1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "Writer.h" 11 #include "Config.h" 12 #include "LinkerScript.h" 13 #include "OutputSections.h" 14 #include "Relocations.h" 15 #include "Strings.h" 16 #include "SymbolTable.h" 17 #include "Target.h" 18 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/StringSwitch.h" 21 #include "llvm/Support/FileOutputBuffer.h" 22 #include "llvm/Support/StringSaver.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <climits> 25 26 using namespace llvm; 27 using namespace llvm::ELF; 28 using namespace llvm::object; 29 using namespace llvm::support; 30 using namespace llvm::support::endian; 31 32 using namespace lld; 33 using namespace lld::elf; 34 35 namespace { 36 // The writer writes a SymbolTable result to a file. 37 template <class ELFT> class Writer { 38 public: 39 typedef typename ELFT::uint uintX_t; 40 typedef typename ELFT::Shdr Elf_Shdr; 41 typedef typename ELFT::Ehdr Elf_Ehdr; 42 typedef typename ELFT::Phdr Elf_Phdr; 43 typedef typename ELFT::Sym Elf_Sym; 44 typedef typename ELFT::SymRange Elf_Sym_Range; 45 typedef typename ELFT::Rela Elf_Rela; 46 void run(); 47 48 private: 49 typedef PhdrEntry<ELFT> Phdr; 50 51 void copyLocalSymbols(); 52 void addReservedSymbols(); 53 void createSections(); 54 void forEachRelSec(std::function<void(InputSectionBase<ELFT> &, 55 const typename ELFT::Shdr &)> Fn); 56 void sortSections(); 57 void finalizeSections(); 58 void addPredefinedSections(); 59 bool needsGot(); 60 61 std::vector<Phdr> createPhdrs(); 62 void assignAddresses(); 63 void assignFileOffsets(); 64 void assignFileOffsetsBinary(); 65 void setPhdrs(); 66 void fixHeaders(); 67 void fixSectionAlignments(); 68 void fixAbsoluteSymbols(); 69 void openFile(); 70 void writeHeader(); 71 void writeSections(); 72 void writeSectionsBinary(); 73 void writeBuildId(); 74 75 std::unique_ptr<FileOutputBuffer> Buffer; 76 77 BumpPtrAllocator Alloc; 78 std::vector<OutputSectionBase<ELFT> *> OutputSections; 79 OutputSectionFactory<ELFT> Factory; 80 81 void addRelIpltSymbols(); 82 void addStartEndSymbols(); 83 void addStartStopSymbols(OutputSectionBase<ELFT> *Sec); 84 OutputSectionBase<ELFT> *findSection(StringRef Name); 85 86 std::vector<Phdr> Phdrs; 87 88 uintX_t FileSize; 89 uintX_t SectionHeaderOff; 90 }; 91 } // anonymous namespace 92 93 StringRef elf::getOutputSectionName(StringRef Name, BumpPtrAllocator &Alloc) { 94 if (Config->Relocatable) 95 return Name; 96 97 for (StringRef V : 98 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.", 99 ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 100 ".gcc_except_table.", ".tdata.", ".ARM.exidx."}) { 101 StringRef Prefix = V.drop_back(); 102 if (Name.startswith(V) || Name == Prefix) 103 return Prefix; 104 } 105 106 // ".zdebug_" is a prefix for ZLIB-compressed sections. 107 // Because we decompressed input sections, we want to remove 'z'. 108 if (Name.startswith(".zdebug_")) 109 return StringSaver(Alloc).save(Twine(".") + Name.substr(2)); 110 return Name; 111 } 112 113 template <class ELFT> void elf::reportDiscarded(InputSectionBase<ELFT> *IS) { 114 if (!Config->PrintGcSections || !IS || IS == &InputSection<ELFT>::Discarded || 115 IS->Live) 116 return; 117 errs() << "removing unused section from '" << IS->Name << "' in file '" 118 << IS->getFile()->getName() << "'\n"; 119 } 120 121 template <class ELFT> static bool needsInterpSection() { 122 return !Symtab<ELFT>::X->getSharedFiles().empty() && 123 !Config->DynamicLinker.empty() && 124 !Script<ELFT>::X->ignoreInterpSection(); 125 } 126 127 template <class ELFT> void elf::writeResult() { 128 typedef typename ELFT::uint uintX_t; 129 typedef typename ELFT::Ehdr Elf_Ehdr; 130 131 // Create singleton output sections. 132 OutputSection<ELFT> Bss(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); 133 DynamicSection<ELFT> Dynamic; 134 EhOutputSection<ELFT> EhFrame; 135 GotSection<ELFT> Got; 136 PltSection<ELFT> Plt; 137 RelocationSection<ELFT> RelaDyn(Config->Rela ? ".rela.dyn" : ".rel.dyn", 138 Config->ZCombreloc); 139 StringTableSection<ELFT> ShStrTab(".shstrtab", false); 140 VersionTableSection<ELFT> VerSym; 141 VersionNeedSection<ELFT> VerNeed; 142 143 OutputSectionBase<ELFT> ElfHeader("", 0, SHF_ALLOC); 144 ElfHeader.setSize(sizeof(Elf_Ehdr)); 145 OutputSectionBase<ELFT> ProgramHeaders("", 0, SHF_ALLOC); 146 ProgramHeaders.updateAlignment(sizeof(uintX_t)); 147 148 // Instantiate optional output sections if they are needed. 149 std::unique_ptr<InterpSection<ELFT>> Interp; 150 std::unique_ptr<BuildIdSection<ELFT>> BuildId; 151 std::unique_ptr<StringTableSection<ELFT>> DynStrTab; 152 std::unique_ptr<SymbolTableSection<ELFT>> DynSymTab; 153 std::unique_ptr<EhFrameHeader<ELFT>> EhFrameHdr; 154 std::unique_ptr<GdbIndexSection<ELFT>> GdbIndex; 155 std::unique_ptr<GnuHashTableSection<ELFT>> GnuHashTab; 156 std::unique_ptr<GotPltSection<ELFT>> GotPlt; 157 std::unique_ptr<HashTableSection<ELFT>> HashTab; 158 std::unique_ptr<RelocationSection<ELFT>> RelaPlt; 159 std::unique_ptr<StringTableSection<ELFT>> StrTab; 160 std::unique_ptr<SymbolTableSection<ELFT>> SymTabSec; 161 std::unique_ptr<OutputSection<ELFT>> MipsRldMap; 162 std::unique_ptr<VersionDefinitionSection<ELFT>> VerDef; 163 164 if (needsInterpSection<ELFT>()) 165 Interp.reset(new InterpSection<ELFT>); 166 167 if (Config->BuildId == BuildIdKind::Fast) 168 BuildId.reset(new BuildIdFastHash<ELFT>); 169 else if (Config->BuildId == BuildIdKind::Md5) 170 BuildId.reset(new BuildIdMd5<ELFT>); 171 else if (Config->BuildId == BuildIdKind::Sha1) 172 BuildId.reset(new BuildIdSha1<ELFT>); 173 else if (Config->BuildId == BuildIdKind::Uuid) 174 BuildId.reset(new BuildIdUuid<ELFT>); 175 else if (Config->BuildId == BuildIdKind::Hexstring) 176 BuildId.reset(new BuildIdHexstring<ELFT>); 177 178 if (!Symtab<ELFT>::X->getSharedFiles().empty() || Config->Pic) { 179 DynStrTab.reset(new StringTableSection<ELFT>(".dynstr", true)); 180 DynSymTab.reset(new SymbolTableSection<ELFT>(*DynStrTab)); 181 } 182 183 if (Config->EhFrameHdr) 184 EhFrameHdr.reset(new EhFrameHeader<ELFT>); 185 186 if (Config->GnuHash) 187 GnuHashTab.reset(new GnuHashTableSection<ELFT>); 188 if (Config->SysvHash) 189 HashTab.reset(new HashTableSection<ELFT>); 190 if (Config->GdbIndex) 191 GdbIndex.reset(new GdbIndexSection<ELFT>); 192 StringRef S = Config->Rela ? ".rela.plt" : ".rel.plt"; 193 GotPlt.reset(new GotPltSection<ELFT>); 194 RelaPlt.reset(new RelocationSection<ELFT>(S, false /*Sort*/)); 195 if (Config->Strip != StripPolicy::All) { 196 StrTab.reset(new StringTableSection<ELFT>(".strtab", false)); 197 SymTabSec.reset(new SymbolTableSection<ELFT>(*StrTab)); 198 } 199 if (Config->EMachine == EM_MIPS && !Config->Shared) { 200 // This is a MIPS specific section to hold a space within the data segment 201 // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry. 202 // See "Dynamic section" in Chapter 5 in the following document: 203 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 204 MipsRldMap.reset(new OutputSection<ELFT>(".rld_map", SHT_PROGBITS, 205 SHF_ALLOC | SHF_WRITE)); 206 