1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Filesystem.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/Parallel.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/TimeProfiler.h" 31 #include "llvm/Support/xxhash.h" 32 #include <climits> 33 34 #define DEBUG_TYPE "lld" 35 36 using namespace llvm; 37 using namespace llvm::ELF; 38 using namespace llvm::object; 39 using namespace llvm::support; 40 using namespace llvm::support::endian; 41 using namespace lld; 42 using namespace lld::elf; 43 44 namespace { 45 // The writer writes a SymbolTable result to a file. 46 template <class ELFT> class Writer { 47 public: 48 Writer() : buffer(errorHandler().outputBuffer) {} 49 using Elf_Shdr = typename ELFT::Shdr; 50 using Elf_Ehdr = typename ELFT::Ehdr; 51 using Elf_Phdr = typename ELFT::Phdr; 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 59 void sortSections(); 60 void resolveShfLinkOrder(); 61 void finalizeAddressDependentContent(); 62 void optimizeBasicBlockJumps(); 63 void sortInputSections(); 64 void finalizeSections(); 65 void checkExecuteOnly(); 66 void setReservedSymbolSections(); 67 68 std::vector<PhdrEntry *> createPhdrs(Partition &part); 69 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 70 unsigned pFlags); 71 void assignFileOffsets(); 72 void assignFileOffsetsBinary(); 73 void setPhdrs(Partition &part); 74 void checkSections(); 75 void fixSectionAlignments(); 76 void openFile(); 77 void writeTrapInstr(); 78 void writeHeader(); 79 void writeSections(); 80 void writeSectionsBinary(); 81 void writeBuildId(); 82 83 std::unique_ptr<FileOutputBuffer> &buffer; 84 85 void addRelIpltSymbols(); 86 void addStartEndSymbols(); 87 void addStartStopSymbols(OutputSection *sec); 88 89 uint64_t fileSize; 90 uint64_t sectionHeaderOff; 91 }; 92 } // anonymous namespace 93 94 static bool isSectionPrefix(StringRef prefix, StringRef name) { 95 return name.startswith(prefix) || name == prefix.drop_back(); 96 } 97 98 StringRef elf::getOutputSectionName(const InputSectionBase *s) { 99 if (config->relocatable) 100 return s->name; 101 102 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 103 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 104 // technically required, but not doing it is odd). This code guarantees that. 105 if (auto *isec = dyn_cast<InputSection>(s)) { 106 if (InputSectionBase *rel = isec->getRelocatedSection()) { 107 OutputSection *out = rel->getOutputSection(); 108 if (s->type == SHT_RELA) 109 return saver.save(".rela" + out->name); 110 return saver.save(".rel" + out->name); 111 } 112 } 113 114 // A BssSection created for a common symbol is identified as "COMMON" in 115 // linker scripts. It should go to .bss section. 116 if (s->name == "COMMON") 117 return ".bss"; 118 119 if (script->hasSectionsCommand) 120 return s->name; 121 122 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 123 // by grouping sections with certain prefixes. 124 125 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 126 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 127 // We provide an option -z keep-text-section-prefix to group such sections 128 // into separate output sections. This is more flexible. See also 129 // sortISDBySectionOrder(). 130 // ".text.unknown" means the hotness of the section is unknown. When 131 // SampleFDO is used, if a function doesn't have sample, it could be very 132 // cold or it could be a new function never being sampled. Those functions 133 // will be kept in the ".text.unknown" section. 134 if (config->zKeepTextSectionPrefix) 135 for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", 136 ".text.startup.", ".text.exit."}) 137 if (isSectionPrefix(v, s->name)) 138 return v.drop_back(); 139 140 for (StringRef v : 141 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 142 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 143 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 144 if (isSectionPrefix(v, s->name)) 145 return v.drop_back(); 146 147 return s->name; 148 } 149 150 static bool needsInterpSection() { 151 return !config->relocatable && !config->shared && 152 !config->dynamicLinker.empty() && script->needsInterpSection(); 153 } 154 155 template <class ELFT> void elf::writeResult() { 156 llvm::TimeTraceScope timeScope("Write output file"); 157 Writer<ELFT>().run(); 158 } 159 160 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 161 auto it = std::stable_partition( 162 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 163 if (p->p_type != PT_LOAD) 164 return true; 165 if (!p->firstSec) 166 return false; 167 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 168 return size != 0; 169 }); 170 171 // Clear OutputSection::ptLoad for sections contained in removed 172 // segments. 173 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 174 for (OutputSection *sec : outputSections) 175 if (removed.count(sec->ptLoad)) 176 sec->ptLoad = nullptr; 177 phdrs.erase(it, phdrs.end()); 178 } 179 180 void elf::copySectionsIntoPartitions() { 181 std::vector<InputSectionBase *> newSections; 182 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 183 for (InputSectionBase *s : inputSections) { 184 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 185 continue; 186 InputSectionBase *copy; 187 if (s->type == SHT_NOTE) 188 copy = make<InputSection>(cast<InputSection>(*s)); 189 else if (auto *es = dyn_cast<EhInputSection>(s)) 190 copy = make<EhInputSection>(*es); 191 else 192 continue; 193 copy->partition = part; 194 newSections.push_back(copy); 195 } 196 } 197 198 inputSections.insert(inputSections.end(), newSections.begin(), 199 newSections.end()); 200 } 201 202 void elf::combineEhSections() { 203 for (InputSectionBase *&s : inputSections) { 204 // Ignore dead sections and the partition end marker (.part.end), 205 // whose partition number is out of bounds. 206 if (!s->isLive() || s->partition == 255) 207 continue; 208 209 Partition &part = s->getPartition(); 210 if (auto *es = dyn_cast<EhInputSection>(s)) { 211 part.ehFrame->addSection(es); 212 s = nullptr; 213 } else if (s->kind() == SectionBase::Regular && part.armExidx && 214 part.armExidx->addSection(cast<InputSection>(s))) { 215 s = nullptr; 216 } 217 } 218 219 std::vector<InputSectionBase *> &v = inputSections; 220 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 221 } 222 223 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 224 uint64_t val, uint8_t stOther = STV_HIDDEN, 225 uint8_t binding = STB_GLOBAL) { 226 Symbol *s = symtab->find(name); 227 if (!s || s->isDefined()) 228 return nullptr; 229 230 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 231 /*size=*/0, sec}); 232 return cast<Defined>(s); 233 } 234 235 static Defined *addAbsolute(StringRef name) { 236 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 237 STT_NOTYPE, 0, 0, nullptr}); 238 return cast<Defined>(sym); 239 } 240 241 // The linker is expected to define some symbols depending on 242 // the linking result. This function defines such symbols. 243 void elf::addReservedSymbols() { 244 if (config->emachine == EM_MIPS) { 245 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 246 // so that it points to an absolute address which by default is relative 247 // to GOT. Default offset is 0x7ff0. 248 // See "Global Data Symbols" in Chapter 6 in the following document: 249 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 250 ElfSym::mipsGp = addAbsolute("_gp"); 251 252 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 253 // start of function and 'gp' pointer into GOT. 254 if (symtab->find("_gp_disp")) 255 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 256 257 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 258 // pointer. This symbol is used in the code generated by .cpload pseudo-op 259 // in case of using -mno-shared option. 260 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 261 if (symtab->find("__gnu_local_gp")) 262 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 263 } else if (config->emachine == EM_PPC) { 264 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 265 // support Small Data Area, define it arbitrarily as 0. 266 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 267 } else if (config->emachine == EM_PPC64) { 268 addPPC64SaveRestore(); 269 } 270 271 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 272 // combines the typical ELF GOT with the small data sections. It commonly 273 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 274 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 275 // represent the TOC base which is offset by 0x8000 bytes from the start of 276 // the .got section. 277 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 278 // correctness of some relocations depends on its value. 279 StringRef gotSymName = 280 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 281 282 if (Symbol *s = symtab->find(gotSymName)) { 283 if (s->isDefined()) { 284 error(toString(s->file) + " cannot redefine linker defined symbol '" + 285 gotSymName + "'"); 286 return; 287 } 288 289 uint64_t gotOff = 0; 290 if (config->emachine == EM_PPC64) 291 gotOff = 0x8000; 292 293 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 294 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 295 ElfSym::globalOffsetTable = cast<Defined>(s); 296 } 297 298 // __ehdr_start is the location of ELF file headers. Note that we define 299 // this symbol unconditionally even when using a linker script, which 300 // differs from the behavior implemented by GNU linker which only define 301 // this symbol if ELF headers are in the memory mapped segment. 302 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 303 304 // __executable_start is not documented, but the expectation of at 305 // least the Android libc is that it points to the ELF header. 306 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 307 308 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 309 // each DSO. The address of the symbol doesn't matter as long as they are 310 // different in different DSOs, so we chose the start address of the DSO. 311 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 312 313 // If linker script do layout we do not need to create any standard symbols. 314 if (script->hasSectionsCommand) 315 return; 316 317 auto add = [](StringRef s, int64_t pos) { 318 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 319 }; 320 321 ElfSym::bss = add("__bss_start", 0); 322 ElfSym::end1 = add("end", -1); 323 ElfSym::end2 = add("_end", -1); 324 ElfSym::etext1 = add("etext", -1); 325 ElfSym::etext2 = add("_etext", -1); 326 ElfSym::edata1 = add("edata", -1); 327 ElfSym::edata2 = add("_edata", -1); 328 } 329 330 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 331 for (BaseCommand *base : script->sectionCommands) 332 if (auto *sec = dyn_cast<OutputSection>(base)) 333 if (sec->name == name && sec->partition == partition) 334 return sec; 335 return nullptr; 336 } 337 338 template <class ELFT> void elf::createSyntheticSections() { 339 // Initialize all pointers with NULL. This is needed because 340 // you can call lld::elf::main more than once as a library. 341 memset(&Out::first, 0, sizeof(Out)); 342 343 // Add the .interp section first because it is not a SyntheticSection. 344 // The removeUnusedSyntheticSections() function relies on the 345 // SyntheticSections coming last. 346 if (needsInterpSection()) { 347 for (size_t i = 1; i <= partitions.size(); ++i) { 348 InputSection *sec = createInterpSection(); 349 sec->partition = i; 350 inputSections.push_back(sec); 351 } 352 } 353 354 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 355 356 in.shStrTab = make<StringTableSection>(".shstrtab", false); 357 358 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 359 Out::programHeaders->alignment = config->wordsize; 360 361 if (config->strip != StripPolicy::All) { 362 in.strTab = make<StringTableSection>(".strtab", false); 363 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 364 in.symTabShndx = make<SymtabShndxSection>(); 365 } 366 367 in.bss = make<BssSection>(".bss", 0, 1); 368 add(in.bss); 369 370 // If there is a SECTIONS command and a .data.rel.ro section name use name 371 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 372 // This makes sure our relro is contiguous. 373 bool hasDataRelRo = 374 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 375 in.bssRelRo = 376 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 377 add(in.bssRelRo); 378 379 // Add MIPS-specific sections. 380 if (config->emachine == EM_MIPS) { 381 if (!config->shared && config->hasDynSymTab) { 382 in.mipsRldMap = make<MipsRldMapSection>(); 383 add(in.mipsRldMap); 384 } 385 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 386 add(sec); 387 if (auto *sec = MipsOptionsSection<ELFT>::create()) 388 add(sec); 389 if (auto *sec = MipsReginfoSection<ELFT>::create()) 390 add(sec); 391 } 392 393 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 394 395 for (Partition &part : partitions) { 396 auto add = [&](SyntheticSection *sec) { 397 sec->partition = part.getNumber(); 398 inputSections.push_back(sec); 399 }; 400 401 if (!part.name.empty()) { 402 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 403 part.elfHeader->name = part.name; 404 add(part.elfHeader); 405 406 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 407 add(part.programHeaders); 408 } 409 410 if (config->buildId != BuildIdKind::None) { 411 part.buildId = make<BuildIdSection>(); 412 add(part.buildId); 413 } 414 415 part.dynStrTab = make<StringTableSection>(".dynstr", true); 416 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 417 part.dynamic = make<DynamicSection<ELFT>>(); 418 if (config->androidPackDynRelocs) 419 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 420 else 421 part.relaDyn = 422 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 423 424 if (config->hasDynSymTab) { 425 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 426 add(part.dynSymTab); 427 428 part.verSym = make<VersionTableSection>(); 429 add(part.verSym); 430 431 if (!namedVersionDefs().empty()) { 432 part.verDef = make<VersionDefinitionSection>(); 433 add(part.verDef); 434 } 435 436 part.verNeed = make<VersionNeedSection<ELFT>>(); 437 add(part.verNeed); 438 439 if (config->gnuHash) { 440 part.gnuHashTab = make<GnuHashTableSection>(); 441 add(part.gnuHashTab); 442 } 443 444 if (config->sysvHash) { 445 part.hashTab = make<HashTableSection>(); 446 add(part.hashTab); 447 } 448 449 add(part.dynamic); 450 add(part.dynStrTab); 451 add(part.relaDyn); 452 } 453 454 if (config->relrPackDynRelocs) { 455 part.relrDyn = make<RelrSection<ELFT>>(); 456 add(part.relrDyn); 457 } 458 459 if (!config->relocatable) { 460 if (config->ehFrameHdr) { 461 part.ehFrameHdr = make<EhFrameHeader>(); 462 add(part.ehFrameHdr); 463 } 464 part.ehFrame = make<EhFrameSection>(); 465 add(part.ehFrame); 466 } 467 468 if (config->emachine == EM_ARM && !config->relocatable) { 469 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 470 // InputSections. 