1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Filesystem.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/Parallel.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/TimeProfiler.h" 31 #include "llvm/Support/xxhash.h" 32 #include <climits> 33 34 #define DEBUG_TYPE "lld" 35 36 using namespace llvm; 37 using namespace llvm::ELF; 38 using namespace llvm::object; 39 using namespace llvm::support; 40 using namespace llvm::support::endian; 41 using namespace lld; 42 using namespace lld::elf; 43 44 namespace { 45 // The writer writes a SymbolTable result to a file. 46 template <class ELFT> class Writer { 47 public: 48 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 49 50 Writer() : buffer(errorHandler().outputBuffer) {} 51 52 void run(); 53 54 private: 55 void copyLocalSymbols(); 56 void addSectionSymbols(); 57 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 58 void sortSections(); 59 void resolveShfLinkOrder(); 60 void finalizeAddressDependentContent(); 61 void optimizeBasicBlockJumps(); 62 void sortInputSections(); 63 void finalizeSections(); 64 void checkExecuteOnly(); 65 void setReservedSymbolSections(); 66 67 std::vector<PhdrEntry *> createPhdrs(Partition &part); 68 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 69 unsigned pFlags); 70 void assignFileOffsets(); 71 void assignFileOffsetsBinary(); 72 void setPhdrs(Partition &part); 73 void checkSections(); 74 void fixSectionAlignments(); 75 void openFile(); 76 void writeTrapInstr(); 77 void writeHeader(); 78 void writeSections(); 79 void writeSectionsBinary(); 80 void writeBuildId(); 81 82 std::unique_ptr<FileOutputBuffer> &buffer; 83 84 void addRelIpltSymbols(); 85 void addStartEndSymbols(); 86 void addStartStopSymbols(OutputSection *sec); 87 88 uint64_t fileSize; 89 uint64_t sectionHeaderOff; 90 }; 91 } // anonymous namespace 92 93 static bool isSectionPrefix(StringRef prefix, StringRef name) { 94 return name.startswith(prefix) || name == prefix.drop_back(); 95 } 96 97 StringRef elf::getOutputSectionName(const InputSectionBase *s) { 98 if (config->relocatable) 99 return s->name; 100 101 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 102 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 103 // technically required, but not doing it is odd). This code guarantees that. 104 if (auto *isec = dyn_cast<InputSection>(s)) { 105 if (InputSectionBase *rel = isec->getRelocatedSection()) { 106 OutputSection *out = rel->getOutputSection(); 107 if (s->type == SHT_RELA) 108 return saver.save(".rela" + out->name); 109 return saver.save(".rel" + out->name); 110 } 111 } 112 113 // A BssSection created for a common symbol is identified as "COMMON" in 114 // linker scripts. It should go to .bss section. 115 if (s->name == "COMMON") 116 return ".bss"; 117 118 if (script->hasSectionsCommand) 119 return s->name; 120 121 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 122 // by grouping sections with certain prefixes. 123 124 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 125 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 126 // We provide an option -z keep-text-section-prefix to group such sections 127 // into separate output sections. This is more flexible. See also 128 // sortISDBySectionOrder(). 129 // ".text.unknown" means the hotness of the section is unknown. When 130 // SampleFDO is used, if a function doesn't have sample, it could be very 131 // cold or it could be a new function never being sampled. Those functions 132 // will be kept in the ".text.unknown" section. 133 // ".text.split." holds symbols which are split out from functions in other 134 // input sections. For example, with -fsplit-machine-functions, placing the 135 // cold parts in .text.split instead of .text.unlikely mitigates against poor 136 // profile inaccuracy. Techniques such as hugepage remapping can make 137 // conservative decisions at the section granularity. 138 if (config->zKeepTextSectionPrefix) 139 for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", 140 ".text.startup.", ".text.exit.", ".text.split."}) 141 if (isSectionPrefix(v, s->name)) 142 return v.drop_back(); 143 144 for (StringRef v : 145 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 146 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 147 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 148 if (isSectionPrefix(v, s->name)) 149 return v.drop_back(); 150 151 return s->name; 152 } 153 154 static bool needsInterpSection() { 155 return !config->relocatable && !config->shared && 156 !config->dynamicLinker.empty() && script->needsInterpSection(); 157 } 158 159 template <class ELFT> void elf::writeResult() { 160 Writer<ELFT>().run(); 161 } 162 163 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 164 auto it = std::stable_partition( 165 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 166 if (p->p_type != PT_LOAD) 167 return true; 168 if (!p->firstSec) 169 return false; 170 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 171 return size != 0; 172 }); 173 174 // Clear OutputSection::ptLoad for sections contained in removed 175 // segments. 176 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 177 for (OutputSection *sec : outputSections) 178 if (removed.count(sec->ptLoad)) 179 sec->ptLoad = nullptr; 180 phdrs.erase(it, phdrs.end()); 181 } 182 183 void elf::copySectionsIntoPartitions() { 184 std::vector<InputSectionBase *> newSections; 185 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 186 for (InputSectionBase *s : inputSections) { 187 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 188 continue; 189 InputSectionBase *copy; 190 if (s->type == SHT_NOTE) 191 copy = make<InputSection>(cast<InputSection>(*s)); 192 else if (auto *es = dyn_cast<EhInputSection>(s)) 193 copy = make<EhInputSection>(*es); 194 else 195 continue; 196 copy->partition = part; 197 newSections.push_back(copy); 198 } 199 } 200 201 inputSections.insert(inputSections.end(), newSections.begin(), 202 newSections.end()); 203 } 204 205 void elf::combineEhSections() { 206 llvm::TimeTraceScope timeScope("Combine EH sections"); 207 for (InputSectionBase *&s : inputSections) { 208 // Ignore dead sections and the partition end marker (.part.end), 209 // whose partition number is out of bounds. 210 if (!s->isLive() || s->partition == 255) 211 continue; 212 213 Partition &part = s->getPartition(); 214 if (auto *es = dyn_cast<EhInputSection>(s)) { 215 part.ehFrame->addSection(es); 216 s = nullptr; 217 } else if (s->kind() == SectionBase::Regular && part.armExidx && 218 part.armExidx->addSection(cast<InputSection>(s))) { 219 s = nullptr; 220 } 221 } 222 223 std::vector<InputSectionBase *> &v = inputSections; 224 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 225 } 226 227 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 228 uint64_t val, uint8_t stOther = STV_HIDDEN, 229 uint8_t binding = STB_GLOBAL) { 230 Symbol *s = symtab->find(name); 231 if (!s || s->isDefined()) 232 return nullptr; 233 234 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 235 /*size=*/0, sec}); 236 return cast<Defined>(s); 237 } 238 239 static Defined *addAbsolute(StringRef name) { 240 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 241 STT_NOTYPE, 0, 0, nullptr}); 242 return cast<Defined>(sym); 243 } 244 245 // The linker is expected to define some symbols depending on 246 // the linking result. This function defines such symbols. 247 void elf::addReservedSymbols() { 248 if (config->emachine == EM_MIPS) { 249 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 250 // so that it points to an absolute address which by default is relative 251 // to GOT. Default offset is 0x7ff0. 252 // See "Global Data Symbols" in Chapter 6 in the following document: 253 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 254 ElfSym::mipsGp = addAbsolute("_gp"); 255 256 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 257 // start of function and 'gp' pointer into GOT. 258 if (symtab->find("_gp_disp")) 259 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 260 261 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 262 // pointer. This symbol is used in the code generated by .cpload pseudo-op 263 // in case of using -mno-shared option. 264 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 265 if (symtab->find("__gnu_local_gp")) 266 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 267 } else if (config->emachine == EM_PPC) { 268 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 269 // support Small Data Area, define it arbitrarily as 0. 270 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 271 } else if (config->emachine == EM_PPC64) { 272 addPPC64SaveRestore(); 273 } 274 275 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 276 // combines the typical ELF GOT with the small data sections. It commonly 277 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 278 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 279 // represent the TOC base which is offset by 0x8000 bytes from the start of 280 // the .got section. 281 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 282 // correctness of some relocations depends on its value. 283 StringRef gotSymName = 284 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 285 286 if (Symbol *s = symtab->find(gotSymName)) { 287 if (s->isDefined()) { 288 error(toString(s->file) + " cannot redefine linker defined symbol '" + 289 gotSymName + "'"); 290 return; 291 } 292 293 uint64_t gotOff = 0; 294 if (config->emachine == EM_PPC64) 295 gotOff = 0x8000; 296 297 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 298 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 299 ElfSym::globalOffsetTable = cast<Defined>(s); 300 } 301 302 // __ehdr_start is the location of ELF file headers. Note that we define 303 // this symbol unconditionally even when using a linker script, which 304 // differs from the behavior implemented by GNU linker which only define 305 // this symbol if ELF headers are in the memory mapped segment. 306 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 307 308 // __executable_start is not documented, but the expectation of at 309 // least the Android libc is that it points to the ELF header. 310 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 311 312 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 313 // each DSO. The address of the symbol doesn't matter as long as they are 314 // different in different DSOs, so we chose the start address of the DSO. 315 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 316 317 // If linker script do layout we do not need to create any standard symbols. 318 if (script->hasSectionsCommand) 319 return; 320 321 auto add = [](StringRef s, int64_t pos) { 322 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 323 }; 324 325 ElfSym::bss = add("__bss_start", 0); 326 ElfSym::end1 = add("end", -1); 327 ElfSym::end2 = add("_end", -1); 328 ElfSym::etext1 = add("etext", -1); 329 ElfSym::etext2 = add("_etext", -1); 330 ElfSym::edata1 = add("edata", -1); 331 ElfSym::edata2 = add("_edata", -1); 332 } 333 334 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 335 for (BaseCommand *base : script->sectionCommands) 336 if (auto *sec = dyn_cast<OutputSection>(base)) 337 if (sec->name == name && sec->partition == partition) 338 return sec; 339 return nullptr; 340 } 341 342 template <class ELFT> void elf::createSyntheticSections() { 343 // Initialize all pointers with NULL. This is needed because 344 // you can call lld::elf::main more than once as a library. 345 memset(&Out::first, 0, sizeof(Out)); 346 347 // Add the .interp section first because it is not a SyntheticSection. 348 // The removeUnusedSyntheticSections() function relies on the 349 // SyntheticSections coming last. 350 if (needsInterpSection()) { 351 for (size_t i = 1; i <= partitions.size(); ++i) { 352 InputSection *sec = createInterpSection(); 353 sec->partition = i; 354 inputSections.push_back(sec); 355 } 356 } 357 358 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 359 360 in.shStrTab = make<StringTableSection>(".shstrtab", false); 361 362 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 363 Out::programHeaders->alignment = config->wordsize; 364 365 if (config->strip != StripPolicy::All) { 366 in.strTab = make<StringTableSection>(".strtab", false); 367 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 368 in.symTabShndx = make<SymtabShndxSection>(); 369 } 370 371 in.bss = make<BssSection>(".bss", 0, 1); 372 add(in.bss); 373 374 // If there is a SECTIONS command and a .data.rel.ro section name use name 375 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 376 // This makes sure our relro is contiguous. 