MipsRldMap->setSize(sizeof(uintX_t)); 207 MipsRldMap->updateAlignment(sizeof(uintX_t)); 208 } 209 if (!Config->VersionDefinitions.empty()) 210 VerDef.reset(new VersionDefinitionSection<ELFT>()); 211 212 Out<ELFT>::Bss = &Bss; 213 Out<ELFT>::BuildId = BuildId.get(); 214 Out<ELFT>::DynStrTab = DynStrTab.get(); 215 Out<ELFT>::DynSymTab = DynSymTab.get(); 216 Out<ELFT>::Dynamic = &Dynamic; 217 Out<ELFT>::EhFrame = &EhFrame; 218 Out<ELFT>::EhFrameHdr = EhFrameHdr.get(); 219 Out<ELFT>::GdbIndex = GdbIndex.get(); 220 Out<ELFT>::GnuHashTab = GnuHashTab.get(); 221 Out<ELFT>::Got = &Got; 222 Out<ELFT>::GotPlt = GotPlt.get(); 223 Out<ELFT>::HashTab = HashTab.get(); 224 Out<ELFT>::Interp = Interp.get(); 225 Out<ELFT>::Plt = &Plt; 226 Out<ELFT>::RelaDyn = &RelaDyn; 227 Out<ELFT>::RelaPlt = RelaPlt.get(); 228 Out<ELFT>::ShStrTab = &ShStrTab; 229 Out<ELFT>::StrTab = StrTab.get(); 230 Out<ELFT>::SymTab = SymTabSec.get(); 231 Out<ELFT>::VerDef = VerDef.get(); 232 Out<ELFT>::VerSym = &VerSym; 233 Out<ELFT>::VerNeed = &VerNeed; 234 Out<ELFT>::MipsRldMap = MipsRldMap.get(); 235 Out<ELFT>::Opd = nullptr; 236 Out<ELFT>::OpdBuf = nullptr; 237 Out<ELFT>::TlsPhdr = nullptr; 238 Out<ELFT>::ElfHeader = &ElfHeader; 239 Out<ELFT>::ProgramHeaders = &ProgramHeaders; 240 241 Out<ELFT>::PreinitArray = nullptr; 242 Out<ELFT>::InitArray = nullptr; 243 Out<ELFT>::FiniArray = nullptr; 244 245 Writer<ELFT>().run(); 246 Out<ELFT>::Pool.clear(); 247 } 248 249 template <class ELFT> static std::vector<DefinedCommon *> getCommonSymbols() { 250 std::vector<DefinedCommon *> V; 251 for (Symbol *S : Symtab<ELFT>::X->getSymbols()) 252 if (auto *B = dyn_cast<DefinedCommon>(S->body())) 253 V.push_back(B); 254 return V; 255 } 256 257 // The main function of the writer. 258 template <class ELFT> void Writer<ELFT>::run() { 259 addReservedSymbols(); 260 261 if (Target->NeedsThunks) 262 forEachRelSec(createThunks<ELFT>); 263 264 CommonInputSection<ELFT> Common(getCommonSymbols<ELFT>()); 265 CommonInputSection<ELFT>::X = &Common; 266 267 Script<ELFT>::X->OutputSections = &OutputSections; 268 if (ScriptConfig->HasSections) { 269 Script<ELFT>::X->createSections(Factory); 270 } else { 271 createSections(); 272 Script<ELFT>::X->processCommands(Factory); 273 } 274 275 if (Config->Discard != DiscardPolicy::All) 276 copyLocalSymbols(); 277 278 finalizeSections(); 279 if (HasError) 280 return; 281 282 if (Config->Relocatable) { 283 assignFileOffsets(); 284 } else { 285 Phdrs = Script<ELFT>::X->hasPhdrsCommands() ? Script<ELFT>::X->createPhdrs() 286 : createPhdrs(); 287 fixHeaders(); 288 if (ScriptConfig->HasSections) { 289 Script<ELFT>::X->assignAddresses(Phdrs); 290 } else { 291 fixSectionAlignments(); 292 assignAddresses(); 293 } 294 295 if (!Config->OFormatBinary) 296 assignFileOffsets(); 297 else 298 assignFileOffsetsBinary(); 299 300 setPhdrs(); 301 fixAbsoluteSymbols(); 302 } 303 304 openFile(); 305 if (HasError) 306 return; 307 if (!Config->OFormatBinary) { 308 writeHeader(); 309 writeSections(); 310 } else { 311 writeSectionsBinary(); 312 } 313 writeBuildId(); 314 if (HasError) 315 return; 316 if (auto EC = Buffer->commit()) 317 error(EC, "failed to write to the output file"); 318 } 319 320 template <class ELFT> 321 static bool shouldKeepInSymtab(InputSectionBase<ELFT> *Sec, StringRef SymName, 322 const SymbolBody &B) { 323 if (B.isFile()) 324 return false; 325 326 // We keep sections in symtab for relocatable output. 327 if (B.isSection()) 328 return Config->Relocatable; 329 330 // If sym references a section in a discarded group, don't keep it. 331 if (Sec == &InputSection<ELFT>::Discarded) 332 return false; 333 334 if (Config->Discard == DiscardPolicy::None) 335 return true; 336 337 // In ELF assembly .L symbols are normally discarded by the assembler. 338 // If the assembler fails to do so, the linker discards them if 339 // * --discard-locals is used. 340 // * The symbol is in a SHF_MERGE section, which is normally the reason for 341 // the assembler keeping the .L symbol. 342 if (!SymName.startswith(".L") && !SymName.empty()) 343 return true; 344 345 if (Config->Discard == DiscardPolicy::Locals) 346 return false; 347 348 return !Sec || !(Sec->getSectionHdr()->sh_flags & SHF_MERGE); 349 } 350 351 template <class ELFT> static bool includeInSymtab(const SymbolBody &B) { 352 if (!B.isLocal() && !B.symbol()->IsUsedInRegularObj) 353 return false; 354 355 if (auto *D = dyn_cast<DefinedRegular<ELFT>>(&B)) { 356 // Always include absolute symbols. 357 if (!D->Section) 358 return true; 359 // Exclude symbols pointing to garbage-collected sections. 360 if (!D->Section->Live) 361 return false; 362 if (auto *S = dyn_cast<MergeInputSection<ELFT>>(D->Section)) 363 if (!S->getSectionPiece(D->Value)->Live) 364 return false; 365 } 366 return true; 367 } 368 369 // Local symbols are not in the linker's symbol table. This function scans 370 // each object file's symbol table to copy local symbols to the output. 371 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 372 if (!Out<ELFT>::SymTab) 373 return; 374 for (elf::ObjectFile<ELFT> *F : Symtab<ELFT>::X->getObjectFiles()) { 375 StringRef StrTab = F->getStringTable(); 376 for (SymbolBody *B : F->getLocalSymbols()) { 377 if (!B->IsLocal) 378 fatal(getFilename(F) + 379 ": broken object: getLocalSymbols returns a non-local symbol"); 380 auto *DR = dyn_cast<DefinedRegular<ELFT>>(B); 381 // No reason to keep local undefined symbol in symtab. 382 if (!DR) 383 continue; 384 if (!includeInSymtab<ELFT>(*B)) 385 continue; 386 if (B->getNameOffset() >= StrTab.size()) 387 fatal(getFilename(F) + ": invalid symbol name offset"); 388 StringRef SymName(StrTab.data() + B->getNameOffset()); 389 InputSectionBase<ELFT> *Sec = DR->Section; 390 if (!shouldKeepInSymtab<ELFT>(Sec, SymName, *B)) 391 continue; 392 ++Out<ELFT>::SymTab->NumLocals; 393 if (Config->Relocatable) 394 B->DynsymIndex = Out<ELFT>::SymTab->NumLocals; 395 F->KeptLocalSyms.push_back( 396 std::make_pair(DR, Out<ELFT>::SymTab->StrTabSec.addString(SymName))); 397 } 398 } 399 } 400 401 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that 402 // we would like to make sure appear is a specific order to maximize their 403 // coverage by a single signed 16-bit offset from the TOC base pointer. 404 // Conversely, the special .tocbss section should be first among all SHT_NOBITS 405 // sections. This will put it next to the loaded special PPC64 sections (and, 406 // thus, within reach of the TOC base pointer). 