1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Filesystem.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "lld/Common/Threads.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/xxhash.h" 31 #include <climits> 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::support; 37 using namespace llvm::support::endian; 38 39 using namespace lld; 40 using namespace lld::elf; 41 42 namespace { 43 // The writer writes a SymbolTable result to a file. 44 template <class ELFT> class Writer { 45 public: 46 Writer() : buffer(errorHandler().outputBuffer) {} 47 using Elf_Shdr = typename ELFT::Shdr; 48 using Elf_Ehdr = typename ELFT::Ehdr; 49 using Elf_Phdr = typename ELFT::Phdr; 50 51 void run(); 52 53 private: 54 void copyLocalSymbols(); 55 void addSectionSymbols(); 56 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 57 void sortSections(); 58 void resolveShfLinkOrder(); 59 void finalizeAddressDependentContent(); 60 void sortInputSections(); 61 void finalizeSections(); 62 void checkExecuteOnly(); 63 void setReservedSymbolSections(); 64 65 std::vector<PhdrEntry *> createPhdrs(Partition &part); 66 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 67 unsigned pFlags); 68 void assignFileOffsets(); 69 void assignFileOffsetsBinary(); 70 void setPhdrs(Partition &part); 71 void checkSections(); 72 void fixSectionAlignments(); 73 void openFile(); 74 void writeTrapInstr(); 75 void writeHeader(); 76 void writeSections(); 77 void writeSectionsBinary(); 78 void writeBuildId(); 79 80 std::unique_ptr<FileOutputBuffer> &buffer; 81 82 void addRelIpltSymbols(); 83 void addStartEndSymbols(); 84 void addStartStopSymbols(OutputSection *sec); 85 86 uint64_t fileSize; 87 uint64_t sectionHeaderOff; 88 }; 89 } // anonymous namespace 90 91 static bool isSectionPrefix(StringRef prefix, StringRef name) { 92 return name.startswith(prefix) || name == prefix.drop_back(); 93 } 94 95 StringRef elf::getOutputSectionName(const InputSectionBase *s) { 96 if (config->relocatable) 97 return s->name; 98 99 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 100 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 101 // technically required, but not doing it is odd). This code guarantees that. 102 if (auto *isec = dyn_cast<InputSection>(s)) { 103 if (InputSectionBase *rel = isec->getRelocatedSection()) { 104 OutputSection *out = rel->getOutputSection(); 105 if (s->type == SHT_RELA) 106 return saver.save(".rela" + out->name); 107 return saver.save(".rel" + out->name); 108 } 109 } 110 111 // This check is for -z keep-text-section-prefix. This option separates text 112 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or 113 // ".text.exit". 114 // When enabled, this allows identifying the hot code region (.text.hot) in 115 // the final binary which can be selectively mapped to huge pages or mlocked, 116 // for instance. 117 if (config->zKeepTextSectionPrefix) 118 for (StringRef v : 119 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) 120 if (isSectionPrefix(v, s->name)) 121 return v.drop_back(); 122 123 for (StringRef v : 124 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 125 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 126 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 127 if (isSectionPrefix(v, s->name)) 128 return v.drop_back(); 129 130 // CommonSection is identified as "COMMON" in linker scripts. 131 // By default, it should go to .bss section. 132 if (s->name == "COMMON") 133 return ".bss"; 134 135 return s->name; 136 } 137 138 static bool needsInterpSection() { 139 return !sharedFiles.empty() && !config->dynamicLinker.empty() && 140 script->needsInterpSection(); 141 } 142 143 template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } 144 145 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 146 llvm::erase_if(phdrs, [&](const PhdrEntry *p) { 147 if (p->p_type != PT_LOAD) 148 return false; 149 if (!p->firstSec) 150 return true; 151 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 152 return size == 0; 153 }); 154 } 155 156 void elf::copySectionsIntoPartitions() { 157 std::vector<InputSectionBase *> newSections; 158 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 159 for (InputSectionBase *s : inputSections) { 160 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 161 continue; 162 InputSectionBase *copy; 163 if (s->type == SHT_NOTE) 164 copy = make<InputSection>(cast<InputSection>(*s)); 165 else if (auto *es = dyn_cast<EhInputSection>(s)) 166 copy = make<EhInputSection>(*es); 167 else 168 continue; 169 copy->partition = part; 170 newSections.push_back(copy); 171 } 172 } 173 174 inputSections.insert(inputSections.end(), newSections.begin(), 175 newSections.end()); 176 } 177 178 void elf::combineEhSections() { 179 for (InputSectionBase *&s : inputSections) { 180 // Ignore dead sections and the partition end marker (.part.end), 181 // whose partition number is out of bounds. 182 if (!s->isLive() || s->partition == 255) 183 continue; 184 185 Partition &part = s->getPartition(); 186 if (auto *es = dyn_cast<EhInputSection>(s)) { 187 part.ehFrame->addSection(es); 188 s = nullptr; 189 } else if (s->kind() == SectionBase::Regular && part.armExidx && 190 part.armExidx->addSection(cast<InputSection>(s))) { 191 s = nullptr; 192 } 193 } 194 195 std::vector<InputSectionBase *> &v = inputSections; 196 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 197 } 198 199 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 200 uint64_t val, uint8_t stOther = STV_HIDDEN, 201 uint8_t binding = STB_GLOBAL) { 202 Symbol *s = symtab->find(name); 203 if (!s || s->isDefined()) 204 return nullptr; 205 206 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 207 /*size=*/0, sec}); 208 return cast<Defined>(s); 209 } 210 211 static Defined *addAbsolute(StringRef name) { 212 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 213 STT_NOTYPE, 0, 0, nullptr}); 214 return cast<Defined>(sym); 215 } 216 217 // The linker is expected to define some symbols depending on 218 // the linking result. This function defines such symbols. 219 void elf::addReservedSymbols() { 220 if (config->emachine == EM_MIPS) { 221 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 222 // so that it points to an absolute address which by default is relative 223 // to GOT. Default offset is 0x7ff0. 224 // See "Global Data Symbols" in Chapter 6 in the following document: 225 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 226 ElfSym::mipsGp = addAbsolute("_gp"); 227 228 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 229 // start of function and 'gp' pointer into GOT. 230 if (symtab->find("_gp_disp")) 231 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 232 233 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 234 // pointer. This symbol is used in the code generated by .cpload pseudo-op 235 // in case of using -mno-shared option. 236 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 237 if (symtab->find("__gnu_local_gp")) 238 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 239 } else if (config->emachine == EM_PPC) { 240 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 241 // support Small Data Area, define it arbitrarily as 0. 242 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 243 } 244 245 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 246 // combines the typical ELF GOT with the small data sections. It commonly 247 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 248 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 249 // represent the TOC base which is offset by 0x8000 bytes from the start of 250 // the .got section. 251 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 252 // correctness of some relocations depends on its value. 253 StringRef gotSymName = 254 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 255 256 if (Symbol *s = symtab->find(gotSymName)) { 257 if (s->isDefined()) { 258 error(toString(s->file) + " cannot redefine linker defined symbol '" + 259 gotSymName + "'"); 260 return; 261 } 262 263 uint64_t gotOff = 0; 264 if (config->emachine == EM_PPC64) 265 gotOff = 0x8000; 266 267 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 268 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 269 ElfSym::globalOffsetTable = cast<Defined>(s); 270 } 271 272 // __ehdr_start is the location of ELF file headers. Note that we define 273 // this symbol unconditionally even when using a linker script, which 274 // differs from the behavior implemented by GNU linker which only define 275 // this symbol if ELF headers are in the memory mapped segment. 276 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 277 278 // __executable_start is not documented, but the expectation of at 279 // least the Android libc is that it points to the ELF header. 280 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 281 282 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 283 // each DSO. The address of the symbol doesn't matter as long as they are 284 // different in different DSOs, so we chose the start address of the DSO. 285 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 286 287 // If linker script do layout we do not need to create any standart symbols. 288 if (script->hasSectionsCommand) 289 return; 290 291 auto add = [](StringRef s, int64_t pos) { 292 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 293 }; 294 295 ElfSym::bss = add("__bss_start", 0); 296 ElfSym::end1 = add("end", -1); 297 ElfSym::end2 = add("_end", -1); 298 ElfSym::etext1 = add("etext", -1); 299 ElfSym::etext2 = add("_etext", -1); 300 ElfSym::edata1 = add("edata", -1); 301 ElfSym::edata2 = add("_edata", -1); 302 } 303 304 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 305 for (BaseCommand *base : script->sectionCommands) 306 if (auto *sec = dyn_cast<OutputSection>(base)) 307 if (sec->name == name && sec->partition == partition) 308 return sec; 309 return nullptr; 310 } 311 312 template <class ELFT> void elf::createSyntheticSections() { 313 // Initialize all pointers with NULL. This is needed because 314 // you can call lld::elf::main more than once as a library. 315 memset(&Out::first, 0, sizeof(Out)); 316 317 auto add = [](InputSectionBase *sec) { inputSections.push_back(sec); }; 318 319 in.shStrTab = make<StringTableSection>(".shstrtab", false); 320 321 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 322 Out::programHeaders->alignment = config->wordsize; 323 324 if (config->strip != StripPolicy::All) { 325 in.strTab = make<StringTableSection>(".strtab", false); 326 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 327 in.symTabShndx = make<SymtabShndxSection>(); 328 } 329 330 in.bss = make<BssSection>(".bss", 0, 1); 331 add(in.bss); 332 333 // If there is a SECTIONS command and a .data.rel.ro section name use name 334 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 335 // This makes sure our relro is contiguous. 336 bool hasDataRelRo = 337 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 338 in.bssRelRo = 339 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 340 add(in.bssRelRo); 341 342 // Add MIPS-specific sections. 343 if (config->emachine == EM_MIPS) { 344 if (!config->shared && config->hasDynSymTab) { 345 in.mipsRldMap = make<MipsRldMapSection>(); 346 add(in.mipsRldMap); 347 } 348 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 349 add(sec); 350 if (auto *sec = MipsOptionsSection<ELFT>::create()) 351 add(sec); 352 if (auto *sec = MipsReginfoSection<ELFT>::create()) 353 add(sec); 354 } 355 356 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 357 358 for (Partition &part : partitions) { 359 auto add = [&](InputSectionBase *sec) { 360 sec->partition = part.getNumber(); 361 inputSections.push_back(sec); 362 }; 363 364 if (!part.name.empty()) { 365 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 366 part.elfHeader->name = part.name; 367 add(part.elfHeader); 368 369 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 370 add(part.programHeaders); 371 } 372 373 if (config->buildId != BuildIdKind::None) { 374 part.buildId = make<BuildIdSection>(); 375 add(part.buildId); 376 } 377 378 part.dynStrTab = make<StringTableSection>(".dynstr", true); 379 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 380 part.dynamic = make<DynamicSection<ELFT>>(); 381 if (config->androidPackDynRelocs) 382 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 383 else 384 part.relaDyn = 385 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 386 387 if (needsInterpSection()) 388 add(createInterpSection()); 389 390 if (config->hasDynSymTab) { 391 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 392 add(part.dynSymTab); 393 394 part.verSym = make<VersionTableSection>(); 395 add(part.verSym); 396 397 if (!namedVersionDefs().empty()) { 398 part.verDef = make<VersionDefinitionSection>(); 399 add(part.verDef); 400 } 401 402 part.verNeed = make<VersionNeedSection<ELFT>>(); 403 add(part.verNeed); 404 405 if (config->gnuHash) { 406 part.gnuHashTab = make<GnuHashTableSection>(); 407 add(part.gnuHashTab); 408 } 409 410 if (config->sysvHash) { 411 part.hashTab = make<HashTableSection>(); 412 add(part.hashTab); 413 } 414 415 add(part.dynamic); 416 add(part.dynStrTab); 417 add(part.relaDyn); 418 } 419 420 if (config->relrPackDynRelocs) { 421 part.relrDyn = make<RelrSection<ELFT>>(); 422 add(part.relrDyn); 423 } 424 425 if (!config->relocatable) { 426 if (config->ehFrameHdr) { 427 part.ehFrameHdr = make<EhFrameHeader>(); 428 add(part.ehFrameHdr); 429 } 430 part.ehFrame = make<EhFrameSection>(); 431 add(part.ehFrame); 432 } 433 434 if (config->emachine == EM_ARM && !config->relocatable) { 435 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 436 // InputSections. 