377 bool hasDataRelRo = 378 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 379 in.bssRelRo = 380 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 381 add(in.bssRelRo); 382 383 // Add MIPS-specific sections. 384 if (config->emachine == EM_MIPS) { 385 if (!config->shared && config->hasDynSymTab) { 386 in.mipsRldMap = make<MipsRldMapSection>(); 387 add(in.mipsRldMap); 388 } 389 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 390 add(sec); 391 if (auto *sec = MipsOptionsSection<ELFT>::create()) 392 add(sec); 393 if (auto *sec = MipsReginfoSection<ELFT>::create()) 394 add(sec); 395 } 396 397 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 398 399 for (Partition &part : partitions) { 400 auto add = [&](SyntheticSection *sec) { 401 sec->partition = part.getNumber(); 402 inputSections.push_back(sec); 403 }; 404 405 if (!part.name.empty()) { 406 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 407 part.elfHeader->name = part.name; 408 add(part.elfHeader); 409 410 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 411 add(part.programHeaders); 412 } 413 414 if (config->buildId != BuildIdKind::None) { 415 part.buildId = make<BuildIdSection>(); 416 add(part.buildId); 417 } 418 419 part.dynStrTab = make<StringTableSection>(".dynstr", true); 420 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 421 part.dynamic = make<DynamicSection<ELFT>>(); 422 if (config->androidPackDynRelocs) 423 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 424 else 425 part.relaDyn = 426 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 427 428 if (config->hasDynSymTab) { 429 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 430 add(part.dynSymTab); 431 432 part.verSym = make<VersionTableSection>(); 433 add(part.verSym); 434 435 if (!namedVersionDefs().empty()) { 436 part.verDef = make<VersionDefinitionSection>(); 437 add(part.verDef); 438 } 439 440 part.verNeed = make<VersionNeedSection<ELFT>>(); 441 add(part.verNeed); 442 443 if (config->gnuHash) { 444 part.gnuHashTab = make<GnuHashTableSection>(); 445 add(part.gnuHashTab); 446 } 447 448 if (config->sysvHash) { 449 part.hashTab = make<HashTableSection>(); 450 add(part.hashTab); 451 } 452 453 add(part.dynamic); 454 add(part.dynStrTab); 455 add(part.relaDyn); 456 } 457 458 if (config->relrPackDynRelocs) { 459 part.relrDyn = make<RelrSection<ELFT>>(); 460 add(part.relrDyn); 461 } 462 463 if (!config->relocatable) { 464 if (config->ehFrameHdr) { 465 part.ehFrameHdr = make<EhFrameHeader>(); 466 add(part.ehFrameHdr); 467 } 468 part.ehFrame = make<EhFrameSection>(); 469 add(part.ehFrame); 470 } 471 472 if (config->emachine == EM_ARM && !config->relocatable) { 473 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 474 // InputSections. 475 part.armExidx = make<ARMExidxSyntheticSection>(); 476 add(part.armExidx); 477 } 478 } 479 480 if (partitions.size() != 1) { 481 // Create the partition end marker. This needs to be in partition number 255 482 // so that it is sorted after all other partitions. It also has other 483 // special handling (see createPhdrs() and combineEhSections()). 484 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 485 in.partEnd->partition = 255; 486 add(in.partEnd); 487 488 in.partIndex = make<PartitionIndexSection>(); 489 addOptionalRegular("__part_index_begin", in.partIndex, 0); 490 addOptionalRegular("__part_index_end", in.partIndex, 491 in.partIndex->getSize()); 492 add(in.partIndex); 493 } 494 495 // Add .got. MIPS' .got is so different from the other archs, 496 // it has its own class. 497 if (config->emachine == EM_MIPS) { 498 in.mipsGot = make<MipsGotSection>(); 499 add(in.mipsGot); 500 } else { 501 in.got = make<GotSection>(); 502 add(in.got); 503 } 504 505 if (config->emachine == EM_PPC) { 506 in.ppc32Got2 = make<PPC32Got2Section>(); 507 add(in.ppc32Got2); 508 } 509 510 if (config->emachine == EM_PPC64) { 511 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 512 add(in.ppc64LongBranchTarget); 513 } 514 515 in.gotPlt = make<GotPltSection>(); 516 add(in.gotPlt); 517 in.igotPlt = make<IgotPltSection>(); 518 add(in.igotPlt); 519 520 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 521 // it as a relocation and ensure the referenced section is created. 522 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 523 if (target->gotBaseSymInGotPlt) 524 in.gotPlt->hasGotPltOffRel = true; 525 else 526 in.got->hasGotOffRel = true; 527 } 528 529 if (config->gdbIndex) 530 add(GdbIndexSection::create<ELFT>()); 531 532 // We always need to add rel[a].plt to output if it has entries. 533 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 534 in.relaPlt = make<RelocationSection<ELFT>>( 535 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 536 add(in.relaPlt); 537 538 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 539 // relocations are processed last by the dynamic loader. We cannot place the 540 // iplt section in .rel.dyn when Android relocation packing is enabled because 541 // that would cause a section type mismatch. However, because the Android 542 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 543 // behaviour by placing the iplt section in .rel.plt. 544 in.relaIplt = make<RelocationSection<ELFT>>( 545 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 546 /*sort=*/false); 547 add(in.relaIplt); 548 549 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 550 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 551 in.ibtPlt = make<IBTPltSection>(); 552 add(in.ibtPlt); 553 } 554 555 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 556 : make<PltSection>(); 557 add(in.plt); 558 in.iplt = make<IpltSection>(); 559 add(in.iplt); 560 561 if (config->andFeatures) 562 add(make<GnuPropertySection>()); 563 564 // .note.GNU-stack is always added when we are creating a re-linkable 565 // object file. Other linkers are using the presence of this marker 566 // section to control the executable-ness of the stack area, but that 567 // is irrelevant these days. Stack area should always be non-executable 568 // by default. So we emit this section unconditionally. 569 if (config->relocatable) 570 add(make<GnuStackSection>()); 571 572 if (in.symTab) 573 add(in.symTab); 574 if (in.symTabShndx) 575 add(in.symTabShndx); 576 add(in.shStrTab); 577 if (in.strTab) 578 add(in.strTab); 579 } 580 581 // The main function of the writer. 582 template <class ELFT> void Writer<ELFT>::run() { 583 copyLocalSymbols(); 584 585 if (config->copyRelocs) 586 addSectionSymbols(); 587 588 // Now that we have a complete set of output sections. This function 589 // completes section contents. For example, we need to add strings 590 // to the string table, and add entries to .got and .plt. 591 // finalizeSections does that. 592 finalizeSections(); 593 checkExecuteOnly(); 594 if (errorCount()) 595 return; 596 597 // If -compressed-debug-sections is specified, we need to compress 598 // .debug_* sections. Do it right now because it changes the size of 599 // output sections. 600 for (OutputSection *sec : outputSections) 601 sec->maybeCompress<ELFT>(); 602 603 if (script->hasSectionsCommand) 604 script->allocateHeaders(mainPart->phdrs); 605 606 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 607 // 0 sized region. This has to be done late since only after assignAddresses 608 // we know the size of the sections. 609 for (Partition &part : partitions) 610 removeEmptyPTLoad(part.phdrs); 611 612 if (!config->oFormatBinary) 613 assignFileOffsets(); 614 else 615 assignFileOffsetsBinary(); 616 617 for (Partition &part : partitions) 618 setPhdrs(part); 619 620 if (config->relocatable) 621 for (OutputSection *sec : outputSections) 622 sec->addr = 0; 623 624 // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them 625 // before checkSections() because the files may be useful in case 626 // checkSections() or openFile() fails, for example, due to an erroneous file 627 // size. 628 writeMapFile(); 629 writeCrossReferenceTable(); 630 writeArchiveStats(); 631 632 if (config->checkSections) 633 checkSections(); 634 635 // It does not make sense try to open the file if we have error already. 636 if (errorCount()) 637 return; 638 639 { 640 llvm::TimeTraceScope timeScope("Write output file"); 641 // Write the result down to a file. 642 openFile(); 643 if (errorCount()) 644 return; 645 646 if (!config->oFormatBinary) { 647 if (config->zSeparate != SeparateSegmentKind::None) 648 writeTrapInstr(); 649 writeHeader(); 650 writeSections(); 651 } else { 652 writeSectionsBinary(); 653 } 654 655 // Backfill .note.gnu.build-id section content. This is done at last 656 // because the content is usually a hash value of the entire output file. 657 writeBuildId(); 658 if (errorCount()) 659 return; 660 661 if (auto e = buffer->commit()) 662 error("failed to write to the output file: " + toString(std::move(e))); 663 } 664 } 665 666 template <class ELFT, class RelTy> 667 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 668 llvm::ArrayRef<RelTy> rels) { 669 for (const RelTy &rel : rels) { 670 Symbol &sym = file->getRelocTargetSym(rel); 671 if (sym.isLocal()) 672 sym.used = true; 673 } 674 } 675 676 // The function ensures that the "used" field of local symbols reflects the fact 677 // that the symbol is used in a relocation from a live section. 678 template <class ELFT> static void markUsedLocalSymbols() { 679 // With --gc-sections, the field is already filled. 680 // See MarkLive<ELFT>::resolveReloc(). 681 if (config->gcSections) 682 return; 683 // Without --gc-sections, the field is initialized with "true". 684 // Drop the flag first and then rise for symbols referenced in relocations. 685 for (InputFile *file : objectFiles) { 686 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 687 for (Symbol *b : f->getLocalSymbols()) 688 b->used = false; 689 for (InputSectionBase *s : f->getSections()) { 690 InputSection *isec = dyn_cast_or_null<InputSection>(s); 691 if (!isec) 692 continue; 693 if (isec->type == SHT_REL) 694 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 695 else if (isec->type == SHT_RELA) 696 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 697 } 698 } 699 } 700 701 static bool shouldKeepInSymtab(const Defined &sym) { 702 if (sym.isSection()) 703 return false; 704 705 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 706 // from live sections. 707 if (config->copyRelocs && sym.used) 708 return true; 709 710 // Exclude local symbols pointing to .ARM.exidx sections. 711 // They are probably mapping symbols "$d", which are optional for these 712 // sections. After merging the .ARM.exidx sections, some of these symbols 713 // may become dangling. The easiest way to avoid the issue is not to add 714 // them to the symbol table from the beginning. 715 if (config->emachine == EM_ARM && sym.section && 716 sym.section->type == SHT_ARM_EXIDX) 717 return false; 718 719 if (config->discard == DiscardPolicy::None) 720 return true; 721 if (config->discard == DiscardPolicy::All) 722 return false; 723 724 // In ELF assembly .L symbols are normally discarded by the assembler. 725 // If the assembler fails to do so, the linker discards them if 726 // * --discard-locals is used. 727 // * The symbol is in a SHF_MERGE section, which is normally the reason for 728 // the assembler keeping the .L symbol. 729 StringRef name = sym.getName(); 730 bool isLocal = name.startswith(".L") || name.empty(); 731 if (!isLocal) 732 return true; 733 734 if (config->discard == DiscardPolicy::Locals) 735 return false; 736 737 SectionBase *sec = sym.section; 738 return !sec || !(sec->flags & SHF_MERGE); 739 } 740 741 static bool includeInSymtab(const Symbol &b) { 742 if (!b.isLocal() && !b.isUsedInRegularObj) 743 return false; 744 745 if (auto *d = dyn_cast<Defined>(&b)) { 746 // Always include absolute symbols. 747 SectionBase *sec = d->section; 748 if (!sec) 749 return true; 750 sec = sec->repl; 751 752 // Exclude symbols pointing to garbage-collected sections. 753 if (isa<InputSectionBase>(sec) && !sec->isLive()) 754 return false; 755 756 if (auto *s = dyn_cast<MergeInputSection>(sec)) 757 if (!s->getSectionPiece(d->value)->live) 758 return false; 759 return true; 760 } 761 return b.used; 762 } 763 764 // Local symbols are not in the linker's symbol table. This function scans 765 // each object file's symbol table to copy local symbols to the output. 