407 static int getPPC64SectionRank(StringRef SectionName) { 408 return StringSwitch<int>(SectionName) 409 .Case(".tocbss", 0) 410 .Case(".branch_lt", 2) 411 .Case(".toc", 3) 412 .Case(".toc1", 4) 413 .Case(".opd", 5) 414 .Default(1); 415 } 416 417 template <class ELFT> bool elf::isRelroSection(OutputSectionBase<ELFT> *Sec) { 418 if (!Config->ZRelro) 419 return false; 420 typename ELFT::uint Flags = Sec->getFlags(); 421 if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) 422 return false; 423 if (Flags & SHF_TLS) 424 return true; 425 uint32_t Type = Sec->getType(); 426 if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || 427 Type == SHT_PREINIT_ARRAY) 428 return true; 429 if (Sec == Out<ELFT>::GotPlt) 430 return Config->ZNow; 431 if (Sec == Out<ELFT>::Dynamic || Sec == Out<ELFT>::Got) 432 return true; 433 StringRef S = Sec->getName(); 434 return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || 435 S == ".eh_frame"; 436 } 437 438 template <class ELFT> 439 static bool compareSectionsNonScript(OutputSectionBase<ELFT> *A, 440 OutputSectionBase<ELFT> *B) { 441 typedef typename ELFT::uint uintX_t; 442 uintX_t AFlags = A->getFlags(); 443 uintX_t BFlags = B->getFlags(); 444 445 // Allocatable sections go first to reduce the total PT_LOAD size and 446 // so debug info doesn't change addresses in actual code. 447 bool AIsAlloc = AFlags & SHF_ALLOC; 448 bool BIsAlloc = BFlags & SHF_ALLOC; 449 if (AIsAlloc != BIsAlloc) 450 return AIsAlloc; 451 452 // We don't have any special requirements for the relative order of two non 453 // allocatable sections. 454 if (!AIsAlloc) 455 return false; 456 457 // We want the read only sections first so that they go in the PT_LOAD 458 // covering the program headers at the start of the file. 459 bool AIsWritable = AFlags & SHF_WRITE; 460 bool BIsWritable = BFlags & SHF_WRITE; 461 if (AIsWritable != BIsWritable) 462 return BIsWritable; 463 464 if (!ScriptConfig->HasSections) { 465 // For a corresponding reason, put non exec sections first (the program 466 // header PT_LOAD is not executable). 467 // We only do that if we are not using linker scripts, since with linker 468 // scripts ro and rx sections are in the same PT_LOAD, so their relative 469 // order is not important. 470 bool AIsExec = AFlags & SHF_EXECINSTR; 471 bool BIsExec = BFlags & SHF_EXECINSTR; 472 if (AIsExec != BIsExec) 473 return BIsExec; 474 } 475 476 // If we got here we know that both A and B are in the same PT_LOAD. 477 478 // The TLS initialization block needs to be a single contiguous block in a R/W 479 // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS 480 // sections are placed here as they don't take up virtual address space in the 481 // PT_LOAD. 482 bool AIsTls = AFlags & SHF_TLS; 483 bool BIsTls = BFlags & SHF_TLS; 484 if (AIsTls != BIsTls) 485 return AIsTls; 486 487 // The next requirement we have is to put nobits sections last. The 488 // reason is that the only thing the dynamic linker will see about 489 // them is a p_memsz that is larger than p_filesz. Seeing that it 490 // zeros the end of the PT_LOAD, so that has to correspond to the 491 // nobits sections. 492 bool AIsNoBits = A->getType() == SHT_NOBITS; 493 bool BIsNoBits = B->getType() == SHT_NOBITS; 494 if (AIsNoBits != BIsNoBits) 495 return BIsNoBits; 496 497 // We place RelRo section before plain r/w ones. 498 bool AIsRelRo = isRelroSection(A); 499 bool BIsRelRo = isRelroSection(B); 500 if (AIsRelRo != BIsRelRo) 501 return AIsRelRo; 502 503 // Some architectures have additional ordering restrictions for sections 504 // within the same PT_LOAD. 505 if (Config->EMachine == EM_PPC64) 506 return getPPC64SectionRank(A->getName()) < 507 getPPC64SectionRank(B->getName()); 508 509 return false; 510 } 511 512 // Output section ordering is determined by this function. 513 template <class ELFT> 514 static bool compareSections(OutputSectionBase<ELFT> *A, 515 OutputSectionBase<ELFT> *B) { 516 // For now, put sections mentioned in a linker script first. 517 int AIndex = Script<ELFT>::X->getSectionIndex(A->getName()); 518 int BIndex = Script<ELFT>::X->getSectionIndex(B->getName()); 519 bool AInScript = AIndex != INT_MAX; 520 bool BInScript = BIndex != INT_MAX; 521 if (AInScript != BInScript) 522 return AInScript; 523 // If both are in the script, use that order. 524 if (AInScript) 525 return AIndex < BIndex; 526 527 return compareSectionsNonScript(A, B); 528 } 529 530 template <class ELFT> static bool isDiscarded(InputSectionBase<ELFT> *S) { 531 return !S || S == &InputSection<ELFT>::Discarded || !S->Live; 532 } 533 534 // Program header entry 535 template <class ELFT> 536 PhdrEntry<ELFT>::PhdrEntry(unsigned Type, unsigned Flags) { 537 H.p_type = Type; 538 H.p_flags = Flags; 539 } 540 541 template <class ELFT> void PhdrEntry<ELFT>::add(OutputSectionBase<ELFT> *Sec) { 542 Last = Sec; 543 if (!First) 544 First = Sec; 545 H.p_align = std::max<typename ELFT::uint>(H.p_align, Sec->getAlignment()); 546 if (H.p_type == PT_LOAD) 547 Sec->FirstInPtLoad = First; 548 } 549 550 template <class ELFT> 551 static Symbol * 552 addOptionalSynthetic(StringRef Name, OutputSectionBase<ELFT> *Sec, 553 typename ELFT::uint Val, uint8_t StOther = STV_HIDDEN) { 554 SymbolBody *S = Symtab<ELFT>::X->find(Name); 555 if (!S) 556 return nullptr; 557 if (!S->isUndefined() && !S->isShared()) 558 return S->symbol(); 559 return Symtab<ELFT>::X->addSynthetic(Name, Sec, Val, StOther); 560 } 561 562 template <class ELFT> 563 static void addSynthetic(StringRef Name, OutputSectionBase<ELFT> *Sec, 564 typename ELFT::uint Val) { 565 SymbolBody *S = Symtab<ELFT>::X->find(Name); 566 if (!S || S->isUndefined() || S->isShared()) 567 Symtab<ELFT>::X->addSynthetic(Name, Sec, Val, STV_HIDDEN); 568 } 569 570 // The beginning and the ending of .rel[a].plt section are marked 571 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 572 // executable. The runtime needs these symbols in order to resolve 573 // all IRELATIVE relocs on startup. For dynamic executables, we don't 574 // need these symbols, since IRELATIVE relocs are resolved through GOT 575 // and PLT. For details, see http://www.airs.com/blog/archives/403. 576 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 577 if (Out<ELFT>::DynSymTab || !Out<ELFT>::RelaPlt) 578 return; 579 StringRef S = Config->Rela ? "__rela_iplt_start" : "__rel_iplt_start"; 580 addOptionalSynthetic(S, Out<ELFT>::RelaPlt, 0); 581 582 S = Config->Rela ? "__rela_iplt_end" : "__rel_iplt_end"; 583 addOptionalSynthetic(S, Out<ELFT>::RelaPlt, 584 DefinedSynthetic<ELFT>::SectionEnd); 585 } 586 587 // The linker is expected to define some symbols depending on 588 // the linking result. This function defines such symbols. 589 template <class ELFT> void Writer<ELFT>::addReservedSymbols() { 590 if (Config->EMachine == EM_MIPS && !Config->Relocatable) { 591 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 592 // so that it points to an absolute address which is relative to GOT. 593 // See "Global Data Symbols" in Chapter 6 in the following document: 594 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 595 Symtab<ELFT>::X->addSynthetic("_gp", Out<ELFT>::Got, MipsGPOffset, 596 STV_HIDDEN); 597 598 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 599 // start of function and 'gp' pointer into GOT. 600 Symbol *Sym = 601 addOptionalSynthetic("_gp_disp", Out<ELFT>::Got, MipsGPOffset); 602 if (Sym) 603 ElfSym<ELFT>::MipsGpDisp = Sym->body(); 604 605 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 606 // pointer. This symbol is used in the code generated by .cpload pseudo-op 607 // in case of using -mno-shared option. 