1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Filesystem.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/Parallel.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/TimeProfiler.h" 31 #include "llvm/Support/xxhash.h" 32 #include <climits> 33 34 #define DEBUG_TYPE "lld" 35 36 using namespace llvm; 37 using namespace llvm::ELF; 38 using namespace llvm::object; 39 using namespace llvm::support; 40 using namespace llvm::support::endian; 41 using namespace lld; 42 using namespace lld::elf; 43 44 namespace { 45 // The writer writes a SymbolTable result to a file. 46 template <class ELFT> class Writer { 47 public: 48 Writer() : buffer(errorHandler().outputBuffer) {} 49 using Elf_Shdr = typename ELFT::Shdr; 50 using Elf_Ehdr = typename ELFT::Ehdr; 51 using Elf_Phdr = typename ELFT::Phdr; 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 59 void sortSections(); 60 void resolveShfLinkOrder(); 61 void finalizeAddressDependentContent(); 62 void optimizeBasicBlockJumps(); 63 void sortInputSections(); 64 void finalizeSections(); 65 void checkExecuteOnly(); 66 void setReservedSymbolSections(); 67 68 std::vector<PhdrEntry *> createPhdrs(Partition &part); 69 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 70 unsigned pFlags); 71 void assignFileOffsets(); 72 void assignFileOffsetsBinary(); 73 void setPhdrs(Partition &part); 74 void checkSections(); 75 void fixSectionAlignments(); 76 void openFile(); 77 void writeTrapInstr(); 78 void writeHeader(); 79 void writeSections(); 80 void writeSectionsBinary(); 81 void writeBuildId(); 82 83 std::unique_ptr<FileOutputBuffer> &buffer; 84 85 void addRelIpltSymbols(); 86 void addStartEndSymbols(); 87 void addStartStopSymbols(OutputSection *sec); 88 89 uint64_t fileSize; 90 uint64_t sectionHeaderOff; 91 }; 92 } // anonymous namespace 93 94 static bool isSectionPrefix(StringRef prefix, StringRef name) { 95 return name.startswith(prefix) || name == prefix.drop_back(); 96 } 97 98 StringRef elf::getOutputSectionName(const InputSectionBase *s) { 99 if (config->relocatable) 100 return s->name; 101 102 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 103 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 104 // technically required, but not doing it is odd). This code guarantees that. 105 if (auto *isec = dyn_cast<InputSection>(s)) { 106 if (InputSectionBase *rel = isec->getRelocatedSection()) { 107 OutputSection *out = rel->getOutputSection(); 108 if (s->type == SHT_RELA) 109 return saver.save(".rela" + out->name); 110 return saver.save(".rel" + out->name); 111 } 112 } 113 114 // A BssSection created for a common symbol is identified as "COMMON" in 115 // linker scripts. It should go to .bss section. 116 if (s->name == "COMMON") 117 return ".bss"; 118 119 if (script->hasSectionsCommand) 120 return s->name; 121 122 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 123 // by grouping sections with certain prefixes. 124 125 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 126 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 127 // We provide an option -z keep-text-section-prefix to group such sections 128 // into separate output sections. This is more flexible. See also 129 // sortISDBySectionOrder(). 130 // ".text.unknown" means the hotness of the section is unknown. When 131 // SampleFDO is used, if a function doesn't have sample, it could be very 132 // cold or it could be a new function never being sampled. Those functions 133 // will be kept in the ".text.unknown" section. 134 // ".text.split." holds symbols which are split out from functions in other 135 // input sections. For example, with -fsplit-machine-functions, placing the 136 // cold parts in .text.split instead of .text.unlikely mitigates against poor 137 // profile inaccuracy. Techniques such as hugepage remapping can make 138 // conservative decisions at the section granularity. 139 if (config->zKeepTextSectionPrefix) 140 for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", 141 ".text.startup.", ".text.exit.", ".text.split."}) 142 if (isSectionPrefix(v, s->name)) 143 return v.drop_back(); 144 145 for (StringRef v : 146 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 147 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 148 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 149 if (isSectionPrefix(v, s->name)) 150 return v.drop_back(); 151 152 return s->name; 153 } 154 155 static bool needsInterpSection() { 156 return !config->relocatable && !config->shared && 157 !config->dynamicLinker.empty() && script->needsInterpSection(); 158 } 159 160 template <class ELFT> void elf::writeResult() { 161 Writer<ELFT>().run(); 162 } 163 164 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 165 auto it = std::stable_partition( 166 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 167 if (p->p_type != PT_LOAD) 168 return true; 169 if (!p->firstSec) 170 return false; 171 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 172 return size != 0; 173 }); 174 175 // Clear OutputSection::ptLoad for sections contained in removed 176 // segments. 177 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 178 for (OutputSection *sec : outputSections) 179 if (removed.count(sec->ptLoad)) 180 sec->ptLoad = nullptr; 181 phdrs.erase(it, phdrs.end()); 182 } 183 184 void elf::copySectionsIntoPartitions() { 185 std::vector<InputSectionBase *> newSections; 186 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 187 for (InputSectionBase *s : inputSections) { 188 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 189 continue; 190 InputSectionBase *copy; 191 if (s->type == SHT_NOTE) 192 copy = make<InputSection>(cast<InputSection>(*s)); 193 else if (auto *es = dyn_cast<EhInputSection>(s)) 194 copy = make<EhInputSection>(*es); 195 else 196 continue; 197 copy->partition = part; 198 newSections.push_back(copy); 199 } 200 } 201 202 inputSections.insert(inputSections.end(), newSections.begin(), 203 newSections.end()); 204 } 205 206 void elf::combineEhSections() { 207 llvm::TimeTraceScope timeScope("Combine EH sections"); 208 for (InputSectionBase *&s : inputSections) { 209 // Ignore dead sections and the partition end marker (.part.end), 210 // whose partition number is out of bounds. 211 if (!s->isLive() || s->partition == 255) 212 continue; 213 214 Partition &part = s->getPartition(); 215 if (auto *es = dyn_cast<EhInputSection>(s)) { 216 part.ehFrame->addSection(es); 217 s = nullptr; 218 } else if (s->kind() == SectionBase::Regular && part.armExidx && 219 part.armExidx->addSection(cast<InputSection>(s))) { 220 s = nullptr; 221 } 222 } 223 224 std::vector<InputSectionBase *> &v = inputSections; 225 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 226 } 227 228 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 229 uint64_t val, uint8_t stOther = STV_HIDDEN, 230 uint8_t binding = STB_GLOBAL) { 231 Symbol *s = symtab->find(name); 232 if (!s || s->isDefined()) 233 return nullptr; 234 235 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 236 /*size=*/0, sec}); 237 return cast<Defined>(s); 238 } 239 240 static Defined *addAbsolute(StringRef name) { 241 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 242 STT_NOTYPE, 0, 0, nullptr}); 243 return cast<Defined>(sym); 244 } 245 246 // The linker is expected to define some symbols depending on 247 // the linking result. This function defines such symbols. 248 void elf::addReservedSymbols() { 249 if (config->emachine == EM_MIPS) { 250 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 251 // so that it points to an absolute address which by default is relative 252 // to GOT. Default offset is 0x7ff0. 253 // See "Global Data Symbols" in Chapter 6 in the following document: 254 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 255 ElfSym::mipsGp = addAbsolute("_gp"); 256 257 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 258 // start of function and 'gp' pointer into GOT. 259 if (symtab->find("_gp_disp")) 260 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 261 262 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 263 // pointer. This symbol is used in the code generated by .cpload pseudo-op 264 // in case of using -mno-shared option. 265 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 266 if (symtab->find("__gnu_local_gp")) 267 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 268 } else if (config->emachine == EM_PPC) { 269 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 270 // support Small Data Area, define it arbitrarily as 0. 271 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 272 } else if (config->emachine == EM_PPC64) { 273 addPPC64SaveRestore(); 274 } 275 276 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 277 // combines the typical ELF GOT with the small data sections. It commonly 278 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 279 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 280 // represent the TOC base which is offset by 0x8000 bytes from the start of 281 // the .got section. 282 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 283 // correctness of some relocations depends on its value. 284 StringRef gotSymName = 285 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 286 287 if (Symbol *s = symtab->find(gotSymName)) { 288 if (s->isDefined()) { 289 error(toString(s->file) + " cannot redefine linker defined symbol '" + 290 gotSymName + "'"); 291 return; 292 } 293 294 uint64_t gotOff = 0; 295 if (config->emachine == EM_PPC64) 296 gotOff = 0x8000; 297 298 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 299 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 300 ElfSym::globalOffsetTable = cast<Defined>(s); 301 } 302 303 // __ehdr_start is the location of ELF file headers. Note that we define 304 // this symbol unconditionally even when using a linker script, which 305 // differs from the behavior implemented by GNU linker which only define 306 // this symbol if ELF headers are in the memory mapped segment. 307 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 308 309 // __executable_start is not documented, but the expectation of at 310 // least the Android libc is that it points to the ELF header. 311 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 312 313 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 314 // each DSO. The address of the symbol doesn't matter as long as they are 315 // different in different DSOs, so we chose the start address of the DSO. 316 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 317 318 // If linker script do layout we do not need to create any standard symbols. 319 if (script->hasSectionsCommand) 320 return; 321 322 auto add = [](StringRef s, int64_t pos) { 323 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 324 }; 325 326 ElfSym::bss = add("__bss_start", 0); 327 ElfSym::end1 = add("end", -1); 328 ElfSym::end2 = add("_end", -1); 329 ElfSym::etext1 = add("etext", -1); 330 ElfSym::etext2 = add("_etext", -1); 331 ElfSym::edata1 = add("edata", -1); 332 ElfSym::edata2 = add("_edata", -1); 333 } 334 335 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 336 for (BaseCommand *base : script->sectionCommands) 337 if (auto *sec = dyn_cast<OutputSection>(base)) 338 if (sec->name == name && sec->partition == partition) 339 return sec; 340 return nullptr; 341 } 342 343 template <class ELFT> void elf::createSyntheticSections() { 344 // Initialize all pointers with NULL. This is needed because 345 // you can call lld::elf::main more than once as a library. 346 memset(&Out::first, 0, sizeof(Out)); 347 348 // Add the .interp section first because it is not a SyntheticSection. 349 // The removeUnusedSyntheticSections() function relies on the 350 // SyntheticSections coming last. 351 if (needsInterpSection()) { 352 for (size_t i = 1; i <= partitions.size(); ++i) { 353 InputSection *sec = createInterpSection(); 354 sec->partition = i; 355 inputSections.push_back(sec); 356 } 357 } 358 359 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 360 361 in.shStrTab = make<StringTableSection>(".shstrtab", false); 362 363 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 364 Out::programHeaders->alignment = config->wordsize; 365 366 if (config->strip != StripPolicy::All) { 367 in.strTab = make<StringTableSection>(".strtab", false); 368 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 369 in.symTabShndx = make<SymtabShndxSection>(); 370 } 371 372 in.bss = make<BssSection>(".bss", 0, 1); 373 add(in.bss); 374 375 // If there is a SECTIONS command and a .data.rel.ro section name use name 376 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 377 // This makes sure our relro is contiguous. 378 bool hasDataRelRo = 379 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 380 in.bssRelRo = 381 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 382 add(in.bssRelRo); 383 384 // Add MIPS-specific sections. 385 if (config->emachine == EM_MIPS) { 386 if (!config->shared && config->hasDynSymTab) { 387 in.mipsRldMap = make<MipsRldMapSection>(); 388 add(in.mipsRldMap); 389 } 390 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 391 add(sec); 392 if (auto *sec = MipsOptionsSection<ELFT>::create()) 393 add(sec); 394 if (auto *sec = MipsReginfoSection<ELFT>::create()) 395 add(sec); 396 } 397 398 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 399 400 for (Partition &part : partitions) { 401 auto add = [&](SyntheticSection *sec) { 402 sec->partition = part.getNumber(); 403 inputSections.push_back(sec); 404 }; 405 406 if (!part.name.empty()) { 407 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 408 part.elfHeader->name = part.name; 409 add(part.elfHeader); 410 411 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 412 add(part.programHeaders); 413 } 414 415 if (config->buildId != BuildIdKind::None) { 416 part.buildId = make<BuildIdSection>(); 417 add(part.buildId); 418 } 419 420 part.dynStrTab = make<StringTableSection>(".dynstr", true); 421 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 422 part.dynamic = make<DynamicSection<ELFT>>(); 423 if (config->androidPackDynRelocs) 424 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 425 else 426 part.relaDyn = 427 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 428 429 if (config->hasDynSymTab) { 430 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 431 add(part.dynSymTab); 432 433 part.verSym = make<VersionTableSection>(); 434 add(part.verSym); 435 436 if (!namedVersionDefs().empty()) { 437 part.verDef = make<VersionDefinitionSection>(); 438 add(part.verDef); 439 } 440 441 part.verNeed = make<VersionNeedSection<ELFT>>(); 442 add(part.verNeed); 443 444 if (config->gnuHash) { 445 part.gnuHashTab = make<GnuHashTableSection>(); 446 add(part.gnuHashTab); 447 } 448 449 if (config->sysvHash) { 450 part.hashTab = make<HashTableSection>(); 451 add(part.hashTab); 452 } 453 454 add(part.dynamic); 455 add(part.dynStrTab); 456 add(part.relaDyn); 457 } 458 459 if (config->relrPackDynRelocs) { 460 part.relrDyn = make<RelrSection<ELFT>>(); 461 add(part.relrDyn); 462 } 463 464 if (!config->relocatable) { 465 if (config->ehFrameHdr) { 466 part.ehFrameHdr = make<EhFrameHeader>(); 467 add(part.ehFrameHdr); 468 } 469 part.ehFrame = make<EhFrameSection>(); 470 add(part.ehFrame); 471 } 472 473 if (config->emachine == EM_ARM && !config->relocatable) { 474 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 475 // InputSections. 