766 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 767 if (!in.symTab) 768 return; 769 llvm::TimeTraceScope timeScope("Add local symbols"); 770 if (config->copyRelocs && config->discard != DiscardPolicy::None) 771 markUsedLocalSymbols<ELFT>(); 772 for (InputFile *file : objectFiles) { 773 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 774 for (Symbol *b : f->getLocalSymbols()) { 775 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 776 auto *dr = dyn_cast<Defined>(b); 777 778 // No reason to keep local undefined symbol in symtab. 779 if (!dr) 780 continue; 781 if (!includeInSymtab(*b)) 782 continue; 783 if (!shouldKeepInSymtab(*dr)) 784 continue; 785 in.symTab->addSymbol(b); 786 } 787 } 788 } 789 790 // Create a section symbol for each output section so that we can represent 791 // relocations that point to the section. If we know that no relocation is 792 // referring to a section (that happens if the section is a synthetic one), we 793 // don't create a section symbol for that section. 794 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 795 for (BaseCommand *base : script->sectionCommands) { 796 auto *sec = dyn_cast<OutputSection>(base); 797 if (!sec) 798 continue; 799 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 800 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 801 return !isd->sections.empty(); 802 return false; 803 }); 804 if (i == sec->sectionCommands.end()) 805 continue; 806 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 807 808 // Relocations are not using REL[A] section symbols. 809 if (isec->type == SHT_REL || isec->type == SHT_RELA) 810 continue; 811 812 // Unlike other synthetic sections, mergeable output sections contain data 813 // copied from input sections, and there may be a relocation pointing to its 814 // contents if -r or -emit-reloc are given. 815 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 816 continue; 817 818 // Set the symbol to be relative to the output section so that its st_value 819 // equals the output section address. Note, there may be a gap between the 820 // start of the output section and isec. 821 auto *sym = 822 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 823 /*value=*/0, /*size=*/0, isec->getOutputSection()); 824 in.symTab->addSymbol(sym); 825 } 826 } 827 828 // Today's loaders have a feature to make segments read-only after 829 // processing dynamic relocations to enhance security. PT_GNU_RELRO 830 // is defined for that. 831 // 832 // This function returns true if a section needs to be put into a 833 // PT_GNU_RELRO segment. 834 static bool isRelroSection(const OutputSection *sec) { 835 if (!config->zRelro) 836 return false; 837 838 uint64_t flags = sec->flags; 839 840 // Non-allocatable or non-writable sections don't need RELRO because 841 // they are not writable or not even mapped to memory in the first place. 842 // RELRO is for sections that are essentially read-only but need to 843 // be writable only at process startup to allow dynamic linker to 844 // apply relocations. 845 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 846 return false; 847 848 // Once initialized, TLS data segments are used as data templates 849 // for a thread-local storage. For each new thread, runtime 850 // allocates memory for a TLS and copy templates there. No thread 851 // are supposed to use templates directly. Thus, it can be in RELRO. 852 if (flags & SHF_TLS) 853 return true; 854 855 // .init_array, .preinit_array and .fini_array contain pointers to 856 // functions that are executed on process startup or exit. These 857 // pointers are set by the static linker, and they are not expected 858 // to change at runtime. But if you are an attacker, you could do 859 // interesting things by manipulating pointers in .fini_array, for 860 // example. So they are put into RELRO. 861 uint32_t type = sec->type; 862 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 863 type == SHT_PREINIT_ARRAY) 864 return true; 865 866 // .got contains pointers to external symbols. They are resolved by 867 // the dynamic linker when a module is loaded into memory, and after 868 // that they are not expected to change. So, it can be in RELRO. 869 if (in.got && sec == in.got->getParent()) 870 return true; 871 872 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 873 // through r2 register, which is reserved for that purpose. Since r2 is used 874 // for accessing .got as well, .got and .toc need to be close enough in the 875 // virtual address space. Usually, .toc comes just after .got. Since we place 876 // .got into RELRO, .toc needs to be placed into RELRO too. 877 if (sec->name.equals(".toc")) 878 return true; 879 880 // .got.plt contains pointers to external function symbols. They are 881 // by default resolved lazily, so we usually cannot put it into RELRO. 882 // However, if "-z now" is given, the lazy symbol resolution is 883 // disabled, which enables us to put it into RELRO. 884 if (sec == in.gotPlt->getParent()) 885 return config->zNow; 886 887 // .dynamic section contains data for the dynamic linker, and 888 // there's no need to write to it at runtime, so it's better to put 889 // it into RELRO. 890 if (sec->name == ".dynamic") 891 return true; 892 893 // Sections with some special names are put into RELRO. This is a 894 // bit unfortunate because section names shouldn't be significant in 895 // ELF in spirit. But in reality many linker features depend on 896 // magic section names. 897 StringRef s = sec->name; 898 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 899 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 900 s == ".fini_array" || s == ".init_array" || 901 s == ".openbsd.randomdata" || s == ".preinit_array"; 902 } 903 904 // We compute a rank for each section. The rank indicates where the 905 // section should be placed in the file. Instead of using simple 906 // numbers (0,1,2...), we use a series of flags. One for each decision 907 // point when placing the section. 908 // Using flags has two key properties: 909 // * It is easy to check if a give branch was taken. 910 // * It is easy two see how similar two ranks are (see getRankProximity). 911 enum RankFlags { 912 RF_NOT_ADDR_SET = 1 << 27, 913 RF_NOT_ALLOC = 1 << 26, 914 RF_PARTITION = 1 << 18, // Partition number (8 bits) 915 RF_NOT_PART_EHDR = 1 << 17, 916 RF_NOT_PART_PHDR = 1 << 16, 917 RF_NOT_INTERP = 1 << 15, 918 RF_NOT_NOTE = 1 << 14, 919 RF_WRITE = 1 << 13, 920 RF_EXEC_WRITE = 1 << 12, 921 RF_EXEC = 1 << 11, 922 RF_RODATA = 1 << 10, 923 RF_NOT_RELRO = 1 << 9, 924 RF_NOT_TLS = 1 << 8, 925 RF_BSS = 1 << 7, 926 RF_PPC_NOT_TOCBSS = 1 << 6, 927 RF_PPC_TOCL = 1 << 5, 928 RF_PPC_TOC = 1 << 4, 929 RF_PPC_GOT = 1 << 3, 930 RF_PPC_BRANCH_LT = 1 << 2, 931 RF_MIPS_GPREL = 1 << 1, 932 RF_MIPS_NOT_GOT = 1 << 0 933 }; 934 935 static unsigned getSectionRank(const OutputSection *sec) { 936 unsigned rank = sec->partition * RF_PARTITION; 937 938 // We want to put section specified by -T option first, so we 939 // can start assigning VA starting from them later. 940 if (config->sectionStartMap.count(sec->name)) 941 return rank; 942 rank |= RF_NOT_ADDR_SET; 943 944 // Allocatable sections go first to reduce the total PT_LOAD size and 945 // so debug info doesn't change addresses in actual code. 946 if (!(sec->flags & SHF_ALLOC)) 947 return rank | RF_NOT_ALLOC; 948 949 if (sec->type == SHT_LLVM_PART_EHDR) 950 return rank; 951 rank |= RF_NOT_PART_EHDR; 952 953 if (sec->type == SHT_LLVM_PART_PHDR) 954 return rank; 955 rank |= RF_NOT_PART_PHDR; 956 957 // Put .interp first because some loaders want to see that section 958 // on the first page of the executable file when loaded into memory. 959 if (sec->name == ".interp") 960 return rank; 961 rank |= RF_NOT_INTERP; 962 963 // Put .note sections (which make up one PT_NOTE) at the beginning so that 964 // they are likely to be included in a core file even if core file size is 965 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 966 // included in a core to match core files with executables. 967 if (sec->type == SHT_NOTE) 968 return rank; 969 rank |= RF_NOT_NOTE; 970 971 // Sort sections based on their access permission in the following 972 // order: R, RX, RWX, RW. This order is based on the following 973 // considerations: 974 // * Read-only sections come first such that they go in the 975 // PT_LOAD covering the program headers at the start of the file. 976 // * Read-only, executable sections come next. 977 // * Writable, executable sections follow such that .plt on 978 // architectures where it needs to be writable will be placed 979 // between .text and .data. 980 // * Writable sections come last, such that .bss lands at the very 981 // end of the last PT_LOAD. 982 bool isExec = sec->flags & SHF_EXECINSTR; 983 bool isWrite = sec->flags & SHF_WRITE; 984 985 if (isExec) { 986 if (isWrite) 987 rank |= RF_EXEC_WRITE; 988 else 989 rank |= RF_EXEC; 990 } else if (isWrite) { 991 rank |= RF_WRITE; 992 } else if (sec->type == SHT_PROGBITS) { 993 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 994 // .eh_frame) closer to .text. They likely contain PC or GOT relative 995 // relocations and there could be relocation overflow if other huge sections 996 // (.dynstr .dynsym) were placed in between. 997 rank |= RF_RODATA; 998 } 999 1000 // Place RelRo sections first. After considering SHT_NOBITS below, the 1001 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 1002 // where | marks where page alignment happens. An alternative ordering is 1003 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 1004 // waste more bytes due to 2 alignment places. 1005 if (!isRelroSection(sec)) 1006 rank |= RF_NOT_RELRO; 1007 1008 // If we got here we know that both A and B are in the same PT_LOAD. 1009 1010 // The TLS initialization block needs to be a single contiguous block in a R/W 1011 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 1012 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 1013 // after PROGBITS. 1014 if (!(sec->flags & SHF_TLS)) 1015 rank |= RF_NOT_TLS; 1016 1017 // Within TLS sections, or within other RelRo sections, or within non-RelRo 1018 // sections, place non-NOBITS sections first. 1019 if (sec->type == SHT_NOBITS) 1020 rank |= RF_BSS; 1021 1022 // Some architectures have additional ordering restrictions for sections 1023 // within the same PT_LOAD. 1024 if (config->emachine == EM_PPC64) { 1025 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 1026 // that we would like to make sure appear is a specific order to maximize 1027 // their coverage by a single signed 16-bit offset from the TOC base 1028 // pointer. Conversely, the special .tocbss section should be first among 1029 // all SHT_NOBITS sections. This will put it next to the loaded special 1030 // PPC64 sections (and, thus, within reach of the TOC base pointer). 1031 StringRef name = sec->name; 1032 if (name != ".tocbss") 1033 rank |= RF_PPC_NOT_TOCBSS; 1034 1035 if (name == ".toc1") 1036 rank |= RF_PPC_TOCL; 1037 1038 if (name == ".toc") 1039 rank |= RF_PPC_TOC; 1040 1041 if (name == ".got") 1042 rank |= RF_PPC_GOT; 1043 1044 if (name == ".branch_lt") 1045 rank |= RF_PPC_BRANCH_LT; 1046 } 1047 1048 if (config->emachine == EM_MIPS) { 1049 // All sections with SHF_MIPS_GPREL flag should be grouped together 1050 // because data in these sections is addressable with a gp relative address. 1051 if (sec->flags & SHF_MIPS_GPREL) 1052 rank |= RF_MIPS_GPREL; 1053 1054 if (sec->name != ".got") 1055 rank |= RF_MIPS_NOT_GOT; 1056 } 1057 1058 return rank; 1059 } 1060 1061 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 1062 const OutputSection *a = cast<OutputSection>(aCmd); 1063 const OutputSection *b = cast<OutputSection>(bCmd); 1064 1065 if (a->sortRank != b->sortRank) 1066 return a->sortRank < b->sortRank; 1067 1068 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1069 return config->sectionStartMap.lookup(a->name) < 1070 config->sectionStartMap.lookup(b->name); 1071 return false; 1072 } 1073 1074 void PhdrEntry::add(OutputSection *sec) { 1075 lastSec = sec; 1076 if (!firstSec) 1077 firstSec = sec; 1078 p_align = std::max(p_align, sec->alignment); 1079 if (p_type == PT_LOAD) 1080 sec->ptLoad = this; 1081 } 1082 1083 // The beginning and the ending of .rel[a].plt section are marked 1084 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1085 // executable. The runtime needs these symbols in order to resolve 1086 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1087 // need these symbols, since IRELATIVE relocs are resolved through GOT 1088 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1089 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1090 if (config->relocatable || needsInterpSection()) 1091 return; 1092 1093 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1094 // because .rela.plt might be empty and thus removed from output. 