608 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 609 addOptionalSynthetic("__gnu_local_gp", Out<ELFT>::Got, MipsGPOffset); 610 } 611 612 // In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol 613 // is magical and is used to produce a R_386_GOTPC relocation. 614 // The R_386_GOTPC relocation value doesn't actually depend on the 615 // symbol value, so it could use an index of STN_UNDEF which, according 616 // to the spec, means the symbol value is 0. 617 // Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in 618 // the object file. 619 // The situation is even stranger on x86_64 where the assembly doesn't 620 // need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as 621 // an undefined symbol in the .o files. 622 // Given that the symbol is effectively unused, we just create a dummy 623 // hidden one to avoid the undefined symbol error. 624 if (!Config->Relocatable) 625 Symtab<ELFT>::X->addIgnored("_GLOBAL_OFFSET_TABLE_"); 626 627 // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For 628 // static linking the linker is required to optimize away any references to 629 // __tls_get_addr, so it's not defined anywhere. Create a hidden definition 630 // to avoid the undefined symbol error. As usual as special case is MIPS - 631 // MIPS libc defines __tls_get_addr itself because there are no TLS 632 // optimizations for this target. 633 if (!Out<ELFT>::DynSymTab && Config->EMachine != EM_MIPS) 634 Symtab<ELFT>::X->addIgnored("__tls_get_addr"); 635 636 // If linker script do layout we do not need to create any standart symbols. 637 if (ScriptConfig->HasSections) 638 return; 639 640 ElfSym<ELFT>::EhdrStart = Symtab<ELFT>::X->addIgnored("__ehdr_start"); 641 642 auto Define = [this](StringRef S, DefinedRegular<ELFT> *&Sym1, 643 DefinedRegular<ELFT> *&Sym2) { 644 Sym1 = Symtab<ELFT>::X->addIgnored(S, STV_DEFAULT); 645 646 // The name without the underscore is not a reserved name, 647 // so it is defined only when there is a reference against it. 648 assert(S.startswith("_")); 649 S = S.substr(1); 650 if (SymbolBody *B = Symtab<ELFT>::X->find(S)) 651 if (B->isUndefined()) 652 Sym2 = Symtab<ELFT>::X->addAbsolute(S, STV_DEFAULT); 653 }; 654 655 Define("_end", ElfSym<ELFT>::End, ElfSym<ELFT>::End2); 656 Define("_etext", ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2); 657 Define("_edata", ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2); 658 } 659 660 // Sort input sections by section name suffixes for 661 // __attribute__((init_priority(N))). 662 template <class ELFT> static void sortInitFini(OutputSectionBase<ELFT> *S) { 663 if (S) 664 reinterpret_cast<OutputSection<ELFT> *>(S)->sortInitFini(); 665 } 666 667 // Sort input sections by the special rule for .ctors and .dtors. 668 template <class ELFT> static void sortCtorsDtors(OutputSectionBase<ELFT> *S) { 669 if (S) 670 reinterpret_cast<OutputSection<ELFT> *>(S)->sortCtorsDtors(); 671 } 672 673 template <class ELFT> 674 void Writer<ELFT>::forEachRelSec( 675 std::function<void(InputSectionBase<ELFT> &, const typename ELFT::Shdr &)> 676 Fn) { 677 for (elf::ObjectFile<ELFT> *F : Symtab<ELFT>::X->getObjectFiles()) { 678 for (InputSectionBase<ELFT> *IS : F->getSections()) { 679 if (isDiscarded(IS)) 680 continue; 681 // Scan all relocations. Each relocation goes through a series 682 // of tests to determine if it needs special treatment, such as 683 // creating GOT, PLT, copy relocations, etc. 684 // Note that relocations for non-alloc sections are directly 685 // processed by InputSection::relocateNonAlloc. 686 if (!(IS->getSectionHdr()->sh_flags & SHF_ALLOC)) 687 continue; 688 if (auto *S = dyn_cast<InputSection<ELFT>>(IS)) { 689 for (const Elf_Shdr *RelSec : S->RelocSections) 690 Fn(*S, *RelSec); 691 continue; 692 } 693 if (auto *S = dyn_cast<EhInputSection<ELFT>>(IS)) 694 if (S->RelocSection) 695 Fn(*S, *S->RelocSection); 696 } 697 } 698 } 699 700 template <class ELFT> void Writer<ELFT>::createSections() { 701 for (elf::ObjectFile<ELFT> *F : Symtab<ELFT>::X->getObjectFiles()) { 702 for (InputSectionBase<ELFT> *IS : F->getSections()) { 703 if (isDiscarded(IS)) { 704 reportDiscarded(IS); 705 continue; 706 } 707 OutputSectionBase<ELFT> *Sec; 708 bool IsNew; 709 StringRef OutsecName = getOutputSectionName(IS->Name, Alloc); 710 std::tie(Sec, IsNew) = Factory.create(IS, OutsecName); 711 if (IsNew) 712 OutputSections.push_back(Sec); 713 Sec->addSection(IS); 714 } 715 } 716 717 sortInitFini(findSection(".init_array")); 718 sortInitFini(findSection(".fini_array")); 719 sortCtorsDtors(findSection(".ctors")); 720 sortCtorsDtors(findSection(".dtors")); 721 722 for (OutputSectionBase<ELFT> *Sec : OutputSections) 723 Sec->assignOffsets(); 724 } 725 726 template <class ELFT> void Writer<ELFT>::sortSections() { 727 if (!ScriptConfig->HasSections) { 728 std::stable_sort(OutputSections.begin(), OutputSections.end(), 729 compareSectionsNonScript<ELFT>); 730 return; 731 } 732 Script<ELFT>::X->adjustSectionsBeforeSorting(); 733 734 // The order of the sections in the script is arbitrary and may not agree with 735 // compareSectionsNonScript. This means that we cannot easily define a 736 // strict weak ordering. To see why, consider a comparison of a section in the 737 // script and one not in the script. We have a two simple options: 738 // * Make them equivalent (a is not less than b, and b is not less than a). 739 // The problem is then that equivalence has to be transitive and we can 740 // have sections a, b and c with only b in a script and a less than c 741 // which breaks this property. 742 // * Use compareSectionsNonScript. Given that the script order doesn't have 743 // to match, we can end up with sections a, b, c, d where b and c are in the 744 // script and c is compareSectionsNonScript less than b. In which case d 745 // can be equivalent to c, a to b and d < a. As a concrete example: 746 // .a (rx) # not in script 747 // .b (rx) # in script 748 // .c (ro) # in script 749 // .d (ro) # not in script 750 // 751 // The way we define an order then is: 752 // * First put script sections at the start and sort the script and 753 // non-script sections independently. 754 // * Move each non-script section to the first position where it 755 // compareSectionsNonScript less than the successor. 756 757 std::stable_sort(OutputSections.begin(), OutputSections.end(), 758 compareSections<ELFT>); 759 760 auto I = OutputSections.begin(); 761 auto E = OutputSections.end(); 762 auto NonScriptI = std::find_if(I, E, [](OutputSectionBase<ELFT> *S) { 763 return Script<ELFT>::X->getSectionIndex(S->getName()) == INT_MAX; 764 }); 765 while (NonScriptI != E) { 766 auto FirstGreater = 767 std::find_if(I, NonScriptI, [&](OutputSectionBase<ELFT> *S) { 768 return compareSectionsNonScript<ELFT>(*NonScriptI, S); 769 }); 770 std::rotate(FirstGreater, NonScriptI, NonScriptI + 1); 771 ++NonScriptI; 772 ++I; 773 } 774 } 775 776 // Create output section objects and add them to OutputSections. 