471 part.armExidx = make<ARMExidxSyntheticSection>(); 472 add(part.armExidx); 473 } 474 } 475 476 if (partitions.size() != 1) { 477 // Create the partition end marker. This needs to be in partition number 255 478 // so that it is sorted after all other partitions. It also has other 479 // special handling (see createPhdrs() and combineEhSections()). 480 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 481 in.partEnd->partition = 255; 482 add(in.partEnd); 483 484 in.partIndex = make<PartitionIndexSection>(); 485 addOptionalRegular("__part_index_begin", in.partIndex, 0); 486 addOptionalRegular("__part_index_end", in.partIndex, 487 in.partIndex->getSize()); 488 add(in.partIndex); 489 } 490 491 // Add .got. MIPS' .got is so different from the other archs, 492 // it has its own class. 493 if (config->emachine == EM_MIPS) { 494 in.mipsGot = make<MipsGotSection>(); 495 add(in.mipsGot); 496 } else { 497 in.got = make<GotSection>(); 498 add(in.got); 499 } 500 501 if (config->emachine == EM_PPC) { 502 in.ppc32Got2 = make<PPC32Got2Section>(); 503 add(in.ppc32Got2); 504 } 505 506 if (config->emachine == EM_PPC64) { 507 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 508 add(in.ppc64LongBranchTarget); 509 } 510 511 in.gotPlt = make<GotPltSection>(); 512 add(in.gotPlt); 513 in.igotPlt = make<IgotPltSection>(); 514 add(in.igotPlt); 515 516 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 517 // it as a relocation and ensure the referenced section is created. 518 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 519 if (target->gotBaseSymInGotPlt) 520 in.gotPlt->hasGotPltOffRel = true; 521 else 522 in.got->hasGotOffRel = true; 523 } 524 525 if (config->gdbIndex) 526 add(GdbIndexSection::create<ELFT>()); 527 528 // We always need to add rel[a].plt to output if it has entries. 529 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 530 in.relaPlt = make<RelocationSection<ELFT>>( 531 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 532 add(in.relaPlt); 533 534 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 535 // relocations are processed last by the dynamic loader. We cannot place the 536 // iplt section in .rel.dyn when Android relocation packing is enabled because 537 // that would cause a section type mismatch. However, because the Android 538 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 539 // behaviour by placing the iplt section in .rel.plt. 540 in.relaIplt = make<RelocationSection<ELFT>>( 541 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 542 /*sort=*/false); 543 add(in.relaIplt); 544 545 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 546 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 547 in.ibtPlt = make<IBTPltSection>(); 548 add(in.ibtPlt); 549 } 550 551 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 552 : make<PltSection>(); 553 add(in.plt); 554 in.iplt = make<IpltSection>(); 555 add(in.iplt); 556 557 if (config->andFeatures) 558 add(make<GnuPropertySection>()); 559 560 // .note.GNU-stack is always added when we are creating a re-linkable 561 // object file. Other linkers are using the presence of this marker 562 // section to control the executable-ness of the stack area, but that 563 // is irrelevant these days. Stack area should always be non-executable 564 // by default. So we emit this section unconditionally. 565 if (config->relocatable) 566 add(make<GnuStackSection>()); 567 568 if (in.symTab) 569 add(in.symTab); 570 if (in.symTabShndx) 571 add(in.symTabShndx); 572 add(in.shStrTab); 573 if (in.strTab) 574 add(in.strTab); 575 } 576 577 // The main function of the writer. 578 template <class ELFT> void Writer<ELFT>::run() { 579 copyLocalSymbols(); 580 581 if (config->copyRelocs) 582 addSectionSymbols(); 583 584 // Now that we have a complete set of output sections. This function 585 // completes section contents. For example, we need to add strings 586 // to the string table, and add entries to .got and .plt. 587 // finalizeSections does that. 588 finalizeSections(); 589 checkExecuteOnly(); 590 if (errorCount()) 591 return; 592 593 // If -compressed-debug-sections is specified, we need to compress 594 // .debug_* sections. Do it right now because it changes the size of 595 // output sections. 596 for (OutputSection *sec : outputSections) 597 sec->maybeCompress<ELFT>(); 598 599 if (script->hasSectionsCommand) 600 script->allocateHeaders(mainPart->phdrs); 601 602 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 603 // 0 sized region. This has to be done late since only after assignAddresses 604 // we know the size of the sections. 605 for (Partition &part : partitions) 606 removeEmptyPTLoad(part.phdrs); 607 608 if (!config->oFormatBinary) 609 assignFileOffsets(); 610 else 611 assignFileOffsetsBinary(); 612 613 for (Partition &part : partitions) 614 setPhdrs(part); 615 616 if (config->relocatable) 617 for (OutputSection *sec : outputSections) 618 sec->addr = 0; 619 620 // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them 621 // before checkSections() because the files may be useful in case 622 // checkSections() or openFile() fails, for example, due to an erroneous file 623 // size. 624 writeMapFile(); 625 writeCrossReferenceTable(); 626 writeArchiveStats(); 627 628 if (config->checkSections) 629 checkSections(); 630 631 // It does not make sense try to open the file if we have error already. 632 if (errorCount()) 633 return; 634 // Write the result down to a file. 635 openFile(); 636 if (errorCount()) 637 return; 638 639 if (!config->oFormatBinary) { 640 if (config->zSeparate != SeparateSegmentKind::None) 641 writeTrapInstr(); 642 writeHeader(); 643 writeSections(); 644 } else { 645 writeSectionsBinary(); 646 } 647 648 // Backfill .note.gnu.build-id section content. This is done at last 649 // because the content is usually a hash value of the entire output file. 650 writeBuildId(); 651 if (errorCount()) 652 return; 653 654 if (auto e = buffer->commit()) 655 error("failed to write to the output file: " + toString(std::move(e))); 656 } 657 658 template <class ELFT, class RelTy> 659 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 660 llvm::ArrayRef<RelTy> rels) { 661 for (const RelTy &rel : rels) { 662 Symbol &sym = file->getRelocTargetSym(rel); 663 if (sym.isLocal()) 664 sym.used = true; 665 } 666 } 667 668 // The function ensures that the "used" field of local symbols reflects the fact 669 // that the symbol is used in a relocation from a live section. 670 template <class ELFT> static void markUsedLocalSymbols() { 671 // With --gc-sections, the field is already filled. 672 // See MarkLive<ELFT>::resolveReloc(). 673 if (config->gcSections) 674 return; 675 // Without --gc-sections, the field is initialized with "true". 676 // Drop the flag first and then rise for symbols referenced in relocations. 677 for (InputFile *file : objectFiles) { 678 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 679 for (Symbol *b : f->getLocalSymbols()) 680 b->used = false; 681 for (InputSectionBase *s : f->getSections()) { 682 InputSection *isec = dyn_cast_or_null<InputSection>(s); 683 if (!isec) 684 continue; 685 if (isec->type == SHT_REL) 686 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 687 else if (isec->type == SHT_RELA) 688 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 689 } 690 } 691 } 692 693 static bool shouldKeepInSymtab(const Defined &sym) { 694 if (sym.isSection()) 695 return false; 696 697 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 698 // from live sections. 699 if (config->copyRelocs && sym.used) 700 return true; 701 702 // Exclude local symbols pointing to .ARM.exidx sections. 703 // They are probably mapping symbols "$d", which are optional for these 704 // sections. After merging the .ARM.exidx sections, some of these symbols 705 // may become dangling. The easiest way to avoid the issue is not to add 706 // them to the symbol table from the beginning. 707 if (config->emachine == EM_ARM && sym.section && 708 sym.section->type == SHT_ARM_EXIDX) 709 return false; 710 711 if (config->discard == DiscardPolicy::None) 712 return true; 713 if (config->discard == DiscardPolicy::All) 714 return false; 715 716 // In ELF assembly .L symbols are normally discarded by the assembler. 717 // If the assembler fails to do so, the linker discards them if 718 // * --discard-locals is used. 719 // * The symbol is in a SHF_MERGE section, which is normally the reason for 720 // the assembler keeping the .L symbol. 721 StringRef name = sym.getName(); 722 bool isLocal = name.startswith(".L") || name.empty(); 723 if (!isLocal) 724 return true; 725 726 if (config->discard == DiscardPolicy::Locals) 727 return false; 728 729 SectionBase *sec = sym.section; 730 return !sec || !(sec->flags & SHF_MERGE); 731 } 732 733 static bool includeInSymtab(const Symbol &b) { 734 if (!b.isLocal() && !b.isUsedInRegularObj) 735 return false; 736 737 if (auto *d = dyn_cast<Defined>(&b)) { 738 // Always include absolute symbols. 739 SectionBase *sec = d->section; 740 if (!sec) 741 return true; 742 sec = sec->repl; 743 744 // Exclude symbols pointing to garbage-collected sections. 745 if (isa<InputSectionBase>(sec) && !sec->isLive()) 746 return false; 747 748 if (auto *s = dyn_cast<MergeInputSection>(sec)) 749 if (!s->getSectionPiece(d->value)->live) 750 return false; 751 return true; 752 } 753 return b.used; 754 } 755 756 // Local symbols are not in the linker's symbol table. This function scans 757 // each object file's symbol table to copy local symbols to the output. 758 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 759 if (!in.symTab) 760 return; 761 if (config->copyRelocs && config->discard != DiscardPolicy::None) 762 markUsedLocalSymbols<ELFT>(); 763 for (InputFile *file : objectFiles) { 764 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 765 for (Symbol *b : f->getLocalSymbols()) { 766 if (!b->isLocal()) 767 fatal(toString(f) + 768 ": broken object: getLocalSymbols returns a non-local symbol"); 769 auto *dr = dyn_cast<Defined>(b); 770 771 // No reason to keep local undefined symbol in symtab. 772 if (!dr) 773 continue; 774 if (!includeInSymtab(*b)) 775 continue; 776 if (!shouldKeepInSymtab(*dr)) 777 continue; 778 in.symTab->addSymbol(b); 779 } 780 } 781 } 782 783 // Create a section symbol for each output section so that we can represent 784 // relocations that point to the section. If we know that no relocation is 785 // referring to a section (that happens if the section is a synthetic one), we 786 // don't create a section symbol for that section. 787 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 788 for (BaseCommand *base : script->sectionCommands) { 789 auto *sec = dyn_cast<OutputSection>(base); 790 if (!sec) 791 continue; 792 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 793 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 794 return !isd->sections.empty(); 795 return false; 796 }); 797 if (i == sec->sectionCommands.end()) 798 continue; 799 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 800 801 // Relocations are not using REL[A] section symbols. 802 if (isec->type == SHT_REL || isec->type == SHT_RELA) 803 continue; 804 805 // Unlike other synthetic sections, mergeable output sections contain data 806 // copied from input sections, and there may be a relocation pointing to its 807 // contents if -r or -emit-reloc are given. 808 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 809 continue; 810 811 auto *sym = 812 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 813 /*value=*/0, /*size=*/0, isec); 814 in.symTab->addSymbol(sym); 815 } 816 } 817 818 // Today's loaders have a feature to make segments read-only after 819 // processing dynamic relocations to enhance security. PT_GNU_RELRO 820 // is defined for that. 821 // 822 // This function returns true if a section needs to be put into a 823 // PT_GNU_RELRO segment. 824 static bool isRelroSection(const OutputSection *sec) { 825 if (!config->zRelro) 826 return false; 827 828 uint64_t flags = sec->flags; 829 830 // Non-allocatable or non-writable sections don't need RELRO because 831 // they are not writable or not even mapped to memory in the first place. 832 // RELRO is for sections that are essentially read-only but need to 833 // be writable only at process startup to allow dynamic linker to 834 // apply relocations. 835 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 836 return false; 837 838 // Once initialized, TLS data segments are used as data templates 839 // for a thread-local storage. For each new thread, runtime 840 // allocates memory for a TLS and copy templates there. No thread 841 // are supposed to use templates directly. Thus, it can be in RELRO. 