1095 // We'll override Out::elfHeader with In.relaIplt later when we are 1096 // sure that .rela.plt exists in output. 1097 ElfSym::relaIpltStart = addOptionalRegular( 1098 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1099 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1100 1101 ElfSym::relaIpltEnd = addOptionalRegular( 1102 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1103 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1104 } 1105 1106 template <class ELFT> 1107 void Writer<ELFT>::forEachRelSec( 1108 llvm::function_ref<void(InputSectionBase &)> fn) { 1109 // Scan all relocations. Each relocation goes through a series 1110 // of tests to determine if it needs special treatment, such as 1111 // creating GOT, PLT, copy relocations, etc. 1112 // Note that relocations for non-alloc sections are directly 1113 // processed by InputSection::relocateNonAlloc. 1114 for (InputSectionBase *isec : inputSections) 1115 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1116 fn(*isec); 1117 for (Partition &part : partitions) { 1118 for (EhInputSection *es : part.ehFrame->sections) 1119 fn(*es); 1120 if (part.armExidx && part.armExidx->isLive()) 1121 for (InputSection *ex : part.armExidx->exidxSections) 1122 fn(*ex); 1123 } 1124 } 1125 1126 // This function generates assignments for predefined symbols (e.g. _end or 1127 // _etext) and inserts them into the commands sequence to be processed at the 1128 // appropriate time. This ensures that the value is going to be correct by the 1129 // time any references to these symbols are processed and is equivalent to 1130 // defining these symbols explicitly in the linker script. 1131 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1132 if (ElfSym::globalOffsetTable) { 1133 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1134 // to the start of the .got or .got.plt section. 1135 InputSection *gotSection = in.gotPlt; 1136 if (!target->gotBaseSymInGotPlt) 1137 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1138 : cast<InputSection>(in.got); 1139 ElfSym::globalOffsetTable->section = gotSection; 1140 } 1141 1142 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1143 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1144 ElfSym::relaIpltStart->section = in.relaIplt; 1145 ElfSym::relaIpltEnd->section = in.relaIplt; 1146 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1147 } 1148 1149 PhdrEntry *last = nullptr; 1150 PhdrEntry *lastRO = nullptr; 1151 1152 for (Partition &part : partitions) { 1153 for (PhdrEntry *p : part.phdrs) { 1154 if (p->p_type != PT_LOAD) 1155 continue; 1156 last = p; 1157 if (!(p->p_flags & PF_W)) 1158 lastRO = p; 1159 } 1160 } 1161 1162 if (lastRO) { 1163 // _etext is the first location after the last read-only loadable segment. 1164 if (ElfSym::etext1) 1165 ElfSym::etext1->section = lastRO->lastSec; 1166 if (ElfSym::etext2) 1167 ElfSym::etext2->section = lastRO->lastSec; 1168 } 1169 1170 if (last) { 1171 // _edata points to the end of the last mapped initialized section. 1172 OutputSection *edata = nullptr; 1173 for (OutputSection *os : outputSections) { 1174 if (os->type != SHT_NOBITS) 1175 edata = os; 1176 if (os == last->lastSec) 1177 break; 1178 } 1179 1180 if (ElfSym::edata1) 1181 ElfSym::edata1->section = edata; 1182 if (ElfSym::edata2) 1183 ElfSym::edata2->section = edata; 1184 1185 // _end is the first location after the uninitialized data region. 1186 if (ElfSym::end1) 1187 ElfSym::end1->section = last->lastSec; 1188 if (ElfSym::end2) 1189 ElfSym::end2->section = last->lastSec; 1190 } 1191 1192 if (ElfSym::bss) 1193 ElfSym::bss->section = findSection(".bss"); 1194 1195 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1196 // be equal to the _gp symbol's value. 1197 if (ElfSym::mipsGp) { 1198 // Find GP-relative section with the lowest address 1199 // and use this address to calculate default _gp value. 1200 for (OutputSection *os : outputSections) { 1201 if (os->flags & SHF_MIPS_GPREL) { 1202 ElfSym::mipsGp->section = os; 1203 ElfSym::mipsGp->value = 0x7ff0; 1204 break; 1205 } 1206 } 1207 } 1208 } 1209 1210 // We want to find how similar two ranks are. 1211 // The more branches in getSectionRank that match, the more similar they are. 1212 // Since each branch corresponds to a bit flag, we can just use 1213 // countLeadingZeros. 1214 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1215 return countLeadingZeros(a->sortRank ^ b->sortRank); 1216 } 1217 1218 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1219 auto *sec = dyn_cast<OutputSection>(b); 1220 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1221 } 1222 1223 // When placing orphan sections, we want to place them after symbol assignments 1224 // so that an orphan after 1225 // begin_foo = .; 1226 // foo : { *(foo) } 1227 // end_foo = .; 1228 // doesn't break the intended meaning of the begin/end symbols. 1229 // We don't want to go over sections since findOrphanPos is the 1230 // one in charge of deciding the order of the sections. 1231 // We don't want to go over changes to '.', since doing so in 1232 // rx_sec : { *(rx_sec) } 1233 // . = ALIGN(0x1000); 1234 // /* The RW PT_LOAD starts here*/ 1235 // rw_sec : { *(rw_sec) } 1236 // would mean that the RW PT_LOAD would become unaligned. 1237 static bool shouldSkip(BaseCommand *cmd) { 1238 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1239 return assign->name != "."; 1240 return false; 1241 } 1242 1243 // We want to place orphan sections so that they share as much 1244 // characteristics with their neighbors as possible. For example, if 1245 // both are rw, or both are tls. 1246 static std::vector<BaseCommand *>::iterator 1247 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1248 std::vector<BaseCommand *>::iterator e) { 1249 OutputSection *sec = cast<OutputSection>(*e); 1250 1251 // Find the first element that has as close a rank as possible. 1252 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1253 return getRankProximity(sec, a) < getRankProximity(sec, b); 1254 }); 1255 if (i == e) 1256 return e; 1257 1258 // Consider all existing sections with the same proximity. 1259 int proximity = getRankProximity(sec, *i); 1260 for (; i != e; ++i) { 1261 auto *curSec = dyn_cast<OutputSection>(*i); 1262 if (!curSec || !curSec->hasInputSections) 1263 continue; 1264 if (getRankProximity(sec, curSec) != proximity || 1265 sec->sortRank < curSec->sortRank) 1266 break; 1267 } 1268 1269 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1270 auto *os = dyn_cast<OutputSection>(cmd); 1271 return os && os->hasInputSections; 1272 }; 1273 auto j = std::find_if(llvm::make_reverse_iterator(i), 1274 llvm::make_reverse_iterator(b), 1275 isOutputSecWithInputSections); 1276 i = j.base(); 1277 1278 // As a special case, if the orphan section is the last section, put 1279 // it at the very end, past any other commands. 1280 // This matches bfd's behavior and is convenient when the linker script fully 1281 // specifies the start of the file, but doesn't care about the end (the non 1282 // alloc sections for example). 1283 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1284 if (nextSec == e) 1285 return e; 1286 1287 while (i != e && shouldSkip(*i)) 1288 ++i; 1289 return i; 1290 } 1291 1292 // Adds random priorities to sections not already in the map. 1293 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1294 if (!config->shuffleSectionSeed) 1295 return; 1296 1297 std::vector<int> priorities(inputSections.size() - order.size()); 1298 // Existing priorities are < 0, so use priorities >= 0 for the missing 1299 // sections. 1300 int curPrio = 0; 1301 for (int &prio : priorities) 1302 prio = curPrio++; 1303 uint32_t seed = *config->shuffleSectionSeed; 1304 if (seed == UINT32_MAX) { 1305 // If --shuffle-sections=-1, reverse the section order. The section order is 1306 // stable even if the number of sections changes. This is useful to catch 1307 // issues like static initialization order fiasco reliably. 1308 std::reverse(priorities.begin(), priorities.end()); 1309 } else { 1310 std::mt19937 g(seed ? seed : std::random_device()()); 1311 llvm::shuffle(priorities.begin(), priorities.end(), g); 1312 } 1313 int prioIndex = 0; 1314 for (InputSectionBase *sec : inputSections) { 1315 if (order.try_emplace(sec, priorities[prioIndex]).second) 1316 ++prioIndex; 1317 } 1318 } 1319 1320 // Builds section order for handling --symbol-ordering-file. 1321 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1322 DenseMap<const InputSectionBase *, int> sectionOrder; 1323 // Use the rarely used option -call-graph-ordering-file to sort sections. 1324 if (!config->callGraphProfile.empty()) 1325 return computeCallGraphProfileOrder(); 1326 1327 if (config->symbolOrderingFile.empty()) 1328 return sectionOrder; 1329 1330 struct SymbolOrderEntry { 1331 int priority; 1332 bool present; 1333 }; 1334 1335 // Build a map from symbols to their priorities. Symbols that didn't 1336 // appear in the symbol ordering file have the lowest priority 0. 1337 // All explicitly mentioned symbols have negative (higher) priorities. 1338 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1339 int priority = -config->symbolOrderingFile.size(); 1340 for (StringRef s : config->symbolOrderingFile) 1341 symbolOrder.insert({s, {priority++, false}}); 1342 1343 // Build a map from sections to their priorities. 1344 auto addSym = [&](Symbol &sym) { 1345 auto it = symbolOrder.find(sym.getName()); 1346 if (it == symbolOrder.end()) 1347 return; 1348 SymbolOrderEntry &ent = it->second; 1349 ent.present = true; 1350 1351 maybeWarnUnorderableSymbol(&sym); 1352 1353 if (auto *d = dyn_cast<Defined>(&sym)) { 1354 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1355 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1356 priority = std::min(priority, ent.priority); 1357 } 1358 } 1359 }; 1360 1361 // We want both global and local symbols. We get the global ones from the 1362 // symbol table and iterate the object files for the local ones. 1363 for (Symbol *sym : symtab->symbols()) 1364 if (!sym->isLazy()) 1365 addSym(*sym); 1366 1367 for (InputFile *file : objectFiles) 1368 for (Symbol *sym : file->getSymbols()) { 1369 if (!sym->isLocal()) 1370 break; 1371 addSym(*sym); 1372 } 1373 1374 if (config->warnSymbolOrdering) 1375 for (auto orderEntry : symbolOrder) 1376 if (!orderEntry.second.present) 1377 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1378 1379 return sectionOrder; 1380 } 1381 1382 // Sorts the sections in ISD according to the provided section order. 1383 static void 1384 sortISDBySectionOrder(InputSectionDescription *isd, 1385 const DenseMap<const InputSectionBase *, int> &order) { 1386 std::vector<InputSection *> unorderedSections; 1387 std::vector<std::pair<InputSection *, int>> orderedSections; 1388 uint64_t unorderedSize = 0; 1389 1390 for (InputSection *isec : isd->sections) { 1391 auto i = order.find(isec); 1392 if (i == order.end()) { 1393 unorderedSections.push_back(isec); 1394 unorderedSize += isec->getSize(); 1395 continue; 1396 } 1397 orderedSections.push_back({isec, i->second}); 1398 } 1399 llvm::sort(orderedSections, llvm::less_second()); 1400 1401 // Find an insertion point for the ordered section list in the unordered 1402 // section list. On targets with limited-range branches, this is the mid-point 1403 // of the unordered section list. This decreases the likelihood that a range 1404 // extension thunk will be needed to enter or exit the ordered region. If the 1405 // ordered section list is a list of hot functions, we can generally expect 1406 // the ordered functions to be called more often than the unordered functions, 1407 // making it more likely that any particular call will be within range, and 1408 // therefore reducing the number of thunks required. 1409 // 1410 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1411 // If the layout is: 1412 // 1413 // 8MB hot 1414 // 32MB cold 1415 // 1416 // only the first 8-16MB of the cold code (depending on which hot function it 1417 // is actually calling) can call the hot code without a range extension thunk. 1418 // However, if we use this layout: 1419 // 1420 // 16MB cold 1421 // 8MB hot 1422 // 16MB cold 1423 // 1424 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1425 // of the second block of cold code can call the hot code without a thunk. So 1426 // we effectively double the amount of code that could potentially call into 1427 // the hot code without a thunk. 