777 template <class ELFT> void Writer<ELFT>::finalizeSections() { 778 Out<ELFT>::DebugInfo = findSection(".debug_info"); 779 Out<ELFT>::PreinitArray = findSection(".preinit_array"); 780 Out<ELFT>::InitArray = findSection(".init_array"); 781 Out<ELFT>::FiniArray = findSection(".fini_array"); 782 783 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 784 // symbols for sections, so that the runtime can get the start and end 785 // addresses of each section by section name. Add such symbols. 786 if (!Config->Relocatable) { 787 addStartEndSymbols(); 788 for (OutputSectionBase<ELFT> *Sec : OutputSections) 789 addStartStopSymbols(Sec); 790 } 791 792 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 793 // It should be okay as no one seems to care about the type. 794 // Even the author of gold doesn't remember why gold behaves that way. 795 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 796 if (Out<ELFT>::DynSymTab) 797 Symtab<ELFT>::X->addSynthetic("_DYNAMIC", Out<ELFT>::Dynamic, 0, 798 STV_HIDDEN); 799 800 // Define __rel[a]_iplt_{start,end} symbols if needed. 801 addRelIpltSymbols(); 802 803 if (!Out<ELFT>::EhFrame->empty()) { 804 OutputSections.push_back(Out<ELFT>::EhFrame); 805 Out<ELFT>::EhFrame->finalize(); 806 } 807 808 // Scan relocations. This must be done after every symbol is declared so that 809 // we can correctly decide if a dynamic relocation is needed. 810 forEachRelSec(scanRelocations<ELFT>); 811 812 // Now that we have defined all possible symbols including linker- 813 // synthesized ones. Visit all symbols to give the finishing touches. 814 for (Symbol *S : Symtab<ELFT>::X->getSymbols()) { 815 SymbolBody *Body = S->body(); 816 817 if (!includeInSymtab<ELFT>(*Body)) 818 continue; 819 if (Out<ELFT>::SymTab) 820 Out<ELFT>::SymTab->addSymbol(Body); 821 822 if (Out<ELFT>::DynSymTab && S->includeInDynsym()) { 823 Out<ELFT>::DynSymTab->addSymbol(Body); 824 if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(Body)) 825 if (SS->file()->isNeeded()) 826 Out<ELFT>::VerNeed->addSymbol(SS); 827 } 828 } 829 830 // Do not proceed if there was an undefined symbol. 831 if (HasError) 832 return; 833 834 // If linker script processor hasn't added common symbol section yet, 835 // then add it to .bss now. 836 if (!CommonInputSection<ELFT>::X->OutSec) { 837 Out<ELFT>::Bss->addSection(CommonInputSection<ELFT>::X); 838 Out<ELFT>::Bss->assignOffsets(); 839 } 840 841 // So far we have added sections from input object files. 842 // This function adds linker-created Out<ELFT>::* sections. 843 addPredefinedSections(); 844 845 sortSections(); 846 847 unsigned I = 1; 848 for (OutputSectionBase<ELFT> *Sec : OutputSections) { 849 Sec->SectionIndex = I++; 850 Sec->setSHName(Out<ELFT>::ShStrTab->addString(Sec->getName())); 851 } 852 853 // Finalizers fix each section's size. 854 // .dynsym is finalized early since that may fill up .gnu.hash. 855 if (Out<ELFT>::DynSymTab) 856 Out<ELFT>::DynSymTab->finalize(); 857 858 // Fill other section headers. The dynamic table is finalized 859 // at the end because some tags like RELSZ depend on result 860 // of finalizing other sections. The dynamic string table is 861 // finalized once the .dynamic finalizer has added a few last 862 // strings. See DynamicSection::finalize() 863 for (OutputSectionBase<ELFT> *Sec : OutputSections) 864 if (Sec != Out<ELFT>::DynStrTab && Sec != Out<ELFT>::Dynamic) 865 Sec->finalize(); 866 867 if (Out<ELFT>::DynSymTab) 868 Out<ELFT>::Dynamic->finalize(); 869 870 // Now that all output offsets are fixed. Finalize mergeable sections 871 // to fix their maps from input offsets to output offsets. 872 for (OutputSectionBase<ELFT> *Sec : OutputSections) 873 Sec->finalizePieces(); 874 } 875 876 template <class ELFT> bool Writer<ELFT>::needsGot() { 877 if (!Out<ELFT>::Got->empty()) 878 return true; 879 880 // We add the .got section to the result for dynamic MIPS target because 881 // its address and properties are mentioned in the .dynamic section. 882 if (Config->EMachine == EM_MIPS && !Config->Relocatable) 883 return true; 884 885 // If we have a relocation that is relative to GOT (such as GOTOFFREL), 886 // we need to emit a GOT even if it's empty. 887 return Out<ELFT>::Got->HasGotOffRel; 888 } 889 890 // This function add Out<ELFT>::* sections to OutputSections. 891 template <class ELFT> void Writer<ELFT>::addPredefinedSections() { 892 auto Add = [&](OutputSectionBase<ELFT> *OS) { 893 if (OS) 894 OutputSections.push_back(OS); 895 }; 896 897 // A core file does not usually contain unmodified segments except 898 // the first page of the executable. Add the build ID section to beginning of 899 // the file so that the section is included in the first page. 900 if (Out<ELFT>::BuildId) 901 OutputSections.insert(OutputSections.begin(), Out<ELFT>::BuildId); 902 903 // Add .interp at first because some loaders want to see that section 904 // on the first page of the executable file when loaded into memory. 905 if (Out<ELFT>::Interp) 906 OutputSections.insert(OutputSections.begin(), Out<ELFT>::Interp); 907 908 // This order is not the same as the final output order 909 // because we sort the sections using their attributes below. 910 if (Out<ELFT>::GdbIndex && Out<ELFT>::DebugInfo) 911 Add(Out<ELFT>::GdbIndex); 912 Add(Out<ELFT>::SymTab); 913 Add(Out<ELFT>::ShStrTab); 914 Add(Out<ELFT>::StrTab); 915 if (Out<ELFT>::DynSymTab) { 916 Add(Out<ELFT>::DynSymTab); 917 918 bool HasVerNeed = Out<ELFT>::VerNeed->getNeedNum() != 0; 919 if (Out<ELFT>::VerDef || HasVerNeed) 920 Add(Out<ELFT>::VerSym); 921 Add(Out<ELFT>::VerDef); 922 if (HasVerNeed) 923 Add(Out<ELFT>::VerNeed); 924 925 Add(Out<ELFT>::GnuHashTab); 926 Add(Out<ELFT>::HashTab); 927 Add(Out<ELFT>::Dynamic); 928 Add(Out<ELFT>::DynStrTab); 929 if (Out<ELFT>::RelaDyn->hasRelocs()) 930 Add(Out<ELFT>::RelaDyn); 931 Add(Out<ELFT>::MipsRldMap); 932 } 933 934 // We always need to add rel[a].plt to output if it has entries. 935 // Even during static linking it can contain R_[*]_IRELATIVE relocations. 936 if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) 937 Add(Out<ELFT>::RelaPlt); 938 939 if (needsGot()) 940 Add(Out<ELFT>::Got); 941 if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty()) 942 Add(Out<ELFT>::GotPlt); 943 if (!Out<ELFT>::Plt->empty()) 944 Add(Out<ELFT>::Plt); 945 if (!Out<ELFT>::EhFrame->empty()) 946 Add(Out<ELFT>::EhFrameHdr); 947 if (Out<ELFT>::Bss->getSize() > 0) 948 Add(Out<ELFT>::Bss); 949 } 950 951 // The linker is expected to define SECNAME_start and SECNAME_end 952 // symbols for a few sections. This function defines them. 953 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 954 auto Define = [&](StringRef Start, StringRef End, 955 OutputSectionBase<ELFT> *OS) { 956 if (OS) { 957 addSynthetic(Start, OS, 0); 958 addSynthetic(End, OS, DefinedSynthetic<ELFT>::SectionEnd); 959 } else { 960 addOptionalSynthetic(Start, (OutputSectionBase<ELFT> *)nullptr, 0); 961 addOptionalSynthetic(End, (OutputSectionBase<ELFT> *)nullptr, 0); 962 } 963 }; 964 965 Define("__preinit_array_start", "__preinit_array_end", 966 Out<ELFT>::PreinitArray); 967 Define("__init_array_start", "__init_array_end", Out<ELFT>::InitArray); 968 Define("__fini_array_start", "__fini_array_end", Out<ELFT>::FiniArray); 969 } 970 971 // If a section name is valid as a C identifier (which is rare because of 972 // the leading '.'), linkers are expected to define __start_<secname> and 973 // __stop_<secname> symbols. They are at beginning and end of the section, 974 // respectively. This is not requested by the ELF standard, but GNU ld and 975 // gold provide the feature, and used by many programs. 