437 part.armExidx = make<ARMExidxSyntheticSection>(); 438 add(part.armExidx); 439 } 440 } 441 442 if (partitions.size() != 1) { 443 // Create the partition end marker. This needs to be in partition number 255 444 // so that it is sorted after all other partitions. It also has other 445 // special handling (see createPhdrs() and combineEhSections()). 446 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 447 in.partEnd->partition = 255; 448 add(in.partEnd); 449 450 in.partIndex = make<PartitionIndexSection>(); 451 addOptionalRegular("__part_index_begin", in.partIndex, 0); 452 addOptionalRegular("__part_index_end", in.partIndex, 453 in.partIndex->getSize()); 454 add(in.partIndex); 455 } 456 457 // Add .got. MIPS' .got is so different from the other archs, 458 // it has its own class. 459 if (config->emachine == EM_MIPS) { 460 in.mipsGot = make<MipsGotSection>(); 461 add(in.mipsGot); 462 } else { 463 in.got = make<GotSection>(); 464 add(in.got); 465 } 466 467 if (config->emachine == EM_PPC) { 468 in.ppc32Got2 = make<PPC32Got2Section>(); 469 add(in.ppc32Got2); 470 } 471 472 if (config->emachine == EM_PPC64) { 473 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 474 add(in.ppc64LongBranchTarget); 475 } 476 477 in.gotPlt = make<GotPltSection>(); 478 add(in.gotPlt); 479 in.igotPlt = make<IgotPltSection>(); 480 add(in.igotPlt); 481 482 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 483 // it as a relocation and ensure the referenced section is created. 484 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 485 if (target->gotBaseSymInGotPlt) 486 in.gotPlt->hasGotPltOffRel = true; 487 else 488 in.got->hasGotOffRel = true; 489 } 490 491 if (config->gdbIndex) 492 add(GdbIndexSection::create<ELFT>()); 493 494 // We always need to add rel[a].plt to output if it has entries. 495 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 496 in.relaPlt = make<RelocationSection<ELFT>>( 497 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 498 add(in.relaPlt); 499 500 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 501 // relocations are processed last by the dynamic loader. We cannot place the 502 // iplt section in .rel.dyn when Android relocation packing is enabled because 503 // that would cause a section type mismatch. However, because the Android 504 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 505 // behaviour by placing the iplt section in .rel.plt. 506 in.relaIplt = make<RelocationSection<ELFT>>( 507 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 508 /*sort=*/false); 509 add(in.relaIplt); 510 511 in.plt = make<PltSection>(false); 512 add(in.plt); 513 in.iplt = make<PltSection>(true); 514 add(in.iplt); 515 516 if (config->andFeatures) 517 add(make<GnuPropertySection>()); 518 519 // .note.GNU-stack is always added when we are creating a re-linkable 520 // object file. Other linkers are using the presence of this marker 521 // section to control the executable-ness of the stack area, but that 522 // is irrelevant these days. Stack area should always be non-executable 523 // by default. So we emit this section unconditionally. 524 if (config->relocatable) 525 add(make<GnuStackSection>()); 526 527 if (in.symTab) 528 add(in.symTab); 529 if (in.symTabShndx) 530 add(in.symTabShndx); 531 add(in.shStrTab); 532 if (in.strTab) 533 add(in.strTab); 534 } 535 536 // The main function of the writer. 537 template <class ELFT> void Writer<ELFT>::run() { 538 if (config->discard != DiscardPolicy::All) 539 copyLocalSymbols(); 540 541 if (config->copyRelocs) 542 addSectionSymbols(); 543 544 // Now that we have a complete set of output sections. This function 545 // completes section contents. For example, we need to add strings 546 // to the string table, and add entries to .got and .plt. 547 // finalizeSections does that. 548 finalizeSections(); 549 checkExecuteOnly(); 550 if (errorCount()) 551 return; 552 553 // If -compressed-debug-sections is specified, we need to compress 554 // .debug_* sections. Do it right now because it changes the size of 555 // output sections. 556 for (OutputSection *sec : outputSections) 557 sec->maybeCompress<ELFT>(); 558 559 if (script->hasSectionsCommand) 560 script->allocateHeaders(mainPart->phdrs); 561 562 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 563 // 0 sized region. This has to be done late since only after assignAddresses 564 // we know the size of the sections. 565 for (Partition &part : partitions) 566 removeEmptyPTLoad(part.phdrs); 567 568 if (!config->oFormatBinary) 569 assignFileOffsets(); 570 else 571 assignFileOffsetsBinary(); 572 573 for (Partition &part : partitions) 574 setPhdrs(part); 575 576 if (config->relocatable) 577 for (OutputSection *sec : outputSections) 578 sec->addr = 0; 579 580 if (config->checkSections) 581 checkSections(); 582 583 // It does not make sense try to open the file if we have error already. 584 if (errorCount()) 585 return; 586 // Write the result down to a file. 587 openFile(); 588 if (errorCount()) 589 return; 590 591 if (!config->oFormatBinary) { 592 writeTrapInstr(); 593 writeHeader(); 594 writeSections(); 595 } else { 596 writeSectionsBinary(); 597 } 598 599 // Backfill .note.gnu.build-id section content. This is done at last 600 // because the content is usually a hash value of the entire output file. 601 writeBuildId(); 602 if (errorCount()) 603 return; 604 605 // Handle -Map and -cref options. 606 writeMapFile(); 607 writeCrossReferenceTable(); 608 if (errorCount()) 609 return; 610 611 if (auto e = buffer->commit()) 612 error("failed to write to the output file: " + toString(std::move(e))); 613 } 614 615 static bool shouldKeepInSymtab(const Defined &sym) { 616 if (sym.isSection()) 617 return false; 618 619 if (config->discard == DiscardPolicy::None) 620 return true; 621 622 // If -emit-reloc is given, all symbols including local ones need to be 623 // copied because they may be referenced by relocations. 624 if (config->emitRelocs) 625 return true; 626 627 // In ELF assembly .L symbols are normally discarded by the assembler. 628 // If the assembler fails to do so, the linker discards them if 629 // * --discard-locals is used. 630 // * The symbol is in a SHF_MERGE section, which is normally the reason for 631 // the assembler keeping the .L symbol. 632 StringRef name = sym.getName(); 633 bool isLocal = name.startswith(".L") || name.empty(); 634 if (!isLocal) 635 return true; 636 637 if (config->discard == DiscardPolicy::Locals) 638 return false; 639 640 SectionBase *sec = sym.section; 641 return !sec || !(sec->flags & SHF_MERGE); 642 } 643 644 static bool includeInSymtab(const Symbol &b) { 645 if (!b.isLocal() && !b.isUsedInRegularObj) 646 return false; 647 648 if (auto *d = dyn_cast<Defined>(&b)) { 649 // Always include absolute symbols. 650 SectionBase *sec = d->section; 651 if (!sec) 652 return true; 653 sec = sec->repl; 654 655 // Exclude symbols pointing to garbage-collected sections. 656 if (isa<InputSectionBase>(sec) && !sec->isLive()) 657 return false; 658 659 if (auto *s = dyn_cast<MergeInputSection>(sec)) 660 if (!s->getSectionPiece(d->value)->live) 661 return false; 662 return true; 663 } 664 return b.used; 665 } 666 667 // Local symbols are not in the linker's symbol table. This function scans 668 // each object file's symbol table to copy local symbols to the output. 669 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 670 if (!in.symTab) 671 return; 672 for (InputFile *file : objectFiles) { 673 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 674 for (Symbol *b : f->getLocalSymbols()) { 675 if (!b->isLocal()) 676 fatal(toString(f) + 677 ": broken object: getLocalSymbols returns a non-local symbol"); 678 auto *dr = dyn_cast<Defined>(b); 679 680 // No reason to keep local undefined symbol in symtab. 681 if (!dr) 682 continue; 683 if (!includeInSymtab(*b)) 684 continue; 685 if (!shouldKeepInSymtab(*dr)) 686 continue; 687 in.symTab->addSymbol(b); 688 } 689 } 690 } 691 692 // Create a section symbol for each output section so that we can represent 693 // relocations that point to the section. If we know that no relocation is 694 // referring to a section (that happens if the section is a synthetic one), we 695 // don't create a section symbol for that section. 696 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 697 for (BaseCommand *base : script->sectionCommands) { 698 auto *sec = dyn_cast<OutputSection>(base); 699 if (!sec) 700 continue; 701 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 702 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 703 return !isd->sections.empty(); 704 return false; 705 }); 706 if (i == sec->sectionCommands.end()) 707 continue; 708 InputSection *isec = cast<InputSectionDescription>(*i)->sections[0]; 709 710 // Relocations are not using REL[A] section symbols. 711 if (isec->type == SHT_REL || isec->type == SHT_RELA) 712 continue; 713 714 // Unlike other synthetic sections, mergeable output sections contain data 715 // copied from input sections, and there may be a relocation pointing to its 716 // contents if -r or -emit-reloc are given. 717 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 718 continue; 719 720 auto *sym = 721 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 722 /*value=*/0, /*size=*/0, isec); 723 in.symTab->addSymbol(sym); 724 } 725 } 726 727 // Today's loaders have a feature to make segments read-only after 728 // processing dynamic relocations to enhance security. PT_GNU_RELRO 729 // is defined for that. 730 // 731 // This function returns true if a section needs to be put into a 732 // PT_GNU_RELRO segment. 733 static bool isRelroSection(const OutputSection *sec) { 734 if (!config->zRelro) 735 return false; 736 737 uint64_t flags = sec->flags; 738 739 // Non-allocatable or non-writable sections don't need RELRO because 740 // they are not writable or not even mapped to memory in the first place. 741 // RELRO is for sections that are essentially read-only but need to 742 // be writable only at process startup to allow dynamic linker to 743 // apply relocations. 744 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 745 return false; 746 747 // Once initialized, TLS data segments are used as data templates 748 // for a thread-local storage. For each new thread, runtime 749 // allocates memory for a TLS and copy templates there. No thread 750 // are supposed to use templates directly. Thus, it can be in RELRO. 751 if (flags & SHF_TLS) 752 return true; 753 754 // .init_array, .preinit_array and .fini_array contain pointers to 755 // functions that are executed on process startup or exit. These 756 // pointers are set by the static linker, and they are not expected 757 // to change at runtime. But if you are an attacker, you could do 758 // interesting things by manipulating pointers in .fini_array, for 759 // example. So they are put into RELRO. 760 uint32_t type = sec->type; 761 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 762 type == SHT_PREINIT_ARRAY) 763 return true; 764 765 // .got contains pointers to external symbols. They are resolved by 766 // the dynamic linker when a module is loaded into memory, and after 767 // that they are not expected to change. So, it can be in RELRO. 768 if (in.got && sec == in.got->getParent()) 769 return true; 770 771 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 772 // through r2 register, which is reserved for that purpose. Since r2 is used 773 // for accessing .got as well, .got and .toc need to be close enough in the 774 // virtual address space. Usually, .toc comes just after .got. Since we place 775 // .got into RELRO, .toc needs to be placed into RELRO too. 776 if (sec->name.equals(".toc")) 777 return true; 778 779 // .got.plt contains pointers to external function symbols. They are 780 // by default resolved lazily, so we usually cannot put it into RELRO. 