476 part.armExidx = make<ARMExidxSyntheticSection>(); 477 add(part.armExidx); 478 } 479 } 480 481 if (partitions.size() != 1) { 482 // Create the partition end marker. This needs to be in partition number 255 483 // so that it is sorted after all other partitions. It also has other 484 // special handling (see createPhdrs() and combineEhSections()). 485 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 486 in.partEnd->partition = 255; 487 add(in.partEnd); 488 489 in.partIndex = make<PartitionIndexSection>(); 490 addOptionalRegular("__part_index_begin", in.partIndex, 0); 491 addOptionalRegular("__part_index_end", in.partIndex, 492 in.partIndex->getSize()); 493 add(in.partIndex); 494 } 495 496 // Add .got. MIPS' .got is so different from the other archs, 497 // it has its own class. 498 if (config->emachine == EM_MIPS) { 499 in.mipsGot = make<MipsGotSection>(); 500 add(in.mipsGot); 501 } else { 502 in.got = make<GotSection>(); 503 add(in.got); 504 } 505 506 if (config->emachine == EM_PPC) { 507 in.ppc32Got2 = make<PPC32Got2Section>(); 508 add(in.ppc32Got2); 509 } 510 511 if (config->emachine == EM_PPC64) { 512 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 513 add(in.ppc64LongBranchTarget); 514 } 515 516 in.gotPlt = make<GotPltSection>(); 517 add(in.gotPlt); 518 in.igotPlt = make<IgotPltSection>(); 519 add(in.igotPlt); 520 521 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 522 // it as a relocation and ensure the referenced section is created. 523 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 524 if (target->gotBaseSymInGotPlt) 525 in.gotPlt->hasGotPltOffRel = true; 526 else 527 in.got->hasGotOffRel = true; 528 } 529 530 if (config->gdbIndex) 531 add(GdbIndexSection::create<ELFT>()); 532 533 // We always need to add rel[a].plt to output if it has entries. 534 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 535 in.relaPlt = make<RelocationSection<ELFT>>( 536 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 537 add(in.relaPlt); 538 539 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 540 // relocations are processed last by the dynamic loader. We cannot place the 541 // iplt section in .rel.dyn when Android relocation packing is enabled because 542 // that would cause a section type mismatch. However, because the Android 543 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 544 // behaviour by placing the iplt section in .rel.plt. 545 in.relaIplt = make<RelocationSection<ELFT>>( 546 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 547 /*sort=*/false); 548 add(in.relaIplt); 549 550 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 551 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 552 in.ibtPlt = make<IBTPltSection>(); 553 add(in.ibtPlt); 554 } 555 556 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 557 : make<PltSection>(); 558 add(in.plt); 559 in.iplt = make<IpltSection>(); 560 add(in.iplt); 561 562 if (config->andFeatures) 563 add(make<GnuPropertySection>()); 564 565 // .note.GNU-stack is always added when we are creating a re-linkable 566 // object file. Other linkers are using the presence of this marker 567 // section to control the executable-ness of the stack area, but that 568 // is irrelevant these days. Stack area should always be non-executable 569 // by default. So we emit this section unconditionally. 570 if (config->relocatable) 571 add(make<GnuStackSection>()); 572 573 if (in.symTab) 574 add(in.symTab); 575 if (in.symTabShndx) 576 add(in.symTabShndx); 577 add(in.shStrTab); 578 if (in.strTab) 579 add(in.strTab); 580 } 581 582 // The main function of the writer. 583 template <class ELFT> void Writer<ELFT>::run() { 584 copyLocalSymbols(); 585 586 if (config->copyRelocs) 587 addSectionSymbols(); 588 589 // Now that we have a complete set of output sections. This function 590 // completes section contents. For example, we need to add strings 591 // to the string table, and add entries to .got and .plt. 592 // finalizeSections does that. 593 finalizeSections(); 594 checkExecuteOnly(); 595 if (errorCount()) 596 return; 597 598 // If -compressed-debug-sections is specified, we need to compress 599 // .debug_* sections. Do it right now because it changes the size of 600 // output sections. 601 for (OutputSection *sec : outputSections) 602 sec->maybeCompress<ELFT>(); 603 604 if (script->hasSectionsCommand) 605 script->allocateHeaders(mainPart->phdrs); 606 607 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 608 // 0 sized region. This has to be done late since only after assignAddresses 609 // we know the size of the sections. 610 for (Partition &part : partitions) 611 removeEmptyPTLoad(part.phdrs); 612 613 if (!config->oFormatBinary) 614 assignFileOffsets(); 615 else 616 assignFileOffsetsBinary(); 617 618 for (Partition &part : partitions) 619 setPhdrs(part); 620 621 if (config->relocatable) 622 for (OutputSection *sec : outputSections) 623 sec->addr = 0; 624 625 // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them 626 // before checkSections() because the files may be useful in case 627 // checkSections() or openFile() fails, for example, due to an erroneous file 628 // size. 629 writeMapFile(); 630 writeCrossReferenceTable(); 631 writeArchiveStats(); 632 633 if (config->checkSections) 634 checkSections(); 635 636 // It does not make sense try to open the file if we have error already. 637 if (errorCount()) 638 return; 639 640 { 641 llvm::TimeTraceScope timeScope("Write output file"); 642 // Write the result down to a file. 643 openFile(); 644 if (errorCount()) 645 return; 646 647 if (!config->oFormatBinary) { 648 if (config->zSeparate != SeparateSegmentKind::None) 649 writeTrapInstr(); 650 writeHeader(); 651 writeSections(); 652 } else { 653 writeSectionsBinary(); 654 } 655 656 // Backfill .note.gnu.build-id section content. This is done at last 657 // because the content is usually a hash value of the entire output file. 658 writeBuildId(); 659 if (errorCount()) 660 return; 661 662 if (auto e = buffer->commit()) 663 error("failed to write to the output file: " + toString(std::move(e))); 664 } 665 } 666 667 template <class ELFT, class RelTy> 668 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 669 llvm::ArrayRef<RelTy> rels) { 670 for (const RelTy &rel : rels) { 671 Symbol &sym = file->getRelocTargetSym(rel); 672 if (sym.isLocal()) 673 sym.used = true; 674 } 675 } 676 677 // The function ensures that the "used" field of local symbols reflects the fact 678 // that the symbol is used in a relocation from a live section. 679 template <class ELFT> static void markUsedLocalSymbols() { 680 // With --gc-sections, the field is already filled. 681 // See MarkLive<ELFT>::resolveReloc(). 682 if (config->gcSections) 683 return; 684 // Without --gc-sections, the field is initialized with "true". 685 // Drop the flag first and then rise for symbols referenced in relocations. 686 for (InputFile *file : objectFiles) { 687 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 688 for (Symbol *b : f->getLocalSymbols()) 689 b->used = false; 690 for (InputSectionBase *s : f->getSections()) { 691 InputSection *isec = dyn_cast_or_null<InputSection>(s); 692 if (!isec) 693 continue; 694 if (isec->type == SHT_REL) 695 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 696 else if (isec->type == SHT_RELA) 697 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 698 } 699 } 700 } 701 702 static bool shouldKeepInSymtab(const Defined &sym) { 703 if (sym.isSection()) 704 return false; 705 706 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 707 // from live sections. 708 if (config->copyRelocs && sym.used) 709 return true; 710 711 // Exclude local symbols pointing to .ARM.exidx sections. 712 // They are probably mapping symbols "$d", which are optional for these 713 // sections. After merging the .ARM.exidx sections, some of these symbols 714 // may become dangling. The easiest way to avoid the issue is not to add 715 // them to the symbol table from the beginning. 716 if (config->emachine == EM_ARM && sym.section && 717 sym.section->type == SHT_ARM_EXIDX) 718 return false; 719 720 if (config->discard == DiscardPolicy::None) 721 return true; 722 if (config->discard == DiscardPolicy::All) 723 return false; 724 725 // In ELF assembly .L symbols are normally discarded by the assembler. 726 // If the assembler fails to do so, the linker discards them if 727 // * --discard-locals is used. 728 // * The symbol is in a SHF_MERGE section, which is normally the reason for 729 // the assembler keeping the .L symbol. 730 StringRef name = sym.getName(); 731 bool isLocal = name.startswith(".L") || name.empty(); 732 if (!isLocal) 733 return true; 734 735 if (config->discard == DiscardPolicy::Locals) 736 return false; 737 738 SectionBase *sec = sym.section; 739 return !sec || !(sec->flags & SHF_MERGE); 740 } 741 742 static bool includeInSymtab(const Symbol &b) { 743 if (!b.isLocal() && !b.isUsedInRegularObj) 744 return false; 745 746 if (auto *d = dyn_cast<Defined>(&b)) { 747 // Always include absolute symbols. 748 SectionBase *sec = d->section; 749 if (!sec) 750 return true; 751 sec = sec->repl; 752 753 // Exclude symbols pointing to garbage-collected sections. 754 if (isa<InputSectionBase>(sec) && !sec->isLive()) 755 return false; 756 757 if (auto *s = dyn_cast<MergeInputSection>(sec)) 758 if (!s->getSectionPiece(d->value)->live) 759 return false; 760 return true; 761 } 762 return b.used; 763 } 764 765 // Local symbols are not in the linker's symbol table. This function scans 766 // each object file's symbol table to copy local symbols to the output. 767 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 768 if (!in.symTab) 769 return; 770 llvm::TimeTraceScope timeScope("Add local symbols"); 771 if (config->copyRelocs && config->discard != DiscardPolicy::None) 772 markUsedLocalSymbols<ELFT>(); 773 for (InputFile *file : objectFiles) { 774 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 775 for (Symbol *b : f->getLocalSymbols()) { 776 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 777 auto *dr = dyn_cast<Defined>(b); 778 779 // No reason to keep local undefined symbol in symtab. 780 if (!dr) 781 continue; 782 if (!includeInSymtab(*b)) 783 continue; 784 if (!shouldKeepInSymtab(*dr)) 785 continue; 786 in.symTab->addSymbol(b); 787 } 788 } 789 } 790 791 // Create a section symbol for each output section so that we can represent 792 // relocations that point to the section. If we know that no relocation is 793 // referring to a section (that happens if the section is a synthetic one), we 794 // don't create a section symbol for that section. 795 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 796 for (BaseCommand *base : script->sectionCommands) { 797 auto *sec = dyn_cast<OutputSection>(base); 798 if (!sec) 799 continue; 800 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 801 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 802 return !isd->sections.empty(); 803 return false; 804 }); 805 if (i == sec->sectionCommands.end()) 806 continue; 807 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 808 809 // Relocations are not using REL[A] section symbols. 810 if (isec->type == SHT_REL || isec->type == SHT_RELA) 811 continue; 812 813 // Unlike other synthetic sections, mergeable output sections contain data 814 // copied from input sections, and there may be a relocation pointing to its 815 // contents if -r or -emit-reloc are given. 816 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 817 continue; 818 819 // Set the symbol to be relative to the output section so that its st_value 820 // equals the output section address. Note, there may be a gap between the 821 // start of the output section and isec. 822 auto *sym = 823 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 824 /*value=*/0, /*size=*/0, isec->getOutputSection()); 825 in.symTab->addSymbol(sym); 826 } 827 } 828 829 // Today's loaders have a feature to make segments read-only after 830 // processing dynamic relocations to enhance security. PT_GNU_RELRO 831 // is defined for that. 832 // 833 // This function returns true if a section needs to be put into a 834 // PT_GNU_RELRO segment. 835 static bool isRelroSection(const OutputSection *sec) { 836 if (!config->zRelro) 837 return false; 838 839 uint64_t flags = sec->flags; 840 841 // Non-allocatable or non-writable sections don't need RELRO because 842 // they are not writable or not even mapped to memory in the first place. 843 // RELRO is for sections that are essentially read-only but need to 844 // be writable only at process startup to allow dynamic linker to 845 // apply relocations. 846 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 847 return false; 848 849 // Once initialized, TLS data segments are used as data templates 850 // for a thread-local storage. For each new thread, runtime 851 // allocates memory for a TLS and copy templates there. No thread 852 // are supposed to use templates directly. Thus, it can be in RELRO. 