976 template <class ELFT> 977 void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) { 978 StringRef S = Sec->getName(); 979 if (!isValidCIdentifier(S)) 980 return; 981 StringSaver Saver(Alloc); 982 addOptionalSynthetic(Saver.save("__start_" + S), Sec, 0, STV_DEFAULT); 983 addOptionalSynthetic(Saver.save("__stop_" + S), Sec, 984 DefinedSynthetic<ELFT>::SectionEnd, STV_DEFAULT); 985 } 986 987 template <class ELFT> 988 OutputSectionBase<ELFT> *Writer<ELFT>::findSection(StringRef Name) { 989 for (OutputSectionBase<ELFT> *Sec : OutputSections) 990 if (Sec->getName() == Name) 991 return Sec; 992 return nullptr; 993 } 994 995 template <class ELFT> static bool needsPtLoad(OutputSectionBase<ELFT> *Sec) { 996 if (!(Sec->getFlags() & SHF_ALLOC)) 997 return false; 998 999 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 1000 // responsible for allocating space for them, not the PT_LOAD that 1001 // contains the TLS initialization image. 1002 if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) 1003 return false; 1004 return true; 1005 } 1006 1007 // Linker scripts are responsible for aligning addresses. Unfortunately, most 1008 // linker scripts are designed for creating two PT_LOADs only, one RX and one 1009 // RW. This means that there is no alignment in the RO to RX transition and we 1010 // cannot create a PT_LOAD there. 1011 template <class ELFT> 1012 static typename ELFT::uint computeFlags(typename ELFT::uint F) { 1013 if (ScriptConfig->HasSections && !(F & PF_W)) 1014 return F | PF_X; 1015 return F; 1016 } 1017 1018 // Decide which program headers to create and which sections to include in each 1019 // one. 1020 template <class ELFT> std::vector<PhdrEntry<ELFT>> Writer<ELFT>::createPhdrs() { 1021 std::vector<Phdr> Ret; 1022 auto AddHdr = [&](unsigned Type, unsigned Flags) -> Phdr * { 1023 Ret.emplace_back(Type, Flags); 1024 return &Ret.back(); 1025 }; 1026 1027 // The first phdr entry is PT_PHDR which describes the program header itself. 1028 Phdr &Hdr = *AddHdr(PT_PHDR, PF_R); 1029 Hdr.add(Out<ELFT>::ProgramHeaders); 1030 1031 // PT_INTERP must be the second entry if exists. 1032 if (Out<ELFT>::Interp) { 1033 Phdr &Hdr = *AddHdr(PT_INTERP, Out<ELFT>::Interp->getPhdrFlags()); 1034 Hdr.add(Out<ELFT>::Interp); 1035 } 1036 1037 // Add the first PT_LOAD segment for regular output sections. 1038 uintX_t Flags = computeFlags<ELFT>(PF_R); 1039 Phdr *Load = AddHdr(PT_LOAD, Flags); 1040 if (!ScriptConfig->HasSections) { 1041 Load->add(Out<ELFT>::ElfHeader); 1042 Load->add(Out<ELFT>::ProgramHeaders); 1043 } 1044 1045 Phdr TlsHdr(PT_TLS, PF_R); 1046 Phdr RelRo(PT_GNU_RELRO, PF_R); 1047 Phdr Note(PT_NOTE, PF_R); 1048 Phdr ARMExidx(PT_ARM_EXIDX, PF_R); 1049 for (OutputSectionBase<ELFT> *Sec : OutputSections) { 1050 if (!(Sec->getFlags() & SHF_ALLOC)) 1051 break; 1052 1053 // If we meet TLS section then we create TLS header 1054 // and put all TLS sections inside for further use when 1055 // assign addresses. 1056 if (Sec->getFlags() & SHF_TLS) 1057 TlsHdr.add(Sec); 1058 1059 if (!needsPtLoad(Sec)) 1060 continue; 1061 1062 // Segments are contiguous memory regions that has the same attributes 1063 // (e.g. executable or writable). There is one phdr for each segment. 1064 // Therefore, we need to create a new phdr when the next section has 1065 // different flags or is loaded at a discontiguous address using AT linker 1066 // script command. 1067 uintX_t NewFlags = computeFlags<ELFT>(Sec->getPhdrFlags()); 1068 if (Script<ELFT>::X->hasLMA(Sec->getName()) || Flags != NewFlags) { 1069 Load = AddHdr(PT_LOAD, NewFlags); 1070 Flags = NewFlags; 1071 } 1072 1073 Load->add(Sec); 1074 1075 if (isRelroSection(Sec)) 1076 RelRo.add(Sec); 1077 if (Sec->getType() == SHT_NOTE) 1078 Note.add(Sec); 1079 if (Config->EMachine == EM_ARM && Sec->getType() == SHT_ARM_EXIDX) 1080 ARMExidx.add(Sec); 1081 } 1082 1083 // Add the TLS segment unless it's empty. 1084 if (TlsHdr.First) 1085 Ret.push_back(std::move(TlsHdr)); 1086 1087 // Add an entry for .dynamic. 1088 if (Out<ELFT>::DynSymTab) { 1089 Phdr &H = *AddHdr(PT_DYNAMIC, Out<ELFT>::Dynamic->getPhdrFlags()); 1090 H.add(Out<ELFT>::Dynamic); 1091 } 1092 1093 // PT_GNU_RELRO includes all sections that should be marked as 1094 // read-only by dynamic linker after proccessing relocations. 1095 if (RelRo.First) 1096 Ret.push_back(std::move(RelRo)); 1097 1098 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 1099 if (!Out<ELFT>::EhFrame->empty() && Out<ELFT>::EhFrameHdr) { 1100 Phdr &Hdr = *AddHdr(PT_GNU_EH_FRAME, Out<ELFT>::EhFrameHdr->getPhdrFlags()); 1101 Hdr.add(Out<ELFT>::EhFrameHdr); 1102 } 1103 1104 // PT_OPENBSD_RANDOMIZE specifies the location and size of a part of the 1105 // memory image of the program that must be filled with random data before any 1106 // code in the object is executed. 1107 if (OutputSectionBase<ELFT> *Sec = findSection(".openbsd.randomdata")) { 1108 Phdr &Hdr = *AddHdr(PT_OPENBSD_RANDOMIZE, Sec->getPhdrFlags()); 1109 Hdr.add(Sec); 1110 } 1111 1112 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1113 if (ARMExidx.First) 1114 Ret.push_back(std::move(ARMExidx)); 1115 1116 // PT_GNU_STACK is a special section to tell the loader to make the 1117 // pages for the stack non-executable. 1118 if (!Config->ZExecstack) { 1119 Phdr &Hdr = *AddHdr(PT_GNU_STACK, PF_R | PF_W); 1120 if (Config->ZStackSize != uint64_t(-1)) 1121 Hdr.H.p_memsz = Config->ZStackSize; 1122 } 1123 1124 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 1125 // is expected to perform W^X violations, such as calling mprotect(2) or 1126 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 1127 // OpenBSD. 1128 if (Config->ZWxneeded) 1129 AddHdr(PT_OPENBSD_WXNEEDED, PF_X); 1130 1131 if (Note.First) 1132 Ret.push_back(std::move(Note)); 1133 return Ret; 1134 } 1135 1136 // The first section of each PT_LOAD and the first section after PT_GNU_RELRO 1137 // have to be page aligned so that the dynamic linker can set the permissions. 1138 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 1139 for (const Phdr &P : Phdrs) 1140 if (P.H.p_type == PT_LOAD) 1141 P.First->PageAlign = true; 1142 1143 for (const Phdr &P : Phdrs) { 1144 if (P.H.p_type != PT_GNU_RELRO) 1145 continue; 1146 // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we 1147 // have to align it to a page. 1148 auto End = OutputSections.end(); 1149 auto I = std::find(OutputSections.begin(), End, P.Last); 1150 if (I == End || (I + 1) == End) 1151 continue; 1152 OutputSectionBase<ELFT> *Sec = *(I + 1); 1153 if (needsPtLoad(Sec)) 1154 Sec->PageAlign = true; 1155 } 1156 } 1157 1158 // We should set file offsets and VAs for elf header and program headers 1159 // sections. These are special, we do not include them into output sections 1160 // list, but have them to simplify the code. 1161 template <class ELFT> void Writer<ELFT>::fixHeaders() { 1162 uintX_t BaseVA = ScriptConfig->HasSections ? 