781 // However, if "-z now" is given, the lazy symbol resolution is 782 // disabled, which enables us to put it into RELRO. 783 if (sec == in.gotPlt->getParent()) 784 return config->zNow; 785 786 // .dynamic section contains data for the dynamic linker, and 787 // there's no need to write to it at runtime, so it's better to put 788 // it into RELRO. 789 if (sec->name == ".dynamic") 790 return true; 791 792 // Sections with some special names are put into RELRO. This is a 793 // bit unfortunate because section names shouldn't be significant in 794 // ELF in spirit. But in reality many linker features depend on 795 // magic section names. 796 StringRef s = sec->name; 797 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 798 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 799 s == ".openbsd.randomdata"; 800 } 801 802 // We compute a rank for each section. The rank indicates where the 803 // section should be placed in the file. Instead of using simple 804 // numbers (0,1,2...), we use a series of flags. One for each decision 805 // point when placing the section. 806 // Using flags has two key properties: 807 // * It is easy to check if a give branch was taken. 808 // * It is easy two see how similar two ranks are (see getRankProximity). 809 enum RankFlags { 810 RF_NOT_ADDR_SET = 1 << 27, 811 RF_NOT_ALLOC = 1 << 26, 812 RF_PARTITION = 1 << 18, // Partition number (8 bits) 813 RF_NOT_PART_EHDR = 1 << 17, 814 RF_NOT_PART_PHDR = 1 << 16, 815 RF_NOT_INTERP = 1 << 15, 816 RF_NOT_NOTE = 1 << 14, 817 RF_WRITE = 1 << 13, 818 RF_EXEC_WRITE = 1 << 12, 819 RF_EXEC = 1 << 11, 820 RF_RODATA = 1 << 10, 821 RF_NOT_RELRO = 1 << 9, 822 RF_NOT_TLS = 1 << 8, 823 RF_BSS = 1 << 7, 824 RF_PPC_NOT_TOCBSS = 1 << 6, 825 RF_PPC_TOCL = 1 << 5, 826 RF_PPC_TOC = 1 << 4, 827 RF_PPC_GOT = 1 << 3, 828 RF_PPC_BRANCH_LT = 1 << 2, 829 RF_MIPS_GPREL = 1 << 1, 830 RF_MIPS_NOT_GOT = 1 << 0 831 }; 832 833 static unsigned getSectionRank(const OutputSection *sec) { 834 unsigned rank = sec->partition * RF_PARTITION; 835 836 // We want to put section specified by -T option first, so we 837 // can start assigning VA starting from them later. 838 if (config->sectionStartMap.count(sec->name)) 839 return rank; 840 rank |= RF_NOT_ADDR_SET; 841 842 // Allocatable sections go first to reduce the total PT_LOAD size and 843 // so debug info doesn't change addresses in actual code. 844 if (!(sec->flags & SHF_ALLOC)) 845 return rank | RF_NOT_ALLOC; 846 847 if (sec->type == SHT_LLVM_PART_EHDR) 848 return rank; 849 rank |= RF_NOT_PART_EHDR; 850 851 if (sec->type == SHT_LLVM_PART_PHDR) 852 return rank; 853 rank |= RF_NOT_PART_PHDR; 854 855 // Put .interp first because some loaders want to see that section 856 // on the first page of the executable file when loaded into memory. 857 if (sec->name == ".interp") 858 return rank; 859 rank |= RF_NOT_INTERP; 860 861 // Put .note sections (which make up one PT_NOTE) at the beginning so that 862 // they are likely to be included in a core file even if core file size is 863 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 864 // included in a core to match core files with executables. 865 if (sec->type == SHT_NOTE) 866 return rank; 867 rank |= RF_NOT_NOTE; 868 869 // Sort sections based on their access permission in the following 870 // order: R, RX, RWX, RW. This order is based on the following 871 // considerations: 872 // * Read-only sections come first such that they go in the 873 // PT_LOAD covering the program headers at the start of the file. 874 // * Read-only, executable sections come next. 875 // * Writable, executable sections follow such that .plt on 876 // architectures where it needs to be writable will be placed 877 // between .text and .data. 878 // * Writable sections come last, such that .bss lands at the very 879 // end of the last PT_LOAD. 880 bool isExec = sec->flags & SHF_EXECINSTR; 881 bool isWrite = sec->flags & SHF_WRITE; 882 883 if (isExec) { 884 if (isWrite) 885 rank |= RF_EXEC_WRITE; 886 else 887 rank |= RF_EXEC; 888 } else if (isWrite) { 889 rank |= RF_WRITE; 890 } else if (sec->type == SHT_PROGBITS) { 891 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 892 // .eh_frame) closer to .text. They likely contain PC or GOT relative 893 // relocations and there could be relocation overflow if other huge sections 894 // (.dynstr .dynsym) were placed in between. 895 rank |= RF_RODATA; 896 } 897 898 // Place RelRo sections first. After considering SHT_NOBITS below, the 899 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 900 // where | marks where page alignment happens. An alternative ordering is 901 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 902 // waste more bytes due to 2 alignment places. 903 if (!isRelroSection(sec)) 904 rank |= RF_NOT_RELRO; 905 906 // If we got here we know that both A and B are in the same PT_LOAD. 907 908 // The TLS initialization block needs to be a single contiguous block in a R/W 909 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 910 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 911 // after PROGBITS. 912 if (!(sec->flags & SHF_TLS)) 913 rank |= RF_NOT_TLS; 914 915 // Within TLS sections, or within other RelRo sections, or within non-RelRo 916 // sections, place non-NOBITS sections first. 917 if (sec->type == SHT_NOBITS) 918 rank |= RF_BSS; 919 920 // Some architectures have additional ordering restrictions for sections 921 // within the same PT_LOAD. 922 if (config->emachine == EM_PPC64) { 923 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 924 // that we would like to make sure appear is a specific order to maximize 925 // their coverage by a single signed 16-bit offset from the TOC base 926 // pointer. Conversely, the special .tocbss section should be first among 927 // all SHT_NOBITS sections. This will put it next to the loaded special 928 // PPC64 sections (and, thus, within reach of the TOC base pointer). 929 StringRef name = sec->name; 930 if (name != ".tocbss") 931 rank |= RF_PPC_NOT_TOCBSS; 932 933 if (name == ".toc1") 934 rank |= RF_PPC_TOCL; 935 936 if (name == ".toc") 937 rank |= RF_PPC_TOC; 938 939 if (name == ".got") 940 rank |= RF_PPC_GOT; 941 942 if (name == ".branch_lt") 943 rank |= RF_PPC_BRANCH_LT; 944 } 945 946 if (config->emachine == EM_MIPS) { 947 // All sections with SHF_MIPS_GPREL flag should be grouped together 948 // because data in these sections is addressable with a gp relative address. 949 if (sec->flags & SHF_MIPS_GPREL) 950 rank |= RF_MIPS_GPREL; 951 952 if (sec->name != ".got") 953 rank |= RF_MIPS_NOT_GOT; 954 } 955 956 return rank; 957 } 958 959 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 960 const OutputSection *a = cast<OutputSection>(aCmd); 961 const OutputSection *b = cast<OutputSection>(bCmd); 962 963 if (a->sortRank != b->sortRank) 964 return a->sortRank < b->sortRank; 965 966 if (!(a->sortRank & RF_NOT_ADDR_SET)) 967 return config->sectionStartMap.lookup(a->name) < 968 config->sectionStartMap.lookup(b->name); 969 return false; 970 } 971 972 void PhdrEntry::add(OutputSection *sec) { 973 lastSec = sec; 974 if (!firstSec) 975 firstSec = sec; 976 p_align = std::max(p_align, sec->alignment); 977 if (p_type == PT_LOAD) 978 sec->ptLoad = this; 979 } 980 981 // The beginning and the ending of .rel[a].plt section are marked 982 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 983 // executable. The runtime needs these symbols in order to resolve 984 // all IRELATIVE relocs on startup. For dynamic executables, we don't 985 // need these symbols, since IRELATIVE relocs are resolved through GOT 986 // and PLT. For details, see http://www.airs.com/blog/archives/403. 987 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 988 if (config->relocatable || needsInterpSection()) 989 return; 990 991 // By default, __rela_iplt_{start,end} belong to a dummy section 0 992 // because .rela.plt might be empty and thus removed from output. 993 // We'll override Out::elfHeader with In.relaIplt later when we are 994 // sure that .rela.plt exists in output. 995 ElfSym::relaIpltStart = addOptionalRegular( 996 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 997 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 998 999 ElfSym::relaIpltEnd = addOptionalRegular( 1000 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1001 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1002 } 1003 1004 template <class ELFT> 1005 void Writer<ELFT>::forEachRelSec( 1006 llvm::function_ref<void(InputSectionBase &)> fn) { 1007 // Scan all relocations. Each relocation goes through a series 1008 // of tests to determine if it needs special treatment, such as 1009 // creating GOT, PLT, copy relocations, etc. 1010 // Note that relocations for non-alloc sections are directly 1011 // processed by InputSection::relocateNonAlloc. 1012 for (InputSectionBase *isec : inputSections) 1013 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1014 fn(*isec); 1015 for (Partition &part : partitions) { 1016 for (EhInputSection *es : part.ehFrame->sections) 1017 fn(*es); 1018 if (part.armExidx && part.armExidx->isLive()) 1019 for (InputSection *ex : part.armExidx->exidxSections) 1020 fn(*ex); 1021 } 1022 } 1023 1024 // This function generates assignments for predefined symbols (e.g. _end or 1025 // _etext) and inserts them into the commands sequence to be processed at the 1026 // appropriate time. This ensures that the value is going to be correct by the 1027 // time any references to these symbols are processed and is equivalent to 1028 // defining these symbols explicitly in the linker script. 1029 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1030 if (ElfSym::globalOffsetTable) { 1031 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1032 // to the start of the .got or .got.plt section. 1033 InputSection *gotSection = in.gotPlt; 1034 if (!target->gotBaseSymInGotPlt) 1035 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1036 : cast<InputSection>(in.got); 1037 ElfSym::globalOffsetTable->section = gotSection; 1038 } 1039 1040 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1041 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1042 ElfSym::relaIpltStart->section = in.relaIplt; 1043 ElfSym::relaIpltEnd->section = in.relaIplt; 1044 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1045 } 1046 1047 PhdrEntry *last = nullptr; 1048 PhdrEntry *lastRO = nullptr; 1049 1050 for (Partition &part : partitions) { 1051 for (PhdrEntry *p : part.phdrs) { 1052 if (p->p_type != PT_LOAD) 1053 continue; 1054 last = p; 1055 if (!(p->p_flags & PF_W)) 1056 lastRO = p; 1057 } 1058 } 1059 1060 if (lastRO) { 1061 // _etext is the first location after the last read-only loadable segment. 1062 if (ElfSym::etext1) 1063 ElfSym::etext1->section = lastRO->lastSec; 1064 if (ElfSym::etext2) 1065 ElfSym::etext2->section = lastRO->lastSec; 1066 } 1067 1068 if (last) { 1069 // _edata points to the end of the last mapped initialized section. 1070 OutputSection *edata = nullptr; 1071 for (OutputSection *os : outputSections) { 1072 if (os->type != SHT_NOBITS) 1073 edata = os; 1074 if (os == last->lastSec) 1075 break; 1076 } 1077 1078 if (ElfSym::edata1) 1079 ElfSym::edata1->section = edata; 1080 if (ElfSym::edata2) 1081 ElfSym::edata2->section = edata; 1082 1083 // _end is the first location after the uninitialized data region. 1084 if (ElfSym::end1) 1085 ElfSym::end1->section = last->lastSec; 1086 if (ElfSym::end2) 1087 ElfSym::end2->section = last->lastSec; 1088 } 1089 1090 if (ElfSym::bss) 1091 ElfSym::bss->section = findSection(".bss"); 1092 1093 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1094 // be equal to the _gp symbol's value. 1095 if (ElfSym::mipsGp) { 1096 // Find GP-relative section with the lowest address 1097 // and use this address to calculate default _gp value. 1098 for (OutputSection *os : outputSections) { 1099 if (os->flags & SHF_MIPS_GPREL) { 1100 ElfSym::mipsGp->section = os; 1101 ElfSym::mipsGp->value = 0x7ff0; 1102 break; 1103 } 1104 } 1105 } 1106 } 1107 1108 // We want to find how similar two ranks are. 1109 // The more branches in getSectionRank that match, the more similar they are. 1110 // Since each branch corresponds to a bit flag, we can just use 1111 // countLeadingZeros. 