853 if (flags & SHF_TLS) 854 return true; 855 856 // .init_array, .preinit_array and .fini_array contain pointers to 857 // functions that are executed on process startup or exit. These 858 // pointers are set by the static linker, and they are not expected 859 // to change at runtime. But if you are an attacker, you could do 860 // interesting things by manipulating pointers in .fini_array, for 861 // example. So they are put into RELRO. 862 uint32_t type = sec->type; 863 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 864 type == SHT_PREINIT_ARRAY) 865 return true; 866 867 // .got contains pointers to external symbols. They are resolved by 868 // the dynamic linker when a module is loaded into memory, and after 869 // that they are not expected to change. So, it can be in RELRO. 870 if (in.got && sec == in.got->getParent()) 871 return true; 872 873 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 874 // through r2 register, which is reserved for that purpose. Since r2 is used 875 // for accessing .got as well, .got and .toc need to be close enough in the 876 // virtual address space. Usually, .toc comes just after .got. Since we place 877 // .got into RELRO, .toc needs to be placed into RELRO too. 878 if (sec->name.equals(".toc")) 879 return true; 880 881 // .got.plt contains pointers to external function symbols. They are 882 // by default resolved lazily, so we usually cannot put it into RELRO. 883 // However, if "-z now" is given, the lazy symbol resolution is 884 // disabled, which enables us to put it into RELRO. 885 if (sec == in.gotPlt->getParent()) 886 return config->zNow; 887 888 // .dynamic section contains data for the dynamic linker, and 889 // there's no need to write to it at runtime, so it's better to put 890 // it into RELRO. 891 if (sec->name == ".dynamic") 892 return true; 893 894 // Sections with some special names are put into RELRO. This is a 895 // bit unfortunate because section names shouldn't be significant in 896 // ELF in spirit. But in reality many linker features depend on 897 // magic section names. 898 StringRef s = sec->name; 899 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 900 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 901 s == ".fini_array" || s == ".init_array" || 902 s == ".openbsd.randomdata" || s == ".preinit_array"; 903 } 904 905 // We compute a rank for each section. The rank indicates where the 906 // section should be placed in the file. Instead of using simple 907 // numbers (0,1,2...), we use a series of flags. One for each decision 908 // point when placing the section. 909 // Using flags has two key properties: 910 // * It is easy to check if a give branch was taken. 911 // * It is easy two see how similar two ranks are (see getRankProximity). 912 enum RankFlags { 913 RF_NOT_ADDR_SET = 1 << 27, 914 RF_NOT_ALLOC = 1 << 26, 915 RF_PARTITION = 1 << 18, // Partition number (8 bits) 916 RF_NOT_PART_EHDR = 1 << 17, 917 RF_NOT_PART_PHDR = 1 << 16, 918 RF_NOT_INTERP = 1 << 15, 919 RF_NOT_NOTE = 1 << 14, 920 RF_WRITE = 1 << 13, 921 RF_EXEC_WRITE = 1 << 12, 922 RF_EXEC = 1 << 11, 923 RF_RODATA = 1 << 10, 924 RF_NOT_RELRO = 1 << 9, 925 RF_NOT_TLS = 1 << 8, 926 RF_BSS = 1 << 7, 927 RF_PPC_NOT_TOCBSS = 1 << 6, 928 RF_PPC_TOCL = 1 << 5, 929 RF_PPC_TOC = 1 << 4, 930 RF_PPC_GOT = 1 << 3, 931 RF_PPC_BRANCH_LT = 1 << 2, 932 RF_MIPS_GPREL = 1 << 1, 933 RF_MIPS_NOT_GOT = 1 << 0 934 }; 935 936 static unsigned getSectionRank(const OutputSection *sec) { 937 unsigned rank = sec->partition * RF_PARTITION; 938 939 // We want to put section specified by -T option first, so we 940 // can start assigning VA starting from them later. 941 if (config->sectionStartMap.count(sec->name)) 942 return rank; 943 rank |= RF_NOT_ADDR_SET; 944 945 // Allocatable sections go first to reduce the total PT_LOAD size and 946 // so debug info doesn't change addresses in actual code. 947 if (!(sec->flags & SHF_ALLOC)) 948 return rank | RF_NOT_ALLOC; 949 950 if (sec->type == SHT_LLVM_PART_EHDR) 951 return rank; 952 rank |= RF_NOT_PART_EHDR; 953 954 if (sec->type == SHT_LLVM_PART_PHDR) 955 return rank; 956 rank |= RF_NOT_PART_PHDR; 957 958 // Put .interp first because some loaders want to see that section 959 // on the first page of the executable file when loaded into memory. 960 if (sec->name == ".interp") 961 return rank; 962 rank |= RF_NOT_INTERP; 963 964 // Put .note sections (which make up one PT_NOTE) at the beginning so that 965 // they are likely to be included in a core file even if core file size is 966 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 967 // included in a core to match core files with executables. 968 if (sec->type == SHT_NOTE) 969 return rank; 970 rank |= RF_NOT_NOTE; 971 972 // Sort sections based on their access permission in the following 973 // order: R, RX, RWX, RW. This order is based on the following 974 // considerations: 975 // * Read-only sections come first such that they go in the 976 // PT_LOAD covering the program headers at the start of the file. 977 // * Read-only, executable sections come next. 978 // * Writable, executable sections follow such that .plt on 979 // architectures where it needs to be writable will be placed 980 // between .text and .data. 981 // * Writable sections come last, such that .bss lands at the very 982 // end of the last PT_LOAD. 983 bool isExec = sec->flags & SHF_EXECINSTR; 984 bool isWrite = sec->flags & SHF_WRITE; 985 986 if (isExec) { 987 if (isWrite) 988 rank |= RF_EXEC_WRITE; 989 else 990 rank |= RF_EXEC; 991 } else if (isWrite) { 992 rank |= RF_WRITE; 993 } else if (sec->type == SHT_PROGBITS) { 994 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 995 // .eh_frame) closer to .text. They likely contain PC or GOT relative 996 // relocations and there could be relocation overflow if other huge sections 997 // (.dynstr .dynsym) were placed in between. 998 rank |= RF_RODATA; 999 } 1000 1001 // Place RelRo sections first. After considering SHT_NOBITS below, the 1002 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 1003 // where | marks where page alignment happens. An alternative ordering is 1004 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 1005 // waste more bytes due to 2 alignment places. 1006 if (!isRelroSection(sec)) 1007 rank |= RF_NOT_RELRO; 1008 1009 // If we got here we know that both A and B are in the same PT_LOAD. 1010 1011 // The TLS initialization block needs to be a single contiguous block in a R/W 1012 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 1013 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 1014 // after PROGBITS. 1015 if (!(sec->flags & SHF_TLS)) 1016 rank |= RF_NOT_TLS; 1017 1018 // Within TLS sections, or within other RelRo sections, or within non-RelRo 1019 // sections, place non-NOBITS sections first. 1020 if (sec->type == SHT_NOBITS) 1021 rank |= RF_BSS; 1022 1023 // Some architectures have additional ordering restrictions for sections 1024 // within the same PT_LOAD. 1025 if (config->emachine == EM_PPC64) { 1026 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 1027 // that we would like to make sure appear is a specific order to maximize 1028 // their coverage by a single signed 16-bit offset from the TOC base 1029 // pointer. Conversely, the special .tocbss section should be first among 1030 // all SHT_NOBITS sections. This will put it next to the loaded special 1031 // PPC64 sections (and, thus, within reach of the TOC base pointer). 1032 StringRef name = sec->name; 1033 if (name != ".tocbss") 1034 rank |= RF_PPC_NOT_TOCBSS; 1035 1036 if (name == ".toc1") 1037 rank |= RF_PPC_TOCL; 1038 1039 if (name == ".toc") 1040 rank |= RF_PPC_TOC; 1041 1042 if (name == ".got") 1043 rank |= RF_PPC_GOT; 1044 1045 if (name == ".branch_lt") 1046 rank |= RF_PPC_BRANCH_LT; 1047 } 1048 1049 if (config->emachine == EM_MIPS) { 1050 // All sections with SHF_MIPS_GPREL flag should be grouped together 1051 // because data in these sections is addressable with a gp relative address. 1052 if (sec->flags & SHF_MIPS_GPREL) 1053 rank |= RF_MIPS_GPREL; 1054 1055 if (sec->name != ".got") 1056 rank |= RF_MIPS_NOT_GOT; 1057 } 1058 1059 return rank; 1060 } 1061 1062 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 1063 const OutputSection *a = cast<OutputSection>(aCmd); 1064 const OutputSection *b = cast<OutputSection>(bCmd); 1065 1066 if (a->sortRank != b->sortRank) 1067 return a->sortRank < b->sortRank; 1068 1069 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1070 return config->sectionStartMap.lookup(a->name) < 1071 config->sectionStartMap.lookup(b->name); 1072 return false; 1073 } 1074 1075 void PhdrEntry::add(OutputSection *sec) { 1076 lastSec = sec; 1077 if (!firstSec) 1078 firstSec = sec; 1079 p_align = std::max(p_align, sec->alignment); 1080 if (p_type == PT_LOAD) 1081 sec->ptLoad = this; 1082 } 1083 1084 // The beginning and the ending of .rel[a].plt section are marked 1085 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1086 // executable. The runtime needs these symbols in order to resolve 1087 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1088 // need these symbols, since IRELATIVE relocs are resolved through GOT 1089 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1090 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1091 if (config->relocatable || needsInterpSection()) 1092 return; 1093 1094 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1095 // because .rela.plt might be empty and thus removed from output. 1096 // We'll override Out::elfHeader with In.relaIplt later when we are 1097 // sure that .rela.plt exists in output. 1098 ElfSym::relaIpltStart = addOptionalRegular( 1099 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1100 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1101 1102 ElfSym::relaIpltEnd = addOptionalRegular( 1103 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1104 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1105 } 1106 1107 template <class ELFT> 1108 void Writer<ELFT>::forEachRelSec( 1109 llvm::function_ref<void(InputSectionBase &)> fn) { 1110 // Scan all relocations. Each relocation goes through a series 1111 // of tests to determine if it needs special treatment, such as 1112 // creating GOT, PLT, copy relocations, etc. 1113 // Note that relocations for non-alloc sections are directly 1114 // processed by InputSection::relocateNonAlloc. 1115 for (InputSectionBase *isec : inputSections) 1116 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1117 fn(*isec); 1118 for (Partition &part : partitions) { 1119 for (EhInputSection *es : part.ehFrame->sections) 1120 fn(*es); 1121 if (part.armExidx && part.armExidx->isLive()) 1122 for (InputSection *ex : part.armExidx->exidxSections) 1123 fn(*ex); 1124 } 1125 } 1126 1127 // This function generates assignments for predefined symbols (e.g. _end or 1128 // _etext) and inserts them into the commands sequence to be processed at the 1129 // appropriate time. This ensures that the value is going to be correct by the 1130 // time any references to these symbols are processed and is equivalent to 1131 // defining these symbols explicitly in the linker script. 1132 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1133 if (ElfSym::globalOffsetTable) { 1134 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1135 // to the start of the .got or .got.plt section. 1136 InputSection *gotSection = in.gotPlt; 1137 if (!target->gotBaseSymInGotPlt) 1138 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1139 : cast<InputSection>(in.got); 1140 ElfSym::globalOffsetTable->section = gotSection; 1141 } 1142 1143 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1144 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1145 ElfSym::relaIpltStart->section = in.relaIplt; 1146 ElfSym::relaIpltEnd->section = in.relaIplt; 1147 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1148 } 1149 1150 PhdrEntry *last = nullptr; 1151 PhdrEntry *lastRO = nullptr; 1152 1153 for (Partition &part : partitions) { 1154 for (PhdrEntry *p : part.phdrs) { 1155 if (p->p_type != PT_LOAD) 1156 continue; 1157 last = p; 1158 if (!(p->p_flags & PF_W)) 1159 lastRO = p; 1160 } 1161 } 1162 1163 if (lastRO) { 1164 // _etext is the first location after the last read-only loadable segment. 1165 if (ElfSym::etext1) 1166 ElfSym::etext1->section = lastRO->lastSec; 1167 if (ElfSym::etext2) 1168 ElfSym::etext2->section = lastRO->lastSec; 1169 } 1170 1171 if (last) { 1172 // _edata points to the end of the last mapped initialized section. 1173 OutputSection *edata = nullptr; 1174 for (OutputSection *os : outputSections) { 1175 if (os->type != SHT_NOBITS) 1176 edata = os; 1177 if (os == last->lastSec) 1178 break; 1179 } 1180 1181 if (ElfSym::edata1) 1182 ElfSym::edata1->section = edata; 1183 if (ElfSym::edata2) 1184 ElfSym::edata2->section = edata; 1185 1186 // _end is the first location after the uninitialized data region. 1187 if (ElfSym::end1) 1188 ElfSym::end1->section = last->lastSec; 1189 if (ElfSym::end2) 1190 ElfSym::end2->section = last->lastSec; 1191 } 1192 1193 if (ElfSym::bss) 1194 ElfSym::bss->section = findSection(".bss"); 1195 1196 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1197 // be equal to the _gp symbol's value. 1198 if (ElfSym::mipsGp) { 1199 // Find GP-relative section with the lowest address 1200 // and use this address to calculate default _gp value. 1201 for (OutputSection *os : outputSections) { 1202 if (os->flags & SHF_MIPS_GPREL) { 1203 ElfSym::mipsGp->section = os; 1204 ElfSym::mipsGp->value = 0x7ff0; 1205 break; 1206 } 1207 } 1208 } 1209 } 1210 1211 // We want to find how similar two ranks are. 1212 // The more branches in getSectionRank that match, the more similar they are. 1213 // Since each branch corresponds to a bit flag, we can just use 1214 // countLeadingZeros. 