842 if (flags & SHF_TLS) 843 return true; 844 845 // .init_array, .preinit_array and .fini_array contain pointers to 846 // functions that are executed on process startup or exit. These 847 // pointers are set by the static linker, and they are not expected 848 // to change at runtime. But if you are an attacker, you could do 849 // interesting things by manipulating pointers in .fini_array, for 850 // example. So they are put into RELRO. 851 uint32_t type = sec->type; 852 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 853 type == SHT_PREINIT_ARRAY) 854 return true; 855 856 // .got contains pointers to external symbols. They are resolved by 857 // the dynamic linker when a module is loaded into memory, and after 858 // that they are not expected to change. So, it can be in RELRO. 859 if (in.got && sec == in.got->getParent()) 860 return true; 861 862 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 863 // through r2 register, which is reserved for that purpose. Since r2 is used 864 // for accessing .got as well, .got and .toc need to be close enough in the 865 // virtual address space. Usually, .toc comes just after .got. Since we place 866 // .got into RELRO, .toc needs to be placed into RELRO too. 867 if (sec->name.equals(".toc")) 868 return true; 869 870 // .got.plt contains pointers to external function symbols. They are 871 // by default resolved lazily, so we usually cannot put it into RELRO. 872 // However, if "-z now" is given, the lazy symbol resolution is 873 // disabled, which enables us to put it into RELRO. 874 if (sec == in.gotPlt->getParent()) 875 return config->zNow; 876 877 // .dynamic section contains data for the dynamic linker, and 878 // there's no need to write to it at runtime, so it's better to put 879 // it into RELRO. 880 if (sec->name == ".dynamic") 881 return true; 882 883 // Sections with some special names are put into RELRO. This is a 884 // bit unfortunate because section names shouldn't be significant in 885 // ELF in spirit. But in reality many linker features depend on 886 // magic section names. 887 StringRef s = sec->name; 888 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 889 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 890 s == ".fini_array" || s == ".init_array" || 891 s == ".openbsd.randomdata" || s == ".preinit_array"; 892 } 893 894 // We compute a rank for each section. The rank indicates where the 895 // section should be placed in the file. Instead of using simple 896 // numbers (0,1,2...), we use a series of flags. One for each decision 897 // point when placing the section. 898 // Using flags has two key properties: 899 // * It is easy to check if a give branch was taken. 900 // * It is easy two see how similar two ranks are (see getRankProximity). 901 enum RankFlags { 902 RF_NOT_ADDR_SET = 1 << 27, 903 RF_NOT_ALLOC = 1 << 26, 904 RF_PARTITION = 1 << 18, // Partition number (8 bits) 905 RF_NOT_PART_EHDR = 1 << 17, 906 RF_NOT_PART_PHDR = 1 << 16, 907 RF_NOT_INTERP = 1 << 15, 908 RF_NOT_NOTE = 1 << 14, 909 RF_WRITE = 1 << 13, 910 RF_EXEC_WRITE = 1 << 12, 911 RF_EXEC = 1 << 11, 912 RF_RODATA = 1 << 10, 913 RF_NOT_RELRO = 1 << 9, 914 RF_NOT_TLS = 1 << 8, 915 RF_BSS = 1 << 7, 916 RF_PPC_NOT_TOCBSS = 1 << 6, 917 RF_PPC_TOCL = 1 << 5, 918 RF_PPC_TOC = 1 << 4, 919 RF_PPC_GOT = 1 << 3, 920 RF_PPC_BRANCH_LT = 1 << 2, 921 RF_MIPS_GPREL = 1 << 1, 922 RF_MIPS_NOT_GOT = 1 << 0 923 }; 924 925 static unsigned getSectionRank(const OutputSection *sec) { 926 unsigned rank = sec->partition * RF_PARTITION; 927 928 // We want to put section specified by -T option first, so we 929 // can start assigning VA starting from them later. 930 if (config->sectionStartMap.count(sec->name)) 931 return rank; 932 rank |= RF_NOT_ADDR_SET; 933 934 // Allocatable sections go first to reduce the total PT_LOAD size and 935 // so debug info doesn't change addresses in actual code. 936 if (!(sec->flags & SHF_ALLOC)) 937 return rank | RF_NOT_ALLOC; 938 939 if (sec->type == SHT_LLVM_PART_EHDR) 940 return rank; 941 rank |= RF_NOT_PART_EHDR; 942 943 if (sec->type == SHT_LLVM_PART_PHDR) 944 return rank; 945 rank |= RF_NOT_PART_PHDR; 946 947 // Put .interp first because some loaders want to see that section 948 // on the first page of the executable file when loaded into memory. 949 if (sec->name == ".interp") 950 return rank; 951 rank |= RF_NOT_INTERP; 952 953 // Put .note sections (which make up one PT_NOTE) at the beginning so that 954 // they are likely to be included in a core file even if core file size is 955 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 956 // included in a core to match core files with executables. 957 if (sec->type == SHT_NOTE) 958 return rank; 959 rank |= RF_NOT_NOTE; 960 961 // Sort sections based on their access permission in the following 962 // order: R, RX, RWX, RW. This order is based on the following 963 // considerations: 964 // * Read-only sections come first such that they go in the 965 // PT_LOAD covering the program headers at the start of the file. 966 // * Read-only, executable sections come next. 967 // * Writable, executable sections follow such that .plt on 968 // architectures where it needs to be writable will be placed 969 // between .text and .data. 970 // * Writable sections come last, such that .bss lands at the very 971 // end of the last PT_LOAD. 972 bool isExec = sec->flags & SHF_EXECINSTR; 973 bool isWrite = sec->flags & SHF_WRITE; 974 975 if (isExec) { 976 if (isWrite) 977 rank |= RF_EXEC_WRITE; 978 else 979 rank |= RF_EXEC; 980 } else if (isWrite) { 981 rank |= RF_WRITE; 982 } else if (sec->type == SHT_PROGBITS) { 983 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 984 // .eh_frame) closer to .text. They likely contain PC or GOT relative 985 // relocations and there could be relocation overflow if other huge sections 986 // (.dynstr .dynsym) were placed in between. 987 rank |= RF_RODATA; 988 } 989 990 // Place RelRo sections first. After considering SHT_NOBITS below, the 991 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 992 // where | marks where page alignment happens. An alternative ordering is 993 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 994 // waste more bytes due to 2 alignment places. 995 if (!isRelroSection(sec)) 996 rank |= RF_NOT_RELRO; 997 998 // If we got here we know that both A and B are in the same PT_LOAD. 999 1000 // The TLS initialization block needs to be a single contiguous block in a R/W 1001 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 1002 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 1003 // after PROGBITS. 1004 if (!(sec->flags & SHF_TLS)) 1005 rank |= RF_NOT_TLS; 1006 1007 // Within TLS sections, or within other RelRo sections, or within non-RelRo 1008 // sections, place non-NOBITS sections first. 1009 if (sec->type == SHT_NOBITS) 1010 rank |= RF_BSS; 1011 1012 // Some architectures have additional ordering restrictions for sections 1013 // within the same PT_LOAD. 1014 if (config->emachine == EM_PPC64) { 1015 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 1016 // that we would like to make sure appear is a specific order to maximize 1017 // their coverage by a single signed 16-bit offset from the TOC base 1018 // pointer. Conversely, the special .tocbss section should be first among 1019 // all SHT_NOBITS sections. This will put it next to the loaded special 1020 // PPC64 sections (and, thus, within reach of the TOC base pointer). 1021 StringRef name = sec->name; 1022 if (name != ".tocbss") 1023 rank |= RF_PPC_NOT_TOCBSS; 1024 1025 if (name == ".toc1") 1026 rank |= RF_PPC_TOCL; 1027 1028 if (name == ".toc") 1029 rank |= RF_PPC_TOC; 1030 1031 if (name == ".got") 1032 rank |= RF_PPC_GOT; 1033 1034 if (name == ".branch_lt") 1035 rank |= RF_PPC_BRANCH_LT; 1036 } 1037 1038 if (config->emachine == EM_MIPS) { 1039 // All sections with SHF_MIPS_GPREL flag should be grouped together 1040 // because data in these sections is addressable with a gp relative address. 1041 if (sec->flags & SHF_MIPS_GPREL) 1042 rank |= RF_MIPS_GPREL; 1043 1044 if (sec->name != ".got") 1045 rank |= RF_MIPS_NOT_GOT; 1046 } 1047 1048 return rank; 1049 } 1050 1051 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 1052 const OutputSection *a = cast<OutputSection>(aCmd); 1053 const OutputSection *b = cast<OutputSection>(bCmd); 1054 1055 if (a->sortRank != b->sortRank) 1056 return a->sortRank < b->sortRank; 1057 1058 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1059 return config->sectionStartMap.lookup(a->name) < 1060 config->sectionStartMap.lookup(b->name); 1061 return false; 1062 } 1063 1064 void PhdrEntry::add(OutputSection *sec) { 1065 lastSec = sec; 1066 if (!firstSec) 1067 firstSec = sec; 1068 p_align = std::max(p_align, sec->alignment); 1069 if (p_type == PT_LOAD) 1070 sec->ptLoad = this; 1071 } 1072 1073 // The beginning and the ending of .rel[a].plt section are marked 1074 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1075 // executable. The runtime needs these symbols in order to resolve 1076 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1077 // need these symbols, since IRELATIVE relocs are resolved through GOT 1078 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1079 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1080 if (config->relocatable || needsInterpSection()) 1081 return; 1082 1083 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1084 // because .rela.plt might be empty and thus removed from output. 1085 // We'll override Out::elfHeader with In.relaIplt later when we are 1086 // sure that .rela.plt exists in output. 1087 ElfSym::relaIpltStart = addOptionalRegular( 1088 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1089 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1090 1091 ElfSym::relaIpltEnd = addOptionalRegular( 1092 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1093 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1094 } 1095 1096 template <class ELFT> 1097 void Writer<ELFT>::forEachRelSec( 1098 llvm::function_ref<void(InputSectionBase &)> fn) { 1099 // Scan all relocations. Each relocation goes through a series 1100 // of tests to determine if it needs special treatment, such as 1101 // creating GOT, PLT, copy relocations, etc. 1102 // Note that relocations for non-alloc sections are directly 1103 // processed by InputSection::relocateNonAlloc. 1104 for (InputSectionBase *isec : inputSections) 1105 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1106 fn(*isec); 1107 for (Partition &part : partitions) { 1108 for (EhInputSection *es : part.ehFrame->sections) 1109 fn(*es); 1110 if (part.armExidx && part.armExidx->isLive()) 1111 for (InputSection *ex : part.armExidx->exidxSections) 1112 fn(*ex); 1113 } 1114 } 1115 1116 // This function generates assignments for predefined symbols (e.g. _end or 1117 // _etext) and inserts them into the commands sequence to be processed at the 1118 // appropriate time. This ensures that the value is going to be correct by the 1119 // time any references to these symbols are processed and is equivalent to 1120 // defining these symbols explicitly in the linker script. 1121 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1122 if (ElfSym::globalOffsetTable) { 1123 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1124 // to the start of the .got or .got.plt section. 1125 InputSection *gotSection = in.gotPlt; 1126 if (!target->gotBaseSymInGotPlt) 1127 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1128 : cast<InputSection>(in.got); 1129 ElfSym::globalOffsetTable->section = gotSection; 1130 } 1131 1132 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1133 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1134 ElfSym::relaIpltStart->section = in.relaIplt; 1135 ElfSym::relaIpltEnd->section = in.relaIplt; 1136 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1137 } 1138 1139 PhdrEntry *last = nullptr; 1140 PhdrEntry *lastRO = nullptr; 1141 1142 for (Partition &part : partitions) { 1143 for (PhdrEntry *p : part.phdrs) { 1144 if (p->p_type != PT_LOAD) 1145 continue; 1146 last = p; 1147 if (!(p->p_flags & PF_W)) 1148 lastRO = p; 1149 } 1150 } 1151 1152 if (lastRO) { 1153 // _etext is the first location after the last read-only loadable segment. 1154 if (ElfSym::etext1) 1155 ElfSym::etext1->section = lastRO->lastSec; 1156 if (ElfSym::etext2) 1157 ElfSym::etext2->section = lastRO->lastSec; 1158 } 1159 1160 if (last) { 1161 // _edata points to the end of the last mapped initialized section. 1162 OutputSection *edata = nullptr; 1163 for (OutputSection *os : outputSections) { 1164 if (os->type != SHT_NOBITS) 1165 edata = os; 1166 if (os == last->lastSec) 1167 break; 1168 } 1169 1170 if (ElfSym::edata1) 1171 ElfSym::edata1->section = edata; 1172 if (ElfSym::edata2) 1173 ElfSym::edata2->section = edata; 1174 1175 // _end is the first location after the uninitialized data region. 1176 if (ElfSym::end1) 1177 ElfSym::end1->section = last->lastSec; 1178 if (ElfSym::end2) 1179 ElfSym::end2->section = last->lastSec; 1180 } 1181 1182 if (ElfSym::bss) 1183 ElfSym::bss->section = findSection(".bss"); 1184 1185 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1186 // be equal to the _gp symbol's value. 1187 if (ElfSym::mipsGp) { 1188 // Find GP-relative section with the lowest address 1189 // and use this address to calculate default _gp value. 1190 for (OutputSection *os : outputSections) { 1191 if (os->flags & SHF_MIPS_GPREL) { 1192 ElfSym::mipsGp->section = os; 1193 ElfSym::mipsGp->value = 0x7ff0; 1194 break; 1195 } 1196 } 1197 } 1198 } 1199 1200 // We want to find how similar two ranks are. 1201 // The more branches in getSectionRank that match, the more similar they are. 1202 // Since each branch corresponds to a bit flag, we can just use 1203 // countLeadingZeros. 