1112 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1113 return countLeadingZeros(a->sortRank ^ b->sortRank); 1114 } 1115 1116 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1117 auto *sec = dyn_cast<OutputSection>(b); 1118 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1119 } 1120 1121 // When placing orphan sections, we want to place them after symbol assignments 1122 // so that an orphan after 1123 // begin_foo = .; 1124 // foo : { *(foo) } 1125 // end_foo = .; 1126 // doesn't break the intended meaning of the begin/end symbols. 1127 // We don't want to go over sections since findOrphanPos is the 1128 // one in charge of deciding the order of the sections. 1129 // We don't want to go over changes to '.', since doing so in 1130 // rx_sec : { *(rx_sec) } 1131 // . = ALIGN(0x1000); 1132 // /* The RW PT_LOAD starts here*/ 1133 // rw_sec : { *(rw_sec) } 1134 // would mean that the RW PT_LOAD would become unaligned. 1135 static bool shouldSkip(BaseCommand *cmd) { 1136 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1137 return assign->name != "."; 1138 return false; 1139 } 1140 1141 // We want to place orphan sections so that they share as much 1142 // characteristics with their neighbors as possible. For example, if 1143 // both are rw, or both are tls. 1144 static std::vector<BaseCommand *>::iterator 1145 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1146 std::vector<BaseCommand *>::iterator e) { 1147 OutputSection *sec = cast<OutputSection>(*e); 1148 1149 // Find the first element that has as close a rank as possible. 1150 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1151 return getRankProximity(sec, a) < getRankProximity(sec, b); 1152 }); 1153 if (i == e) 1154 return e; 1155 1156 // Consider all existing sections with the same proximity. 1157 int proximity = getRankProximity(sec, *i); 1158 for (; i != e; ++i) { 1159 auto *curSec = dyn_cast<OutputSection>(*i); 1160 if (!curSec || !curSec->hasInputSections) 1161 continue; 1162 if (getRankProximity(sec, curSec) != proximity || 1163 sec->sortRank < curSec->sortRank) 1164 break; 1165 } 1166 1167 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1168 auto *os = dyn_cast<OutputSection>(cmd); 1169 return os && os->hasInputSections; 1170 }; 1171 auto j = std::find_if(llvm::make_reverse_iterator(i), 1172 llvm::make_reverse_iterator(b), 1173 isOutputSecWithInputSections); 1174 i = j.base(); 1175 1176 // As a special case, if the orphan section is the last section, put 1177 // it at the very end, past any other commands. 1178 // This matches bfd's behavior and is convenient when the linker script fully 1179 // specifies the start of the file, but doesn't care about the end (the non 1180 // alloc sections for example). 1181 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1182 if (nextSec == e) 1183 return e; 1184 1185 while (i != e && shouldSkip(*i)) 1186 ++i; 1187 return i; 1188 } 1189 1190 // Builds section order for handling --symbol-ordering-file. 1191 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1192 DenseMap<const InputSectionBase *, int> sectionOrder; 1193 // Use the rarely used option -call-graph-ordering-file to sort sections. 1194 if (!config->callGraphProfile.empty()) 1195 return computeCallGraphProfileOrder(); 1196 1197 if (config->symbolOrderingFile.empty()) 1198 return sectionOrder; 1199 1200 struct SymbolOrderEntry { 1201 int priority; 1202 bool present; 1203 }; 1204 1205 // Build a map from symbols to their priorities. Symbols that didn't 1206 // appear in the symbol ordering file have the lowest priority 0. 1207 // All explicitly mentioned symbols have negative (higher) priorities. 1208 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1209 int priority = -config->symbolOrderingFile.size(); 1210 for (StringRef s : config->symbolOrderingFile) 1211 symbolOrder.insert({s, {priority++, false}}); 1212 1213 // Build a map from sections to their priorities. 1214 auto addSym = [&](Symbol &sym) { 1215 auto it = symbolOrder.find(sym.getName()); 1216 if (it == symbolOrder.end()) 1217 return; 1218 SymbolOrderEntry &ent = it->second; 1219 ent.present = true; 1220 1221 maybeWarnUnorderableSymbol(&sym); 1222 1223 if (auto *d = dyn_cast<Defined>(&sym)) { 1224 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1225 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1226 priority = std::min(priority, ent.priority); 1227 } 1228 } 1229 }; 1230 1231 // We want both global and local symbols. We get the global ones from the 1232 // symbol table and iterate the object files for the local ones. 1233 symtab->forEachSymbol([&](Symbol *sym) { 1234 if (!sym->isLazy()) 1235 addSym(*sym); 1236 }); 1237 1238 for (InputFile *file : objectFiles) 1239 for (Symbol *sym : file->getSymbols()) 1240 if (sym->isLocal()) 1241 addSym(*sym); 1242 1243 if (config->warnSymbolOrdering) 1244 for (auto orderEntry : symbolOrder) 1245 if (!orderEntry.second.present) 1246 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1247 1248 return sectionOrder; 1249 } 1250 1251 // Sorts the sections in ISD according to the provided section order. 1252 static void 1253 sortISDBySectionOrder(InputSectionDescription *isd, 1254 const DenseMap<const InputSectionBase *, int> &order) { 1255 std::vector<InputSection *> unorderedSections; 1256 std::vector<std::pair<InputSection *, int>> orderedSections; 1257 uint64_t unorderedSize = 0; 1258 1259 for (InputSection *isec : isd->sections) { 1260 auto i = order.find(isec); 1261 if (i == order.end()) { 1262 unorderedSections.push_back(isec); 1263 unorderedSize += isec->getSize(); 1264 continue; 1265 } 1266 orderedSections.push_back({isec, i->second}); 1267 } 1268 llvm::sort(orderedSections, llvm::less_second()); 1269 1270 // Find an insertion point for the ordered section list in the unordered 1271 // section list. On targets with limited-range branches, this is the mid-point 1272 // of the unordered section list. This decreases the likelihood that a range 1273 // extension thunk will be needed to enter or exit the ordered region. If the 1274 // ordered section list is a list of hot functions, we can generally expect 1275 // the ordered functions to be called more often than the unordered functions, 1276 // making it more likely that any particular call will be within range, and 1277 // therefore reducing the number of thunks required. 1278 // 1279 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1280 // If the layout is: 1281 // 1282 // 8MB hot 1283 // 32MB cold 1284 // 1285 // only the first 8-16MB of the cold code (depending on which hot function it 1286 // is actually calling) can call the hot code without a range extension thunk. 1287 // However, if we use this layout: 1288 // 1289 // 16MB cold 1290 // 8MB hot 1291 // 16MB cold 1292 // 1293 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1294 // of the second block of cold code can call the hot code without a thunk. So 1295 // we effectively double the amount of code that could potentially call into 1296 // the hot code without a thunk. 1297 size_t insPt = 0; 1298 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1299 uint64_t unorderedPos = 0; 1300 for (; insPt != unorderedSections.size(); ++insPt) { 1301 unorderedPos += unorderedSections[insPt]->getSize(); 1302 if (unorderedPos > unorderedSize / 2) 1303 break; 1304 } 1305 } 1306 1307 isd->sections.clear(); 1308 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1309 isd->sections.push_back(isec); 1310 for (std::pair<InputSection *, int> p : orderedSections) 1311 isd->sections.push_back(p.first); 1312 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1313 isd->sections.push_back(isec); 1314 } 1315 1316 static void sortSection(OutputSection *sec, 1317 const DenseMap<const InputSectionBase *, int> &order) { 1318 StringRef name = sec->name; 1319 1320 // Sort input sections by section name suffixes for 1321 // __attribute__((init_priority(N))). 1322 if (name == ".init_array" || name == ".fini_array") { 1323 if (!script->hasSectionsCommand) 1324 sec->sortInitFini(); 1325 return; 1326 } 1327 1328 // Sort input sections by the special rule for .ctors and .dtors. 1329 if (name == ".ctors" || name == ".dtors") { 1330 if (!script->hasSectionsCommand) 1331 sec->sortCtorsDtors(); 1332 return; 1333 } 1334 1335 // Never sort these. 1336 if (name == ".init" || name == ".fini") 1337 return; 1338 1339 // .toc is allocated just after .got and is accessed using GOT-relative 1340 // relocations. Object files compiled with small code model have an 1341 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1342 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1343 // sections having smaller relocation offsets are at beginning of .toc 1344 if (config->emachine == EM_PPC64 && name == ".toc") { 1345 if (script->hasSectionsCommand) 1346 return; 1347 assert(sec->sectionCommands.size() == 1); 1348 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1349 llvm::stable_sort(isd->sections, 1350 [](const InputSection *a, const InputSection *b) -> bool { 1351 return a->file->ppc64SmallCodeModelTocRelocs && 1352 !b->file->ppc64SmallCodeModelTocRelocs; 1353 }); 1354 return; 1355 } 1356 1357 // Sort input sections by priority using the list provided 1358 // by --symbol-ordering-file. 1359 if (!order.empty()) 1360 for (BaseCommand *b : sec->sectionCommands) 1361 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1362 sortISDBySectionOrder(isd, order); 1363 } 1364 1365 // If no layout was provided by linker script, we want to apply default 1366 // sorting for special input sections. This also handles --symbol-ordering-file. 1367 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1368 // Build the order once since it is expensive. 1369 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1370 for (BaseCommand *base : script->sectionCommands) 1371 if (auto *sec = dyn_cast<OutputSection>(base)) 1372 sortSection(sec, order); 1373 } 1374 1375 template <class ELFT> void Writer<ELFT>::sortSections() { 1376 script->adjustSectionsBeforeSorting(); 1377 1378 // Don't sort if using -r. It is not necessary and we want to preserve the 1379 // relative order for SHF_LINK_ORDER sections. 1380 if (config->relocatable) 1381 return; 1382 1383 sortInputSections(); 1384 1385 for (BaseCommand *base : script->sectionCommands) { 1386 auto *os = dyn_cast<OutputSection>(base); 1387 if (!os) 1388 continue; 1389 os->sortRank = getSectionRank(os); 1390 1391 // We want to assign rude approximation values to outSecOff fields 1392 // to know the relative order of the input sections. We use it for 1393 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1394 uint64_t i = 0; 1395 for (InputSection *sec : getInputSections(os)) 1396 sec->outSecOff = i++; 1397 } 1398 1399 if (!script->hasSectionsCommand) { 1400 // We know that all the OutputSections are contiguous in this case. 1401 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1402 std::stable_sort( 1403 llvm::find_if(script->sectionCommands, isSection), 1404 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1405 compareSections); 1406 return; 1407 } 1408 1409 // Orphan sections are sections present in the input files which are 1410 // not explicitly placed into the output file by the linker script. 1411 // 1412 // The sections in the linker script are already in the correct 1413 // order. We have to figuere out where to insert the orphan 1414 // sections. 1415 // 1416 // The order of the sections in the script is arbitrary and may not agree with 1417 // compareSections. This means that we cannot easily define a strict weak 1418 // ordering. To see why, consider a comparison of a section in the script and 1419 // one not in the script. We have a two simple options: 1420 // * Make them equivalent (a is not less than b, and b is not less than a). 1421 // The problem is then that equivalence has to be transitive and we can 1422 // have sections a, b and c with only b in a script and a less than c 1423 // which breaks this property. 1424 // * Use compareSectionsNonScript. Given that the script order doesn't have 1425 // to match, we can end up with sections a, b, c, d where b and c are in the 1426 // script and c is compareSectionsNonScript less than b. In which case d 1427 // can be equivalent to c, a to b and d < a. As a concrete example: 1428 // .a (rx) # not in script 1429 // .b (rx) # in script 1430 // .c (ro) # in script 1431 // .d (ro) # not in script 1432 // 1433 // The way we define an order then is: 1434 // * Sort only the orphan sections. They are in the end right now. 1435 // * Move each orphan section to its preferred position. We try 1436 // to put each section in the last position where it can share 1437 // a PT_LOAD. 1438 // 1439 // There is some ambiguity as to where exactly a new entry should be 1440 // inserted, because Commands contains not only output section 1441 // commands but also other types of commands such as symbol assignment 1442 // expressions. There's no correct answer here due to the lack of the 1443 // formal specification of the linker script. We use heuristics to 1444 // determine whether a new output command should be added before or 1445 // after another commands. For the details, look at shouldSkip 1446 // function. 