1215 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1216 return countLeadingZeros(a->sortRank ^ b->sortRank); 1217 } 1218 1219 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1220 auto *sec = dyn_cast<OutputSection>(b); 1221 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1222 } 1223 1224 // When placing orphan sections, we want to place them after symbol assignments 1225 // so that an orphan after 1226 // begin_foo = .; 1227 // foo : { *(foo) } 1228 // end_foo = .; 1229 // doesn't break the intended meaning of the begin/end symbols. 1230 // We don't want to go over sections since findOrphanPos is the 1231 // one in charge of deciding the order of the sections. 1232 // We don't want to go over changes to '.', since doing so in 1233 // rx_sec : { *(rx_sec) } 1234 // . = ALIGN(0x1000); 1235 // /* The RW PT_LOAD starts here*/ 1236 // rw_sec : { *(rw_sec) } 1237 // would mean that the RW PT_LOAD would become unaligned. 1238 static bool shouldSkip(BaseCommand *cmd) { 1239 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1240 return assign->name != "."; 1241 return false; 1242 } 1243 1244 // We want to place orphan sections so that they share as much 1245 // characteristics with their neighbors as possible. For example, if 1246 // both are rw, or both are tls. 1247 static std::vector<BaseCommand *>::iterator 1248 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1249 std::vector<BaseCommand *>::iterator e) { 1250 OutputSection *sec = cast<OutputSection>(*e); 1251 1252 // Find the first element that has as close a rank as possible. 1253 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1254 return getRankProximity(sec, a) < getRankProximity(sec, b); 1255 }); 1256 if (i == e) 1257 return e; 1258 1259 // Consider all existing sections with the same proximity. 1260 int proximity = getRankProximity(sec, *i); 1261 for (; i != e; ++i) { 1262 auto *curSec = dyn_cast<OutputSection>(*i); 1263 if (!curSec || !curSec->hasInputSections) 1264 continue; 1265 if (getRankProximity(sec, curSec) != proximity || 1266 sec->sortRank < curSec->sortRank) 1267 break; 1268 } 1269 1270 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1271 auto *os = dyn_cast<OutputSection>(cmd); 1272 return os && os->hasInputSections; 1273 }; 1274 auto j = std::find_if(llvm::make_reverse_iterator(i), 1275 llvm::make_reverse_iterator(b), 1276 isOutputSecWithInputSections); 1277 i = j.base(); 1278 1279 // As a special case, if the orphan section is the last section, put 1280 // it at the very end, past any other commands. 1281 // This matches bfd's behavior and is convenient when the linker script fully 1282 // specifies the start of the file, but doesn't care about the end (the non 1283 // alloc sections for example). 1284 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1285 if (nextSec == e) 1286 return e; 1287 1288 while (i != e && shouldSkip(*i)) 1289 ++i; 1290 return i; 1291 } 1292 1293 // Adds random priorities to sections not already in the map. 1294 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1295 if (!config->shuffleSectionSeed) 1296 return; 1297 1298 std::vector<int> priorities(inputSections.size() - order.size()); 1299 // Existing priorities are < 0, so use priorities >= 0 for the missing 1300 // sections. 1301 int curPrio = 0; 1302 for (int &prio : priorities) 1303 prio = curPrio++; 1304 uint32_t seed = *config->shuffleSectionSeed; 1305 std::mt19937 g(seed ? seed : std::random_device()()); 1306 llvm::shuffle(priorities.begin(), priorities.end(), g); 1307 int prioIndex = 0; 1308 for (InputSectionBase *sec : inputSections) { 1309 if (order.try_emplace(sec, priorities[prioIndex]).second) 1310 ++prioIndex; 1311 } 1312 } 1313 1314 // Builds section order for handling --symbol-ordering-file. 1315 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1316 DenseMap<const InputSectionBase *, int> sectionOrder; 1317 // Use the rarely used option -call-graph-ordering-file to sort sections. 1318 if (!config->callGraphProfile.empty()) 1319 return computeCallGraphProfileOrder(); 1320 1321 if (config->symbolOrderingFile.empty()) 1322 return sectionOrder; 1323 1324 struct SymbolOrderEntry { 1325 int priority; 1326 bool present; 1327 }; 1328 1329 // Build a map from symbols to their priorities. Symbols that didn't 1330 // appear in the symbol ordering file have the lowest priority 0. 1331 // All explicitly mentioned symbols have negative (higher) priorities. 1332 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1333 int priority = -config->symbolOrderingFile.size(); 1334 for (StringRef s : config->symbolOrderingFile) 1335 symbolOrder.insert({s, {priority++, false}}); 1336 1337 // Build a map from sections to their priorities. 1338 auto addSym = [&](Symbol &sym) { 1339 auto it = symbolOrder.find(sym.getName()); 1340 if (it == symbolOrder.end()) 1341 return; 1342 SymbolOrderEntry &ent = it->second; 1343 ent.present = true; 1344 1345 maybeWarnUnorderableSymbol(&sym); 1346 1347 if (auto *d = dyn_cast<Defined>(&sym)) { 1348 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1349 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1350 priority = std::min(priority, ent.priority); 1351 } 1352 } 1353 }; 1354 1355 // We want both global and local symbols. We get the global ones from the 1356 // symbol table and iterate the object files for the local ones. 1357 for (Symbol *sym : symtab->symbols()) 1358 if (!sym->isLazy()) 1359 addSym(*sym); 1360 1361 for (InputFile *file : objectFiles) 1362 for (Symbol *sym : file->getSymbols()) { 1363 if (!sym->isLocal()) 1364 break; 1365 addSym(*sym); 1366 } 1367 1368 if (config->warnSymbolOrdering) 1369 for (auto orderEntry : symbolOrder) 1370 if (!orderEntry.second.present) 1371 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1372 1373 return sectionOrder; 1374 } 1375 1376 // Sorts the sections in ISD according to the provided section order. 1377 static void 1378 sortISDBySectionOrder(InputSectionDescription *isd, 1379 const DenseMap<const InputSectionBase *, int> &order) { 1380 std::vector<InputSection *> unorderedSections; 1381 std::vector<std::pair<InputSection *, int>> orderedSections; 1382 uint64_t unorderedSize = 0; 1383 1384 for (InputSection *isec : isd->sections) { 1385 auto i = order.find(isec); 1386 if (i == order.end()) { 1387 unorderedSections.push_back(isec); 1388 unorderedSize += isec->getSize(); 1389 continue; 1390 } 1391 orderedSections.push_back({isec, i->second}); 1392 } 1393 llvm::sort(orderedSections, llvm::less_second()); 1394 1395 // Find an insertion point for the ordered section list in the unordered 1396 // section list. On targets with limited-range branches, this is the mid-point 1397 // of the unordered section list. This decreases the likelihood that a range 1398 // extension thunk will be needed to enter or exit the ordered region. If the 1399 // ordered section list is a list of hot functions, we can generally expect 1400 // the ordered functions to be called more often than the unordered functions, 1401 // making it more likely that any particular call will be within range, and 1402 // therefore reducing the number of thunks required. 1403 // 1404 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1405 // If the layout is: 1406 // 1407 // 8MB hot 1408 // 32MB cold 1409 // 1410 // only the first 8-16MB of the cold code (depending on which hot function it 1411 // is actually calling) can call the hot code without a range extension thunk. 1412 // However, if we use this layout: 1413 // 1414 // 16MB cold 1415 // 8MB hot 1416 // 16MB cold 1417 // 1418 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1419 // of the second block of cold code can call the hot code without a thunk. So 1420 // we effectively double the amount of code that could potentially call into 1421 // the hot code without a thunk. 1422 size_t insPt = 0; 1423 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1424 uint64_t unorderedPos = 0; 1425 for (; insPt != unorderedSections.size(); ++insPt) { 1426 unorderedPos += unorderedSections[insPt]->getSize(); 1427 if (unorderedPos > unorderedSize / 2) 1428 break; 1429 } 1430 } 1431 1432 isd->sections.clear(); 1433 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1434 isd->sections.push_back(isec); 1435 for (std::pair<InputSection *, int> p : orderedSections) 1436 isd->sections.push_back(p.first); 1437 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1438 isd->sections.push_back(isec); 1439 } 1440 1441 static void sortSection(OutputSection *sec, 1442 const DenseMap<const InputSectionBase *, int> &order) { 1443 StringRef name = sec->name; 1444 1445 // Never sort these. 1446 if (name == ".init" || name == ".fini") 1447 return; 1448 1449 // IRelative relocations that usually live in the .rel[a].dyn section should 1450 // be proccessed last by the dynamic loader. To achieve that we add synthetic 1451 // sections in the required order from the begining so that the in.relaIplt 1452 // section is placed last in an output section. Here we just do not apply 1453 // sorting for an output section which holds the in.relaIplt section. 1454 if (in.relaIplt->getParent() == sec) 1455 return; 1456 1457 // Sort input sections by priority using the list provided by 1458 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1459 // digit radix sort. The sections may be sorted stably again by a more 1460 // significant key. 1461 if (!order.empty()) 1462 for (BaseCommand *b : sec->sectionCommands) 1463 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1464 sortISDBySectionOrder(isd, order); 1465 1466 // Sort input sections by section name suffixes for 1467 // __attribute__((init_priority(N))). 1468 if (name == ".init_array" || name == ".fini_array") { 1469 if (!script->hasSectionsCommand) 1470 sec->sortInitFini(); 1471 return; 1472 } 1473 1474 // Sort input sections by the special rule for .ctors and .dtors. 1475 if (name == ".ctors" || name == ".dtors") { 1476 if (!script->hasSectionsCommand) 1477 sec->sortCtorsDtors(); 1478 return; 1479 } 1480 1481 // .toc is allocated just after .got and is accessed using GOT-relative 1482 // relocations. Object files compiled with small code model have an 1483 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1484 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1485 // sections having smaller relocation offsets are at beginning of .toc 1486 if (config->emachine == EM_PPC64 && name == ".toc") { 1487 if (script->hasSectionsCommand) 1488 return; 1489 assert(sec->sectionCommands.size() == 1); 1490 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1491 llvm::stable_sort(isd->sections, 1492 [](const InputSection *a, const InputSection *b) -> bool { 1493 return a->file->ppc64SmallCodeModelTocRelocs && 1494 !b->file->ppc64SmallCodeModelTocRelocs; 1495 }); 1496 return; 1497 } 1498 } 1499 1500 // If no layout was provided by linker script, we want to apply default 1501 // sorting for special input sections. This also handles --symbol-ordering-file. 1502 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1503 // Build the order once since it is expensive. 1504 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1505 maybeShuffle(order); 1506 for (BaseCommand *base : script->sectionCommands) 1507 if (auto *sec = dyn_cast<OutputSection>(base)) 1508 sortSection(sec, order); 1509 } 1510 1511 template <class ELFT> void Writer<ELFT>::sortSections() { 1512 llvm::TimeTraceScope timeScope("Sort sections"); 1513 script->adjustSectionsBeforeSorting(); 1514 1515 // Don't sort if using -r. It is not necessary and we want to preserve the 1516 // relative order for SHF_LINK_ORDER sections. 1517 if (config->relocatable) 1518 return; 1519 1520 sortInputSections(); 1521 1522 for (BaseCommand *base : script->sectionCommands) { 1523 auto *os = dyn_cast<OutputSection>(base); 1524 if (!os) 1525 continue; 1526 os->sortRank = getSectionRank(os); 1527 1528 // We want to assign rude approximation values to outSecOff fields 1529 // to know the relative order of the input sections. We use it for 1530 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1531 uint64_t i = 0; 1532 for (InputSection *sec : getInputSections(os)) 1533 sec->outSecOff = i++; 1534 } 1535 1536 if (!script->hasSectionsCommand) { 1537 // We know that all the OutputSections are contiguous in this case. 1538 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1539 std::stable_sort( 1540 llvm::find_if(script->sectionCommands, isSection), 1541 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1542 compareSections); 1543 1544 // Process INSERT commands. From this point onwards the order of 1545 // script->sectionCommands is fixed. 1546 script->processInsertCommands(); 1547 return; 1548 } 1549 1550 script->processInsertCommands(); 1551 1552 // Orphan sections are sections present in the input files which are 1553 // not explicitly placed into the output file by the linker script. 1554 // 1555 // The sections in the linker script are already in the correct 1556 // order. We have to figuere out where to insert the orphan 1557 // sections. 1558 // 1559 // The order of the sections in the script is arbitrary and may not agree with 1560 // compareSections. This means that we cannot easily define a strict weak 1561 // ordering. To see why, consider a comparison of a section in the script and 1562 // one not in the script. We have a two simple options: 1563 // * Make them equivalent (a is not less than b, and b is not less than a). 1564 // The problem is then that equivalence has to be transitive and we can 1565 // have sections a, b and c with only b in a script and a less than c 1566 // which breaks this property. 1567 // * Use compareSectionsNonScript. Given that the script order doesn't have 1568 // to match, we can end up with sections a, b, c, d where b and c are in the 1569 // script and c is compareSectionsNonScript less than b. In which case d 1570 // can be equivalent to c, a to b and d < a. As a concrete example: 1571 // .a (rx) # not in script 1572 // .b (rx) # in script 1573 // .c (ro) # in script 1574 // .d (ro) # not in script 1575 // 1576 // The way we define an order then is: 1577 // * Sort only the orphan sections. They are in the end right now. 1578 // * Move each orphan section to its preferred position. We try 1579 // to put each section in the last position where it can share 1580 // a PT_LOAD. 1581 // 1582 // There is some ambiguity as to where exactly a new entry should be 1583 // inserted, because Commands contains not only output section 1584 // commands but also other types of commands such as symbol assignment 1585 // expressions. There's no correct answer here due to the lack of the 1586 // formal specification of the linker script. We use heuristics to 1587 // determine whether a new output command should be added before or 1588 // after another commands. For the details, look at shouldSkip 1589 // function. 