1428 size_t insPt = 0; 1429 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1430 uint64_t unorderedPos = 0; 1431 for (; insPt != unorderedSections.size(); ++insPt) { 1432 unorderedPos += unorderedSections[insPt]->getSize(); 1433 if (unorderedPos > unorderedSize / 2) 1434 break; 1435 } 1436 } 1437 1438 isd->sections.clear(); 1439 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1440 isd->sections.push_back(isec); 1441 for (std::pair<InputSection *, int> p : orderedSections) 1442 isd->sections.push_back(p.first); 1443 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1444 isd->sections.push_back(isec); 1445 } 1446 1447 static void sortSection(OutputSection *sec, 1448 const DenseMap<const InputSectionBase *, int> &order) { 1449 StringRef name = sec->name; 1450 1451 // Never sort these. 1452 if (name == ".init" || name == ".fini") 1453 return; 1454 1455 // IRelative relocations that usually live in the .rel[a].dyn section should 1456 // be processed last by the dynamic loader. To achieve that we add synthetic 1457 // sections in the required order from the beginning so that the in.relaIplt 1458 // section is placed last in an output section. Here we just do not apply 1459 // sorting for an output section which holds the in.relaIplt section. 1460 if (in.relaIplt->getParent() == sec) 1461 return; 1462 1463 // Sort input sections by priority using the list provided by 1464 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1465 // digit radix sort. The sections may be sorted stably again by a more 1466 // significant key. 1467 if (!order.empty()) 1468 for (BaseCommand *b : sec->sectionCommands) 1469 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1470 sortISDBySectionOrder(isd, order); 1471 1472 // Sort input sections by section name suffixes for 1473 // __attribute__((init_priority(N))). 1474 if (name == ".init_array" || name == ".fini_array") { 1475 if (!script->hasSectionsCommand) 1476 sec->sortInitFini(); 1477 return; 1478 } 1479 1480 // Sort input sections by the special rule for .ctors and .dtors. 1481 if (name == ".ctors" || name == ".dtors") { 1482 if (!script->hasSectionsCommand) 1483 sec->sortCtorsDtors(); 1484 return; 1485 } 1486 1487 // .toc is allocated just after .got and is accessed using GOT-relative 1488 // relocations. Object files compiled with small code model have an 1489 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1490 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1491 // sections having smaller relocation offsets are at beginning of .toc 1492 if (config->emachine == EM_PPC64 && name == ".toc") { 1493 if (script->hasSectionsCommand) 1494 return; 1495 assert(sec->sectionCommands.size() == 1); 1496 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1497 llvm::stable_sort(isd->sections, 1498 [](const InputSection *a, const InputSection *b) -> bool { 1499 return a->file->ppc64SmallCodeModelTocRelocs && 1500 !b->file->ppc64SmallCodeModelTocRelocs; 1501 }); 1502 return; 1503 } 1504 } 1505 1506 // If no layout was provided by linker script, we want to apply default 1507 // sorting for special input sections. This also handles --symbol-ordering-file. 1508 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1509 // Build the order once since it is expensive. 1510 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1511 maybeShuffle(order); 1512 for (BaseCommand *base : script->sectionCommands) 1513 if (auto *sec = dyn_cast<OutputSection>(base)) 1514 sortSection(sec, order); 1515 } 1516 1517 template <class ELFT> void Writer<ELFT>::sortSections() { 1518 llvm::TimeTraceScope timeScope("Sort sections"); 1519 script->adjustSectionsBeforeSorting(); 1520 1521 // Don't sort if using -r. It is not necessary and we want to preserve the 1522 // relative order for SHF_LINK_ORDER sections. 1523 if (config->relocatable) 1524 return; 1525 1526 sortInputSections(); 1527 1528 for (BaseCommand *base : script->sectionCommands) { 1529 auto *os = dyn_cast<OutputSection>(base); 1530 if (!os) 1531 continue; 1532 os->sortRank = getSectionRank(os); 1533 1534 // We want to assign rude approximation values to outSecOff fields 1535 // to know the relative order of the input sections. We use it for 1536 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1537 uint64_t i = 0; 1538 for (InputSection *sec : getInputSections(os)) 1539 sec->outSecOff = i++; 1540 } 1541 1542 if (!script->hasSectionsCommand) { 1543 // We know that all the OutputSections are contiguous in this case. 1544 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1545 std::stable_sort( 1546 llvm::find_if(script->sectionCommands, isSection), 1547 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1548 compareSections); 1549 1550 // Process INSERT commands. From this point onwards the order of 1551 // script->sectionCommands is fixed. 1552 script->processInsertCommands(); 1553 return; 1554 } 1555 1556 script->processInsertCommands(); 1557 1558 // Orphan sections are sections present in the input files which are 1559 // not explicitly placed into the output file by the linker script. 1560 // 1561 // The sections in the linker script are already in the correct 1562 // order. We have to figuere out where to insert the orphan 1563 // sections. 1564 // 1565 // The order of the sections in the script is arbitrary and may not agree with 1566 // compareSections. This means that we cannot easily define a strict weak 1567 // ordering. To see why, consider a comparison of a section in the script and 1568 // one not in the script. We have a two simple options: 1569 // * Make them equivalent (a is not less than b, and b is not less than a). 1570 // The problem is then that equivalence has to be transitive and we can 1571 // have sections a, b and c with only b in a script and a less than c 1572 // which breaks this property. 1573 // * Use compareSectionsNonScript. Given that the script order doesn't have 1574 // to match, we can end up with sections a, b, c, d where b and c are in the 1575 // script and c is compareSectionsNonScript less than b. In which case d 1576 // can be equivalent to c, a to b and d < a. As a concrete example: 1577 // .a (rx) # not in script 1578 // .b (rx) # in script 1579 // .c (ro) # in script 1580 // .d (ro) # not in script 1581 // 1582 // The way we define an order then is: 1583 // * Sort only the orphan sections. They are in the end right now. 1584 // * Move each orphan section to its preferred position. We try 1585 // to put each section in the last position where it can share 1586 // a PT_LOAD. 1587 // 1588 // There is some ambiguity as to where exactly a new entry should be 1589 // inserted, because Commands contains not only output section 1590 // commands but also other types of commands such as symbol assignment 1591 // expressions. There's no correct answer here due to the lack of the 1592 // formal specification of the linker script. We use heuristics to 1593 // determine whether a new output command should be added before or 1594 // after another commands. For the details, look at shouldSkip 1595 // function. 1596 1597 auto i = script->sectionCommands.begin(); 1598 auto e = script->sectionCommands.end(); 1599 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1600 if (auto *sec = dyn_cast<OutputSection>(base)) 1601 return sec->sectionIndex == UINT32_MAX; 1602 return false; 1603 }); 1604 1605 // Sort the orphan sections. 1606 std::stable_sort(nonScriptI, e, compareSections); 1607 1608 // As a horrible special case, skip the first . assignment if it is before any 1609 // section. We do this because it is common to set a load address by starting 1610 // the script with ". = 0xabcd" and the expectation is that every section is 1611 // after that. 1612 auto firstSectionOrDotAssignment = 1613 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1614 if (firstSectionOrDotAssignment != e && 1615 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1616 ++firstSectionOrDotAssignment; 1617 i = firstSectionOrDotAssignment; 1618 1619 while (nonScriptI != e) { 1620 auto pos = findOrphanPos(i, nonScriptI); 1621 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1622 1623 // As an optimization, find all sections with the same sort rank 1624 // and insert them with one rotate. 1625 unsigned rank = orphan->sortRank; 1626 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1627 return cast<OutputSection>(cmd)->sortRank != rank; 1628 }); 1629 std::rotate(pos, nonScriptI, end); 1630 nonScriptI = end; 1631 } 1632 1633 script->adjustSectionsAfterSorting(); 1634 } 1635 1636 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1637 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1638 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1639 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1640 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1641 if (!la || !lb) 1642 return la && !lb; 1643 OutputSection *aOut = la->getParent(); 1644 OutputSection *bOut = lb->getParent(); 1645 1646 if (aOut != bOut) 1647 return aOut->addr < bOut->addr; 1648 return la->outSecOff < lb->outSecOff; 1649 } 1650 1651 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1652 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1653 for (OutputSection *sec : outputSections) { 1654 if (!(sec->flags & SHF_LINK_ORDER)) 1655 continue; 1656 1657 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1658 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1659 if (!config->relocatable && config->emachine == EM_ARM && 1660 sec->type == SHT_ARM_EXIDX) 1661 continue; 1662 1663 // Link order may be distributed across several InputSectionDescriptions. 1664 // Sorting is performed separately. 1665 std::vector<InputSection **> scriptSections; 1666 std::vector<InputSection *> sections; 1667 for (BaseCommand *base : sec->sectionCommands) { 1668 auto *isd = dyn_cast<InputSectionDescription>(base); 1669 if (!isd) 1670 continue; 1671 bool hasLinkOrder = false; 1672 scriptSections.clear(); 1673 sections.clear(); 1674 for (InputSection *&isec : isd->sections) { 1675 if (isec->flags & SHF_LINK_ORDER) { 1676 InputSection *link = isec->getLinkOrderDep(); 1677 if (link && !link->getParent()) 1678 error(toString(isec) + ": sh_link points to discarded section " + 1679 toString(link)); 1680 hasLinkOrder = true; 1681 } 1682 scriptSections.push_back(&isec); 1683 sections.push_back(isec); 1684 } 1685 if (hasLinkOrder && errorCount() == 0) { 1686 llvm::stable_sort(sections, compareByFilePosition); 1687 for (int i = 0, n = sections.size(); i != n; ++i) 1688 *scriptSections[i] = sections[i]; 1689 } 1690 } 1691 } 1692 } 1693 1694 static void finalizeSynthetic(SyntheticSection *sec) { 1695 if (sec && sec->isNeeded() && sec->getParent()) { 1696 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1697 sec->finalizeContents(); 1698 } 1699 } 1700 1701 // We need to generate and finalize the content that depends on the address of 1702 // InputSections. As the generation of the content may also alter InputSection 1703 // addresses we must converge to a fixed point. We do that here. See the comment 1704 // in Writer<ELFT>::finalizeSections(). 1705 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1706 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1707 ThunkCreator tc; 1708 AArch64Err843419Patcher a64p; 1709 ARMErr657417Patcher a32p; 1710 script->assignAddresses(); 1711 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1712 // do require the relative addresses of OutputSections because linker scripts 1713 // can assign Virtual Addresses to OutputSections that are not monotonically 1714 // increasing. 1715 for (Partition &part : partitions) 1716 finalizeSynthetic(part.armExidx); 1717 resolveShfLinkOrder(); 1718 1719 // Converts call x@GDPLT to call __tls_get_addr 1720 if (config->emachine == EM_HEXAGON) 1721 hexagonTLSSymbolUpdate(outputSections); 1722 1723 int assignPasses = 0; 1724 for (;;) { 1725 bool changed = target->needsThunks && tc.createThunks(outputSections); 1726 1727 // With Thunk Size much smaller than branch range we expect to 1728 // converge quickly; if we get to 15 something has gone wrong. 1729 if (changed && tc.pass >= 15) { 1730 error("thunk creation not converged"); 1731 break; 1732 } 1733 1734 if (config->fixCortexA53Errata843419) { 1735 if (changed) 1736 script->assignAddresses(); 1737 changed |= a64p.createFixes(); 1738 } 1739 if (config->fixCortexA8) { 1740 if (changed) 1741 script->assignAddresses(); 1742 changed |= a32p.createFixes(); 1743 } 1744 1745 if (in.mipsGot) 1746 in.mipsGot->updateAllocSize(); 1747 1748 for (Partition &part : partitions) { 1749 changed |= part.relaDyn->updateAllocSize(); 1750 if (part.relrDyn) 1751 changed |= part.relrDyn->updateAllocSize(); 1752 } 1753 1754 const Defined *changedSym = script->assignAddresses(); 1755 if (!changed) { 1756 // Some symbols may be dependent on section addresses. When we break the 1757 // loop, the symbol values are finalized because a previous 1758 // assignAddresses() finalized section addresses. 