MaxSize < FileSize) { 2484 error("output file too large: " + Twine(FileSize) + " bytes"); 2485 return; 2486 } 2487 2488 unlinkAsync(Config->OutputFile); 2489 unsigned Flags = 0; 2490 if (!Config->Relocatable) 2491 Flags = FileOutputBuffer::F_executable; 2492 Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr = 2493 FileOutputBuffer::create(Config->OutputFile, FileSize, Flags); 2494 2495 if (!BufferOrErr) { 2496 error("failed to open " + Config->OutputFile + ": " + 2497 llvm::toString(BufferOrErr.takeError())); 2498 return; 2499 } 2500 Buffer = std::move(*BufferOrErr); 2501 Out::BufferStart = Buffer->getBufferStart(); 2502 } 2503 2504 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2505 for (OutputSection *Sec : OutputSections) 2506 if (Sec->Flags & SHF_ALLOC) 2507 Sec->writeTo<ELFT>(Out::BufferStart + Sec->Offset); 2508 } 2509 2510 static void fillTrap(uint8_t *I, uint8_t *End) { 2511 for (; I + 4 <= End; I += 4) 2512 memcpy(I, &Target->TrapInstr, 4); 2513 } 2514 2515 // Fill the last page of executable segments with trap instructions 2516 // instead of leaving them as zero. Even though it is not required by any 2517 // standard, it is in general a good thing to do for security reasons. 2518 // 2519 // We'll leave other pages in segments as-is because the rest will be 2520 // overwritten by output sections. 2521 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2522 if (Script->HasSectionsCommand) 2523 return; 2524 2525 // Fill the last page. 2526 for (PhdrEntry *P : Phdrs) 2527 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2528 fillTrap(Out::BufferStart + 2529 alignDown(P->p_offset + P->p_filesz, Target->PageSize), 2530 Out::BufferStart + 2531 alignTo(P->p_offset + P->p_filesz, Target->PageSize)); 2532 2533 // Round up the file size of the last segment to the page boundary iff it is 2534 // an executable segment to ensure that other tools don't accidentally 2535 // trim the instruction padding (e.g. when stripping the file). 2536 PhdrEntry *Last = nullptr; 2537 for (PhdrEntry *P : Phdrs) 2538 if (P->p_type == PT_LOAD) 2539 Last = P; 2540 2541 if (Last && (Last->p_flags & PF_X)) 2542 Last->p_memsz = Last->p_filesz = alignTo(Last->p_filesz, Target->PageSize); 2543 } 2544 2545 // Write section contents to a mmap'ed file. 2546 template <class ELFT> void Writer<ELFT>::writeSections() { 2547 // In -r or -emit-relocs mode, write the relocation sections first as in 2548 // ELf_Rel targets we might find out that we need to modify the relocated 2549 // section while doing it. 2550 for (OutputSection *Sec : OutputSections) 2551 if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) 2552 Sec->writeTo<ELFT>(Out::BufferStart + Sec->Offset); 2553 2554 for (OutputSection *Sec : OutputSections) 2555 if (Sec->Type != SHT_REL && Sec->Type != SHT_RELA) 2556 Sec->writeTo<ELFT>(Out::BufferStart + Sec->Offset); 2557 } 2558 2559 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2560 if (!In.BuildId || !In.BuildId->getParent()) 2561 return; 2562 2563 // Compute a hash of all sections of the output file. 2564 In.BuildId->writeBuildId({Out::BufferStart, size_t(FileSize)}); 2565 } 2566 2567 template void elf::writeResult<ELF32LE>(); 2568 template void elf::writeResult<ELF32BE>(); 2569 template void elf::writeResult<ELF64LE>(); 2570 template void elf::writeResult<ELF64BE>(); 2571