1590 1591 auto i = script->sectionCommands.begin(); 1592 auto e = script->sectionCommands.end(); 1593 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1594 if (auto *sec = dyn_cast<OutputSection>(base)) 1595 return sec->sectionIndex == UINT32_MAX; 1596 return false; 1597 }); 1598 1599 // Sort the orphan sections. 1600 std::stable_sort(nonScriptI, e, compareSections); 1601 1602 // As a horrible special case, skip the first . assignment if it is before any 1603 // section. We do this because it is common to set a load address by starting 1604 // the script with ". = 0xabcd" and the expectation is that every section is 1605 // after that. 1606 auto firstSectionOrDotAssignment = 1607 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1608 if (firstSectionOrDotAssignment != e && 1609 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1610 ++firstSectionOrDotAssignment; 1611 i = firstSectionOrDotAssignment; 1612 1613 while (nonScriptI != e) { 1614 auto pos = findOrphanPos(i, nonScriptI); 1615 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1616 1617 // As an optimization, find all sections with the same sort rank 1618 // and insert them with one rotate. 1619 unsigned rank = orphan->sortRank; 1620 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1621 return cast<OutputSection>(cmd)->sortRank != rank; 1622 }); 1623 std::rotate(pos, nonScriptI, end); 1624 nonScriptI = end; 1625 } 1626 1627 script->adjustSectionsAfterSorting(); 1628 } 1629 1630 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1631 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1632 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1633 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1634 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1635 if (!la || !lb) 1636 return la && !lb; 1637 OutputSection *aOut = la->getParent(); 1638 OutputSection *bOut = lb->getParent(); 1639 1640 if (aOut != bOut) 1641 return aOut->addr < bOut->addr; 1642 return la->outSecOff < lb->outSecOff; 1643 } 1644 1645 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1646 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1647 for (OutputSection *sec : outputSections) { 1648 if (!(sec->flags & SHF_LINK_ORDER)) 1649 continue; 1650 1651 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1652 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1653 if (!config->relocatable && config->emachine == EM_ARM && 1654 sec->type == SHT_ARM_EXIDX) 1655 continue; 1656 1657 // Link order may be distributed across several InputSectionDescriptions. 1658 // Sorting is performed separately. 1659 std::vector<InputSection **> scriptSections; 1660 std::vector<InputSection *> sections; 1661 for (BaseCommand *base : sec->sectionCommands) { 1662 auto *isd = dyn_cast<InputSectionDescription>(base); 1663 if (!isd) 1664 continue; 1665 bool hasLinkOrder = false; 1666 scriptSections.clear(); 1667 sections.clear(); 1668 for (InputSection *&isec : isd->sections) { 1669 if (isec->flags & SHF_LINK_ORDER) { 1670 InputSection *link = isec->getLinkOrderDep(); 1671 if (link && !link->getParent()) 1672 error(toString(isec) + ": sh_link points to discarded section " + 1673 toString(link)); 1674 hasLinkOrder = true; 1675 } 1676 scriptSections.push_back(&isec); 1677 sections.push_back(isec); 1678 } 1679 if (hasLinkOrder && errorCount() == 0) { 1680 llvm::stable_sort(sections, compareByFilePosition); 1681 for (int i = 0, n = sections.size(); i != n; ++i) 1682 *scriptSections[i] = sections[i]; 1683 } 1684 } 1685 } 1686 } 1687 1688 static void finalizeSynthetic(SyntheticSection *sec) { 1689 if (sec && sec->isNeeded() && sec->getParent()) { 1690 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1691 sec->finalizeContents(); 1692 } 1693 } 1694 1695 // We need to generate and finalize the content that depends on the address of 1696 // InputSections. As the generation of the content may also alter InputSection 1697 // addresses we must converge to a fixed point. We do that here. See the comment 1698 // in Writer<ELFT>::finalizeSections(). 1699 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1700 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1701 ThunkCreator tc; 1702 AArch64Err843419Patcher a64p; 1703 ARMErr657417Patcher a32p; 1704 script->assignAddresses(); 1705 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1706 // do require the relative addresses of OutputSections because linker scripts 1707 // can assign Virtual Addresses to OutputSections that are not monotonically 1708 // increasing. 1709 for (Partition &part : partitions) 1710 finalizeSynthetic(part.armExidx); 1711 resolveShfLinkOrder(); 1712 1713 // Converts call x@GDPLT to call __tls_get_addr 1714 if (config->emachine == EM_HEXAGON) 1715 hexagonTLSSymbolUpdate(outputSections); 1716 1717 int assignPasses = 0; 1718 for (;;) { 1719 bool changed = target->needsThunks && tc.createThunks(outputSections); 1720 1721 // With Thunk Size much smaller than branch range we expect to 1722 // converge quickly; if we get to 15 something has gone wrong. 1723 if (changed && tc.pass >= 15) { 1724 error("thunk creation not converged"); 1725 break; 1726 } 1727 1728 if (config->fixCortexA53Errata843419) { 1729 if (changed) 1730 script->assignAddresses(); 1731 changed |= a64p.createFixes(); 1732 } 1733 if (config->fixCortexA8) { 1734 if (changed) 1735 script->assignAddresses(); 1736 changed |= a32p.createFixes(); 1737 } 1738 1739 if (in.mipsGot) 1740 in.mipsGot->updateAllocSize(); 1741 1742 for (Partition &part : partitions) { 1743 changed |= part.relaDyn->updateAllocSize(); 1744 if (part.relrDyn) 1745 changed |= part.relrDyn->updateAllocSize(); 1746 } 1747 1748 const Defined *changedSym = script->assignAddresses(); 1749 if (!changed) { 1750 // Some symbols may be dependent on section addresses. When we break the 1751 // loop, the symbol values are finalized because a previous 1752 // assignAddresses() finalized section addresses. 1753 if (!changedSym) 1754 break; 1755 if (++assignPasses == 5) { 1756 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1757 " does not converge"); 1758 break; 1759 } 1760 } 1761 } 1762 1763 // If addrExpr is set, the address may not be a multiple of the alignment. 1764 // Warn because this is error-prone. 1765 for (BaseCommand *cmd : script->sectionCommands) 1766 if (auto *os = dyn_cast<OutputSection>(cmd)) 1767 if (os->addr % os->alignment != 0) 1768 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1769 os->name + " is not a multiple of alignment (" + 1770 Twine(os->alignment) + ")"); 1771 } 1772 1773 // If Input Sections have been shrinked (basic block sections) then 1774 // update symbol values and sizes associated with these sections. With basic 1775 // block sections, input sections can shrink when the jump instructions at 1776 // the end of the section are relaxed. 1777 static void fixSymbolsAfterShrinking() { 1778 for (InputFile *File : objectFiles) { 1779 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1780 auto *def = dyn_cast<Defined>(Sym); 1781 if (!def) 1782 return; 1783 1784 const SectionBase *sec = def->section; 1785 if (!sec) 1786 return; 1787 1788 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl); 1789 if (!inputSec || !inputSec->bytesDropped) 1790 return; 1791 1792 const size_t OldSize = inputSec->data().size(); 1793 const size_t NewSize = OldSize - inputSec->bytesDropped; 1794 1795 if (def->value > NewSize && def->value <= OldSize) { 1796 LLVM_DEBUG(llvm::dbgs() 1797 << "Moving symbol " << Sym->getName() << " from " 1798 << def->value << " to " 1799 << def->value - inputSec->bytesDropped << " bytes\n"); 1800 def->value -= inputSec->bytesDropped; 1801 return; 1802 } 1803 1804 if (def->value + def->size > NewSize && def->value <= OldSize && 1805 def->value + def->size <= OldSize) { 1806 LLVM_DEBUG(llvm::dbgs() 1807 << "Shrinking symbol " << Sym->getName() << " from " 1808 << def->size << " to " << def->size - inputSec->bytesDropped 1809 << " bytes\n"); 1810 def->size -= inputSec->bytesDropped; 1811 } 1812 }); 1813 } 1814 } 1815 1816 // If basic block sections exist, there are opportunities to delete fall thru 1817 // jumps and shrink jump instructions after basic block reordering. This 1818 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1819 // option is used. 1820 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1821 assert(config->optimizeBBJumps); 1822 1823 script->assignAddresses(); 1824 // For every output section that has executable input sections, this 1825 // does the following: 1826 // 1. Deletes all direct jump instructions in input sections that 1827 // jump to the following section as it is not required. 1828 // 2. If there are two consecutive jump instructions, it checks 1829 // if they can be flipped and one can be deleted. 1830 for (OutputSection *os : outputSections) { 1831 if (!(os->flags & SHF_EXECINSTR)) 1832 continue; 1833 std::vector<InputSection *> sections = getInputSections(os); 1834 std::vector<unsigned> result(sections.size()); 1835 // Delete all fall through jump instructions. Also, check if two 1836 // consecutive jump instructions can be flipped so that a fall 1837 // through jmp instruction can be deleted. 1838 parallelForEachN(0, sections.size(), [&](size_t i) { 1839 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1840 InputSection &is = *sections[i]; 1841 result[i] = 1842 target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0; 1843 }); 1844 size_t numDeleted = std::count(result.begin(), result.end(), 1); 1845 if (numDeleted > 0) { 1846 script->assignAddresses(); 1847 LLVM_DEBUG(llvm::dbgs() 1848 << "Removing " << numDeleted << " fall through jumps\n"); 1849 } 1850 } 1851 1852 fixSymbolsAfterShrinking(); 1853 1854 for (OutputSection *os : outputSections) { 1855 std::vector<InputSection *> sections = getInputSections(os); 1856 for (InputSection *is : sections) 1857 is->trim(); 1858 } 1859 } 1860 1861 // In order to allow users to manipulate linker-synthesized sections, 1862 // we had to add synthetic sections to the input section list early, 1863 // even before we make decisions whether they are needed. This allows 1864 // users to write scripts like this: ".mygot : { .got }". 1865 // 1866 // Doing it has an unintended side effects. If it turns out that we 1867 // don't need a .got (for example) at all because there's no 1868 // relocation that needs a .got, we don't want to emit .got. 1869 // 1870 // To deal with the above problem, this function is called after 1871 // scanRelocations is called to remove synthetic sections that turn 1872 // out to be empty. 1873 static void removeUnusedSyntheticSections() { 1874 // All input synthetic sections that can be empty are placed after 1875 // all regular ones. We iterate over them all and exit at first 1876 // non-synthetic. 1877 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1878 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1879 if (!ss) 1880 return; 1881 OutputSection *os = ss->getParent(); 1882 if (!os || ss->isNeeded()) 1883 continue; 1884 1885 // If we reach here, then ss is an unused synthetic section and we want to 1886 // remove it from the corresponding input section description, and 1887 // orphanSections. 1888 for (BaseCommand *b : os->sectionCommands) 1889 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1890 llvm::erase_if(isd->sections, 1891 [=](InputSection *isec) { return isec == ss; }); 1892 llvm::erase_if(script->orphanSections, 1893 [=](const InputSectionBase *isec) { return isec == ss; }); 1894 } 1895 } 1896 1897 // Create output section objects and add them to OutputSections. 1898 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1899 Out::preinitArray = findSection(".preinit_array"); 1900 Out::initArray = findSection(".init_array"); 1901 Out::finiArray = findSection(".fini_array"); 1902 1903 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1904 // symbols for sections, so that the runtime can get the start and end 1905 // addresses of each section by section name. Add such symbols. 1906 if (!config->relocatable) { 1907 addStartEndSymbols(); 1908 for (BaseCommand *base : script->sectionCommands) 1909 if (auto *sec = dyn_cast<OutputSection>(base)) 1910 addStartStopSymbols(sec); 1911 } 1912 1913 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1914 // It should be okay as no one seems to care about the type. 1915 // Even the author of gold doesn't remember why gold behaves that way. 1916 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1917 if (mainPart->dynamic->parent) 1918 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1919 STV_HIDDEN, STT_NOTYPE, 1920 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1921 1922 // Define __rel[a]_iplt_{start,end} symbols if needed. 1923 addRelIpltSymbols(); 1924 1925 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1926 // should only be defined in an executable. If .sdata does not exist, its 1927 // value/section does not matter but it has to be relative, so set its 1928 // st_shndx arbitrarily to 1 (Out::elfHeader). 1929 if (config->emachine == EM_RISCV && !config->shared) { 1930 OutputSection *sec = findSection(".sdata"); 1931 ElfSym::riscvGlobalPointer = 1932 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1933 0x800, STV_DEFAULT, STB_GLOBAL); 1934 } 1935 1936 if (config->emachine == EM_X86_64) { 1937 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1938 // way that: 1939 // 1940 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1941 // computes 0. 1942 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1943 // the TLS block). 