1447 1448 auto i = script->sectionCommands.begin(); 1449 auto e = script->sectionCommands.end(); 1450 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1451 if (auto *sec = dyn_cast<OutputSection>(base)) 1452 return sec->sectionIndex == UINT32_MAX; 1453 return false; 1454 }); 1455 1456 // Sort the orphan sections. 1457 std::stable_sort(nonScriptI, e, compareSections); 1458 1459 // As a horrible special case, skip the first . assignment if it is before any 1460 // section. We do this because it is common to set a load address by starting 1461 // the script with ". = 0xabcd" and the expectation is that every section is 1462 // after that. 1463 auto firstSectionOrDotAssignment = 1464 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1465 if (firstSectionOrDotAssignment != e && 1466 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1467 ++firstSectionOrDotAssignment; 1468 i = firstSectionOrDotAssignment; 1469 1470 while (nonScriptI != e) { 1471 auto pos = findOrphanPos(i, nonScriptI); 1472 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1473 1474 // As an optimization, find all sections with the same sort rank 1475 // and insert them with one rotate. 1476 unsigned rank = orphan->sortRank; 1477 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1478 return cast<OutputSection>(cmd)->sortRank != rank; 1479 }); 1480 std::rotate(pos, nonScriptI, end); 1481 nonScriptI = end; 1482 } 1483 1484 script->adjustSectionsAfterSorting(); 1485 } 1486 1487 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1488 InputSection *la = a->getLinkOrderDep(); 1489 InputSection *lb = b->getLinkOrderDep(); 1490 OutputSection *aOut = la->getParent(); 1491 OutputSection *bOut = lb->getParent(); 1492 1493 if (aOut != bOut) 1494 return aOut->sectionIndex < bOut->sectionIndex; 1495 return la->outSecOff < lb->outSecOff; 1496 } 1497 1498 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1499 for (OutputSection *sec : outputSections) { 1500 if (!(sec->flags & SHF_LINK_ORDER)) 1501 continue; 1502 1503 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1504 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1505 if (!config->relocatable && config->emachine == EM_ARM && 1506 sec->type == SHT_ARM_EXIDX) 1507 continue; 1508 1509 // Link order may be distributed across several InputSectionDescriptions 1510 // but sort must consider them all at once. 1511 std::vector<InputSection **> scriptSections; 1512 std::vector<InputSection *> sections; 1513 for (BaseCommand *base : sec->sectionCommands) { 1514 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 1515 for (InputSection *&isec : isd->sections) { 1516 scriptSections.push_back(&isec); 1517 sections.push_back(isec); 1518 1519 InputSection *link = isec->getLinkOrderDep(); 1520 if (!link->getParent()) 1521 error(toString(isec) + ": sh_link points to discarded section " + 1522 toString(link)); 1523 } 1524 } 1525 } 1526 1527 if (errorCount()) 1528 continue; 1529 1530 llvm::stable_sort(sections, compareByFilePosition); 1531 1532 for (int i = 0, n = sections.size(); i < n; ++i) 1533 *scriptSections[i] = sections[i]; 1534 } 1535 } 1536 1537 // We need to generate and finalize the content that depends on the address of 1538 // InputSections. As the generation of the content may also alter InputSection 1539 // addresses we must converge to a fixed point. We do that here. See the comment 1540 // in Writer<ELFT>::finalizeSections(). 1541 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1542 ThunkCreator tc; 1543 AArch64Err843419Patcher a64p; 1544 ARMErr657417Patcher a32p; 1545 script->assignAddresses(); 1546 1547 int assignPasses = 0; 1548 for (;;) { 1549 bool changed = target->needsThunks && tc.createThunks(outputSections); 1550 1551 // With Thunk Size much smaller than branch range we expect to 1552 // converge quickly; if we get to 10 something has gone wrong. 1553 if (changed && tc.pass >= 10) { 1554 error("thunk creation not converged"); 1555 break; 1556 } 1557 1558 if (config->fixCortexA53Errata843419) { 1559 if (changed) 1560 script->assignAddresses(); 1561 changed |= a64p.createFixes(); 1562 } 1563 if (config->fixCortexA8) { 1564 if (changed) 1565 script->assignAddresses(); 1566 changed |= a32p.createFixes(); 1567 } 1568 1569 if (in.mipsGot) 1570 in.mipsGot->updateAllocSize(); 1571 1572 for (Partition &part : partitions) { 1573 changed |= part.relaDyn->updateAllocSize(); 1574 if (part.relrDyn) 1575 changed |= part.relrDyn->updateAllocSize(); 1576 } 1577 1578 const Defined *changedSym = script->assignAddresses(); 1579 if (!changed) { 1580 // Some symbols may be dependent on section addresses. When we break the 1581 // loop, the symbol values are finalized because a previous 1582 // assignAddresses() finalized section addresses. 1583 if (!changedSym) 1584 break; 1585 if (++assignPasses == 5) { 1586 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1587 " does not converge"); 1588 break; 1589 } 1590 } 1591 } 1592 } 1593 1594 static void finalizeSynthetic(SyntheticSection *sec) { 1595 if (sec && sec->isNeeded() && sec->getParent()) 1596 sec->finalizeContents(); 1597 } 1598 1599 // In order to allow users to manipulate linker-synthesized sections, 1600 // we had to add synthetic sections to the input section list early, 1601 // even before we make decisions whether they are needed. This allows 1602 // users to write scripts like this: ".mygot : { .got }". 1603 // 1604 // Doing it has an unintended side effects. If it turns out that we 1605 // don't need a .got (for example) at all because there's no 1606 // relocation that needs a .got, we don't want to emit .got. 1607 // 1608 // To deal with the above problem, this function is called after 1609 // scanRelocations is called to remove synthetic sections that turn 1610 // out to be empty. 1611 static void removeUnusedSyntheticSections() { 1612 // All input synthetic sections that can be empty are placed after 1613 // all regular ones. We iterate over them all and exit at first 1614 // non-synthetic. 1615 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1616 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1617 if (!ss) 1618 return; 1619 OutputSection *os = ss->getParent(); 1620 if (!os || ss->isNeeded()) 1621 continue; 1622 1623 // If we reach here, then SS is an unused synthetic section and we want to 1624 // remove it from corresponding input section description of output section. 1625 for (BaseCommand *b : os->sectionCommands) 1626 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1627 llvm::erase_if(isd->sections, 1628 [=](InputSection *isec) { return isec == ss; }); 1629 } 1630 } 1631 1632 // Returns true if a symbol can be replaced at load-time by a symbol 1633 // with the same name defined in other ELF executable or DSO. 1634 static bool computeIsPreemptible(const Symbol &b) { 1635 assert(!b.isLocal()); 1636 1637 // Only symbols that appear in dynsym can be preempted. 1638 if (!b.includeInDynsym()) 1639 return false; 1640 1641 // Only default visibility symbols can be preempted. 1642 if (b.visibility != STV_DEFAULT) 1643 return false; 1644 1645 // At this point copy relocations have not been created yet, so any 1646 // symbol that is not defined locally is preemptible. 1647 if (!b.isDefined()) 1648 return true; 1649 1650 if (!config->shared) 1651 return false; 1652 1653 // If the dynamic list is present, it specifies preemptable symbols in a DSO. 1654 if (config->hasDynamicList) 1655 return b.inDynamicList; 1656 1657 // -Bsymbolic means that definitions are not preempted. 1658 if (config->bsymbolic || (config->bsymbolicFunctions && b.isFunc())) 1659 return false; 1660 return true; 1661 } 1662 1663 // Create output section objects and add them to OutputSections. 1664 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1665 Out::preinitArray = findSection(".preinit_array"); 1666 Out::initArray = findSection(".init_array"); 1667 Out::finiArray = findSection(".fini_array"); 1668 1669 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1670 // symbols for sections, so that the runtime can get the start and end 1671 // addresses of each section by section name. Add such symbols. 1672 if (!config->relocatable) { 1673 addStartEndSymbols(); 1674 for (BaseCommand *base : script->sectionCommands) 1675 if (auto *sec = dyn_cast<OutputSection>(base)) 1676 addStartStopSymbols(sec); 1677 } 1678 1679 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1680 // It should be okay as no one seems to care about the type. 1681 // Even the author of gold doesn't remember why gold behaves that way. 1682 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1683 if (mainPart->dynamic->parent) 1684 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1685 STV_HIDDEN, STT_NOTYPE, 1686 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1687 1688 // Define __rel[a]_iplt_{start,end} symbols if needed. 1689 addRelIpltSymbols(); 1690 1691 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1692 // should only be defined in an executable. If .sdata does not exist, its 1693 // value/section does not matter but it has to be relative, so set its 1694 // st_shndx arbitrarily to 1 (Out::elfHeader). 1695 if (config->emachine == EM_RISCV && !config->shared) { 1696 OutputSection *sec = findSection(".sdata"); 1697 ElfSym::riscvGlobalPointer = 1698 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1699 0x800, STV_DEFAULT, STB_GLOBAL); 1700 } 1701 1702 if (config->emachine == EM_X86_64) { 1703 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1704 // way that: 1705 // 1706 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1707 // computes 0. 1708 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1709 // the TLS block). 1710 // 1711 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1712 // an absolute symbol of zero. This is different from GNU linkers which 1713 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1714 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1715 if (s && s->isUndefined()) { 1716 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1717 STT_TLS, /*value=*/0, 0, 1718 /*section=*/nullptr}); 1719 ElfSym::tlsModuleBase = cast<Defined>(s); 1720 } 1721 } 1722 1723 // This responsible for splitting up .eh_frame section into 1724 // pieces. The relocation scan uses those pieces, so this has to be 1725 // earlier. 1726 for (Partition &part : partitions) 1727 finalizeSynthetic(part.ehFrame); 1728 1729 symtab->forEachSymbol( 1730 [](Symbol *s) { s->isPreemptible = computeIsPreemptible(*s); }); 1731 1732 // Change values of linker-script-defined symbols from placeholders (assigned 1733 // by declareSymbols) to actual definitions. 1734 script->processSymbolAssignments(); 1735 1736 // Scan relocations. This must be done after every symbol is declared so that 1737 // we can correctly decide if a dynamic relocation is needed. This is called 1738 // after processSymbolAssignments() because it needs to know whether a 1739 // linker-script-defined symbol is absolute. 1740 if (!config->relocatable) { 1741 forEachRelSec(scanRelocations<ELFT>); 1742 reportUndefinedSymbols<ELFT>(); 1743 } 1744 1745 if (in.plt && in.plt->isNeeded()) 1746 in.plt->addSymbols(); 1747 if (in.iplt && in.iplt->isNeeded()) 1748 in.iplt->addSymbols(); 1749 1750 if (!config->allowShlibUndefined) { 1751 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1752 // entires are seen. These cases would otherwise lead to runtime errors 1753 // reported by the dynamic linker. 1754 // 1755 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1756 // catch more cases. That is too much for us. Our approach resembles the one 1757 // used in ld.gold, achieves a good balance to be useful but not too smart. 1758 for (SharedFile *file : sharedFiles) 1759 file->allNeededIsKnown = 1760 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1761 return symtab->soNames.count(needed); 1762 }); 1763 1764 symtab->forEachSymbol([](Symbol *sym) { 1765 if (sym->isUndefined() && !sym->isWeak()) 1766 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 1767 if (f->allNeededIsKnown) 1768 error(toString(f) + ": undefined reference to " + toString(*sym)); 1769 }); 1770 } 1771 1772 // Now that we have defined all possible global symbols including linker- 1773 // synthesized ones. Visit all symbols to give the finishing touches. 