1204 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1205 return countLeadingZeros(a->sortRank ^ b->sortRank); 1206 } 1207 1208 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1209 auto *sec = dyn_cast<OutputSection>(b); 1210 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1211 } 1212 1213 // When placing orphan sections, we want to place them after symbol assignments 1214 // so that an orphan after 1215 // begin_foo = .; 1216 // foo : { *(foo) } 1217 // end_foo = .; 1218 // doesn't break the intended meaning of the begin/end symbols. 1219 // We don't want to go over sections since findOrphanPos is the 1220 // one in charge of deciding the order of the sections. 1221 // We don't want to go over changes to '.', since doing so in 1222 // rx_sec : { *(rx_sec) } 1223 // . = ALIGN(0x1000); 1224 // /* The RW PT_LOAD starts here*/ 1225 // rw_sec : { *(rw_sec) } 1226 // would mean that the RW PT_LOAD would become unaligned. 1227 static bool shouldSkip(BaseCommand *cmd) { 1228 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1229 return assign->name != "."; 1230 return false; 1231 } 1232 1233 // We want to place orphan sections so that they share as much 1234 // characteristics with their neighbors as possible. For example, if 1235 // both are rw, or both are tls. 1236 static std::vector<BaseCommand *>::iterator 1237 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1238 std::vector<BaseCommand *>::iterator e) { 1239 OutputSection *sec = cast<OutputSection>(*e); 1240 1241 // Find the first element that has as close a rank as possible. 1242 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1243 return getRankProximity(sec, a) < getRankProximity(sec, b); 1244 }); 1245 if (i == e) 1246 return e; 1247 1248 // Consider all existing sections with the same proximity. 1249 int proximity = getRankProximity(sec, *i); 1250 for (; i != e; ++i) { 1251 auto *curSec = dyn_cast<OutputSection>(*i); 1252 if (!curSec || !curSec->hasInputSections) 1253 continue; 1254 if (getRankProximity(sec, curSec) != proximity || 1255 sec->sortRank < curSec->sortRank) 1256 break; 1257 } 1258 1259 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1260 auto *os = dyn_cast<OutputSection>(cmd); 1261 return os && os->hasInputSections; 1262 }; 1263 auto j = std::find_if(llvm::make_reverse_iterator(i), 1264 llvm::make_reverse_iterator(b), 1265 isOutputSecWithInputSections); 1266 i = j.base(); 1267 1268 // As a special case, if the orphan section is the last section, put 1269 // it at the very end, past any other commands. 1270 // This matches bfd's behavior and is convenient when the linker script fully 1271 // specifies the start of the file, but doesn't care about the end (the non 1272 // alloc sections for example). 1273 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1274 if (nextSec == e) 1275 return e; 1276 1277 while (i != e && shouldSkip(*i)) 1278 ++i; 1279 return i; 1280 } 1281 1282 // Adds random priorities to sections not already in the map. 1283 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1284 if (!config->shuffleSectionSeed) 1285 return; 1286 1287 std::vector<int> priorities(inputSections.size() - order.size()); 1288 // Existing priorities are < 0, so use priorities >= 0 for the missing 1289 // sections. 1290 int curPrio = 0; 1291 for (int &prio : priorities) 1292 prio = curPrio++; 1293 uint32_t seed = *config->shuffleSectionSeed; 1294 std::mt19937 g(seed ? seed : std::random_device()()); 1295 llvm::shuffle(priorities.begin(), priorities.end(), g); 1296 int prioIndex = 0; 1297 for (InputSectionBase *sec : inputSections) { 1298 if (order.try_emplace(sec, priorities[prioIndex]).second) 1299 ++prioIndex; 1300 } 1301 } 1302 1303 // Builds section order for handling --symbol-ordering-file. 1304 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1305 DenseMap<const InputSectionBase *, int> sectionOrder; 1306 // Use the rarely used option -call-graph-ordering-file to sort sections. 1307 if (!config->callGraphProfile.empty()) 1308 return computeCallGraphProfileOrder(); 1309 1310 if (config->symbolOrderingFile.empty()) 1311 return sectionOrder; 1312 1313 struct SymbolOrderEntry { 1314 int priority; 1315 bool present; 1316 }; 1317 1318 // Build a map from symbols to their priorities. Symbols that didn't 1319 // appear in the symbol ordering file have the lowest priority 0. 1320 // All explicitly mentioned symbols have negative (higher) priorities. 1321 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1322 int priority = -config->symbolOrderingFile.size(); 1323 for (StringRef s : config->symbolOrderingFile) 1324 symbolOrder.insert({s, {priority++, false}}); 1325 1326 // Build a map from sections to their priorities. 1327 auto addSym = [&](Symbol &sym) { 1328 auto it = symbolOrder.find(sym.getName()); 1329 if (it == symbolOrder.end()) 1330 return; 1331 SymbolOrderEntry &ent = it->second; 1332 ent.present = true; 1333 1334 maybeWarnUnorderableSymbol(&sym); 1335 1336 if (auto *d = dyn_cast<Defined>(&sym)) { 1337 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1338 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1339 priority = std::min(priority, ent.priority); 1340 } 1341 } 1342 }; 1343 1344 // We want both global and local symbols. We get the global ones from the 1345 // symbol table and iterate the object files for the local ones. 1346 for (Symbol *sym : symtab->symbols()) 1347 if (!sym->isLazy()) 1348 addSym(*sym); 1349 1350 for (InputFile *file : objectFiles) 1351 for (Symbol *sym : file->getSymbols()) 1352 if (sym->isLocal()) 1353 addSym(*sym); 1354 1355 if (config->warnSymbolOrdering) 1356 for (auto orderEntry : symbolOrder) 1357 if (!orderEntry.second.present) 1358 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1359 1360 return sectionOrder; 1361 } 1362 1363 // Sorts the sections in ISD according to the provided section order. 1364 static void 1365 sortISDBySectionOrder(InputSectionDescription *isd, 1366 const DenseMap<const InputSectionBase *, int> &order) { 1367 std::vector<InputSection *> unorderedSections; 1368 std::vector<std::pair<InputSection *, int>> orderedSections; 1369 uint64_t unorderedSize = 0; 1370 1371 for (InputSection *isec : isd->sections) { 1372 auto i = order.find(isec); 1373 if (i == order.end()) { 1374 unorderedSections.push_back(isec); 1375 unorderedSize += isec->getSize(); 1376 continue; 1377 } 1378 orderedSections.push_back({isec, i->second}); 1379 } 1380 llvm::sort(orderedSections, llvm::less_second()); 1381 1382 // Find an insertion point for the ordered section list in the unordered 1383 // section list. On targets with limited-range branches, this is the mid-point 1384 // of the unordered section list. This decreases the likelihood that a range 1385 // extension thunk will be needed to enter or exit the ordered region. If the 1386 // ordered section list is a list of hot functions, we can generally expect 1387 // the ordered functions to be called more often than the unordered functions, 1388 // making it more likely that any particular call will be within range, and 1389 // therefore reducing the number of thunks required. 1390 // 1391 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1392 // If the layout is: 1393 // 1394 // 8MB hot 1395 // 32MB cold 1396 // 1397 // only the first 8-16MB of the cold code (depending on which hot function it 1398 // is actually calling) can call the hot code without a range extension thunk. 1399 // However, if we use this layout: 1400 // 1401 // 16MB cold 1402 // 8MB hot 1403 // 16MB cold 1404 // 1405 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1406 // of the second block of cold code can call the hot code without a thunk. So 1407 // we effectively double the amount of code that could potentially call into 1408 // the hot code without a thunk. 1409 size_t insPt = 0; 1410 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1411 uint64_t unorderedPos = 0; 1412 for (; insPt != unorderedSections.size(); ++insPt) { 1413 unorderedPos += unorderedSections[insPt]->getSize(); 1414 if (unorderedPos > unorderedSize / 2) 1415 break; 1416 } 1417 } 1418 1419 isd->sections.clear(); 1420 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1421 isd->sections.push_back(isec); 1422 for (std::pair<InputSection *, int> p : orderedSections) 1423 isd->sections.push_back(p.first); 1424 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1425 isd->sections.push_back(isec); 1426 } 1427 1428 static void sortSection(OutputSection *sec, 1429 const DenseMap<const InputSectionBase *, int> &order) { 1430 StringRef name = sec->name; 1431 1432 // Never sort these. 1433 if (name == ".init" || name == ".fini") 1434 return; 1435 1436 // Sort input sections by priority using the list provided by 1437 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1438 // digit radix sort. The sections may be sorted stably again by a more 1439 // significant key. 1440 if (!order.empty()) 1441 for (BaseCommand *b : sec->sectionCommands) 1442 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1443 sortISDBySectionOrder(isd, order); 1444 1445 // Sort input sections by section name suffixes for 1446 // __attribute__((init_priority(N))). 1447 if (name == ".init_array" || name == ".fini_array") { 1448 if (!script->hasSectionsCommand) 1449 sec->sortInitFini(); 1450 return; 1451 } 1452 1453 // Sort input sections by the special rule for .ctors and .dtors. 1454 if (name == ".ctors" || name == ".dtors") { 1455 if (!script->hasSectionsCommand) 1456 sec->sortCtorsDtors(); 1457 return; 1458 } 1459 1460 // .toc is allocated just after .got and is accessed using GOT-relative 1461 // relocations. Object files compiled with small code model have an 1462 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1463 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1464 // sections having smaller relocation offsets are at beginning of .toc 1465 if (config->emachine == EM_PPC64 && name == ".toc") { 1466 if (script->hasSectionsCommand) 1467 return; 1468 assert(sec->sectionCommands.size() == 1); 1469 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1470 llvm::stable_sort(isd->sections, 1471 [](const InputSection *a, const InputSection *b) -> bool { 1472 return a->file->ppc64SmallCodeModelTocRelocs && 1473 !b->file->ppc64SmallCodeModelTocRelocs; 1474 }); 1475 return; 1476 } 1477 } 1478 1479 // If no layout was provided by linker script, we want to apply default 1480 // sorting for special input sections. This also handles --symbol-ordering-file. 1481 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1482 // Build the order once since it is expensive. 1483 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1484 maybeShuffle(order); 1485 for (BaseCommand *base : script->sectionCommands) 1486 if (auto *sec = dyn_cast<OutputSection>(base)) 1487 sortSection(sec, order); 1488 } 1489 1490 template <class ELFT> void Writer<ELFT>::sortSections() { 1491 script->adjustSectionsBeforeSorting(); 1492 1493 // Don't sort if using -r. It is not necessary and we want to preserve the 1494 // relative order for SHF_LINK_ORDER sections. 1495 if (config->relocatable) 1496 return; 1497 1498 sortInputSections(); 1499 1500 for (BaseCommand *base : script->sectionCommands) { 1501 auto *os = dyn_cast<OutputSection>(base); 1502 if (!os) 1503 continue; 1504 os->sortRank = getSectionRank(os); 1505 1506 // We want to assign rude approximation values to outSecOff fields 1507 // to know the relative order of the input sections. We use it for 1508 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1509 uint64_t i = 0; 1510 for (InputSection *sec : getInputSections(os)) 1511 sec->outSecOff = i++; 1512 } 1513 1514 if (!script->hasSectionsCommand) { 1515 // We know that all the OutputSections are contiguous in this case. 1516 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1517 std::stable_sort( 1518 llvm::find_if(script->sectionCommands, isSection), 1519 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1520 compareSections); 1521 1522 // Process INSERT commands. From this point onwards the order of 1523 // script->sectionCommands is fixed. 1524 script->processInsertCommands(); 1525 return; 1526 } 1527 1528 script->processInsertCommands(); 1529 1530 // Orphan sections are sections present in the input files which are 1531 // not explicitly placed into the output file by the linker script. 1532 // 1533 // The sections in the linker script are already in the correct 1534 // order. We have to figuere out where to insert the orphan 1535 // sections. 1536 // 1537 // The order of the sections in the script is arbitrary and may not agree with 1538 // compareSections. This means that we cannot easily define a strict weak 1539 // ordering. To see why, consider a comparison of a section in the script and 1540 // one not in the script. We have a two simple options: 1541 // * Make them equivalent (a is not less than b, and b is not less than a). 1542 // The problem is then that equivalence has to be transitive and we can 1543 // have sections a, b and c with only b in a script and a less than c 1544 // which breaks this property. 