1759 if (!changedSym) 1760 break; 1761 if (++assignPasses == 5) { 1762 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1763 " does not converge"); 1764 break; 1765 } 1766 } 1767 } 1768 1769 // If addrExpr is set, the address may not be a multiple of the alignment. 1770 // Warn because this is error-prone. 1771 for (BaseCommand *cmd : script->sectionCommands) 1772 if (auto *os = dyn_cast<OutputSection>(cmd)) 1773 if (os->addr % os->alignment != 0) 1774 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1775 os->name + " is not a multiple of alignment (" + 1776 Twine(os->alignment) + ")"); 1777 } 1778 1779 // If Input Sections have been shrunk (basic block sections) then 1780 // update symbol values and sizes associated with these sections. With basic 1781 // block sections, input sections can shrink when the jump instructions at 1782 // the end of the section are relaxed. 1783 static void fixSymbolsAfterShrinking() { 1784 for (InputFile *File : objectFiles) { 1785 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1786 auto *def = dyn_cast<Defined>(Sym); 1787 if (!def) 1788 return; 1789 1790 const SectionBase *sec = def->section; 1791 if (!sec) 1792 return; 1793 1794 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl); 1795 if (!inputSec || !inputSec->bytesDropped) 1796 return; 1797 1798 const size_t OldSize = inputSec->data().size(); 1799 const size_t NewSize = OldSize - inputSec->bytesDropped; 1800 1801 if (def->value > NewSize && def->value <= OldSize) { 1802 LLVM_DEBUG(llvm::dbgs() 1803 << "Moving symbol " << Sym->getName() << " from " 1804 << def->value << " to " 1805 << def->value - inputSec->bytesDropped << " bytes\n"); 1806 def->value -= inputSec->bytesDropped; 1807 return; 1808 } 1809 1810 if (def->value + def->size > NewSize && def->value <= OldSize && 1811 def->value + def->size <= OldSize) { 1812 LLVM_DEBUG(llvm::dbgs() 1813 << "Shrinking symbol " << Sym->getName() << " from " 1814 << def->size << " to " << def->size - inputSec->bytesDropped 1815 << " bytes\n"); 1816 def->size -= inputSec->bytesDropped; 1817 } 1818 }); 1819 } 1820 } 1821 1822 // If basic block sections exist, there are opportunities to delete fall thru 1823 // jumps and shrink jump instructions after basic block reordering. This 1824 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1825 // option is used. 1826 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1827 assert(config->optimizeBBJumps); 1828 1829 script->assignAddresses(); 1830 // For every output section that has executable input sections, this 1831 // does the following: 1832 // 1. Deletes all direct jump instructions in input sections that 1833 // jump to the following section as it is not required. 1834 // 2. If there are two consecutive jump instructions, it checks 1835 // if they can be flipped and one can be deleted. 1836 for (OutputSection *os : outputSections) { 1837 if (!(os->flags & SHF_EXECINSTR)) 1838 continue; 1839 std::vector<InputSection *> sections = getInputSections(os); 1840 std::vector<unsigned> result(sections.size()); 1841 // Delete all fall through jump instructions. Also, check if two 1842 // consecutive jump instructions can be flipped so that a fall 1843 // through jmp instruction can be deleted. 1844 parallelForEachN(0, sections.size(), [&](size_t i) { 1845 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1846 InputSection &is = *sections[i]; 1847 result[i] = 1848 target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0; 1849 }); 1850 size_t numDeleted = std::count(result.begin(), result.end(), 1); 1851 if (numDeleted > 0) { 1852 script->assignAddresses(); 1853 LLVM_DEBUG(llvm::dbgs() 1854 << "Removing " << numDeleted << " fall through jumps\n"); 1855 } 1856 } 1857 1858 fixSymbolsAfterShrinking(); 1859 1860 for (OutputSection *os : outputSections) { 1861 std::vector<InputSection *> sections = getInputSections(os); 1862 for (InputSection *is : sections) 1863 is->trim(); 1864 } 1865 } 1866 1867 // In order to allow users to manipulate linker-synthesized sections, 1868 // we had to add synthetic sections to the input section list early, 1869 // even before we make decisions whether they are needed. This allows 1870 // users to write scripts like this: ".mygot : { .got }". 1871 // 1872 // Doing it has an unintended side effects. If it turns out that we 1873 // don't need a .got (for example) at all because there's no 1874 // relocation that needs a .got, we don't want to emit .got. 1875 // 1876 // To deal with the above problem, this function is called after 1877 // scanRelocations is called to remove synthetic sections that turn 1878 // out to be empty. 1879 static void removeUnusedSyntheticSections() { 1880 // All input synthetic sections that can be empty are placed after 1881 // all regular ones. We iterate over them all and exit at first 1882 // non-synthetic. 1883 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1884 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1885 if (!ss) 1886 return; 1887 OutputSection *os = ss->getParent(); 1888 if (!os || ss->isNeeded()) 1889 continue; 1890 1891 // If we reach here, then ss is an unused synthetic section and we want to 1892 // remove it from the corresponding input section description, and 1893 // orphanSections. 1894 for (BaseCommand *b : os->sectionCommands) 1895 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1896 llvm::erase_if(isd->sections, 1897 [=](InputSection *isec) { return isec == ss; }); 1898 llvm::erase_if(script->orphanSections, 1899 [=](const InputSectionBase *isec) { return isec == ss; }); 1900 } 1901 } 1902 1903 // Create output section objects and add them to OutputSections. 1904 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1905 Out::preinitArray = findSection(".preinit_array"); 1906 Out::initArray = findSection(".init_array"); 1907 Out::finiArray = findSection(".fini_array"); 1908 1909 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1910 // symbols for sections, so that the runtime can get the start and end 1911 // addresses of each section by section name. Add such symbols. 1912 if (!config->relocatable) { 1913 addStartEndSymbols(); 1914 for (BaseCommand *base : script->sectionCommands) 1915 if (auto *sec = dyn_cast<OutputSection>(base)) 1916 addStartStopSymbols(sec); 1917 } 1918 1919 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1920 // It should be okay as no one seems to care about the type. 1921 // Even the author of gold doesn't remember why gold behaves that way. 1922 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1923 if (mainPart->dynamic->parent) 1924 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1925 STV_HIDDEN, STT_NOTYPE, 1926 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1927 1928 // Define __rel[a]_iplt_{start,end} symbols if needed. 1929 addRelIpltSymbols(); 1930 1931 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1932 // should only be defined in an executable. If .sdata does not exist, its 1933 // value/section does not matter but it has to be relative, so set its 1934 // st_shndx arbitrarily to 1 (Out::elfHeader). 1935 if (config->emachine == EM_RISCV && !config->shared) { 1936 OutputSection *sec = findSection(".sdata"); 1937 ElfSym::riscvGlobalPointer = 1938 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1939 0x800, STV_DEFAULT, STB_GLOBAL); 1940 } 1941 1942 if (config->emachine == EM_X86_64) { 1943 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1944 // way that: 1945 // 1946 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1947 // computes 0. 1948 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1949 // the TLS block). 1950 // 1951 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1952 // an absolute symbol of zero. This is different from GNU linkers which 1953 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1954 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1955 if (s && s->isUndefined()) { 1956 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1957 STT_TLS, /*value=*/0, 0, 1958 /*section=*/nullptr}); 1959 ElfSym::tlsModuleBase = cast<Defined>(s); 1960 } 1961 } 1962 1963 { 1964 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1965 // This responsible for splitting up .eh_frame section into 1966 // pieces. The relocation scan uses those pieces, so this has to be 1967 // earlier. 1968 for (Partition &part : partitions) 1969 finalizeSynthetic(part.ehFrame); 1970 } 1971 1972 for (Symbol *sym : symtab->symbols()) 1973 sym->isPreemptible = computeIsPreemptible(*sym); 1974 1975 // Change values of linker-script-defined symbols from placeholders (assigned 1976 // by declareSymbols) to actual definitions. 1977 script->processSymbolAssignments(); 1978 1979 { 1980 llvm::TimeTraceScope timeScope("Scan relocations"); 1981 // Scan relocations. This must be done after every symbol is declared so 1982 // that we can correctly decide if a dynamic relocation is needed. This is 1983 // called after processSymbolAssignments() because it needs to know whether 1984 // a linker-script-defined symbol is absolute. 1985 ppc64noTocRelax.clear(); 1986 if (!config->relocatable) { 1987 forEachRelSec(scanRelocations<ELFT>); 1988 reportUndefinedSymbols<ELFT>(); 1989 } 1990 } 1991 1992 if (in.plt && in.plt->isNeeded()) 1993 in.plt->addSymbols(); 1994 if (in.iplt && in.iplt->isNeeded()) 1995 in.iplt->addSymbols(); 1996 1997 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 1998 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1999 // entries are seen. These cases would otherwise lead to runtime errors 2000 // reported by the dynamic linker. 2001 // 2002 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 2003 // catch more cases. That is too much for us. Our approach resembles the one 2004 // used in ld.gold, achieves a good balance to be useful but not too smart. 2005 for (SharedFile *file : sharedFiles) 2006 file->allNeededIsKnown = 2007 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 2008 return symtab->soNames.count(needed); 2009 }); 2010 2011 for (Symbol *sym : symtab->symbols()) 2012 if (sym->isUndefined() && !sym->isWeak()) 2013 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 2014 if (f->allNeededIsKnown) { 2015 auto diagnose = config->unresolvedSymbolsInShlib == 2016 UnresolvedPolicy::ReportError 2017 ? errorOrWarn 2018 : warn; 2019 diagnose(toString(f) + ": undefined reference to " + 2020 toString(*sym) + " [--no-allow-shlib-undefined]"); 2021 } 2022 } 2023 2024 { 2025 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 2026 // Now that we have defined all possible global symbols including linker- 2027 // synthesized ones. Visit all symbols to give the finishing touches. 2028 for (Symbol *sym : symtab->symbols()) { 2029 if (!includeInSymtab(*sym)) 2030 continue; 2031 if (in.symTab) 2032 in.symTab->addSymbol(sym); 2033 2034 if (sym->includeInDynsym()) { 2035 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 2036 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 2037 if (file->isNeeded && !sym->isUndefined()) 2038 addVerneed(sym); 2039 } 2040 } 2041 2042 // We also need to scan the dynamic relocation tables of the other 2043 // partitions and add any referenced symbols to the partition's dynsym. 2044 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2045 DenseSet<Symbol *> syms; 2046 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2047 syms.insert(e.sym); 2048 for (DynamicReloc &reloc : part.relaDyn->relocs) 2049 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 2050 part.dynSymTab->addSymbol(reloc.sym); 2051 } 2052 } 2053 2054 // Do not proceed if there was an undefined symbol. 2055 if (errorCount()) 2056 return; 2057 2058 if (in.mipsGot) 2059 in.mipsGot->build(); 2060 2061 removeUnusedSyntheticSections(); 2062 script->diagnoseOrphanHandling(); 2063 2064 sortSections(); 2065 2066 // Now that we have the final list, create a list of all the 2067 // OutputSections for convenience. 2068 for (BaseCommand *base : script->sectionCommands) 2069 if (auto *sec = dyn_cast<OutputSection>(base)) 2070 outputSections.push_back(sec); 2071 2072 // Prefer command line supplied address over other constraints. 