0 : Config->ImageBase; 1163 Out<ELFT>::ElfHeader->setVA(BaseVA); 1164 uintX_t Off = Out<ELFT>::ElfHeader->getSize(); 1165 Out<ELFT>::ProgramHeaders->setVA(Off + BaseVA); 1166 Out<ELFT>::ProgramHeaders->setSize(sizeof(Elf_Phdr) * Phdrs.size()); 1167 } 1168 1169 // Assign VAs (addresses at run-time) to output sections. 1170 template <class ELFT> void Writer<ELFT>::assignAddresses() { 1171 uintX_t VA = Config->ImageBase + getHeaderSize<ELFT>(); 1172 uintX_t ThreadBssOffset = 0; 1173 for (OutputSectionBase<ELFT> *Sec : OutputSections) { 1174 uintX_t Alignment = Sec->getAlignment(); 1175 if (Sec->PageAlign) 1176 Alignment = std::max<uintX_t>(Alignment, Config->MaxPageSize); 1177 1178 auto I = Config->SectionStartMap.find(Sec->getName()); 1179 if (I != Config->SectionStartMap.end()) 1180 VA = I->second; 1181 1182 // We only assign VAs to allocated sections. 1183 if (needsPtLoad(Sec)) { 1184 VA = alignTo(VA, Alignment); 1185 Sec->setVA(VA); 1186 VA += Sec->getSize(); 1187 } else if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) { 1188 uintX_t TVA = VA + ThreadBssOffset; 1189 TVA = alignTo(TVA, Alignment); 1190 Sec->setVA(TVA); 1191 ThreadBssOffset = TVA - VA + Sec->getSize(); 1192 } 1193 } 1194 } 1195 1196 // Adjusts the file alignment for a given output section and returns 1197 // its new file offset. The file offset must be the same with its 1198 // virtual address (modulo the page size) so that the loader can load 1199 // executables without any address adjustment. 1200 template <class ELFT, class uintX_t> 1201 static uintX_t getFileAlignment(uintX_t Off, OutputSectionBase<ELFT> *Sec) { 1202 uintX_t Alignment = Sec->getAlignment(); 1203 if (Sec->PageAlign) 1204 Alignment = std::max<uintX_t>(Alignment, Config->MaxPageSize); 1205 Off = alignTo(Off, Alignment); 1206 1207 OutputSectionBase<ELFT> *First = Sec->FirstInPtLoad; 1208 // If the section is not in a PT_LOAD, we have no other constraint. 1209 if (!First) 1210 return Off; 1211 1212 // If two sections share the same PT_LOAD the file offset is calculated using 1213 // this formula: Off2 = Off1 + (VA2 - VA1). 1214 if (Sec == First) 1215 return alignTo(Off, Target->MaxPageSize, Sec->getVA()); 1216 return First->getFileOffset() + Sec->getVA() - First->getVA(); 1217 } 1218 1219 template <class ELFT, class uintX_t> 1220 void setOffset(OutputSectionBase<ELFT> *Sec, uintX_t &Off) { 1221 if (Sec->getType() == SHT_NOBITS) { 1222 Sec->setFileOffset(Off); 1223 return; 1224 } 1225 1226 Off = getFileAlignment<ELFT>(Off, Sec); 1227 Sec->setFileOffset(Off); 1228 Off += Sec->getSize(); 1229 } 1230 1231 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 1232 uintX_t Off = 0; 1233 for (OutputSectionBase<ELFT> *Sec : OutputSections) 1234 if (Sec->getFlags() & SHF_ALLOC) 1235 setOffset(Sec, Off); 1236 FileSize = alignTo(Off, sizeof(uintX_t)); 1237 } 1238 1239 // Assign file offsets to output sections. 1240 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 1241 uintX_t Off = 0; 1242 setOffset(Out<ELFT>::ElfHeader, Off); 1243 setOffset(Out<ELFT>::ProgramHeaders, Off); 1244 1245 for (OutputSectionBase<ELFT> *Sec : OutputSections) 1246 setOffset(Sec, Off); 1247 1248 SectionHeaderOff = alignTo(Off, sizeof(uintX_t)); 1249 FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); 1250 } 1251 1252 // Finalize the program headers. We call this function after we assign 1253 // file offsets and VAs to all sections. 1254 template <class ELFT> void Writer<ELFT>::setPhdrs() { 1255 for (Phdr &P : Phdrs) { 1256 Elf_Phdr &H = P.H; 1257 OutputSectionBase<ELFT> *First = P.First; 1258 OutputSectionBase<ELFT> *Last = P.Last; 1259 if (First) { 1260 H.p_filesz = Last->getFileOff() - First->getFileOff(); 1261 if (Last->getType() != SHT_NOBITS) 1262 H.p_filesz += Last->getSize(); 1263 H.p_memsz = Last->getVA() + Last->getSize() - First->getVA(); 1264 H.p_offset = First->getFileOff(); 1265 H.p_vaddr = First->getVA(); 1266 if (!P.HasLMA) 1267 H.p_paddr = First->getLMA(); 1268 } 1269 if (H.p_type == PT_LOAD) 1270 H.p_align = Config->MaxPageSize; 1271 else if (H.p_type == PT_GNU_RELRO) 1272 H.p_align = 1; 1273 1274 // The TLS pointer goes after PT_TLS. At least glibc will align it, 1275 // so round up the size to make sure the offsets are correct. 1276 if (H.p_type == PT_TLS) { 1277 Out<ELFT>::TlsPhdr = &H; 1278 if (H.p_memsz) 1279 H.p_memsz = alignTo(H.p_memsz, H.p_align); 1280 } 1281 } 1282 } 1283 1284 template <class ELFT> static typename ELFT::uint getEntryAddr() { 1285 if (Config->Entry.empty()) 1286 return Config->EntryAddr; 1287 if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Entry)) 1288 return B->getVA<ELFT>(); 1289 warn("entry symbol " + Config->Entry + " not found, assuming 0"); 1290 return 0; 1291 } 1292 1293 template <class ELFT> static uint8_t getELFEncoding() { 1294 if (ELFT::TargetEndianness == llvm::support::little) 1295 return ELFDATA2LSB; 1296 return ELFDATA2MSB; 1297 } 1298 1299 static uint16_t getELFType() { 1300 if (Config->Pic) 1301 return ET_DYN; 1302 if (Config->Relocatable) 1303 return ET_REL; 1304 return ET_EXEC; 1305 } 1306 1307 // This function is called after we have assigned address and size 1308 // to each section. This function fixes some predefined absolute 1309 // symbol values that depend on section address and size. 1310 template <class ELFT> void Writer<ELFT>::fixAbsoluteSymbols() { 1311 // __ehdr_start is the location of program headers. 1312 if (ElfSym<ELFT>::EhdrStart) 1313 ElfSym<ELFT>::EhdrStart->Value = Out<ELFT>::ProgramHeaders->getVA(); 1314 1315 auto Set = [](DefinedRegular<ELFT> *S1, DefinedRegular<ELFT> *S2, uintX_t V) { 1316 if (S1) 1317 S1->Value = V; 1318 if (S2) 1319 S2->Value = V; 1320 }; 1321 1322 // _etext is the first location after the last read-only loadable segment. 1323 // _edata is the first location after the last read-write loadable segment. 1324 // _end is the first location after the uninitialized data region. 1325 for (Phdr &P : Phdrs) { 1326 Elf_Phdr &H = P.H; 1327 if (H.p_type != PT_LOAD) 1328 continue; 1329 Set(ElfSym<ELFT>::End, ElfSym<ELFT>::End2, H.p_vaddr + H.p_memsz); 1330 1331 uintX_t Val = H.p_vaddr + H.p_filesz; 1332 if (H.p_flags & PF_W) 1333 Set(ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2, Val); 1334 else 1335 Set(ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2, Val); 1336 } 1337 } 1338 1339 template <class ELFT> void Writer<ELFT>::writeHeader() { 1340 uint8_t *Buf = Buffer->getBufferStart(); 1341 memcpy(Buf, "\177ELF", 4); 1342 1343 auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf); 1344 1345 // Write the ELF header. 