1944 // 1945 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1946 // an absolute symbol of zero. This is different from GNU linkers which 1947 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1948 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1949 if (s && s->isUndefined()) { 1950 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1951 STT_TLS, /*value=*/0, 0, 1952 /*section=*/nullptr}); 1953 ElfSym::tlsModuleBase = cast<Defined>(s); 1954 } 1955 } 1956 1957 { 1958 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1959 // This responsible for splitting up .eh_frame section into 1960 // pieces. The relocation scan uses those pieces, so this has to be 1961 // earlier. 1962 for (Partition &part : partitions) 1963 finalizeSynthetic(part.ehFrame); 1964 } 1965 1966 for (Symbol *sym : symtab->symbols()) 1967 sym->isPreemptible = computeIsPreemptible(*sym); 1968 1969 // Change values of linker-script-defined symbols from placeholders (assigned 1970 // by declareSymbols) to actual definitions. 1971 script->processSymbolAssignments(); 1972 1973 { 1974 llvm::TimeTraceScope timeScope("Scan relocations"); 1975 // Scan relocations. This must be done after every symbol is declared so 1976 // that we can correctly decide if a dynamic relocation is needed. This is 1977 // called after processSymbolAssignments() because it needs to know whether 1978 // a linker-script-defined symbol is absolute. 1979 ppc64noTocRelax.clear(); 1980 if (!config->relocatable) { 1981 forEachRelSec(scanRelocations<ELFT>); 1982 reportUndefinedSymbols<ELFT>(); 1983 } 1984 } 1985 1986 if (in.plt && in.plt->isNeeded()) 1987 in.plt->addSymbols(); 1988 if (in.iplt && in.iplt->isNeeded()) 1989 in.iplt->addSymbols(); 1990 1991 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 1992 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1993 // entries are seen. These cases would otherwise lead to runtime errors 1994 // reported by the dynamic linker. 1995 // 1996 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1997 // catch more cases. That is too much for us. Our approach resembles the one 1998 // used in ld.gold, achieves a good balance to be useful but not too smart. 1999 for (SharedFile *file : sharedFiles) 2000 file->allNeededIsKnown = 2001 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 2002 return symtab->soNames.count(needed); 2003 }); 2004 2005 for (Symbol *sym : symtab->symbols()) 2006 if (sym->isUndefined() && !sym->isWeak()) 2007 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 2008 if (f->allNeededIsKnown) { 2009 auto diagnose = config->unresolvedSymbolsInShlib == 2010 UnresolvedPolicy::ReportError 2011 ? errorOrWarn 2012 : warn; 2013 diagnose(toString(f) + ": undefined reference to " + 2014 toString(*sym) + " [--no-allow-shlib-undefined]"); 2015 } 2016 } 2017 2018 { 2019 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 2020 // Now that we have defined all possible global symbols including linker- 2021 // synthesized ones. Visit all symbols to give the finishing touches. 2022 for (Symbol *sym : symtab->symbols()) { 2023 if (!includeInSymtab(*sym)) 2024 continue; 2025 if (in.symTab) 2026 in.symTab->addSymbol(sym); 2027 2028 if (sym->includeInDynsym()) { 2029 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 2030 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 2031 if (file->isNeeded && !sym->isUndefined()) 2032 addVerneed(sym); 2033 } 2034 } 2035 2036 // We also need to scan the dynamic relocation tables of the other 2037 // partitions and add any referenced symbols to the partition's dynsym. 2038 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2039 DenseSet<Symbol *> syms; 2040 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2041 syms.insert(e.sym); 2042 for (DynamicReloc &reloc : part.relaDyn->relocs) 2043 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 2044 part.dynSymTab->addSymbol(reloc.sym); 2045 } 2046 } 2047 2048 // Do not proceed if there was an undefined symbol. 2049 if (errorCount()) 2050 return; 2051 2052 if (in.mipsGot) 2053 in.mipsGot->build(); 2054 2055 removeUnusedSyntheticSections(); 2056 script->diagnoseOrphanHandling(); 2057 2058 sortSections(); 2059 2060 // Now that we have the final list, create a list of all the 2061 // OutputSections for convenience. 2062 for (BaseCommand *base : script->sectionCommands) 2063 if (auto *sec = dyn_cast<OutputSection>(base)) 2064 outputSections.push_back(sec); 2065 2066 // Prefer command line supplied address over other constraints. 2067 for (OutputSection *sec : outputSections) { 2068 auto i = config->sectionStartMap.find(sec->name); 2069 if (i != config->sectionStartMap.end()) 2070 sec->addrExpr = [=] { return i->second; }; 2071 } 2072 2073 // With the outputSections available check for GDPLT relocations 2074 // and add __tls_get_addr symbol if needed. 2075 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2076 Symbol *sym = symtab->addSymbol(Undefined{ 2077 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2078 sym->isPreemptible = true; 2079 partitions[0].dynSymTab->addSymbol(sym); 2080 } 2081 2082 // This is a bit of a hack. A value of 0 means undef, so we set it 2083 // to 1 to make __ehdr_start defined. The section number is not 2084 // particularly relevant. 2085 Out::elfHeader->sectionIndex = 1; 2086 2087 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 2088 OutputSection *sec = outputSections[i]; 2089 sec->sectionIndex = i + 1; 2090 sec->shName = in.shStrTab->addString(sec->name); 2091 } 2092 2093 // Binary and relocatable output does not have PHDRS. 2094 // The headers have to be created before finalize as that can influence the 2095 // image base and the dynamic section on mips includes the image base. 2096 if (!config->relocatable && !config->oFormatBinary) { 2097 for (Partition &part : partitions) { 2098 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2099 : createPhdrs(part); 2100 if (config->emachine == EM_ARM) { 2101 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2102 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2103 } 2104 if (config->emachine == EM_MIPS) { 2105 // Add separate segments for MIPS-specific sections. 2106 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2107 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2108 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2109 } 2110 } 2111 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2112 2113 // Find the TLS segment. This happens before the section layout loop so that 2114 // Android relocation packing can look up TLS symbol addresses. We only need 2115 // to care about the main partition here because all TLS symbols were moved 2116 // to the main partition (see MarkLive.cpp). 2117 for (PhdrEntry *p : mainPart->phdrs) 2118 if (p->p_type == PT_TLS) 2119 Out::tlsPhdr = p; 2120 } 2121 2122 // Some symbols are defined in term of program headers. Now that we 2123 // have the headers, we can find out which sections they point to. 2124 setReservedSymbolSections(); 2125 2126 { 2127 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2128 2129 finalizeSynthetic(in.bss); 2130 finalizeSynthetic(in.bssRelRo); 2131 finalizeSynthetic(in.symTabShndx); 2132 finalizeSynthetic(in.shStrTab); 2133 finalizeSynthetic(in.strTab); 2134 finalizeSynthetic(in.got); 2135 finalizeSynthetic(in.mipsGot); 2136 finalizeSynthetic(in.igotPlt); 2137 finalizeSynthetic(in.gotPlt); 2138 finalizeSynthetic(in.relaIplt); 2139 finalizeSynthetic(in.relaPlt); 2140 finalizeSynthetic(in.plt); 2141 finalizeSynthetic(in.iplt); 2142 finalizeSynthetic(in.ppc32Got2); 2143 finalizeSynthetic(in.partIndex); 2144 2145 // Dynamic section must be the last one in this list and dynamic 2146 // symbol table section (dynSymTab) must be the first one. 2147 for (Partition &part : partitions) { 2148 finalizeSynthetic(part.dynSymTab); 2149 finalizeSynthetic(part.gnuHashTab); 2150 finalizeSynthetic(part.hashTab); 2151 finalizeSynthetic(part.verDef); 2152 finalizeSynthetic(part.relaDyn); 2153 finalizeSynthetic(part.relrDyn); 2154 finalizeSynthetic(part.ehFrameHdr); 2155 finalizeSynthetic(part.verSym); 2156 finalizeSynthetic(part.verNeed); 2157 finalizeSynthetic(part.dynamic); 2158 } 2159 } 2160 2161 if (!script->hasSectionsCommand && !config->relocatable) 2162 fixSectionAlignments(); 2163 2164 // This is used to: 2165 // 1) Create "thunks": 2166 // Jump instructions in many ISAs have small displacements, and therefore 2167 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2168 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2169 // responsibility to create and insert small pieces of code between 2170 // sections to extend the ranges if jump targets are out of range. Such 2171 // code pieces are called "thunks". 2172 // 2173 // We add thunks at this stage. We couldn't do this before this point 2174 // because this is the earliest point where we know sizes of sections and 2175 // their layouts (that are needed to determine if jump targets are in 2176 // range). 2177 // 2178 // 2) Update the sections. We need to generate content that depends on the 2179 // address of InputSections. For example, MIPS GOT section content or 2180 // android packed relocations sections content. 2181 // 2182 // 3) Assign the final values for the linker script symbols. Linker scripts 2183 // sometimes using forward symbol declarations. We want to set the correct 2184 // values. They also might change after adding the thunks. 2185 finalizeAddressDependentContent(); 2186 if (errorCount()) 2187 return; 2188 2189 { 2190 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2191 // finalizeAddressDependentContent may have added local symbols to the 2192 // static symbol table. 2193 finalizeSynthetic(in.symTab); 2194 finalizeSynthetic(in.ppc64LongBranchTarget); 2195 } 2196 2197 // Relaxation to delete inter-basic block jumps created by basic block 2198 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2199 // can relax jump instructions based on symbol offset. 2200 if (config->optimizeBBJumps) 2201 optimizeBasicBlockJumps(); 2202 2203 // Fill other section headers. The dynamic table is finalized 2204 // at the end because some tags like RELSZ depend on result 2205 // of finalizing other sections. 2206 for (OutputSection *sec : outputSections) 2207 sec->finalize(); 2208 } 2209 2210 // Ensure data sections are not mixed with executable sections when 2211 // -execute-only is used. -execute-only is a feature to make pages executable 2212 // but not readable, and the feature is currently supported only on AArch64. 2213 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2214 if (!config->executeOnly) 2215 return; 2216 2217 for (OutputSection *os : outputSections) 2218 if (os->flags & SHF_EXECINSTR) 2219 for (InputSection *isec : getInputSections(os)) 2220 if (!(isec->flags & SHF_EXECINSTR)) 2221 error("cannot place " + toString(isec) + " into " + toString(os->name) + 2222 ": -execute-only does not support intermingling data and code"); 2223 } 2224 2225 // The linker is expected to define SECNAME_start and SECNAME_end 2226 // symbols for a few sections. This function defines them. 2227 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2228 // If a section does not exist, there's ambiguity as to how we 2229 // define _start and _end symbols for an init/fini section. Since 2230 // the loader assume that the symbols are always defined, we need to 2231 // always define them. But what value? The loader iterates over all 2232 // pointers between _start and _end to run global ctors/dtors, so if 2233 // the section is empty, their symbol values don't actually matter 2234 // as long as _start and _end point to the same location. 2235 // 2236 // That said, we don't want to set the symbols to 0 (which is 2237 // probably the simplest value) because that could cause some 2238 // program to fail to link due to relocation overflow, if their 2239 // program text is above 2 GiB. We use the address of the .text 2240 // section instead to prevent that failure. 2241 // 2242 // In rare situations, the .text section may not exist. If that's the 2243 // case, use the image base address as a last resort. 2244 OutputSection *Default = findSection(".text"); 2245 if (!Default) 2246 Default = Out::elfHeader; 2247 2248 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2249 if (os) { 2250 addOptionalRegular(start, os, 0); 2251 addOptionalRegular(end, os, -1); 2252 } else { 2253 addOptionalRegular(start, Default, 0); 2254 addOptionalRegular(end, Default, 0); 2255 } 2256 }; 2257 2258 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2259 define("__init_array_start", "__init_array_end", Out::initArray); 2260 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2261 2262 if (OutputSection *sec = findSection(".ARM.exidx")) 2263 define("__exidx_start", "__exidx_end", sec); 2264 } 2265 2266 // If a section name is valid as a C identifier (which is rare because of 2267 // the leading '.'), linkers are expected to define __start_<secname> and 2268 // __stop_<secname> symbols. They are at beginning and end of the section, 2269 // respectively. This is not requested by the ELF standard, but GNU ld and 2270 // gold provide the feature, and used by many programs. 2271 template <class ELFT> 2272 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2273 StringRef s = sec->name; 2274 if (!isValidCIdentifier(s)) 2275 return; 2276 addOptionalRegular(saver.save("__start_" + s), sec, 0, 2277 config->zStartStopVisibility); 2278 addOptionalRegular(saver.save("__stop_" + s), sec, -1, 2279 config->zStartStopVisibility); 2280 } 2281 2282 static bool needsPtLoad(OutputSection *sec) { 2283 if (!(sec->flags & SHF_ALLOC) || sec->noload) 2284 return false; 2285 2286 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2287 // responsible for allocating space for them, not the PT_LOAD that 2288 // contains the TLS initialization image. 2289 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2290 return false; 2291 return true; 2292 } 2293 2294 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2295 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2296 // RW. This means that there is no alignment in the RO to RX transition and we 2297 // cannot create a PT_LOAD there. 