2073 for (OutputSection *sec : outputSections) { 2074 auto i = config->sectionStartMap.find(sec->name); 2075 if (i != config->sectionStartMap.end()) 2076 sec->addrExpr = [=] { return i->second; }; 2077 } 2078 2079 // With the outputSections available check for GDPLT relocations 2080 // and add __tls_get_addr symbol if needed. 2081 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2082 Symbol *sym = symtab->addSymbol(Undefined{ 2083 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2084 sym->isPreemptible = true; 2085 partitions[0].dynSymTab->addSymbol(sym); 2086 } 2087 2088 // This is a bit of a hack. A value of 0 means undef, so we set it 2089 // to 1 to make __ehdr_start defined. The section number is not 2090 // particularly relevant. 2091 Out::elfHeader->sectionIndex = 1; 2092 2093 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 2094 OutputSection *sec = outputSections[i]; 2095 sec->sectionIndex = i + 1; 2096 sec->shName = in.shStrTab->addString(sec->name); 2097 } 2098 2099 // Binary and relocatable output does not have PHDRS. 2100 // The headers have to be created before finalize as that can influence the 2101 // image base and the dynamic section on mips includes the image base. 2102 if (!config->relocatable && !config->oFormatBinary) { 2103 for (Partition &part : partitions) { 2104 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2105 : createPhdrs(part); 2106 if (config->emachine == EM_ARM) { 2107 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2108 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2109 } 2110 if (config->emachine == EM_MIPS) { 2111 // Add separate segments for MIPS-specific sections. 2112 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2113 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2114 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2115 } 2116 } 2117 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2118 2119 // Find the TLS segment. This happens before the section layout loop so that 2120 // Android relocation packing can look up TLS symbol addresses. We only need 2121 // to care about the main partition here because all TLS symbols were moved 2122 // to the main partition (see MarkLive.cpp). 2123 for (PhdrEntry *p : mainPart->phdrs) 2124 if (p->p_type == PT_TLS) 2125 Out::tlsPhdr = p; 2126 } 2127 2128 // Some symbols are defined in term of program headers. Now that we 2129 // have the headers, we can find out which sections they point to. 2130 setReservedSymbolSections(); 2131 2132 { 2133 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2134 2135 finalizeSynthetic(in.bss); 2136 finalizeSynthetic(in.bssRelRo); 2137 finalizeSynthetic(in.symTabShndx); 2138 finalizeSynthetic(in.shStrTab); 2139 finalizeSynthetic(in.strTab); 2140 finalizeSynthetic(in.got); 2141 finalizeSynthetic(in.mipsGot); 2142 finalizeSynthetic(in.igotPlt); 2143 finalizeSynthetic(in.gotPlt); 2144 finalizeSynthetic(in.relaIplt); 2145 finalizeSynthetic(in.relaPlt); 2146 finalizeSynthetic(in.plt); 2147 finalizeSynthetic(in.iplt); 2148 finalizeSynthetic(in.ppc32Got2); 2149 finalizeSynthetic(in.partIndex); 2150 2151 // Dynamic section must be the last one in this list and dynamic 2152 // symbol table section (dynSymTab) must be the first one. 2153 for (Partition &part : partitions) { 2154 finalizeSynthetic(part.dynSymTab); 2155 finalizeSynthetic(part.gnuHashTab); 2156 finalizeSynthetic(part.hashTab); 2157 finalizeSynthetic(part.verDef); 2158 finalizeSynthetic(part.relaDyn); 2159 finalizeSynthetic(part.relrDyn); 2160 finalizeSynthetic(part.ehFrameHdr); 2161 finalizeSynthetic(part.verSym); 2162 finalizeSynthetic(part.verNeed); 2163 finalizeSynthetic(part.dynamic); 2164 } 2165 } 2166 2167 if (!script->hasSectionsCommand && !config->relocatable) 2168 fixSectionAlignments(); 2169 2170 // This is used to: 2171 // 1) Create "thunks": 2172 // Jump instructions in many ISAs have small displacements, and therefore 2173 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2174 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2175 // responsibility to create and insert small pieces of code between 2176 // sections to extend the ranges if jump targets are out of range. Such 2177 // code pieces are called "thunks". 2178 // 2179 // We add thunks at this stage. We couldn't do this before this point 2180 // because this is the earliest point where we know sizes of sections and 2181 // their layouts (that are needed to determine if jump targets are in 2182 // range). 2183 // 2184 // 2) Update the sections. We need to generate content that depends on the 2185 // address of InputSections. For example, MIPS GOT section content or 2186 // android packed relocations sections content. 2187 // 2188 // 3) Assign the final values for the linker script symbols. Linker scripts 2189 // sometimes using forward symbol declarations. We want to set the correct 2190 // values. They also might change after adding the thunks. 2191 finalizeAddressDependentContent(); 2192 if (errorCount()) 2193 return; 2194 2195 { 2196 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2197 // finalizeAddressDependentContent may have added local symbols to the 2198 // static symbol table. 2199 finalizeSynthetic(in.symTab); 2200 finalizeSynthetic(in.ppc64LongBranchTarget); 2201 } 2202 2203 // Relaxation to delete inter-basic block jumps created by basic block 2204 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2205 // can relax jump instructions based on symbol offset. 2206 if (config->optimizeBBJumps) 2207 optimizeBasicBlockJumps(); 2208 2209 // Fill other section headers. The dynamic table is finalized 2210 // at the end because some tags like RELSZ depend on result 2211 // of finalizing other sections. 2212 for (OutputSection *sec : outputSections) 2213 sec->finalize(); 2214 } 2215 2216 // Ensure data sections are not mixed with executable sections when 2217 // -execute-only is used. -execute-only is a feature to make pages executable 2218 // but not readable, and the feature is currently supported only on AArch64. 2219 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2220 if (!config->executeOnly) 2221 return; 2222 2223 for (OutputSection *os : outputSections) 2224 if (os->flags & SHF_EXECINSTR) 2225 for (InputSection *isec : getInputSections(os)) 2226 if (!(isec->flags & SHF_EXECINSTR)) 2227 error("cannot place " + toString(isec) + " into " + toString(os->name) + 2228 ": -execute-only does not support intermingling data and code"); 2229 } 2230 2231 // The linker is expected to define SECNAME_start and SECNAME_end 2232 // symbols for a few sections. This function defines them. 2233 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2234 // If a section does not exist, there's ambiguity as to how we 2235 // define _start and _end symbols for an init/fini section. Since 2236 // the loader assume that the symbols are always defined, we need to 2237 // always define them. But what value? The loader iterates over all 2238 // pointers between _start and _end to run global ctors/dtors, so if 2239 // the section is empty, their symbol values don't actually matter 2240 // as long as _start and _end point to the same location. 2241 // 2242 // That said, we don't want to set the symbols to 0 (which is 2243 // probably the simplest value) because that could cause some 2244 // program to fail to link due to relocation overflow, if their 2245 // program text is above 2 GiB. We use the address of the .text 2246 // section instead to prevent that failure. 2247 // 2248 // In rare situations, the .text section may not exist. If that's the 2249 // case, use the image base address as a last resort. 2250 OutputSection *Default = findSection(".text"); 2251 if (!Default) 2252 Default = Out::elfHeader; 2253 2254 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2255 if (os) { 2256 addOptionalRegular(start, os, 0); 2257 addOptionalRegular(end, os, -1); 2258 } else { 2259 addOptionalRegular(start, Default, 0); 2260 addOptionalRegular(end, Default, 0); 2261 } 2262 }; 2263 2264 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2265 define("__init_array_start", "__init_array_end", Out::initArray); 2266 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2267 2268 if (OutputSection *sec = findSection(".ARM.exidx")) 2269 define("__exidx_start", "__exidx_end", sec); 2270 } 2271 2272 // If a section name is valid as a C identifier (which is rare because of 2273 // the leading '.'), linkers are expected to define __start_<secname> and 2274 // __stop_<secname> symbols. They are at beginning and end of the section, 2275 // respectively. This is not requested by the ELF standard, but GNU ld and 2276 // gold provide the feature, and used by many programs. 2277 template <class ELFT> 2278 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2279 StringRef s = sec->name; 2280 if (!isValidCIdentifier(s)) 2281 return; 2282 addOptionalRegular(saver.save("__start_" + s), sec, 0, 2283 config->zStartStopVisibility); 2284 addOptionalRegular(saver.save("__stop_" + s), sec, -1, 2285 config->zStartStopVisibility); 2286 } 2287 2288 static bool needsPtLoad(OutputSection *sec) { 2289 if (!(sec->flags & SHF_ALLOC) || sec->noload) 2290 return false; 2291 2292 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2293 // responsible for allocating space for them, not the PT_LOAD that 2294 // contains the TLS initialization image. 2295 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2296 return false; 2297 return true; 2298 } 2299 2300 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2301 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2302 // RW. This means that there is no alignment in the RO to RX transition and we 2303 // cannot create a PT_LOAD there. 2304 static uint64_t computeFlags(uint64_t flags) { 2305 if (config->omagic) 2306 return PF_R | PF_W | PF_X; 2307 if (config->executeOnly && (flags & PF_X)) 2308 return flags & ~PF_R; 2309 if (config->singleRoRx && !(flags & PF_W)) 2310 return flags | PF_X; 2311 return flags; 2312 } 2313 2314 // Decide which program headers to create and which sections to include in each 2315 // one. 2316 template <class ELFT> 2317 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2318 std::vector<PhdrEntry *> ret; 2319 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2320 ret.push_back(make<PhdrEntry>(type, flags)); 2321 return ret.back(); 2322 }; 2323 2324 unsigned partNo = part.getNumber(); 2325 bool isMain = partNo == 1; 2326 2327 // Add the first PT_LOAD segment for regular output sections. 2328 uint64_t flags = computeFlags(PF_R); 2329 PhdrEntry *load = nullptr; 2330 2331 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2332 // PT_LOAD. 2333 if (!config->nmagic && !config->omagic) { 2334 // The first phdr entry is PT_PHDR which describes the program header 2335 // itself. 2336 if (isMain) 2337 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2338 else 2339 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2340 2341 // PT_INTERP must be the second entry if exists. 2342 if (OutputSection *cmd = findSection(".interp", partNo)) 2343 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2344 2345 // Add the headers. We will remove them if they don't fit. 2346 // In the other partitions the headers are ordinary sections, so they don't 2347 // need to be added here. 2348 if (isMain) { 2349 load = addHdr(PT_LOAD, flags); 2350 load->add(Out::elfHeader); 2351 load->add(Out::programHeaders); 2352 } 2353 } 2354 2355 // PT_GNU_RELRO includes all sections that should be marked as 2356 // read-only by dynamic linker after processing relocations. 2357 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2358 // an error message if more than one PT_GNU_RELRO PHDR is required. 2359 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2360 bool inRelroPhdr = false; 2361 OutputSection *relroEnd = nullptr; 2362 for (OutputSection *sec : outputSections) { 2363 if (sec->partition != partNo || !needsPtLoad(sec)) 2364 continue; 2365 if (isRelroSection(sec)) { 2366 inRelroPhdr = true; 2367 if (!relroEnd) 2368 relRo->add(sec); 2369 else 2370 error("section: " + sec->name + " is not contiguous with other relro" + 2371 " sections"); 2372 } else if (inRelroPhdr) { 2373 inRelroPhdr = false; 2374 relroEnd = sec; 2375 } 2376 } 2377 2378 for (OutputSection *sec : outputSections) { 2379 if (!needsPtLoad(sec)) 2380 continue; 2381 2382 // Normally, sections in partitions other than the current partition are 2383 // ignored. But partition number 255 is a special case: it contains the 2384 // partition end marker (.part.end). It needs to be added to the main 2385 // partition so that a segment is created for it in the main partition, 2386 // which will cause the dynamic loader to reserve space for the other 2387 // partitions. 