1774 symtab->forEachSymbol([](Symbol *sym) { 1775 if (!includeInSymtab(*sym)) 1776 return; 1777 if (in.symTab) 1778 in.symTab->addSymbol(sym); 1779 1780 if (sym->includeInDynsym()) { 1781 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1782 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1783 if (file->isNeeded && !sym->isUndefined()) 1784 addVerneed(sym); 1785 } 1786 }); 1787 1788 // We also need to scan the dynamic relocation tables of the other partitions 1789 // and add any referenced symbols to the partition's dynsym. 1790 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 1791 DenseSet<Symbol *> syms; 1792 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 1793 syms.insert(e.sym); 1794 for (DynamicReloc &reloc : part.relaDyn->relocs) 1795 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 1796 part.dynSymTab->addSymbol(reloc.sym); 1797 } 1798 1799 // Do not proceed if there was an undefined symbol. 1800 if (errorCount()) 1801 return; 1802 1803 if (in.mipsGot) 1804 in.mipsGot->build(); 1805 1806 removeUnusedSyntheticSections(); 1807 1808 sortSections(); 1809 1810 // Now that we have the final list, create a list of all the 1811 // OutputSections for convenience. 1812 for (BaseCommand *base : script->sectionCommands) 1813 if (auto *sec = dyn_cast<OutputSection>(base)) 1814 outputSections.push_back(sec); 1815 1816 // Prefer command line supplied address over other constraints. 1817 for (OutputSection *sec : outputSections) { 1818 auto i = config->sectionStartMap.find(sec->name); 1819 if (i != config->sectionStartMap.end()) 1820 sec->addrExpr = [=] { return i->second; }; 1821 } 1822 1823 // This is a bit of a hack. A value of 0 means undef, so we set it 1824 // to 1 to make __ehdr_start defined. The section number is not 1825 // particularly relevant. 1826 Out::elfHeader->sectionIndex = 1; 1827 1828 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 1829 OutputSection *sec = outputSections[i]; 1830 sec->sectionIndex = i + 1; 1831 sec->shName = in.shStrTab->addString(sec->name); 1832 } 1833 1834 // Binary and relocatable output does not have PHDRS. 1835 // The headers have to be created before finalize as that can influence the 1836 // image base and the dynamic section on mips includes the image base. 1837 if (!config->relocatable && !config->oFormatBinary) { 1838 for (Partition &part : partitions) { 1839 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 1840 : createPhdrs(part); 1841 if (config->emachine == EM_ARM) { 1842 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1843 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 1844 } 1845 if (config->emachine == EM_MIPS) { 1846 // Add separate segments for MIPS-specific sections. 1847 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 1848 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 1849 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 1850 } 1851 } 1852 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 1853 1854 // Find the TLS segment. This happens before the section layout loop so that 1855 // Android relocation packing can look up TLS symbol addresses. We only need 1856 // to care about the main partition here because all TLS symbols were moved 1857 // to the main partition (see MarkLive.cpp). 1858 for (PhdrEntry *p : mainPart->phdrs) 1859 if (p->p_type == PT_TLS) 1860 Out::tlsPhdr = p; 1861 } 1862 1863 // Some symbols are defined in term of program headers. Now that we 1864 // have the headers, we can find out which sections they point to. 1865 setReservedSymbolSections(); 1866 1867 finalizeSynthetic(in.bss); 1868 finalizeSynthetic(in.bssRelRo); 1869 finalizeSynthetic(in.symTabShndx); 1870 finalizeSynthetic(in.shStrTab); 1871 finalizeSynthetic(in.strTab); 1872 finalizeSynthetic(in.got); 1873 finalizeSynthetic(in.mipsGot); 1874 finalizeSynthetic(in.igotPlt); 1875 finalizeSynthetic(in.gotPlt); 1876 finalizeSynthetic(in.relaIplt); 1877 finalizeSynthetic(in.relaPlt); 1878 finalizeSynthetic(in.plt); 1879 finalizeSynthetic(in.iplt); 1880 finalizeSynthetic(in.ppc32Got2); 1881 finalizeSynthetic(in.partIndex); 1882 1883 // Dynamic section must be the last one in this list and dynamic 1884 // symbol table section (dynSymTab) must be the first one. 1885 for (Partition &part : partitions) { 1886 finalizeSynthetic(part.armExidx); 1887 finalizeSynthetic(part.dynSymTab); 1888 finalizeSynthetic(part.gnuHashTab); 1889 finalizeSynthetic(part.hashTab); 1890 finalizeSynthetic(part.verDef); 1891 finalizeSynthetic(part.relaDyn); 1892 finalizeSynthetic(part.relrDyn); 1893 finalizeSynthetic(part.ehFrameHdr); 1894 finalizeSynthetic(part.verSym); 1895 finalizeSynthetic(part.verNeed); 1896 finalizeSynthetic(part.dynamic); 1897 } 1898 1899 if (!script->hasSectionsCommand && !config->relocatable) 1900 fixSectionAlignments(); 1901 1902 // SHFLinkOrder processing must be processed after relative section placements are 1903 // known but before addresses are allocated. 1904 resolveShfLinkOrder(); 1905 if (errorCount()) 1906 return; 1907 1908 // This is used to: 1909 // 1) Create "thunks": 1910 // Jump instructions in many ISAs have small displacements, and therefore 1911 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 1912 // JAL instruction can target only +-1 MiB from PC. It is a linker's 1913 // responsibility to create and insert small pieces of code between 1914 // sections to extend the ranges if jump targets are out of range. Such 1915 // code pieces are called "thunks". 1916 // 1917 // We add thunks at this stage. We couldn't do this before this point 1918 // because this is the earliest point where we know sizes of sections and 1919 // their layouts (that are needed to determine if jump targets are in 1920 // range). 1921 // 1922 // 2) Update the sections. We need to generate content that depends on the 1923 // address of InputSections. For example, MIPS GOT section content or 1924 // android packed relocations sections content. 1925 // 1926 // 3) Assign the final values for the linker script symbols. Linker scripts 1927 // sometimes using forward symbol declarations. We want to set the correct 1928 // values. They also might change after adding the thunks. 1929 finalizeAddressDependentContent(); 1930 1931 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 1932 finalizeSynthetic(in.symTab); 1933 finalizeSynthetic(in.ppc64LongBranchTarget); 1934 1935 // Fill other section headers. The dynamic table is finalized 1936 // at the end because some tags like RELSZ depend on result 1937 // of finalizing other sections. 1938 for (OutputSection *sec : outputSections) 1939 sec->finalize(); 1940 } 1941 1942 // Ensure data sections are not mixed with executable sections when 1943 // -execute-only is used. -execute-only is a feature to make pages executable 1944 // but not readable, and the feature is currently supported only on AArch64. 1945 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 1946 if (!config->executeOnly) 1947 return; 1948 1949 for (OutputSection *os : outputSections) 1950 if (os->flags & SHF_EXECINSTR) 1951 for (InputSection *isec : getInputSections(os)) 1952 if (!(isec->flags & SHF_EXECINSTR)) 1953 error("cannot place " + toString(isec) + " into " + toString(os->name) + 1954 ": -execute-only does not support intermingling data and code"); 1955 } 1956 1957 // The linker is expected to define SECNAME_start and SECNAME_end 1958 // symbols for a few sections. This function defines them. 1959 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1960 // If a section does not exist, there's ambiguity as to how we 1961 // define _start and _end symbols for an init/fini section. Since 1962 // the loader assume that the symbols are always defined, we need to 1963 // always define them. But what value? The loader iterates over all 1964 // pointers between _start and _end to run global ctors/dtors, so if 1965 // the section is empty, their symbol values don't actually matter 1966 // as long as _start and _end point to the same location. 1967 // 1968 // That said, we don't want to set the symbols to 0 (which is 1969 // probably the simplest value) because that could cause some 1970 // program to fail to link due to relocation overflow, if their 1971 // program text is above 2 GiB. We use the address of the .text 1972 // section instead to prevent that failure. 1973 // 1974 // In a rare sitaution, .text section may not exist. If that's the 1975 // case, use the image base address as a last resort. 1976 OutputSection *Default = findSection(".text"); 1977 if (!Default) 1978 Default = Out::elfHeader; 1979 1980 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 1981 if (os) { 1982 addOptionalRegular(start, os, 0); 1983 addOptionalRegular(end, os, -1); 1984 } else { 1985 addOptionalRegular(start, Default, 0); 1986 addOptionalRegular(end, Default, 0); 1987 } 1988 }; 1989 1990 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 1991 define("__init_array_start", "__init_array_end", Out::initArray); 1992 define("__fini_array_start", "__fini_array_end", Out::finiArray); 1993 1994 if (OutputSection *sec = findSection(".ARM.exidx")) 1995 define("__exidx_start", "__exidx_end", sec); 1996 } 1997 1998 // If a section name is valid as a C identifier (which is rare because of 1999 // the leading '.'), linkers are expected to define __start_<secname> and 2000 // __stop_<secname> symbols. They are at beginning and end of the section, 2001 // respectively. This is not requested by the ELF standard, but GNU ld and 2002 // gold provide the feature, and used by many programs. 2003 template <class ELFT> 2004 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2005 StringRef s = sec->name; 2006 if (!isValidCIdentifier(s)) 2007 return; 2008 addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED); 2009 addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED); 2010 } 2011 2012 static bool needsPtLoad(OutputSection *sec) { 2013 if (!(sec->flags & SHF_ALLOC) || sec->noload) 2014 return false; 2015 2016 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2017 // responsible for allocating space for them, not the PT_LOAD that 2018 // contains the TLS initialization image. 2019 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2020 return false; 2021 return true; 2022 } 2023 2024 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2025 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2026 // RW. This means that there is no alignment in the RO to RX transition and we 2027 // cannot create a PT_LOAD there. 2028 static uint64_t computeFlags(uint64_t flags) { 2029 if (config->omagic) 2030 return PF_R | PF_W | PF_X; 2031 if (config->executeOnly && (flags & PF_X)) 2032 return flags & ~PF_R; 2033 if (config->singleRoRx && !(flags & PF_W)) 2034 return flags | PF_X; 2035 return flags; 2036 } 2037 2038 // Decide which program headers to create and which sections to include in each 2039 // one. 2040 template <class ELFT> 2041 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2042 std::vector<PhdrEntry *> ret; 2043 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2044 ret.push_back(make<PhdrEntry>(type, flags)); 2045 return ret.back(); 2046 }; 2047 2048 unsigned partNo = part.getNumber(); 2049 bool isMain = partNo == 1; 2050 2051 // Add the first PT_LOAD segment for regular output sections. 2052 uint64_t flags = computeFlags(PF_R); 2053 PhdrEntry *load = nullptr; 2054 2055 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2056 // PT_LOAD. 2057 if (!config->nmagic && !config->omagic) { 2058 // The first phdr entry is PT_PHDR which describes the program header 2059 // itself. 2060 if (isMain) 2061 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2062 else 2063 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2064 2065 // PT_INTERP must be the second entry if exists. 2066 if (OutputSection *cmd = findSection(".interp", partNo)) 2067 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2068 2069 // Add the headers. We will remove them if they don't fit. 2070 // In the other partitions the headers are ordinary sections, so they don't 2071 // need to be added here. 2072 if (isMain) { 2073 load = addHdr(PT_LOAD, flags); 2074 load->add(Out::elfHeader); 2075 load->add(Out::programHeaders); 2076 } 2077 } 2078 2079 // PT_GNU_RELRO includes all sections that should be marked as 2080 // read-only by dynamic linker after proccessing relocations. 2081 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2082 // an error message if more than one PT_GNU_RELRO PHDR is required. 