1346 auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); 1347 EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 1348 EHdr->e_ident[EI_DATA] = getELFEncoding<ELFT>(); 1349 EHdr->e_ident[EI_VERSION] = EV_CURRENT; 1350 EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI(); 1351 EHdr->e_type = getELFType(); 1352 EHdr->e_machine = FirstObj.EMachine; 1353 EHdr->e_version = EV_CURRENT; 1354 EHdr->e_entry = getEntryAddr<ELFT>(); 1355 EHdr->e_shoff = SectionHeaderOff; 1356 EHdr->e_ehsize = sizeof(Elf_Ehdr); 1357 EHdr->e_phnum = Phdrs.size(); 1358 EHdr->e_shentsize = sizeof(Elf_Shdr); 1359 EHdr->e_shnum = OutputSections.size() + 1; 1360 EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex; 1361 1362 if (Config->EMachine == EM_ARM) 1363 // We don't currently use any features incompatible with EF_ARM_EABI_VER5, 1364 // but we don't have any firm guarantees of conformance. Linux AArch64 1365 // kernels (as of 2016) require an EABI version to be set. 1366 EHdr->e_flags = EF_ARM_EABI_VER5; 1367 else if (Config->EMachine == EM_MIPS) 1368 EHdr->e_flags = getMipsEFlags<ELFT>(); 1369 1370 if (!Config->Relocatable) { 1371 EHdr->e_phoff = sizeof(Elf_Ehdr); 1372 EHdr->e_phentsize = sizeof(Elf_Phdr); 1373 } 1374 1375 // Write the program header table. 1376 auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); 1377 for (Phdr &P : Phdrs) 1378 *HBuf++ = P.H; 1379 1380 // Write the section header table. Note that the first table entry is null. 1381 auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); 1382 for (OutputSectionBase<ELFT> *Sec : OutputSections) 1383 Sec->writeHeaderTo(++SHdrs); 1384 } 1385 1386 template <class ELFT> void Writer<ELFT>::openFile() { 1387 ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr = 1388 FileOutputBuffer::create(Config->OutputFile, FileSize, 1389 FileOutputBuffer::F_executable); 1390 if (auto EC = BufferOrErr.getError()) 1391 error(EC, "failed to open " + Config->OutputFile); 1392 else 1393 Buffer = std::move(*BufferOrErr); 1394 } 1395 1396 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 1397 uint8_t *Buf = Buffer->getBufferStart(); 1398 for (OutputSectionBase<ELFT> *Sec : OutputSections) 1399 if (Sec->getFlags() & SHF_ALLOC) 1400 Sec->writeTo(Buf + Sec->getFileOff()); 1401 } 1402 1403 // Convert the .ARM.exidx table entries that use relative PREL31 offsets to 1404 // Absolute addresses. This form is internal to LLD and is only used to 1405 // make reordering the table simpler. 1406 static void ARMExidxEntryPrelToAbs(uint8_t *Loc, uint64_t EntryVA) { 1407 uint64_t Addr = Target->getImplicitAddend(Loc, R_ARM_PREL31) + EntryVA; 1408 bool InlineEntry = 1409 (read32le(Loc + 4) == 1 || (read32le(Loc + 4) & 0x80000000)); 1410 if (InlineEntry) 1411 // Set flag in unused bit of code address so that when we convert back we 1412 // know which table entries to leave alone. 1413 Addr |= 0x1; 1414 else 1415 write32le(Loc + 4, 1416 Target->getImplicitAddend(Loc + 4, R_ARM_PREL31) + EntryVA + 4); 1417 write32le(Loc, Addr); 1418 } 1419 1420 // Convert the .ARM.exidx table entries from the internal to LLD form using 1421 // absolute addresses back to relative PREL31 offsets. 1422 static void ARMExidxEntryAbsToPrel(uint8_t *Loc, uint64_t EntryVA) { 1423 uint64_t Off = read32le(Loc) - EntryVA; 1424 // ARMExidxEntryPreltoAbs sets bit 0 if the table entry has inline data 1425 // that is not an address 1426 bool InlineEntry = Off & 0x1; 1427 Target->relocateOne(Loc, R_ARM_PREL31, Off & ~0x1); 1428 if (!InlineEntry) 1429 Target->relocateOne(Loc + 4, R_ARM_PREL31, 1430 read32le(Loc + 4) - (EntryVA + 4)); 1431 } 1432 1433 // The table formed by the .ARM.exidx OutputSection has entries with two 1434 // 4-byte fields: 1435 // | PREL31 offset to function | Action to take for function | 1436 // The table must be ordered in ascending virtual address of the functions 1437 // identified by the first field of the table. Instead of using the 1438 // SHF_LINK_ORDER dependency to reorder the sections prior to relocation we 1439 // sort the table post-relocation. 1440 // Ref: Exception handling ABI for the ARM architecture 1441 static void sortARMExidx(uint8_t *Buf, uint64_t OutSecVA, uint64_t Size) { 1442 struct ARMExidxEntry { 1443 ulittle32_t Target; 1444 ulittle32_t Action; 1445 }; 1446 ARMExidxEntry *Start = (ARMExidxEntry *)Buf; 1447 size_t NumEnt = Size / sizeof(ARMExidxEntry); 1448 for (uint64_t Off = 0; Off < Size; Off += 8) 1449 ARMExidxEntryPrelToAbs(Buf + Off, OutSecVA + Off); 1450 std::stable_sort(Start, Start + NumEnt, 1451 [](const ARMExidxEntry &A, const ARMExidxEntry &B) { 1452 return A.Target < B.Target; 1453 }); 1454 for (uint64_t Off = 0; Off < Size; Off += 8) 1455 ARMExidxEntryAbsToPrel(Buf + Off, OutSecVA + Off); 1456 } 1457 1458 // Write section contents to a mmap'ed file. 1459 template <class ELFT> void Writer<ELFT>::writeSections() { 1460 uint8_t *Buf = Buffer->getBufferStart(); 1461 1462 // PPC64 needs to process relocations in the .opd section 1463 // before processing relocations in code-containing sections. 1464 Out<ELFT>::Opd = findSection(".opd"); 1465 if (Out<ELFT>::Opd) { 1466 Out<ELFT>::OpdBuf = Buf + Out<ELFT>::Opd->getFileOff(); 1467 Out<ELFT>::Opd->writeTo(Buf + Out<ELFT>::Opd->getFileOff()); 1468 } 1469 1470 for (OutputSectionBase<ELFT> *Sec : OutputSections) 1471 if (Sec != Out<ELFT>::Opd && Sec != Out<ELFT>::EhFrameHdr) 1472 Sec->writeTo(Buf + Sec->getFileOff()); 1473 1474 OutputSectionBase<ELFT> *ARMExidx = findSection(".ARM.exidx"); 1475 if (!Config->Relocatable) 1476 if (auto *OS = dyn_cast_or_null<OutputSection<ELFT>>(ARMExidx)) 1477 sortARMExidx(Buf + OS->getFileOff(), OS->getVA(), OS->getSize()); 1478 1479 // The .eh_frame_hdr depends on .eh_frame section contents, therefore 1480 // it should be written after .eh_frame is written. 1481 if (!Out<ELFT>::EhFrame->empty() && Out<ELFT>::EhFrameHdr) 1482 Out<ELFT>::EhFrameHdr->writeTo(Buf + Out<ELFT>::EhFrameHdr->getFileOff()); 1483 } 1484 1485 template <class ELFT> void Writer<ELFT>::writeBuildId() { 1486 if (!Out<ELFT>::BuildId) 1487 return; 1488 1489 // Compute a hash of all sections of the output file. 1490 uint8_t *Start = Buffer->getBufferStart(); 1491 uint8_t *End = Start + FileSize; 1492 Out<ELFT>::BuildId->writeBuildId({Start, End}); 1493 } 1494 1495 template void elf::writeResult<ELF32LE>(); 1496 template void elf::writeResult<ELF32BE>(); 1497 template void elf::writeResult<ELF64LE>(); 1498 template void elf::writeResult<ELF64BE>(); 1499 1500 template struct elf::PhdrEntry<ELF32LE>; 1501 template struct elf::PhdrEntry<ELF32BE>; 1502 template struct elf::PhdrEntry<ELF64LE>; 1503 template struct elf::PhdrEntry<ELF64BE>; 1504 1505 template bool elf::isRelroSection<ELF32LE>(OutputSectionBase<ELF32LE> *); 1506 template bool elf::isRelroSection<ELF32BE>(OutputSectionBase<ELF32BE> *); 1507 template bool elf::isRelroSection<ELF64LE>(OutputSectionBase<ELF64LE> *); 1508 template bool elf::isRelroSection<ELF64BE>(OutputSectionBase<ELF64BE> *); 1509 1510 template void elf::reportDiscarded<ELF32LE>(InputSectionBase<ELF32LE> *); 1511 template void elf::reportDiscarded<ELF32BE>(InputSectionBase<ELF32BE> *); 1512 template void elf::reportDiscarded<ELF64LE>(InputSectionBase<ELF64LE> *); 1513 template void elf::reportDiscarded<ELF64BE>(InputSectionBase<ELF64BE> *); 1514