2298 static uint64_t computeFlags(uint64_t flags) { 2299 if (config->omagic) 2300 return PF_R | PF_W | PF_X; 2301 if (config->executeOnly && (flags & PF_X)) 2302 return flags & ~PF_R; 2303 if (config->singleRoRx && !(flags & PF_W)) 2304 return flags | PF_X; 2305 return flags; 2306 } 2307 2308 // Decide which program headers to create and which sections to include in each 2309 // one. 2310 template <class ELFT> 2311 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2312 std::vector<PhdrEntry *> ret; 2313 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2314 ret.push_back(make<PhdrEntry>(type, flags)); 2315 return ret.back(); 2316 }; 2317 2318 unsigned partNo = part.getNumber(); 2319 bool isMain = partNo == 1; 2320 2321 // Add the first PT_LOAD segment for regular output sections. 2322 uint64_t flags = computeFlags(PF_R); 2323 PhdrEntry *load = nullptr; 2324 2325 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2326 // PT_LOAD. 2327 if (!config->nmagic && !config->omagic) { 2328 // The first phdr entry is PT_PHDR which describes the program header 2329 // itself. 2330 if (isMain) 2331 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2332 else 2333 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2334 2335 // PT_INTERP must be the second entry if exists. 2336 if (OutputSection *cmd = findSection(".interp", partNo)) 2337 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2338 2339 // Add the headers. We will remove them if they don't fit. 2340 // In the other partitions the headers are ordinary sections, so they don't 2341 // need to be added here. 2342 if (isMain) { 2343 load = addHdr(PT_LOAD, flags); 2344 load->add(Out::elfHeader); 2345 load->add(Out::programHeaders); 2346 } 2347 } 2348 2349 // PT_GNU_RELRO includes all sections that should be marked as 2350 // read-only by dynamic linker after processing relocations. 2351 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2352 // an error message if more than one PT_GNU_RELRO PHDR is required. 2353 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2354 bool inRelroPhdr = false; 2355 OutputSection *relroEnd = nullptr; 2356 for (OutputSection *sec : outputSections) { 2357 if (sec->partition != partNo || !needsPtLoad(sec)) 2358 continue; 2359 if (isRelroSection(sec)) { 2360 inRelroPhdr = true; 2361 if (!relroEnd) 2362 relRo->add(sec); 2363 else 2364 error("section: " + sec->name + " is not contiguous with other relro" + 2365 " sections"); 2366 } else if (inRelroPhdr) { 2367 inRelroPhdr = false; 2368 relroEnd = sec; 2369 } 2370 } 2371 2372 for (OutputSection *sec : outputSections) { 2373 if (!needsPtLoad(sec)) 2374 continue; 2375 2376 // Normally, sections in partitions other than the current partition are 2377 // ignored. But partition number 255 is a special case: it contains the 2378 // partition end marker (.part.end). It needs to be added to the main 2379 // partition so that a segment is created for it in the main partition, 2380 // which will cause the dynamic loader to reserve space for the other 2381 // partitions. 2382 if (sec->partition != partNo) { 2383 if (isMain && sec->partition == 255) 2384 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2385 continue; 2386 } 2387 2388 // Segments are contiguous memory regions that has the same attributes 2389 // (e.g. executable or writable). There is one phdr for each segment. 2390 // Therefore, we need to create a new phdr when the next section has 2391 // different flags or is loaded at a discontiguous address or memory 2392 // region using AT or AT> linker script command, respectively. At the same 2393 // time, we don't want to create a separate load segment for the headers, 2394 // even if the first output section has an AT or AT> attribute. 2395 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2396 bool sameLMARegion = 2397 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2398 if (!(load && newFlags == flags && sec != relroEnd && 2399 sec->memRegion == load->firstSec->memRegion && 2400 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2401 load = addHdr(PT_LOAD, newFlags); 2402 flags = newFlags; 2403 } 2404 2405 load->add(sec); 2406 } 2407 2408 // Add a TLS segment if any. 2409 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2410 for (OutputSection *sec : outputSections) 2411 if (sec->partition == partNo && sec->flags & SHF_TLS) 2412 tlsHdr->add(sec); 2413 if (tlsHdr->firstSec) 2414 ret.push_back(tlsHdr); 2415 2416 // Add an entry for .dynamic. 2417 if (OutputSection *sec = part.dynamic->getParent()) 2418 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2419 2420 if (relRo->firstSec) 2421 ret.push_back(relRo); 2422 2423 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2424 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2425 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2426 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2427 ->add(part.ehFrameHdr->getParent()); 2428 2429 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2430 // the dynamic linker fill the segment with random data. 2431 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2432 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2433 2434 if (config->zGnustack != GnuStackKind::None) { 2435 // PT_GNU_STACK is a special section to tell the loader to make the 2436 // pages for the stack non-executable. If you really want an executable 2437 // stack, you can pass -z execstack, but that's not recommended for 2438 // security reasons. 2439 unsigned perm = PF_R | PF_W; 2440 if (config->zGnustack == GnuStackKind::Exec) 2441 perm |= PF_X; 2442 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2443 } 2444 2445 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2446 // is expected to perform W^X violations, such as calling mprotect(2) or 2447 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2448 // OpenBSD. 2449 if (config->zWxneeded) 2450 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2451 2452 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2453 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2454 2455 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2456 // same alignment. 2457 PhdrEntry *note = nullptr; 2458 for (OutputSection *sec : outputSections) { 2459 if (sec->partition != partNo) 2460 continue; 2461 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2462 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2463 note = addHdr(PT_NOTE, PF_R); 2464 note->add(sec); 2465 } else { 2466 note = nullptr; 2467 } 2468 } 2469 return ret; 2470 } 2471 2472 template <class ELFT> 2473 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2474 unsigned pType, unsigned pFlags) { 2475 unsigned partNo = part.getNumber(); 2476 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2477 return cmd->partition == partNo && cmd->type == shType; 2478 }); 2479 if (i == outputSections.end()) 2480 return; 2481 2482 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2483 entry->add(*i); 2484 part.phdrs.push_back(entry); 2485 } 2486 2487 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2488 // This is achieved by assigning an alignment expression to addrExpr of each 2489 // such section. 2490 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2491 const PhdrEntry *prev; 2492 auto pageAlign = [&](const PhdrEntry *p) { 2493 OutputSection *cmd = p->firstSec; 2494 if (!cmd) 2495 return; 2496 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2497 if (!cmd->addrExpr) { 2498 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2499 // padding in the file contents. 2500 // 2501 // When -z separate-code is used we must not have any overlap in pages 2502 // between an executable segment and a non-executable segment. We align to 2503 // the next maximum page size boundary on transitions between executable 2504 // and non-executable segments. 2505 // 2506 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2507 // sections will be extracted to a separate file. Align to the next 2508 // maximum page size boundary so that we can find the ELF header at the 2509 // start. We cannot benefit from overlapping p_offset ranges with the 2510 // previous segment anyway. 2511 if (config->zSeparate == SeparateSegmentKind::Loadable || 2512 (config->zSeparate == SeparateSegmentKind::Code && prev && 2513 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2514 cmd->type == SHT_LLVM_PART_EHDR) 2515 cmd->addrExpr = [] { 2516 return alignTo(script->getDot(), config->maxPageSize); 2517 }; 2518 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2519 // it must be the RW. Align to p_align(PT_TLS) to make sure 2520 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2521 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2522 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2523 // be congruent to 0 modulo p_align(PT_TLS). 2524 // 2525 // Technically this is not required, but as of 2019, some dynamic loaders 2526 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2527 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2528 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2529 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2530 // blocks correctly. We need to keep the workaround for a while. 2531 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2532 cmd->addrExpr = [] { 2533 return alignTo(script->getDot(), config->maxPageSize) + 2534 alignTo(script->getDot() % config->maxPageSize, 2535 Out::tlsPhdr->p_align); 2536 }; 2537 else 2538 cmd->addrExpr = [] { 2539 return alignTo(script->getDot(), config->maxPageSize) + 2540 script->getDot() % config->maxPageSize; 2541 }; 2542 } 2543 }; 2544 2545 for (Partition &part : partitions) { 2546 prev = nullptr; 2547 for (const PhdrEntry *p : part.phdrs) 2548 if (p->p_type == PT_LOAD && p->firstSec) { 2549 pageAlign(p); 2550 prev = p; 2551 } 2552 } 2553 } 2554 2555 // Compute an in-file position for a given section. The file offset must be the 2556 // same with its virtual address modulo the page size, so that the loader can 2557 // load executables without any address adjustment. 2558 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2559 // The first section in a PT_LOAD has to have congruent offset and address 2560 // modulo the maximum page size. 2561 if (os->ptLoad && os->ptLoad->firstSec == os) 2562 return alignTo(off, os->ptLoad->p_align, os->addr); 2563 2564 // File offsets are not significant for .bss sections other than the first one 2565 // in a PT_LOAD. By convention, we keep section offsets monotonically 2566 // increasing rather than setting to zero. 2567 if (os->type == SHT_NOBITS) 2568 return off; 2569 2570 // If the section is not in a PT_LOAD, we just have to align it. 2571 if (!os->ptLoad) 2572 return alignTo(off, os->alignment); 2573 2574 // If two sections share the same PT_LOAD the file offset is calculated 2575 // using this formula: Off2 = Off1 + (VA2 - VA1). 2576 OutputSection *first = os->ptLoad->firstSec; 2577 return first->offset + os->addr - first->addr; 2578 } 2579 2580 // Set an in-file position to a given section and returns the end position of 2581 // the section. 2582 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2583 off = computeFileOffset(os, off); 2584 os->offset = off; 2585 2586 if (os->type == SHT_NOBITS) 2587 return off; 2588 return off + os->size; 2589 } 2590 2591 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2592 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2593 auto needsOffset = [](OutputSection &sec) { 2594 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2595 }; 2596 uint64_t minAddr = UINT64_MAX; 2597 for (OutputSection *sec : outputSections) 2598 if (needsOffset(*sec)) { 2599 sec->offset = sec->getLMA(); 2600 minAddr = std::min(minAddr, sec->offset); 2601 } 2602 2603 // Sections are laid out at LMA minus minAddr. 2604 fileSize = 0; 2605 for (OutputSection *sec : outputSections) 2606 if (needsOffset(*sec)) { 2607 sec->offset -= minAddr; 2608 fileSize = std::max(fileSize, sec->offset + sec->size); 2609 } 2610 } 2611 2612 static std::string rangeToString(uint64_t addr, uint64_t len) { 2613 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2614 } 2615 2616 // Assign file offsets to output sections. 2617 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2618 uint64_t off = 0; 2619 off = setFileOffset(Out::elfHeader, off); 2620 off = setFileOffset(Out::programHeaders, off); 2621 2622 PhdrEntry *lastRX = nullptr; 2623 for (Partition &part : partitions) 2624 for (PhdrEntry *p : part.phdrs) 2625 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2626 lastRX = p; 2627 2628 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2629 // will not occupy file offsets contained by a PT_LOAD. 2630 for (OutputSection *sec : outputSections) { 2631 if (!(sec->flags & SHF_ALLOC)) 2632 continue; 2633 off = setFileOffset(sec, off); 2634 2635 // If this is a last section of the last executable segment and that 2636 // segment is the last loadable segment, align the offset of the 2637 // following section to avoid loading non-segments parts of the file. 2638 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2639 lastRX->lastSec == sec) 2640 off = alignTo(off, config->commonPageSize); 2641 } 2642 for (OutputSection *sec : outputSections) 2643 if (!(sec->flags & SHF_ALLOC)) 2644 off = setFileOffset(sec, off); 2645 2646 sectionHeaderOff = alignTo(off, config->wordsize); 2647 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2648 2649 // Our logic assumes that sections have rising VA within the same segment. 2650 // With use of linker scripts it is possible to violate this rule and get file 2651 // offset overlaps or overflows. That should never happen with a valid script 2652 // which does not move the location counter backwards and usually scripts do 2653 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2654 // kernel, which control segment distribution explicitly and move the counter 2655 // backwards, so we have to allow doing that to support linking them. We 2656 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2657 // we want to prevent file size overflows because it would crash the linker. 