2083 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2084 bool inRelroPhdr = false; 2085 OutputSection *relroEnd = nullptr; 2086 for (OutputSection *sec : outputSections) { 2087 if (sec->partition != partNo || !needsPtLoad(sec)) 2088 continue; 2089 if (isRelroSection(sec)) { 2090 inRelroPhdr = true; 2091 if (!relroEnd) 2092 relRo->add(sec); 2093 else 2094 error("section: " + sec->name + " is not contiguous with other relro" + 2095 " sections"); 2096 } else if (inRelroPhdr) { 2097 inRelroPhdr = false; 2098 relroEnd = sec; 2099 } 2100 } 2101 2102 for (OutputSection *sec : outputSections) { 2103 if (!(sec->flags & SHF_ALLOC)) 2104 break; 2105 if (!needsPtLoad(sec)) 2106 continue; 2107 2108 // Normally, sections in partitions other than the current partition are 2109 // ignored. But partition number 255 is a special case: it contains the 2110 // partition end marker (.part.end). It needs to be added to the main 2111 // partition so that a segment is created for it in the main partition, 2112 // which will cause the dynamic loader to reserve space for the other 2113 // partitions. 2114 if (sec->partition != partNo) { 2115 if (isMain && sec->partition == 255) 2116 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2117 continue; 2118 } 2119 2120 // Segments are contiguous memory regions that has the same attributes 2121 // (e.g. executable or writable). There is one phdr for each segment. 2122 // Therefore, we need to create a new phdr when the next section has 2123 // different flags or is loaded at a discontiguous address or memory 2124 // region using AT or AT> linker script command, respectively. At the same 2125 // time, we don't want to create a separate load segment for the headers, 2126 // even if the first output section has an AT or AT> attribute. 2127 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2128 if (!load || 2129 ((sec->lmaExpr || 2130 (sec->lmaRegion && (sec->lmaRegion != load->firstSec->lmaRegion))) && 2131 load->lastSec != Out::programHeaders) || 2132 sec->memRegion != load->firstSec->memRegion || flags != newFlags || 2133 sec == relroEnd) { 2134 load = addHdr(PT_LOAD, newFlags); 2135 flags = newFlags; 2136 } 2137 2138 load->add(sec); 2139 } 2140 2141 // Add a TLS segment if any. 2142 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2143 for (OutputSection *sec : outputSections) 2144 if (sec->partition == partNo && sec->flags & SHF_TLS) 2145 tlsHdr->add(sec); 2146 if (tlsHdr->firstSec) 2147 ret.push_back(tlsHdr); 2148 2149 // Add an entry for .dynamic. 2150 if (OutputSection *sec = part.dynamic->getParent()) 2151 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2152 2153 if (relRo->firstSec) 2154 ret.push_back(relRo); 2155 2156 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2157 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2158 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2159 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2160 ->add(part.ehFrameHdr->getParent()); 2161 2162 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2163 // the dynamic linker fill the segment with random data. 2164 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2165 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2166 2167 // PT_GNU_STACK is a special section to tell the loader to make the 2168 // pages for the stack non-executable. If you really want an executable 2169 // stack, you can pass -z execstack, but that's not recommended for 2170 // security reasons. 2171 unsigned perm = PF_R | PF_W; 2172 if (config->zExecstack) 2173 perm |= PF_X; 2174 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2175 2176 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2177 // is expected to perform W^X violations, such as calling mprotect(2) or 2178 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2179 // OpenBSD. 2180 if (config->zWxneeded) 2181 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2182 2183 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2184 // same alignment. 2185 PhdrEntry *note = nullptr; 2186 for (OutputSection *sec : outputSections) { 2187 if (sec->partition != partNo) 2188 continue; 2189 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2190 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2191 note = addHdr(PT_NOTE, PF_R); 2192 note->add(sec); 2193 } else { 2194 note = nullptr; 2195 } 2196 } 2197 return ret; 2198 } 2199 2200 template <class ELFT> 2201 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2202 unsigned pType, unsigned pFlags) { 2203 unsigned partNo = part.getNumber(); 2204 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2205 return cmd->partition == partNo && cmd->type == shType; 2206 }); 2207 if (i == outputSections.end()) 2208 return; 2209 2210 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2211 entry->add(*i); 2212 part.phdrs.push_back(entry); 2213 } 2214 2215 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2216 // This is achieved by assigning an alignment expression to addrExpr of each 2217 // such section. 2218 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2219 const PhdrEntry *prev; 2220 auto pageAlign = [&](const PhdrEntry *p) { 2221 OutputSection *cmd = p->firstSec; 2222 if (cmd && !cmd->addrExpr) { 2223 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2224 // padding in the file contents. 2225 // 2226 // When -z separate-code is used we must not have any overlap in pages 2227 // between an executable segment and a non-executable segment. We align to 2228 // the next maximum page size boundary on transitions between executable 2229 // and non-executable segments. 2230 // 2231 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2232 // sections will be extracted to a separate file. Align to the next 2233 // maximum page size boundary so that we can find the ELF header at the 2234 // start. We cannot benefit from overlapping p_offset ranges with the 2235 // previous segment anyway. 2236 if ((config->zSeparateCode && prev && 2237 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2238 cmd->type == SHT_LLVM_PART_EHDR) 2239 cmd->addrExpr = [] { 2240 return alignTo(script->getDot(), config->maxPageSize); 2241 }; 2242 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2243 // it must be the RW. Align to p_align(PT_TLS) to make sure 2244 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2245 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2246 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2247 // be congruent to 0 modulo p_align(PT_TLS). 2248 // 2249 // Technically this is not required, but as of 2019, some dynamic loaders 2250 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2251 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2252 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2253 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2254 // blocks correctly. We need to keep the workaround for a while. 2255 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2256 cmd->addrExpr = [] { 2257 return alignTo(script->getDot(), config->maxPageSize) + 2258 alignTo(script->getDot() % config->maxPageSize, 2259 Out::tlsPhdr->p_align); 2260 }; 2261 else 2262 cmd->addrExpr = [] { 2263 return alignTo(script->getDot(), config->maxPageSize) + 2264 script->getDot() % config->maxPageSize; 2265 }; 2266 } 2267 }; 2268 2269 for (Partition &part : partitions) { 2270 prev = nullptr; 2271 for (const PhdrEntry *p : part.phdrs) 2272 if (p->p_type == PT_LOAD && p->firstSec) { 2273 pageAlign(p); 2274 prev = p; 2275 } 2276 } 2277 } 2278 2279 // Compute an in-file position for a given section. The file offset must be the 2280 // same with its virtual address modulo the page size, so that the loader can 2281 // load executables without any address adjustment. 2282 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2283 // The first section in a PT_LOAD has to have congruent offset and address 2284 // modulo the maximum page size. 2285 if (os->ptLoad && os->ptLoad->firstSec == os) 2286 return alignTo(off, os->ptLoad->p_align, os->addr); 2287 2288 // File offsets are not significant for .bss sections other than the first one 2289 // in a PT_LOAD. By convention, we keep section offsets monotonically 2290 // increasing rather than setting to zero. 2291 if (os->type == SHT_NOBITS) 2292 return off; 2293 2294 // If the section is not in a PT_LOAD, we just have to align it. 2295 if (!os->ptLoad) 2296 return alignTo(off, os->alignment); 2297 2298 // If two sections share the same PT_LOAD the file offset is calculated 2299 // using this formula: Off2 = Off1 + (VA2 - VA1). 2300 OutputSection *first = os->ptLoad->firstSec; 2301 return first->offset + os->addr - first->addr; 2302 } 2303 2304 // Set an in-file position to a given section and returns the end position of 2305 // the section. 2306 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2307 off = computeFileOffset(os, off); 2308 os->offset = off; 2309 2310 if (os->type == SHT_NOBITS) 2311 return off; 2312 return off + os->size; 2313 } 2314 2315 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2316 uint64_t off = 0; 2317 for (OutputSection *sec : outputSections) 2318 if (sec->flags & SHF_ALLOC) 2319 off = setFileOffset(sec, off); 2320 fileSize = alignTo(off, config->wordsize); 2321 } 2322 2323 static std::string rangeToString(uint64_t addr, uint64_t len) { 2324 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2325 } 2326 2327 // Assign file offsets to output sections. 2328 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2329 uint64_t off = 0; 2330 off = setFileOffset(Out::elfHeader, off); 2331 off = setFileOffset(Out::programHeaders, off); 2332 2333 PhdrEntry *lastRX = nullptr; 2334 for (Partition &part : partitions) 2335 for (PhdrEntry *p : part.phdrs) 2336 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2337 lastRX = p; 2338 2339 for (OutputSection *sec : outputSections) { 2340 off = setFileOffset(sec, off); 2341 2342 // If this is a last section of the last executable segment and that 2343 // segment is the last loadable segment, align the offset of the 2344 // following section to avoid loading non-segments parts of the file. 2345 if (config->zSeparateCode && lastRX && lastRX->lastSec == sec) 2346 off = alignTo(off, config->commonPageSize); 2347 } 2348 2349 sectionHeaderOff = alignTo(off, config->wordsize); 2350 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2351 2352 // Our logic assumes that sections have rising VA within the same segment. 2353 // With use of linker scripts it is possible to violate this rule and get file 2354 // offset overlaps or overflows. That should never happen with a valid script 2355 // which does not move the location counter backwards and usually scripts do 2356 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2357 // kernel, which control segment distribution explicitly and move the counter 2358 // backwards, so we have to allow doing that to support linking them. We 2359 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2360 // we want to prevent file size overflows because it would crash the linker. 2361 for (OutputSection *sec : outputSections) { 2362 if (sec->type == SHT_NOBITS) 2363 continue; 2364 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2365 error("unable to place section " + sec->name + " at file offset " + 2366 rangeToString(sec->offset, sec->size) + 2367 "; check your linker script for overflows"); 2368 } 2369 } 2370 2371 // Finalize the program headers. We call this function after we assign 2372 // file offsets and VAs to all sections. 2373 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2374 for (PhdrEntry *p : part.phdrs) { 2375 OutputSection *first = p->firstSec; 2376 OutputSection *last = p->lastSec; 2377 2378 if (first) { 2379 p->p_filesz = last->offset - first->offset; 2380 if (last->type != SHT_NOBITS) 2381 p->p_filesz += last->size; 2382 2383 p->p_memsz = last->addr + last->size - first->addr; 2384 p->p_offset = first->offset; 2385 p->p_vaddr = first->addr; 2386 2387 // File offsets in partitions other than the main partition are relative 2388 // to the offset of the ELF headers. Perform that adjustment now. 2389 if (part.elfHeader) 2390 p->p_offset -= part.elfHeader->getParent()->offset; 2391 2392 if (!p->hasLMA) 2393 p->p_paddr = first->getLMA(); 2394 } 2395 2396 if (p->p_type == PT_GNU_RELRO) { 2397 p->p_align = 1; 2398 // musl/glibc ld.so rounds the size down, so we need to round up 2399 // to protect the last page. This is a no-op on FreeBSD which always 2400 // rounds up. 2401 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2402 p->p_offset; 2403 } 2404 } 2405 } 2406 2407 // A helper struct for checkSectionOverlap. 