1545 // * Use compareSectionsNonScript. Given that the script order doesn't have 1546 // to match, we can end up with sections a, b, c, d where b and c are in the 1547 // script and c is compareSectionsNonScript less than b. In which case d 1548 // can be equivalent to c, a to b and d < a. As a concrete example: 1549 // .a (rx) # not in script 1550 // .b (rx) # in script 1551 // .c (ro) # in script 1552 // .d (ro) # not in script 1553 // 1554 // The way we define an order then is: 1555 // * Sort only the orphan sections. They are in the end right now. 1556 // * Move each orphan section to its preferred position. We try 1557 // to put each section in the last position where it can share 1558 // a PT_LOAD. 1559 // 1560 // There is some ambiguity as to where exactly a new entry should be 1561 // inserted, because Commands contains not only output section 1562 // commands but also other types of commands such as symbol assignment 1563 // expressions. There's no correct answer here due to the lack of the 1564 // formal specification of the linker script. We use heuristics to 1565 // determine whether a new output command should be added before or 1566 // after another commands. For the details, look at shouldSkip 1567 // function. 1568 1569 auto i = script->sectionCommands.begin(); 1570 auto e = script->sectionCommands.end(); 1571 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1572 if (auto *sec = dyn_cast<OutputSection>(base)) 1573 return sec->sectionIndex == UINT32_MAX; 1574 return false; 1575 }); 1576 1577 // Sort the orphan sections. 1578 std::stable_sort(nonScriptI, e, compareSections); 1579 1580 // As a horrible special case, skip the first . assignment if it is before any 1581 // section. We do this because it is common to set a load address by starting 1582 // the script with ". = 0xabcd" and the expectation is that every section is 1583 // after that. 1584 auto firstSectionOrDotAssignment = 1585 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1586 if (firstSectionOrDotAssignment != e && 1587 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1588 ++firstSectionOrDotAssignment; 1589 i = firstSectionOrDotAssignment; 1590 1591 while (nonScriptI != e) { 1592 auto pos = findOrphanPos(i, nonScriptI); 1593 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1594 1595 // As an optimization, find all sections with the same sort rank 1596 // and insert them with one rotate. 1597 unsigned rank = orphan->sortRank; 1598 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1599 return cast<OutputSection>(cmd)->sortRank != rank; 1600 }); 1601 std::rotate(pos, nonScriptI, end); 1602 nonScriptI = end; 1603 } 1604 1605 script->adjustSectionsAfterSorting(); 1606 } 1607 1608 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1609 InputSection *la = a->getLinkOrderDep(); 1610 InputSection *lb = b->getLinkOrderDep(); 1611 OutputSection *aOut = la->getParent(); 1612 OutputSection *bOut = lb->getParent(); 1613 1614 if (aOut != bOut) 1615 return aOut->addr < bOut->addr; 1616 return la->outSecOff < lb->outSecOff; 1617 } 1618 1619 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1620 for (OutputSection *sec : outputSections) { 1621 if (!(sec->flags & SHF_LINK_ORDER)) 1622 continue; 1623 1624 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1625 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1626 if (!config->relocatable && config->emachine == EM_ARM && 1627 sec->type == SHT_ARM_EXIDX) 1628 continue; 1629 1630 // Link order may be distributed across several InputSectionDescriptions 1631 // but sort must consider them all at once. 1632 std::vector<InputSection **> scriptSections; 1633 std::vector<InputSection *> sections; 1634 bool started = false, stopped = false; 1635 for (BaseCommand *base : sec->sectionCommands) { 1636 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 1637 for (InputSection *&isec : isd->sections) { 1638 if (!(isec->flags & SHF_LINK_ORDER)) { 1639 if (started) 1640 stopped = true; 1641 } else if (stopped) { 1642 error(toString(isec) + ": SHF_LINK_ORDER sections in " + sec->name + 1643 " are not contiguous"); 1644 } else { 1645 started = true; 1646 1647 scriptSections.push_back(&isec); 1648 sections.push_back(isec); 1649 1650 InputSection *link = isec->getLinkOrderDep(); 1651 if (!link->getParent()) 1652 error(toString(isec) + ": sh_link points to discarded section " + 1653 toString(link)); 1654 } 1655 } 1656 } else if (started) { 1657 stopped = true; 1658 } 1659 } 1660 1661 if (errorCount()) 1662 continue; 1663 1664 llvm::stable_sort(sections, compareByFilePosition); 1665 1666 for (int i = 0, n = sections.size(); i < n; ++i) 1667 *scriptSections[i] = sections[i]; 1668 } 1669 } 1670 1671 static void finalizeSynthetic(SyntheticSection *sec) { 1672 if (sec && sec->isNeeded() && sec->getParent()) 1673 sec->finalizeContents(); 1674 } 1675 1676 // We need to generate and finalize the content that depends on the address of 1677 // InputSections. As the generation of the content may also alter InputSection 1678 // addresses we must converge to a fixed point. We do that here. See the comment 1679 // in Writer<ELFT>::finalizeSections(). 1680 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1681 ThunkCreator tc; 1682 AArch64Err843419Patcher a64p; 1683 ARMErr657417Patcher a32p; 1684 script->assignAddresses(); 1685 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1686 // do require the relative addresses of OutputSections because linker scripts 1687 // can assign Virtual Addresses to OutputSections that are not monotonically 1688 // increasing. 1689 for (Partition &part : partitions) 1690 finalizeSynthetic(part.armExidx); 1691 resolveShfLinkOrder(); 1692 1693 // Converts call x@GDPLT to call __tls_get_addr 1694 if (config->emachine == EM_HEXAGON) 1695 hexagonTLSSymbolUpdate(outputSections); 1696 1697 int assignPasses = 0; 1698 for (;;) { 1699 bool changed = target->needsThunks && tc.createThunks(outputSections); 1700 1701 // With Thunk Size much smaller than branch range we expect to 1702 // converge quickly; if we get to 10 something has gone wrong. 1703 if (changed && tc.pass >= 10) { 1704 error("thunk creation not converged"); 1705 break; 1706 } 1707 1708 if (config->fixCortexA53Errata843419) { 1709 if (changed) 1710 script->assignAddresses(); 1711 changed |= a64p.createFixes(); 1712 } 1713 if (config->fixCortexA8) { 1714 if (changed) 1715 script->assignAddresses(); 1716 changed |= a32p.createFixes(); 1717 } 1718 1719 if (in.mipsGot) 1720 in.mipsGot->updateAllocSize(); 1721 1722 for (Partition &part : partitions) { 1723 changed |= part.relaDyn->updateAllocSize(); 1724 if (part.relrDyn) 1725 changed |= part.relrDyn->updateAllocSize(); 1726 } 1727 1728 const Defined *changedSym = script->assignAddresses(); 1729 if (!changed) { 1730 // Some symbols may be dependent on section addresses. When we break the 1731 // loop, the symbol values are finalized because a previous 1732 // assignAddresses() finalized section addresses. 1733 if (!changedSym) 1734 break; 1735 if (++assignPasses == 5) { 1736 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1737 " does not converge"); 1738 break; 1739 } 1740 } 1741 } 1742 1743 // If addrExpr is set, the address may not be a multiple of the alignment. 1744 // Warn because this is error-prone. 1745 for (BaseCommand *cmd : script->sectionCommands) 1746 if (auto *os = dyn_cast<OutputSection>(cmd)) 1747 if (os->addr % os->alignment != 0) 1748 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1749 os->name + " is not a multiple of alignment (" + 1750 Twine(os->alignment) + ")"); 1751 } 1752 1753 // If Input Sections have been shrinked (basic block sections) then 1754 // update symbol values and sizes associated with these sections. With basic 1755 // block sections, input sections can shrink when the jump instructions at 1756 // the end of the section are relaxed. 1757 static void fixSymbolsAfterShrinking() { 1758 for (InputFile *File : objectFiles) { 1759 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1760 auto *def = dyn_cast<Defined>(Sym); 1761 if (!def) 1762 return; 1763 1764 const SectionBase *sec = def->section; 1765 if (!sec) 1766 return; 1767 1768 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl); 1769 if (!inputSec || !inputSec->bytesDropped) 1770 return; 1771 1772 const size_t OldSize = inputSec->data().size(); 1773 const size_t NewSize = OldSize - inputSec->bytesDropped; 1774 1775 if (def->value > NewSize && def->value <= OldSize) { 1776 LLVM_DEBUG(llvm::dbgs() 1777 << "Moving symbol " << Sym->getName() << " from " 1778 << def->value << " to " 1779 << def->value - inputSec->bytesDropped << " bytes\n"); 1780 def->value -= inputSec->bytesDropped; 1781 return; 1782 } 1783 1784 if (def->value + def->size > NewSize && def->value <= OldSize && 1785 def->value + def->size <= OldSize) { 1786 LLVM_DEBUG(llvm::dbgs() 1787 << "Shrinking symbol " << Sym->getName() << " from " 1788 << def->size << " to " << def->size - inputSec->bytesDropped 1789 << " bytes\n"); 1790 def->size -= inputSec->bytesDropped; 1791 } 1792 }); 1793 } 1794 } 1795 1796 // If basic block sections exist, there are opportunities to delete fall thru 1797 // jumps and shrink jump instructions after basic block reordering. This 1798 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1799 // option is used. 1800 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1801 assert(config->optimizeBBJumps); 1802 1803 script->assignAddresses(); 1804 // For every output section that has executable input sections, this 1805 // does the following: 1806 // 1. Deletes all direct jump instructions in input sections that 1807 // jump to the following section as it is not required. 1808 // 2. If there are two consecutive jump instructions, it checks 1809 // if they can be flipped and one can be deleted. 1810 for (OutputSection *os : outputSections) { 1811 if (!(os->flags & SHF_EXECINSTR)) 1812 continue; 1813 std::vector<InputSection *> sections = getInputSections(os); 1814 std::vector<unsigned> result(sections.size()); 1815 // Delete all fall through jump instructions. Also, check if two 1816 // consecutive jump instructions can be flipped so that a fall 1817 // through jmp instruction can be deleted. 1818 parallelForEachN(0, sections.size(), [&](size_t i) { 1819 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1820 InputSection &is = *sections[i]; 1821 result[i] = 1822 target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0; 1823 }); 1824 size_t numDeleted = std::count(result.begin(), result.end(), 1); 1825 if (numDeleted > 0) { 1826 script->assignAddresses(); 1827 LLVM_DEBUG(llvm::dbgs() 1828 << "Removing " << numDeleted << " fall through jumps\n"); 1829 } 1830 } 1831 1832 fixSymbolsAfterShrinking(); 1833 1834 for (OutputSection *os : outputSections) { 1835 std::vector<InputSection *> sections = getInputSections(os); 1836 for (InputSection *is : sections) 1837 is->trim(); 1838 } 1839 } 1840 1841 // In order to allow users to manipulate linker-synthesized sections, 1842 // we had to add synthetic sections to the input section list early, 1843 // even before we make decisions whether they are needed. This allows 1844 // users to write scripts like this: ".mygot : { .got }". 1845 // 1846 // Doing it has an unintended side effects. If it turns out that we 1847 // don't need a .got (for example) at all because there's no 1848 // relocation that needs a .got, we don't want to emit .got. 1849 // 1850 // To deal with the above problem, this function is called after 1851 // scanRelocations is called to remove synthetic sections that turn 1852 // out to be empty. 1853 static void removeUnusedSyntheticSections() { 1854 // All input synthetic sections that can be empty are placed after 1855 // all regular ones. We iterate over them all and exit at first 1856 // non-synthetic. 1857 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1858 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1859 if (!ss) 1860 return; 1861 OutputSection *os = ss->getParent(); 1862 if (!os || ss->isNeeded()) 1863 continue; 1864 1865 // If we reach here, then ss is an unused synthetic section and we want to 1866 // remove it from the corresponding input section description, and 1867 // orphanSections. 1868 for (BaseCommand *b : os->sectionCommands) 1869 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1870 llvm::erase_if(isd->sections, 1871 [=](InputSection *isec) { return isec == ss; }); 1872 llvm::erase_if(script->orphanSections, 1873 [=](const InputSectionBase *isec) { return isec == ss; }); 1874 } 1875 } 1876 1877 // Create output section objects and add them to OutputSections. 1878 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1879 Out::preinitArray = findSection(".preinit_array"); 1880 Out::initArray = findSection(".init_array"); 1881 Out::finiArray = findSection(".fini_array"); 1882 1883 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1884 // symbols for sections, so that the runtime can get the start and end 1885 // addresses of each section by section name. Add such symbols. 1886 if (!config->relocatable) { 1887 addStartEndSymbols(); 1888 for (BaseCommand *base : script->sectionCommands) 1889 if (auto *sec = dyn_cast<OutputSection>(base)) 1890 addStartStopSymbols(sec); 1891 } 1892 1893 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1894 // It should be okay as no one seems to care about the type. 1895 // Even the author of gold doesn't remember why gold behaves that way. 1896 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1897 if (mainPart->dynamic->parent) 1898 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1899 STV_HIDDEN, STT_NOTYPE, 1900 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1901 1902 // Define __rel[a]_iplt_{start,end} symbols if needed. 1903 addRelIpltSymbols(); 1904 1905 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1906 // should only be defined in an executable. If .sdata does not exist, its 1907 // value/section does not matter but it has to be relative, so set its 1908 // st_shndx arbitrarily to 1 (Out::elfHeader). 1909 if (config->emachine == EM_RISCV && !config->shared) { 1910 OutputSection *sec = findSection(".sdata"); 1911 ElfSym::riscvGlobalPointer = 1912 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1913 0x800, STV_DEFAULT, STB_GLOBAL); 1914 } 1915 1916 if (config->emachine == EM_X86_64) { 1917 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1918 // way that: 1919 // 1920 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1921 // computes 0. 