2658 for (OutputSection *sec : outputSections) { 2659 if (sec->type == SHT_NOBITS) 2660 continue; 2661 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2662 error("unable to place section " + sec->name + " at file offset " + 2663 rangeToString(sec->offset, sec->size) + 2664 "; check your linker script for overflows"); 2665 } 2666 } 2667 2668 // Finalize the program headers. We call this function after we assign 2669 // file offsets and VAs to all sections. 2670 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2671 for (PhdrEntry *p : part.phdrs) { 2672 OutputSection *first = p->firstSec; 2673 OutputSection *last = p->lastSec; 2674 2675 if (first) { 2676 p->p_filesz = last->offset - first->offset; 2677 if (last->type != SHT_NOBITS) 2678 p->p_filesz += last->size; 2679 2680 p->p_memsz = last->addr + last->size - first->addr; 2681 p->p_offset = first->offset; 2682 p->p_vaddr = first->addr; 2683 2684 // File offsets in partitions other than the main partition are relative 2685 // to the offset of the ELF headers. Perform that adjustment now. 2686 if (part.elfHeader) 2687 p->p_offset -= part.elfHeader->getParent()->offset; 2688 2689 if (!p->hasLMA) 2690 p->p_paddr = first->getLMA(); 2691 } 2692 2693 if (p->p_type == PT_GNU_RELRO) { 2694 p->p_align = 1; 2695 // musl/glibc ld.so rounds the size down, so we need to round up 2696 // to protect the last page. This is a no-op on FreeBSD which always 2697 // rounds up. 2698 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2699 p->p_offset; 2700 } 2701 } 2702 } 2703 2704 // A helper struct for checkSectionOverlap. 2705 namespace { 2706 struct SectionOffset { 2707 OutputSection *sec; 2708 uint64_t offset; 2709 }; 2710 } // namespace 2711 2712 // Check whether sections overlap for a specific address range (file offsets, 2713 // load and virtual addresses). 2714 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2715 bool isVirtualAddr) { 2716 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2717 return a.offset < b.offset; 2718 }); 2719 2720 // Finding overlap is easy given a vector is sorted by start position. 2721 // If an element starts before the end of the previous element, they overlap. 2722 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2723 SectionOffset a = sections[i - 1]; 2724 SectionOffset b = sections[i]; 2725 if (b.offset >= a.offset + a.sec->size) 2726 continue; 2727 2728 // If both sections are in OVERLAY we allow the overlapping of virtual 2729 // addresses, because it is what OVERLAY was designed for. 2730 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2731 continue; 2732 2733 errorOrWarn("section " + a.sec->name + " " + name + 2734 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2735 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2736 b.sec->name + " range is " + 2737 rangeToString(b.offset, b.sec->size)); 2738 } 2739 } 2740 2741 // Check for overlapping sections and address overflows. 2742 // 2743 // In this function we check that none of the output sections have overlapping 2744 // file offsets. For SHF_ALLOC sections we also check that the load address 2745 // ranges and the virtual address ranges don't overlap 2746 template <class ELFT> void Writer<ELFT>::checkSections() { 2747 // First, check that section's VAs fit in available address space for target. 2748 for (OutputSection *os : outputSections) 2749 if ((os->addr + os->size < os->addr) || 2750 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2751 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2752 " of size 0x" + utohexstr(os->size) + 2753 " exceeds available address space"); 2754 2755 // Check for overlapping file offsets. In this case we need to skip any 2756 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2757 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2758 // binary is specified only add SHF_ALLOC sections are added to the output 2759 // file so we skip any non-allocated sections in that case. 2760 std::vector<SectionOffset> fileOffs; 2761 for (OutputSection *sec : outputSections) 2762 if (sec->size > 0 && sec->type != SHT_NOBITS && 2763 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2764 fileOffs.push_back({sec, sec->offset}); 2765 checkOverlap("file", fileOffs, false); 2766 2767 // When linking with -r there is no need to check for overlapping virtual/load 2768 // addresses since those addresses will only be assigned when the final 2769 // executable/shared object is created. 2770 if (config->relocatable) 2771 return; 2772 2773 // Checking for overlapping virtual and load addresses only needs to take 2774 // into account SHF_ALLOC sections since others will not be loaded. 2775 // Furthermore, we also need to skip SHF_TLS sections since these will be 2776 // mapped to other addresses at runtime and can therefore have overlapping 2777 // ranges in the file. 2778 std::vector<SectionOffset> vmas; 2779 for (OutputSection *sec : outputSections) 2780 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2781 vmas.push_back({sec, sec->addr}); 2782 checkOverlap("virtual address", vmas, true); 2783 2784 // Finally, check that the load addresses don't overlap. This will usually be 2785 // the same as the virtual addresses but can be different when using a linker 2786 // script with AT(). 2787 std::vector<SectionOffset> lmas; 2788 for (OutputSection *sec : outputSections) 2789 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2790 lmas.push_back({sec, sec->getLMA()}); 2791 checkOverlap("load address", lmas, false); 2792 } 2793 2794 // The entry point address is chosen in the following ways. 2795 // 2796 // 1. the '-e' entry command-line option; 2797 // 2. the ENTRY(symbol) command in a linker control script; 2798 // 3. the value of the symbol _start, if present; 2799 // 4. the number represented by the entry symbol, if it is a number; 2800 // 5. the address of the first byte of the .text section, if present; 2801 // 6. the address 0. 2802 static uint64_t getEntryAddr() { 2803 // Case 1, 2 or 3 2804 if (Symbol *b = symtab->find(config->entry)) 2805 return b->getVA(); 2806 2807 // Case 4 2808 uint64_t addr; 2809 if (to_integer(config->entry, addr)) 2810 return addr; 2811 2812 // Case 5 2813 if (OutputSection *sec = findSection(".text")) { 2814 if (config->warnMissingEntry) 2815 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2816 utohexstr(sec->addr)); 2817 return sec->addr; 2818 } 2819 2820 // Case 6 2821 if (config->warnMissingEntry) 2822 warn("cannot find entry symbol " + config->entry + 2823 "; not setting start address"); 2824 return 0; 2825 } 2826 2827 static uint16_t getELFType() { 2828 if (config->isPic) 2829 return ET_DYN; 2830 if (config->relocatable) 2831 return ET_REL; 2832 return ET_EXEC; 2833 } 2834 2835 template <class ELFT> void Writer<ELFT>::writeHeader() { 2836 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2837 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2838 2839 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2840 eHdr->e_type = getELFType(); 2841 eHdr->e_entry = getEntryAddr(); 2842 eHdr->e_shoff = sectionHeaderOff; 2843 2844 // Write the section header table. 2845 // 2846 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2847 // and e_shstrndx fields. When the value of one of these fields exceeds 2848 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2849 // use fields in the section header at index 0 to store 2850 // the value. The sentinel values and fields are: 2851 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2852 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2853 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2854 size_t num = outputSections.size() + 1; 2855 if (num >= SHN_LORESERVE) 2856 sHdrs->sh_size = num; 2857 else 2858 eHdr->e_shnum = num; 2859 2860 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2861 if (strTabIndex >= SHN_LORESERVE) { 2862 sHdrs->sh_link = strTabIndex; 2863 eHdr->e_shstrndx = SHN_XINDEX; 2864 } else { 2865 eHdr->e_shstrndx = strTabIndex; 2866 } 2867 2868 for (OutputSection *sec : outputSections) 2869 sec->writeHeaderTo<ELFT>(++sHdrs); 2870 } 2871 2872 // Open a result file. 2873 template <class ELFT> void Writer<ELFT>::openFile() { 2874 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2875 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2876 error("output file too large: " + Twine(fileSize) + " bytes"); 2877 return; 2878 } 2879 2880 unlinkAsync(config->outputFile); 2881 unsigned flags = 0; 2882 if (!config->relocatable) 2883 flags |= FileOutputBuffer::F_executable; 2884 if (!config->mmapOutputFile) 2885 flags |= FileOutputBuffer::F_no_mmap; 2886 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2887 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2888 2889 if (!bufferOrErr) { 2890 error("failed to open " + config->outputFile + ": " + 2891 llvm::toString(bufferOrErr.takeError())); 2892 return; 2893 } 2894 buffer = std::move(*bufferOrErr); 2895 Out::bufferStart = buffer->getBufferStart(); 2896 } 2897 2898 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2899 for (OutputSection *sec : outputSections) 2900 if (sec->flags & SHF_ALLOC) 2901 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2902 } 2903 2904 static void fillTrap(uint8_t *i, uint8_t *end) { 2905 for (; i + 4 <= end; i += 4) 2906 memcpy(i, &target->trapInstr, 4); 2907 } 2908 2909 // Fill the last page of executable segments with trap instructions 2910 // instead of leaving them as zero. Even though it is not required by any 2911 // standard, it is in general a good thing to do for security reasons. 2912 // 2913 // We'll leave other pages in segments as-is because the rest will be 2914 // overwritten by output sections. 2915 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2916 for (Partition &part : partitions) { 2917 // Fill the last page. 2918 for (PhdrEntry *p : part.phdrs) 2919 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2920 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2921 config->commonPageSize), 2922 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2923 config->commonPageSize)); 2924 2925 // Round up the file size of the last segment to the page boundary iff it is 2926 // an executable segment to ensure that other tools don't accidentally 2927 // trim the instruction padding (e.g. when stripping the file). 2928 PhdrEntry *last = nullptr; 2929 for (PhdrEntry *p : part.phdrs) 2930 if (p->p_type == PT_LOAD) 2931 last = p; 2932 2933 if (last && (last->p_flags & PF_X)) 2934 last->p_memsz = last->p_filesz = 2935 alignTo(last->p_filesz, config->commonPageSize); 2936 } 2937 } 2938 2939 // Write section contents to a mmap'ed file. 2940 template <class ELFT> void Writer<ELFT>::writeSections() { 2941 // In -r or -emit-relocs mode, write the relocation sections first as in 2942 // ELf_Rel targets we might find out that we need to modify the relocated 2943 // section while doing it. 2944 for (OutputSection *sec : outputSections) 2945 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2946 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2947 2948 for (OutputSection *sec : outputSections) 2949 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2950 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2951 } 2952 2953 // Split one uint8 array into small pieces of uint8 arrays. 2954 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2955 size_t chunkSize) { 2956 std::vector<ArrayRef<uint8_t>> ret; 2957 while (arr.size() > chunkSize) { 2958 ret.push_back(arr.take_front(chunkSize)); 2959 arr = arr.drop_front(chunkSize); 2960 } 2961 if (!arr.empty()) 2962 ret.push_back(arr); 2963 return ret; 2964 } 2965 2966 // Computes a hash value of Data using a given hash function. 2967 // In order to utilize multiple cores, we first split data into 1MB 2968 // chunks, compute a hash for each chunk, and then compute a hash value 2969 // of the hash values. 2970 static void 2971 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2972 llvm::ArrayRef<uint8_t> data, 2973 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2974 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2975 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2976 2977 // Compute hash values. 2978 parallelForEachN(0, chunks.size(), [&](size_t i) { 2979 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2980 }); 2981 2982 // Write to the final output buffer. 2983 hashFn(hashBuf.data(), hashes); 2984 } 2985 2986 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2987 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2988 return; 2989 2990 if (config->buildId == BuildIdKind::Hexstring) { 2991 for (Partition &part : partitions) 2992 part.buildId->writeBuildId(config->buildIdVector); 2993 return; 2994 } 2995 2996 // Compute a hash of all sections of the output file. 2997 size_t hashSize = mainPart->buildId->hashSize; 2998 std::vector<uint8_t> buildId(hashSize); 2999 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 3000 3001 switch (config->buildId) { 3002 case BuildIdKind::Fast: 3003 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 3004 write64le(dest, xxHash64(arr)); 3005 }); 3006 break; 3007 case BuildIdKind::Md5: 3008 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3009 memcpy(dest, MD5::hash(arr).data(), hashSize); 3010 }); 3011 break; 3012 case BuildIdKind::Sha1: 3013 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3014 memcpy(dest, SHA1::hash(arr).data(), hashSize); 3015 }); 3016 break; 3017 case BuildIdKind::Uuid: 3018 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 3019 error("entropy source failure: " + ec.message()); 3020 break; 3021 default: 3022 llvm_unreachable("unknown BuildIdKind"); 3023 } 3024 for (Partition &part : partitions) 3025 part.buildId->writeBuildId(buildId); 3026 } 3027 3028 template void elf::createSyntheticSections<ELF32LE>(); 3029 template void elf::createSyntheticSections<ELF32BE>(); 3030 template void elf::createSyntheticSections<ELF64LE>(); 3031 template void elf::createSyntheticSections<ELF64BE>(); 3032 3033 template void elf::writeResult<ELF32LE>(); 3034 template void elf::writeResult<ELF32BE>(); 3035 template void elf::writeResult<ELF64LE>(); 3036 template void elf::writeResult<ELF64BE>(); 3037