2408 namespace { 2409 struct SectionOffset { 2410 OutputSection *sec; 2411 uint64_t offset; 2412 }; 2413 } // namespace 2414 2415 // Check whether sections overlap for a specific address range (file offsets, 2416 // load and virtual adresses). 2417 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2418 bool isVirtualAddr) { 2419 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2420 return a.offset < b.offset; 2421 }); 2422 2423 // Finding overlap is easy given a vector is sorted by start position. 2424 // If an element starts before the end of the previous element, they overlap. 2425 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2426 SectionOffset a = sections[i - 1]; 2427 SectionOffset b = sections[i]; 2428 if (b.offset >= a.offset + a.sec->size) 2429 continue; 2430 2431 // If both sections are in OVERLAY we allow the overlapping of virtual 2432 // addresses, because it is what OVERLAY was designed for. 2433 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2434 continue; 2435 2436 errorOrWarn("section " + a.sec->name + " " + name + 2437 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2438 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2439 b.sec->name + " range is " + 2440 rangeToString(b.offset, b.sec->size)); 2441 } 2442 } 2443 2444 // Check for overlapping sections and address overflows. 2445 // 2446 // In this function we check that none of the output sections have overlapping 2447 // file offsets. For SHF_ALLOC sections we also check that the load address 2448 // ranges and the virtual address ranges don't overlap 2449 template <class ELFT> void Writer<ELFT>::checkSections() { 2450 // First, check that section's VAs fit in available address space for target. 2451 for (OutputSection *os : outputSections) 2452 if ((os->addr + os->size < os->addr) || 2453 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2454 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2455 " of size 0x" + utohexstr(os->size) + 2456 " exceeds available address space"); 2457 2458 // Check for overlapping file offsets. In this case we need to skip any 2459 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2460 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2461 // binary is specified only add SHF_ALLOC sections are added to the output 2462 // file so we skip any non-allocated sections in that case. 2463 std::vector<SectionOffset> fileOffs; 2464 for (OutputSection *sec : outputSections) 2465 if (sec->size > 0 && sec->type != SHT_NOBITS && 2466 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2467 fileOffs.push_back({sec, sec->offset}); 2468 checkOverlap("file", fileOffs, false); 2469 2470 // When linking with -r there is no need to check for overlapping virtual/load 2471 // addresses since those addresses will only be assigned when the final 2472 // executable/shared object is created. 2473 if (config->relocatable) 2474 return; 2475 2476 // Checking for overlapping virtual and load addresses only needs to take 2477 // into account SHF_ALLOC sections since others will not be loaded. 2478 // Furthermore, we also need to skip SHF_TLS sections since these will be 2479 // mapped to other addresses at runtime and can therefore have overlapping 2480 // ranges in the file. 2481 std::vector<SectionOffset> vmas; 2482 for (OutputSection *sec : outputSections) 2483 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2484 vmas.push_back({sec, sec->addr}); 2485 checkOverlap("virtual address", vmas, true); 2486 2487 // Finally, check that the load addresses don't overlap. This will usually be 2488 // the same as the virtual addresses but can be different when using a linker 2489 // script with AT(). 2490 std::vector<SectionOffset> lmas; 2491 for (OutputSection *sec : outputSections) 2492 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2493 lmas.push_back({sec, sec->getLMA()}); 2494 checkOverlap("load address", lmas, false); 2495 } 2496 2497 // The entry point address is chosen in the following ways. 2498 // 2499 // 1. the '-e' entry command-line option; 2500 // 2. the ENTRY(symbol) command in a linker control script; 2501 // 3. the value of the symbol _start, if present; 2502 // 4. the number represented by the entry symbol, if it is a number; 2503 // 5. the address of the first byte of the .text section, if present; 2504 // 6. the address 0. 2505 static uint64_t getEntryAddr() { 2506 // Case 1, 2 or 3 2507 if (Symbol *b = symtab->find(config->entry)) 2508 return b->getVA(); 2509 2510 // Case 4 2511 uint64_t addr; 2512 if (to_integer(config->entry, addr)) 2513 return addr; 2514 2515 // Case 5 2516 if (OutputSection *sec = findSection(".text")) { 2517 if (config->warnMissingEntry) 2518 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2519 utohexstr(sec->addr)); 2520 return sec->addr; 2521 } 2522 2523 // Case 6 2524 if (config->warnMissingEntry) 2525 warn("cannot find entry symbol " + config->entry + 2526 "; not setting start address"); 2527 return 0; 2528 } 2529 2530 static uint16_t getELFType() { 2531 if (config->isPic) 2532 return ET_DYN; 2533 if (config->relocatable) 2534 return ET_REL; 2535 return ET_EXEC; 2536 } 2537 2538 template <class ELFT> void Writer<ELFT>::writeHeader() { 2539 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2540 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2541 2542 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2543 eHdr->e_type = getELFType(); 2544 eHdr->e_entry = getEntryAddr(); 2545 eHdr->e_shoff = sectionHeaderOff; 2546 2547 // Write the section header table. 2548 // 2549 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2550 // and e_shstrndx fields. When the value of one of these fields exceeds 2551 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2552 // use fields in the section header at index 0 to store 2553 // the value. The sentinel values and fields are: 2554 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2555 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2556 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2557 size_t num = outputSections.size() + 1; 2558 if (num >= SHN_LORESERVE) 2559 sHdrs->sh_size = num; 2560 else 2561 eHdr->e_shnum = num; 2562 2563 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2564 if (strTabIndex >= SHN_LORESERVE) { 2565 sHdrs->sh_link = strTabIndex; 2566 eHdr->e_shstrndx = SHN_XINDEX; 2567 } else { 2568 eHdr->e_shstrndx = strTabIndex; 2569 } 2570 2571 for (OutputSection *sec : outputSections) 2572 sec->writeHeaderTo<ELFT>(++sHdrs); 2573 } 2574 2575 // Open a result file. 2576 template <class ELFT> void Writer<ELFT>::openFile() { 2577 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2578 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2579 error("output file too large: " + Twine(fileSize) + " bytes"); 2580 return; 2581 } 2582 2583 unlinkAsync(config->outputFile); 2584 unsigned flags = 0; 2585 if (!config->relocatable) 2586 flags = FileOutputBuffer::F_executable; 2587 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2588 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2589 2590 if (!bufferOrErr) { 2591 error("failed to open " + config->outputFile + ": " + 2592 llvm::toString(bufferOrErr.takeError())); 2593 return; 2594 } 2595 buffer = std::move(*bufferOrErr); 2596 Out::bufferStart = buffer->getBufferStart(); 2597 } 2598 2599 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2600 for (OutputSection *sec : outputSections) 2601 if (sec->flags & SHF_ALLOC) 2602 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2603 } 2604 2605 static void fillTrap(uint8_t *i, uint8_t *end) { 2606 for (; i + 4 <= end; i += 4) 2607 memcpy(i, &target->trapInstr, 4); 2608 } 2609 2610 // Fill the last page of executable segments with trap instructions 2611 // instead of leaving them as zero. Even though it is not required by any 2612 // standard, it is in general a good thing to do for security reasons. 2613 // 2614 // We'll leave other pages in segments as-is because the rest will be 2615 // overwritten by output sections. 2616 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2617 if (!config->zSeparateCode) 2618 return; 2619 2620 for (Partition &part : partitions) { 2621 // Fill the last page. 2622 for (PhdrEntry *p : part.phdrs) 2623 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2624 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2625 config->commonPageSize), 2626 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2627 config->commonPageSize)); 2628 2629 // Round up the file size of the last segment to the page boundary iff it is 2630 // an executable segment to ensure that other tools don't accidentally 2631 // trim the instruction padding (e.g. when stripping the file). 2632 PhdrEntry *last = nullptr; 2633 for (PhdrEntry *p : part.phdrs) 2634 if (p->p_type == PT_LOAD) 2635 last = p; 2636 2637 if (last && (last->p_flags & PF_X)) 2638 last->p_memsz = last->p_filesz = 2639 alignTo(last->p_filesz, config->commonPageSize); 2640 } 2641 } 2642 2643 // Write section contents to a mmap'ed file. 2644 template <class ELFT> void Writer<ELFT>::writeSections() { 2645 // In -r or -emit-relocs mode, write the relocation sections first as in 2646 // ELf_Rel targets we might find out that we need to modify the relocated 2647 // section while doing it. 2648 for (OutputSection *sec : outputSections) 2649 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2650 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2651 2652 for (OutputSection *sec : outputSections) 2653 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2654 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2655 } 2656 2657 // Split one uint8 array into small pieces of uint8 arrays. 2658 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2659 size_t chunkSize) { 2660 std::vector<ArrayRef<uint8_t>> ret; 2661 while (arr.size() > chunkSize) { 2662 ret.push_back(arr.take_front(chunkSize)); 2663 arr = arr.drop_front(chunkSize); 2664 } 2665 if (!arr.empty()) 2666 ret.push_back(arr); 2667 return ret; 2668 } 2669 2670 // Computes a hash value of Data using a given hash function. 2671 // In order to utilize multiple cores, we first split data into 1MB 2672 // chunks, compute a hash for each chunk, and then compute a hash value 2673 // of the hash values. 2674 static void 2675 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2676 llvm::ArrayRef<uint8_t> data, 2677 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2678 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2679 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2680 2681 // Compute hash values. 2682 parallelForEachN(0, chunks.size(), [&](size_t i) { 2683 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2684 }); 2685 2686 // Write to the final output buffer. 2687 hashFn(hashBuf.data(), hashes); 2688 } 2689 2690 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2691 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2692 return; 2693 2694 if (config->buildId == BuildIdKind::Hexstring) { 2695 for (Partition &part : partitions) 2696 part.buildId->writeBuildId(config->buildIdVector); 2697 return; 2698 } 2699 2700 // Compute a hash of all sections of the output file. 2701 size_t hashSize = mainPart->buildId->hashSize; 2702 std::vector<uint8_t> buildId(hashSize); 2703 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 2704 2705 switch (config->buildId) { 2706 case BuildIdKind::Fast: 2707 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2708 write64le(dest, xxHash64(arr)); 2709 }); 2710 break; 2711 case BuildIdKind::Md5: 2712 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2713 memcpy(dest, MD5::hash(arr).data(), hashSize); 2714 }); 2715 break; 2716 case BuildIdKind::Sha1: 2717 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2718 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2719 }); 2720 break; 2721 case BuildIdKind::Uuid: 2722 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 2723 error("entropy source failure: " + ec.message()); 2724 break; 2725 default: 2726 llvm_unreachable("unknown BuildIdKind"); 2727 } 2728 for (Partition &part : partitions) 2729 part.buildId->writeBuildId(buildId); 2730 } 2731 2732 template void elf::createSyntheticSections<ELF32LE>(); 2733 template void elf::createSyntheticSections<ELF32BE>(); 2734 template void elf::createSyntheticSections<ELF64LE>(); 2735 template void elf::createSyntheticSections<ELF64BE>(); 2736 2737 template void elf::writeResult<ELF32LE>(); 2738 template void elf::writeResult<ELF32BE>(); 2739 template void elf::writeResult<ELF64LE>(); 2740 template void elf::writeResult<ELF64BE>(); 2741