1922 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1923 // the TLS block). 1924 // 1925 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1926 // an absolute symbol of zero. This is different from GNU linkers which 1927 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1928 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1929 if (s && s->isUndefined()) { 1930 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1931 STT_TLS, /*value=*/0, 0, 1932 /*section=*/nullptr}); 1933 ElfSym::tlsModuleBase = cast<Defined>(s); 1934 } 1935 } 1936 1937 // This responsible for splitting up .eh_frame section into 1938 // pieces. The relocation scan uses those pieces, so this has to be 1939 // earlier. 1940 for (Partition &part : partitions) 1941 finalizeSynthetic(part.ehFrame); 1942 1943 for (Symbol *sym : symtab->symbols()) 1944 sym->isPreemptible = computeIsPreemptible(*sym); 1945 1946 // Change values of linker-script-defined symbols from placeholders (assigned 1947 // by declareSymbols) to actual definitions. 1948 script->processSymbolAssignments(); 1949 1950 // Scan relocations. This must be done after every symbol is declared so that 1951 // we can correctly decide if a dynamic relocation is needed. This is called 1952 // after processSymbolAssignments() because it needs to know whether a 1953 // linker-script-defined symbol is absolute. 1954 ppc64noTocRelax.clear(); 1955 if (!config->relocatable) { 1956 forEachRelSec(scanRelocations<ELFT>); 1957 reportUndefinedSymbols<ELFT>(); 1958 } 1959 1960 if (in.plt && in.plt->isNeeded()) 1961 in.plt->addSymbols(); 1962 if (in.iplt && in.iplt->isNeeded()) 1963 in.iplt->addSymbols(); 1964 1965 if (!config->allowShlibUndefined) { 1966 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1967 // entries are seen. These cases would otherwise lead to runtime errors 1968 // reported by the dynamic linker. 1969 // 1970 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1971 // catch more cases. That is too much for us. Our approach resembles the one 1972 // used in ld.gold, achieves a good balance to be useful but not too smart. 1973 for (SharedFile *file : sharedFiles) 1974 file->allNeededIsKnown = 1975 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1976 return symtab->soNames.count(needed); 1977 }); 1978 1979 for (Symbol *sym : symtab->symbols()) 1980 if (sym->isUndefined() && !sym->isWeak()) 1981 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 1982 if (f->allNeededIsKnown) 1983 error(toString(f) + ": undefined reference to " + toString(*sym)); 1984 } 1985 1986 // Now that we have defined all possible global symbols including linker- 1987 // synthesized ones. Visit all symbols to give the finishing touches. 1988 for (Symbol *sym : symtab->symbols()) { 1989 if (!includeInSymtab(*sym)) 1990 continue; 1991 if (in.symTab) 1992 in.symTab->addSymbol(sym); 1993 1994 if (sym->includeInDynsym()) { 1995 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1996 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1997 if (file->isNeeded && !sym->isUndefined()) 1998 addVerneed(sym); 1999 } 2000 } 2001 2002 // We also need to scan the dynamic relocation tables of the other partitions 2003 // and add any referenced symbols to the partition's dynsym. 2004 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2005 DenseSet<Symbol *> syms; 2006 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2007 syms.insert(e.sym); 2008 for (DynamicReloc &reloc : part.relaDyn->relocs) 2009 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 2010 part.dynSymTab->addSymbol(reloc.sym); 2011 } 2012 2013 // Do not proceed if there was an undefined symbol. 2014 if (errorCount()) 2015 return; 2016 2017 if (in.mipsGot) 2018 in.mipsGot->build(); 2019 2020 removeUnusedSyntheticSections(); 2021 script->diagnoseOrphanHandling(); 2022 2023 sortSections(); 2024 2025 // Now that we have the final list, create a list of all the 2026 // OutputSections for convenience. 2027 for (BaseCommand *base : script->sectionCommands) 2028 if (auto *sec = dyn_cast<OutputSection>(base)) 2029 outputSections.push_back(sec); 2030 2031 // Prefer command line supplied address over other constraints. 2032 for (OutputSection *sec : outputSections) { 2033 auto i = config->sectionStartMap.find(sec->name); 2034 if (i != config->sectionStartMap.end()) 2035 sec->addrExpr = [=] { return i->second; }; 2036 } 2037 2038 // With the outputSections available check for GDPLT relocations 2039 // and add __tls_get_addr symbol if needed. 2040 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2041 Symbol *sym = symtab->addSymbol(Undefined{ 2042 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2043 sym->isPreemptible = true; 2044 partitions[0].dynSymTab->addSymbol(sym); 2045 } 2046 2047 // This is a bit of a hack. A value of 0 means undef, so we set it 2048 // to 1 to make __ehdr_start defined. The section number is not 2049 // particularly relevant. 2050 Out::elfHeader->sectionIndex = 1; 2051 2052 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 2053 OutputSection *sec = outputSections[i]; 2054 sec->sectionIndex = i + 1; 2055 sec->shName = in.shStrTab->addString(sec->name); 2056 } 2057 2058 // Binary and relocatable output does not have PHDRS. 2059 // The headers have to be created before finalize as that can influence the 2060 // image base and the dynamic section on mips includes the image base. 2061 if (!config->relocatable && !config->oFormatBinary) { 2062 for (Partition &part : partitions) { 2063 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2064 : createPhdrs(part); 2065 if (config->emachine == EM_ARM) { 2066 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2067 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2068 } 2069 if (config->emachine == EM_MIPS) { 2070 // Add separate segments for MIPS-specific sections. 2071 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2072 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2073 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2074 } 2075 } 2076 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2077 2078 // Find the TLS segment. This happens before the section layout loop so that 2079 // Android relocation packing can look up TLS symbol addresses. We only need 2080 // to care about the main partition here because all TLS symbols were moved 2081 // to the main partition (see MarkLive.cpp). 2082 for (PhdrEntry *p : mainPart->phdrs) 2083 if (p->p_type == PT_TLS) 2084 Out::tlsPhdr = p; 2085 } 2086 2087 // Some symbols are defined in term of program headers. Now that we 2088 // have the headers, we can find out which sections they point to. 2089 setReservedSymbolSections(); 2090 2091 finalizeSynthetic(in.bss); 2092 finalizeSynthetic(in.bssRelRo); 2093 finalizeSynthetic(in.symTabShndx); 2094 finalizeSynthetic(in.shStrTab); 2095 finalizeSynthetic(in.strTab); 2096 finalizeSynthetic(in.got); 2097 finalizeSynthetic(in.mipsGot); 2098 finalizeSynthetic(in.igotPlt); 2099 finalizeSynthetic(in.gotPlt); 2100 finalizeSynthetic(in.relaIplt); 2101 finalizeSynthetic(in.relaPlt); 2102 finalizeSynthetic(in.plt); 2103 finalizeSynthetic(in.iplt); 2104 finalizeSynthetic(in.ppc32Got2); 2105 finalizeSynthetic(in.partIndex); 2106 2107 // Dynamic section must be the last one in this list and dynamic 2108 // symbol table section (dynSymTab) must be the first one. 2109 for (Partition &part : partitions) { 2110 finalizeSynthetic(part.dynSymTab); 2111 finalizeSynthetic(part.gnuHashTab); 2112 finalizeSynthetic(part.hashTab); 2113 finalizeSynthetic(part.verDef); 2114 finalizeSynthetic(part.relaDyn); 2115 finalizeSynthetic(part.relrDyn); 2116 finalizeSynthetic(part.ehFrameHdr); 2117 finalizeSynthetic(part.verSym); 2118 finalizeSynthetic(part.verNeed); 2119 finalizeSynthetic(part.dynamic); 2120 } 2121 2122 if (!script->hasSectionsCommand && !config->relocatable) 2123 fixSectionAlignments(); 2124 2125 // This is used to: 2126 // 1) Create "thunks": 2127 // Jump instructions in many ISAs have small displacements, and therefore 2128 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2129 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2130 // responsibility to create and insert small pieces of code between 2131 // sections to extend the ranges if jump targets are out of range. Such 2132 // code pieces are called "thunks". 2133 // 2134 // We add thunks at this stage. We couldn't do this before this point 2135 // because this is the earliest point where we know sizes of sections and 2136 // their layouts (that are needed to determine if jump targets are in 2137 // range). 2138 // 2139 // 2) Update the sections. We need to generate content that depends on the 2140 // address of InputSections. For example, MIPS GOT section content or 2141 // android packed relocations sections content. 2142 // 2143 // 3) Assign the final values for the linker script symbols. Linker scripts 2144 // sometimes using forward symbol declarations. We want to set the correct 2145 // values. They also might change after adding the thunks. 2146 finalizeAddressDependentContent(); 2147 if (errorCount()) 2148 return; 2149 2150 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 2151 finalizeSynthetic(in.symTab); 2152 finalizeSynthetic(in.ppc64LongBranchTarget); 2153 2154 // Relaxation to delete inter-basic block jumps created by basic block 2155 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2156 // can relax jump instructions based on symbol offset. 2157 if (config->optimizeBBJumps) 2158 optimizeBasicBlockJumps(); 2159 2160 // Fill other section headers. The dynamic table is finalized 2161 // at the end because some tags like RELSZ depend on result 2162 // of finalizing other sections. 2163 for (OutputSection *sec : outputSections) 2164 sec->finalize(); 2165 } 2166 2167 // Ensure data sections are not mixed with executable sections when 2168 // -execute-only is used. -execute-only is a feature to make pages executable 2169 // but not readable, and the feature is currently supported only on AArch64. 2170 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2171 if (!config->executeOnly) 2172 return; 2173 2174 for (OutputSection *os : outputSections) 2175 if (os->flags & SHF_EXECINSTR) 2176 for (InputSection *isec : getInputSections(os)) 2177 if (!(isec->flags & SHF_EXECINSTR)) 2178 error("cannot place " + toString(isec) + " into " + toString(os->name) + 2179 ": -execute-only does not support intermingling data and code"); 2180 } 2181 2182 // The linker is expected to define SECNAME_start and SECNAME_end 2183 // symbols for a few sections. This function defines them. 2184 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2185 // If a section does not exist, there's ambiguity as to how we 2186 // define _start and _end symbols for an init/fini section. Since 2187 // the loader assume that the symbols are always defined, we need to 2188 // always define them. But what value? The loader iterates over all 2189 // pointers between _start and _end to run global ctors/dtors, so if 2190 // the section is empty, their symbol values don't actually matter 2191 // as long as _start and _end point to the same location. 2192 // 2193 // That said, we don't want to set the symbols to 0 (which is 2194 // probably the simplest value) because that could cause some 2195 // program to fail to link due to relocation overflow, if their 2196 // program text is above 2 GiB. We use the address of the .text 2197 // section instead to prevent that failure. 2198 // 2199 // In rare situations, the .text section may not exist. If that's the 2200 // case, use the image base address as a last resort. 2201 OutputSection *Default = findSection(".text"); 2202 if (!Default) 2203 Default = Out::elfHeader; 2204 2205 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2206 if (os) { 2207 addOptionalRegular(start, os, 0); 2208 addOptionalRegular(end, os, -1); 2209 } else { 2210 addOptionalRegular(start, Default, 0); 2211 addOptionalRegular(end, Default, 0); 2212 } 2213 }; 2214 2215 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2216 define("__init_array_start", "__init_array_end", Out::initArray); 2217 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2218 2219 if (OutputSection *sec = findSection(".ARM.exidx")) 2220 define("__exidx_start", "__exidx_end", sec); 2221 } 2222 2223 // If a section name is valid as a C identifier (which is rare because of 2224 // the leading '.'), linkers are expected to define __start_<secname> and 2225 // __stop_<secname> symbols. They are at beginning and end of the section, 2226 // respectively. This is not requested by the ELF standard, but GNU ld and 2227 // gold provide the feature, and used by many programs. 2228 template <class ELFT> 2229 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2230 StringRef s = sec->name; 2231 if (!isValidCIdentifier(s)) 2232 return; 2233 addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED); 2234 addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED); 2235 } 2236 2237 static bool needsPtLoad(OutputSection *sec) { 2238 if (!(sec->flags & SHF_ALLOC) || sec->noload) 2239 return false; 2240 2241 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2242 // responsible for allocating space for them, not the PT_LOAD that 2243 // contains the TLS initialization image. 2244 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2245 return false; 2246 return true; 2247 } 2248 2249 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2250 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2251 // RW. This means that there is no alignment in the RO to RX transition and we 2252 // cannot create a PT_LOAD there. 2253 static uint64_t computeFlags(uint64_t flags) { 2254 if (config->omagic) 2255 return PF_R | PF_W | PF_X; 2256 if (config->executeOnly && (flags & PF_X)) 2257 return flags & ~PF_R; 2258 if (config->singleRoRx && !(flags & PF_W)) 2259 return flags | PF_X; 2260 return flags; 2261 } 2262 2263 // Decide which program headers to create and which sections to include in each 2264 // one. 2265 template <class ELFT> 2266 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2267 std::vector<PhdrEntry *> ret; 2268 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2269 ret.push_back(make<PhdrEntry>(type, flags)); 2270 return ret.back(); 2271 }; 2272 2273 unsigned partNo = part.getNumber(); 2274 bool isMain = partNo == 1; 2275 2276 // Add the first PT_LOAD segment for regular output sections. 2277 uint64_t flags = computeFlags(PF_R); 2278 PhdrEntry *load = nullptr; 2279 2280 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2281 // PT_LOAD. 2282 if (!config->nmagic && !config->omagic) { 2283 // The first phdr entry is PT_PHDR which describes the program header 2284 // itself. 2285 if (isMain) 2286 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2287 else 2288 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2289 2290 // PT_INTERP must be the second entry if exists. 2291 if (OutputSection *cmd = findSection(".interp", partNo)) 2292 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2293 2294 // Add the headers. We will remove them if they don't fit. 2295 // In the other partitions the headers are ordinary sections, so they don't 2296 // need to be added here. 2297 if (isMain) { 2298 load = addHdr(PT_LOAD, flags); 2299 load->add(Out::elfHeader); 2300 load->add(Out::programHeaders); 2301 } 2302 } 2303 2304 // PT_GNU_RELRO includes all sections that should be marked as 2305 // read-only by dynamic linker after processing relocations. 2306 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2307 // an error message if more than one PT_GNU_RELRO PHDR is required. 2308 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2309 bool inRelroPhdr = false; 2310 OutputSection *relroEnd = nullptr; 2311 for (OutputSection *sec : outputSections) { 2312 if (sec->partition != partNo || !needsPtLoad(sec)) 2313 continue; 2314 if (isRelroSection(sec)) { 2315 inRelroPhdr = true; 2316 if (!relroEnd) 2317 relRo->add(sec); 2318 else 2319 error("section: " + sec->name + " is not contiguous with other relro" + 2320 " sections"); 2321 } else if (inRelroPhdr) { 2322 inRelroPhdr = false; 2323 relroEnd = sec; 2324 } 2325 } 2326 2327 for (OutputSection *sec : outputSections) { 2328 if (!(sec->flags & SHF_ALLOC)) 2329 break; 2330 if (!needsPtLoad(sec)) 2331 continue; 2332 2333 // Normally, sections in partitions other than the current partition are 2334 // ignored. But partition number 255 is a special case: it contains the 2335 // partition end marker (.part.end). It needs to be added to the main 2336 // partition so that a segment is created for it in the main partition, 2337 // which will cause the dynamic loader to reserve space for the other 2338 // partitions. 2339 if (sec->partition != partNo) { 2340 if (isMain && sec->partition == 255) 2341 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2342 continue; 2343 } 2344 2345 // Segments are contiguous memory regions that has the same attributes 2346 // (e.g. executable or writable). There is one phdr for each segment. 2347 // Therefore, we need to create a new phdr when the next section has 2348 // different flags or is loaded at a discontiguous address or memory 2349 // region using AT or AT> linker script command, respectively. At the same 2350 // time, we don't want to create a separate load segment for the headers, 2351 // even if the first output section has an AT or AT> attribute. 2352 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2353 bool sameLMARegion = 2354 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2355 if (!(load && newFlags == flags && sec != relroEnd && 2356 sec->memRegion == load->firstSec->memRegion && 2357 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2358 load = addHdr(PT_LOAD, newFlags); 2359 flags = newFlags; 2360 } 2361 2362 load->add(sec); 2363 } 2364 2365 // Add a TLS segment if any. 2366 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2367 for (OutputSection *sec : outputSections) 2368 if (sec->partition == partNo && sec->flags & SHF_TLS) 2369 tlsHdr->add(sec); 2370 if (tlsHdr->firstSec) 2371 ret.push_back(tlsHdr); 2372 2373 // Add an entry for .dynamic. 2374 if (OutputSection *sec = part.dynamic->getParent()) 2375 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2376 2377 if (relRo->firstSec) 2378 ret.push_back(relRo); 2379 2380 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2381 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2382 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2383 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2384 ->add(part.ehFrameHdr->getParent()); 2385 2386 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2387 // the dynamic linker fill the segment with random data. 2388 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2389 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2390 2391 if (config->zGnustack != GnuStackKind::None) { 2392 // PT_GNU_STACK is a special section to tell the loader to make the 2393 // pages for the stack non-executable. If you really want an executable 2394 // stack, you can pass -z execstack, but that's not recommended for 2395 // security reasons. 2396 unsigned perm = PF_R | PF_W; 2397 if (config->zGnustack == GnuStackKind::Exec) 2398 perm |= PF_X; 2399 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2400 } 2401 2402 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2403 // is expected to perform W^X violations, such as calling mprotect(2) or 2404 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2405 // OpenBSD. 2406 if (config->zWxneeded) 2407 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2408 2409 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2410 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2411 2412 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2413 // same alignment. 2414 PhdrEntry *note = nullptr; 2415 for (OutputSection *sec : outputSections) { 2416 if (sec->partition != partNo) 2417 continue; 2418 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2419 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2420 note = addHdr(PT_NOTE, PF_R); 2421 note->add(sec); 2422 } else { 2423 note = nullptr; 2424 } 2425 } 2426 return ret; 2427 } 2428 2429 template <class ELFT> 2430 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2431 unsigned pType, unsigned pFlags) { 2432 unsigned partNo = part.getNumber(); 2433 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2434 return cmd->partition == partNo && cmd->type == shType; 2435 }); 2436 if (i == outputSections.end()) 2437 return; 2438 2439 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2440 entry->add(*i); 2441 part.phdrs.push_back(entry); 2442 } 2443 2444 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2445 // This is achieved by assigning an alignment expression to addrExpr of each 2446 // such section. 2447 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2448 const PhdrEntry *prev; 2449 auto pageAlign = [&](const PhdrEntry *p) { 2450 OutputSection *cmd = p->firstSec; 2451 if (!cmd) 2452 return; 2453 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2454 if (!cmd->addrExpr) { 2455 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2456 // padding in the file contents. 2457 // 2458 // When -z separate-code is used we must not have any overlap in pages 2459 // between an executable segment and a non-executable segment. We align to 2460 // the next maximum page size boundary on transitions between executable 2461 // and non-executable segments. 2462 // 2463 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2464 // sections will be extracted to a separate file. Align to the next 2465 // maximum page size boundary so that we can find the ELF header at the 2466 // start. We cannot benefit from overlapping p_offset ranges with the 2467 // previous segment anyway. 2468 if (config->zSeparate == SeparateSegmentKind::Loadable || 2469 (config->zSeparate == SeparateSegmentKind::Code && prev && 2470 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2471 cmd->type == SHT_LLVM_PART_EHDR) 2472 cmd->addrExpr = [] { 2473 return alignTo(script->getDot(), config->maxPageSize); 2474 }; 2475 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2476 // it must be the RW. Align to p_align(PT_TLS) to make sure 2477 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2478 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2479 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2480 // be congruent to 0 modulo p_align(PT_TLS). 2481 // 2482 // Technically this is not required, but as of 2019, some dynamic loaders 2483 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2484 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2485 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2486 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2487 // blocks correctly. We need to keep the workaround for a while. 2488 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2489 cmd->addrExpr = [] { 2490 return alignTo(script->getDot(), config->maxPageSize) + 2491 alignTo(script->getDot() % config->maxPageSize, 2492 Out::tlsPhdr->p_align); 2493 }; 2494 else 2495 cmd->addrExpr = [] { 2496 return alignTo(script->getDot(), config->maxPageSize) + 2497 script->getDot() % config->maxPageSize; 2498 }; 2499 } 2500 }; 2501 2502 for (Partition &part : partitions) { 2503 prev = nullptr; 2504 for (const PhdrEntry *p : part.phdrs) 2505 if (p->p_type == PT_LOAD && p->firstSec) { 2506 pageAlign(p); 2507 prev = p; 2508 } 2509 } 2510 } 2511 2512 // Compute an in-file position for a given section. The file offset must be the 2513 // same with its virtual address modulo the page size, so that the loader can 2514 // load executables without any address adjustment. 2515 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2516 // The first section in a PT_LOAD has to have congruent offset and address 2517 // modulo the maximum page size. 2518 if (os->ptLoad && os->ptLoad->firstSec == os) 2519 return alignTo(off, os->ptLoad->p_align, os->addr); 2520 2521 // File offsets are not significant for .bss sections other than the first one 2522 // in a PT_LOAD. By convention, we keep section offsets monotonically 2523 // increasing rather than setting to zero. 2524 if (os->type == SHT_NOBITS) 2525 return off; 2526 2527 // If the section is not in a PT_LOAD, we just have to align it. 2528 if (!os->ptLoad) 2529 return alignTo(off, os->alignment); 2530 2531 // If two sections share the same PT_LOAD the file offset is calculated 2532 // using this formula: Off2 = Off1 + (VA2 - VA1). 2533 OutputSection *first = os->ptLoad->firstSec; 2534 return first->offset + os->addr - first->addr; 2535 } 2536 2537 // Set an in-file position to a given section and returns the end position of 2538 // the section. 2539 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2540 off = computeFileOffset(os, off); 2541 os->offset = off; 2542 2543 if (os->type == SHT_NOBITS) 2544 return off; 2545 return off + os->size; 2546 } 2547 2548 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2549 uint64_t off = 0; 2550 for (OutputSection *sec : outputSections) 2551 if (sec->flags & SHF_ALLOC) 2552 off = setFileOffset(sec, off); 2553 fileSize = alignTo(off, config->wordsize); 2554 } 2555 2556 static std::string rangeToString(uint64_t addr, uint64_t len) { 2557 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2558 } 2559 2560 // Assign file offsets to output sections. 2561 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2562 uint64_t off = 0; 2563 off = setFileOffset(Out::elfHeader, off); 2564 off = setFileOffset(Out::programHeaders, off); 2565 2566 PhdrEntry *lastRX = nullptr; 2567 for (Partition &part : partitions) 2568 for (PhdrEntry *p : part.phdrs) 2569 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2570 lastRX = p; 2571 2572 for (OutputSection *sec : outputSections) { 2573 off = setFileOffset(sec, off); 2574 2575 // If this is a last section of the last executable segment and that 2576 // segment is the last loadable segment, align the offset of the 2577 // following section to avoid loading non-segments parts of the file. 2578 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2579 lastRX->lastSec == sec) 2580 off = alignTo(off, config->commonPageSize); 2581 } 2582 2583 sectionHeaderOff = alignTo(off, config->wordsize); 2584 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2585 2586 // Our logic assumes that sections have rising VA within the same segment. 2587 // With use of linker scripts it is possible to violate this rule and get file 2588 // offset overlaps or overflows. That should never happen with a valid script 2589 // which does not move the location counter backwards and usually scripts do 2590 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2591 // kernel, which control segment distribution explicitly and move the counter 2592 // backwards, so we have to allow doing that to support linking them. We 2593 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2594 // we want to prevent file size overflows because it would crash the linker. 2595 for (OutputSection *sec : outputSections) { 2596 if (sec->type == SHT_NOBITS) 2597 continue; 2598 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2599 error("unable to place section " + sec->name + " at file offset " + 2600 rangeToString(sec->offset, sec->size) + 2601 "; check your linker script for overflows"); 2602 } 2603 } 2604 2605 // Finalize the program headers. We call this function after we assign 2606 // file offsets and VAs to all sections. 2607 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2608 for (PhdrEntry *p : part.phdrs) { 2609 OutputSection *first = p->firstSec; 2610 OutputSection *last = p->lastSec; 2611 2612 if (first) { 2613 p->p_filesz = last->offset - first->offset; 2614 if (last->type != SHT_NOBITS) 2615 p->p_filesz += last->size; 2616 2617 p->p_memsz = last->addr + last->size - first->addr; 2618 p->p_offset = first->offset; 2619 p->p_vaddr = first->addr; 2620 2621 // File offsets in partitions other than the main partition are relative 2622 // to the offset of the ELF headers. Perform that adjustment now. 2623 if (part.elfHeader) 2624 p->p_offset -= part.elfHeader->getParent()->offset; 2625 2626 if (!p->hasLMA) 2627 p->p_paddr = first->getLMA(); 2628 } 2629 2630 if (p->p_type == PT_GNU_RELRO) { 2631 p->p_align = 1; 2632 // musl/glibc ld.so rounds the size down, so we need to round up 2633 // to protect the last page. This is a no-op on FreeBSD which always 2634 // rounds up. 2635 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2636 p->p_offset; 2637 } 2638 } 2639 } 2640 2641 // A helper struct for checkSectionOverlap. 2642 namespace { 2643 struct SectionOffset { 2644 OutputSection *sec; 2645 uint64_t offset; 2646 }; 2647 } // namespace 2648 2649 // Check whether sections overlap for a specific address range (file offsets, 2650 // load and virtual addresses). 2651 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2652 bool isVirtualAddr) { 2653 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2654 return a.offset < b.offset; 2655 }); 2656 2657 // Finding overlap is easy given a vector is sorted by start position. 2658 // If an element starts before the end of the previous element, they overlap. 2659 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2660 SectionOffset a = sections[i - 1]; 2661 SectionOffset b = sections[i]; 2662 if (b.offset >= a.offset + a.sec->size) 2663 continue; 2664 2665 // If both sections are in OVERLAY we allow the overlapping of virtual 2666 // addresses, because it is what OVERLAY was designed for. 2667 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2668 continue; 2669 2670 errorOrWarn("section " + a.sec->name + " " + name + 2671 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2672 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2673 b.sec->name + " range is " + 2674 rangeToString(b.offset, b.sec->size)); 2675 } 2676 } 2677 2678 // Check for overlapping sections and address overflows. 2679 // 2680 // In this function we check that none of the output sections have overlapping 2681 // file offsets. For SHF_ALLOC sections we also check that the load address 2682 // ranges and the virtual address ranges don't overlap 2683 template <class ELFT> void Writer<ELFT>::checkSections() { 2684 // First, check that section's VAs fit in available address space for target. 2685 for (OutputSection *os : outputSections) 2686 if ((os->addr + os->size < os->addr) || 2687 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2688 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2689 " of size 0x" + utohexstr(os->size) + 2690 " exceeds available address space"); 2691 2692 // Check for overlapping file offsets. In this case we need to skip any 2693 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2694 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2695 // binary is specified only add SHF_ALLOC sections are added to the output 2696 // file so we skip any non-allocated sections in that case. 2697 std::vector<SectionOffset> fileOffs; 2698 for (OutputSection *sec : outputSections) 2699 if (sec->size > 0 && sec->type != SHT_NOBITS && 2700 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2701 fileOffs.push_back({sec, sec->offset}); 2702 checkOverlap("file", fileOffs, false); 2703 2704 // When linking with -r there is no need to check for overlapping virtual/load 2705 // addresses since those addresses will only be assigned when the final 2706 // executable/shared object is created. 2707 if (config->relocatable) 2708 return; 2709 2710 // Checking for overlapping virtual and load addresses only needs to take 2711 // into account SHF_ALLOC sections since others will not be loaded. 2712 // Furthermore, we also need to skip SHF_TLS sections since these will be 2713 // mapped to other addresses at runtime and can therefore have overlapping 2714 // ranges in the file. 2715 std::vector<SectionOffset> vmas; 2716 for (OutputSection *sec : outputSections) 2717 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2718 vmas.push_back({sec, sec->addr}); 2719 checkOverlap("virtual address", vmas, true); 2720 2721 // Finally, check that the load addresses don't overlap. This will usually be 2722 // the same as the virtual addresses but can be different when using a linker 2723 // script with AT(). 2724 std::vector<SectionOffset> lmas; 2725 for (OutputSection *sec : outputSections) 2726 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2727 lmas.push_back({sec, sec->getLMA()}); 2728 checkOverlap("load address", lmas, false); 2729 } 2730 2731 // The entry point address is chosen in the following ways. 2732 // 2733 // 1. the '-e' entry command-line option; 2734 // 2. the ENTRY(symbol) command in a linker control script; 2735 // 3. the value of the symbol _start, if present; 2736 // 4. the number represented by the entry symbol, if it is a number; 2737 // 5. the address of the first byte of the .text section, if present; 2738 // 6. the address 0. 2739 static uint64_t getEntryAddr() { 2740 // Case 1, 2 or 3 2741 if (Symbol *b = symtab->find(config->entry)) 2742 return b->getVA(); 2743 2744 // Case 4 2745 uint64_t addr; 2746 if (to_integer(config->entry, addr)) 2747 return addr; 2748 2749 // Case 5 2750 if (OutputSection *sec = findSection(".text")) { 2751 if (config->warnMissingEntry) 2752 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2753 utohexstr(sec->addr)); 2754 return sec->addr; 2755 } 2756 2757 // Case 6 2758 if (config->warnMissingEntry) 2759 warn("cannot find entry symbol " + config->entry + 2760 "; not setting start address"); 2761 return 0; 2762 } 2763 2764 static uint16_t getELFType() { 2765 if (config->isPic) 2766 return ET_DYN; 2767 if (config->relocatable) 2768 return ET_REL; 2769 return ET_EXEC; 2770 } 2771 2772 template <class ELFT> void Writer<ELFT>::writeHeader() { 2773 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2774 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2775 2776 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2777 eHdr->e_type = getELFType(); 2778 eHdr->e_entry = getEntryAddr(); 2779 eHdr->e_shoff = sectionHeaderOff; 2780 2781 // Write the section header table. 2782 // 2783 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2784 // and e_shstrndx fields. When the value of one of these fields exceeds 2785 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2786 // use fields in the section header at index 0 to store 2787 // the value. The sentinel values and fields are: 2788 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2789 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2790 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2791 size_t num = outputSections.size() + 1; 2792 if (num >= SHN_LORESERVE) 2793 sHdrs->sh_size = num; 2794 else 2795 eHdr->e_shnum = num; 2796 2797 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2798 if (strTabIndex >= SHN_LORESERVE) { 2799 sHdrs->sh_link = strTabIndex; 2800 eHdr->e_shstrndx = SHN_XINDEX; 2801 } else { 2802 eHdr->e_shstrndx = strTabIndex; 2803 } 2804 2805 for (OutputSection *sec : outputSections) 2806 sec->writeHeaderTo<ELFT>(++sHdrs); 2807 } 2808 2809 // Open a result file. 2810 template <class ELFT> void Writer<ELFT>::openFile() { 2811 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2812 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2813 error("output file too large: " + Twine(fileSize) + " bytes"); 2814 return; 2815 } 2816 2817 unlinkAsync(config->outputFile); 2818 unsigned flags = 0; 2819 if (!config->relocatable) 2820 flags |= FileOutputBuffer::F_executable; 2821 if (!config->mmapOutputFile) 2822 flags |= FileOutputBuffer::F_no_mmap; 2823 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2824 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2825 2826 if (!bufferOrErr) { 2827 error("failed to open " + config->outputFile + ": " + 2828 llvm::toString(bufferOrErr.takeError())); 2829 return; 2830 } 2831 buffer = std::move(*bufferOrErr); 2832 Out::bufferStart = buffer->getBufferStart(); 2833 } 2834 2835 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2836 for (OutputSection *sec : outputSections) 2837 if (sec->flags & SHF_ALLOC) 2838 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2839 } 2840 2841 static void fillTrap(uint8_t *i, uint8_t *end) { 2842 for (; i + 4 <= end; i += 4) 2843 memcpy(i, &target->trapInstr, 4); 2844 } 2845 2846 // Fill the last page of executable segments with trap instructions 2847 // instead of leaving them as zero. Even though it is not required by any 2848 // standard, it is in general a good thing to do for security reasons. 2849 // 2850 // We'll leave other pages in segments as-is because the rest will be 2851 // overwritten by output sections. 2852 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2853 for (Partition &part : partitions) { 2854 // Fill the last page. 2855 for (PhdrEntry *p : part.phdrs) 2856 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2857 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2858 config->commonPageSize), 2859 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2860 config->commonPageSize)); 2861 2862 // Round up the file size of the last segment to the page boundary iff it is 2863 // an executable segment to ensure that other tools don't accidentally 2864 // trim the instruction padding (e.g. when stripping the file). 2865 PhdrEntry *last = nullptr; 2866 for (PhdrEntry *p : part.phdrs) 2867 if (p->p_type == PT_LOAD) 2868 last = p; 2869 2870 if (last && (last->p_flags & PF_X)) 2871 last->p_memsz = last->p_filesz = 2872 alignTo(last->p_filesz, config->commonPageSize); 2873 } 2874 } 2875 2876 // Write section contents to a mmap'ed file. 2877 template <class ELFT> void Writer<ELFT>::writeSections() { 2878 // In -r or -emit-relocs mode, write the relocation sections first as in 2879 // ELf_Rel targets we might find out that we need to modify the relocated 2880 // section while doing it. 2881 for (OutputSection *sec : outputSections) 2882 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2883 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2884 2885 for (OutputSection *sec : outputSections) 2886 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2887 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2888 } 2889 2890 // Split one uint8 array into small pieces of uint8 arrays. 2891 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2892 size_t chunkSize) { 2893 std::vector<ArrayRef<uint8_t>> ret; 2894 while (arr.size() > chunkSize) { 2895 ret.push_back(arr.take_front(chunkSize)); 2896 arr = arr.drop_front(chunkSize); 2897 } 2898 if (!arr.empty()) 2899 ret.push_back(arr); 2900 return ret; 2901 } 2902 2903 // Computes a hash value of Data using a given hash function. 2904 // In order to utilize multiple cores, we first split data into 1MB 2905 // chunks, compute a hash for each chunk, and then compute a hash value 2906 // of the hash values. 2907 static void 2908 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2909 llvm::ArrayRef<uint8_t> data, 2910 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2911 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2912 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2913 2914 // Compute hash values. 2915 parallelForEachN(0, chunks.size(), [&](size_t i) { 2916 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2917 }); 2918 2919 // Write to the final output buffer. 2920 hashFn(hashBuf.data(), hashes); 2921 } 2922 2923 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2924 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2925 return; 2926 2927 if (config->buildId == BuildIdKind::Hexstring) { 2928 for (Partition &part : partitions) 2929 part.buildId->writeBuildId(config->buildIdVector); 2930 return; 2931 } 2932 2933 // Compute a hash of all sections of the output file. 2934 size_t hashSize = mainPart->buildId->hashSize; 2935 std::vector<uint8_t> buildId(hashSize); 2936 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 2937 2938 switch (config->buildId) { 2939 case BuildIdKind::Fast: 2940 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2941 write64le(dest, xxHash64(arr)); 2942 }); 2943 break; 2944 case BuildIdKind::Md5: 2945 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2946 memcpy(dest, MD5::hash(arr).data(), hashSize); 2947 }); 2948 break; 2949 case BuildIdKind::Sha1: 2950 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2951 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2952 }); 2953 break; 2954 case BuildIdKind::Uuid: 2955 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 2956 error("entropy source failure: " + ec.message()); 2957 break; 2958 default: 2959 llvm_unreachable("unknown BuildIdKind"); 2960 } 2961 for (Partition &part : partitions) 2962 part.buildId->writeBuildId(buildId); 2963 } 2964 2965 template void elf::createSyntheticSections<ELF32LE>(); 2966 template void elf::createSyntheticSections<ELF32BE>(); 2967 template void elf::createSyntheticSections<ELF64LE>(); 2968 template void elf::createSyntheticSections<ELF64BE>(); 2969 2970 template void elf::writeResult<ELF32LE>(); 2971 template void elf::writeResult<ELF32BE>(); 2972 template void elf::writeResult<ELF64LE>(); 2973 template void elf::writeResult<ELF64BE>(); 2974