2388 if (sec->partition != partNo) { 2389 if (isMain && sec->partition == 255) 2390 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2391 continue; 2392 } 2393 2394 // Segments are contiguous memory regions that has the same attributes 2395 // (e.g. executable or writable). There is one phdr for each segment. 2396 // Therefore, we need to create a new phdr when the next section has 2397 // different flags or is loaded at a discontiguous address or memory 2398 // region using AT or AT> linker script command, respectively. At the same 2399 // time, we don't want to create a separate load segment for the headers, 2400 // even if the first output section has an AT or AT> attribute. 2401 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2402 bool sameLMARegion = 2403 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2404 if (!(load && newFlags == flags && sec != relroEnd && 2405 sec->memRegion == load->firstSec->memRegion && 2406 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2407 load = addHdr(PT_LOAD, newFlags); 2408 flags = newFlags; 2409 } 2410 2411 load->add(sec); 2412 } 2413 2414 // Add a TLS segment if any. 2415 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2416 for (OutputSection *sec : outputSections) 2417 if (sec->partition == partNo && sec->flags & SHF_TLS) 2418 tlsHdr->add(sec); 2419 if (tlsHdr->firstSec) 2420 ret.push_back(tlsHdr); 2421 2422 // Add an entry for .dynamic. 2423 if (OutputSection *sec = part.dynamic->getParent()) 2424 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2425 2426 if (relRo->firstSec) 2427 ret.push_back(relRo); 2428 2429 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2430 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2431 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2432 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2433 ->add(part.ehFrameHdr->getParent()); 2434 2435 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2436 // the dynamic linker fill the segment with random data. 2437 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2438 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2439 2440 if (config->zGnustack != GnuStackKind::None) { 2441 // PT_GNU_STACK is a special section to tell the loader to make the 2442 // pages for the stack non-executable. If you really want an executable 2443 // stack, you can pass -z execstack, but that's not recommended for 2444 // security reasons. 2445 unsigned perm = PF_R | PF_W; 2446 if (config->zGnustack == GnuStackKind::Exec) 2447 perm |= PF_X; 2448 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2449 } 2450 2451 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2452 // is expected to perform W^X violations, such as calling mprotect(2) or 2453 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2454 // OpenBSD. 2455 if (config->zWxneeded) 2456 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2457 2458 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2459 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2460 2461 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2462 // same alignment. 2463 PhdrEntry *note = nullptr; 2464 for (OutputSection *sec : outputSections) { 2465 if (sec->partition != partNo) 2466 continue; 2467 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2468 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2469 note = addHdr(PT_NOTE, PF_R); 2470 note->add(sec); 2471 } else { 2472 note = nullptr; 2473 } 2474 } 2475 return ret; 2476 } 2477 2478 template <class ELFT> 2479 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2480 unsigned pType, unsigned pFlags) { 2481 unsigned partNo = part.getNumber(); 2482 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2483 return cmd->partition == partNo && cmd->type == shType; 2484 }); 2485 if (i == outputSections.end()) 2486 return; 2487 2488 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2489 entry->add(*i); 2490 part.phdrs.push_back(entry); 2491 } 2492 2493 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2494 // This is achieved by assigning an alignment expression to addrExpr of each 2495 // such section. 2496 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2497 const PhdrEntry *prev; 2498 auto pageAlign = [&](const PhdrEntry *p) { 2499 OutputSection *cmd = p->firstSec; 2500 if (!cmd) 2501 return; 2502 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2503 if (!cmd->addrExpr) { 2504 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2505 // padding in the file contents. 2506 // 2507 // When -z separate-code is used we must not have any overlap in pages 2508 // between an executable segment and a non-executable segment. We align to 2509 // the next maximum page size boundary on transitions between executable 2510 // and non-executable segments. 2511 // 2512 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2513 // sections will be extracted to a separate file. Align to the next 2514 // maximum page size boundary so that we can find the ELF header at the 2515 // start. We cannot benefit from overlapping p_offset ranges with the 2516 // previous segment anyway. 2517 if (config->zSeparate == SeparateSegmentKind::Loadable || 2518 (config->zSeparate == SeparateSegmentKind::Code && prev && 2519 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2520 cmd->type == SHT_LLVM_PART_EHDR) 2521 cmd->addrExpr = [] { 2522 return alignTo(script->getDot(), config->maxPageSize); 2523 }; 2524 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2525 // it must be the RW. Align to p_align(PT_TLS) to make sure 2526 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2527 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2528 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2529 // be congruent to 0 modulo p_align(PT_TLS). 2530 // 2531 // Technically this is not required, but as of 2019, some dynamic loaders 2532 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2533 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2534 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2535 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2536 // blocks correctly. We need to keep the workaround for a while. 2537 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2538 cmd->addrExpr = [] { 2539 return alignTo(script->getDot(), config->maxPageSize) + 2540 alignTo(script->getDot() % config->maxPageSize, 2541 Out::tlsPhdr->p_align); 2542 }; 2543 else 2544 cmd->addrExpr = [] { 2545 return alignTo(script->getDot(), config->maxPageSize) + 2546 script->getDot() % config->maxPageSize; 2547 }; 2548 } 2549 }; 2550 2551 for (Partition &part : partitions) { 2552 prev = nullptr; 2553 for (const PhdrEntry *p : part.phdrs) 2554 if (p->p_type == PT_LOAD && p->firstSec) { 2555 pageAlign(p); 2556 prev = p; 2557 } 2558 } 2559 } 2560 2561 // Compute an in-file position for a given section. The file offset must be the 2562 // same with its virtual address modulo the page size, so that the loader can 2563 // load executables without any address adjustment. 2564 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2565 // The first section in a PT_LOAD has to have congruent offset and address 2566 // modulo the maximum page size. 2567 if (os->ptLoad && os->ptLoad->firstSec == os) 2568 return alignTo(off, os->ptLoad->p_align, os->addr); 2569 2570 // File offsets are not significant for .bss sections other than the first one 2571 // in a PT_LOAD. By convention, we keep section offsets monotonically 2572 // increasing rather than setting to zero. 2573 if (os->type == SHT_NOBITS) 2574 return off; 2575 2576 // If the section is not in a PT_LOAD, we just have to align it. 2577 if (!os->ptLoad) 2578 return alignTo(off, os->alignment); 2579 2580 // If two sections share the same PT_LOAD the file offset is calculated 2581 // using this formula: Off2 = Off1 + (VA2 - VA1). 2582 OutputSection *first = os->ptLoad->firstSec; 2583 return first->offset + os->addr - first->addr; 2584 } 2585 2586 // Set an in-file position to a given section and returns the end position of 2587 // the section. 2588 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2589 off = computeFileOffset(os, off); 2590 os->offset = off; 2591 2592 if (os->type == SHT_NOBITS) 2593 return off; 2594 return off + os->size; 2595 } 2596 2597 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2598 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2599 auto needsOffset = [](OutputSection &sec) { 2600 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2601 }; 2602 uint64_t minAddr = UINT64_MAX; 2603 for (OutputSection *sec : outputSections) 2604 if (needsOffset(*sec)) { 2605 sec->offset = sec->getLMA(); 2606 minAddr = std::min(minAddr, sec->offset); 2607 } 2608 2609 // Sections are laid out at LMA minus minAddr. 2610 fileSize = 0; 2611 for (OutputSection *sec : outputSections) 2612 if (needsOffset(*sec)) { 2613 sec->offset -= minAddr; 2614 fileSize = std::max(fileSize, sec->offset + sec->size); 2615 } 2616 } 2617 2618 static std::string rangeToString(uint64_t addr, uint64_t len) { 2619 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2620 } 2621 2622 // Assign file offsets to output sections. 2623 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2624 uint64_t off = 0; 2625 off = setFileOffset(Out::elfHeader, off); 2626 off = setFileOffset(Out::programHeaders, off); 2627 2628 PhdrEntry *lastRX = nullptr; 2629 for (Partition &part : partitions) 2630 for (PhdrEntry *p : part.phdrs) 2631 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2632 lastRX = p; 2633 2634 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2635 // will not occupy file offsets contained by a PT_LOAD. 2636 for (OutputSection *sec : outputSections) { 2637 if (!(sec->flags & SHF_ALLOC)) 2638 continue; 2639 off = setFileOffset(sec, off); 2640 2641 // If this is a last section of the last executable segment and that 2642 // segment is the last loadable segment, align the offset of the 2643 // following section to avoid loading non-segments parts of the file. 2644 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2645 lastRX->lastSec == sec) 2646 off = alignTo(off, config->commonPageSize); 2647 } 2648 for (OutputSection *sec : outputSections) 2649 if (!(sec->flags & SHF_ALLOC)) 2650 off = setFileOffset(sec, off); 2651 2652 sectionHeaderOff = alignTo(off, config->wordsize); 2653 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2654 2655 // Our logic assumes that sections have rising VA within the same segment. 2656 // With use of linker scripts it is possible to violate this rule and get file 2657 // offset overlaps or overflows. That should never happen with a valid script 2658 // which does not move the location counter backwards and usually scripts do 2659 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2660 // kernel, which control segment distribution explicitly and move the counter 2661 // backwards, so we have to allow doing that to support linking them. We 2662 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2663 // we want to prevent file size overflows because it would crash the linker. 2664 for (OutputSection *sec : outputSections) { 2665 if (sec->type == SHT_NOBITS) 2666 continue; 2667 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2668 error("unable to place section " + sec->name + " at file offset " + 2669 rangeToString(sec->offset, sec->size) + 2670 "; check your linker script for overflows"); 2671 } 2672 } 2673 2674 // Finalize the program headers. We call this function after we assign 2675 // file offsets and VAs to all sections. 2676 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2677 for (PhdrEntry *p : part.phdrs) { 2678 OutputSection *first = p->firstSec; 2679 OutputSection *last = p->lastSec; 2680 2681 if (first) { 2682 p->p_filesz = last->offset - first->offset; 2683 if (last->type != SHT_NOBITS) 2684 p->p_filesz += last->size; 2685 2686 p->p_memsz = last->addr + last->size - first->addr; 2687 p->p_offset = first->offset; 2688 p->p_vaddr = first->addr; 2689 2690 // File offsets in partitions other than the main partition are relative 2691 // to the offset of the ELF headers. Perform that adjustment now. 2692 if (part.elfHeader) 2693 p->p_offset -= part.elfHeader->getParent()->offset; 2694 2695 if (!p->hasLMA) 2696 p->p_paddr = first->getLMA(); 2697 } 2698 2699 if (p->p_type == PT_GNU_RELRO) { 2700 p->p_align = 1; 2701 // musl/glibc ld.so rounds the size down, so we need to round up 2702 // to protect the last page. This is a no-op on FreeBSD which always 2703 // rounds up. 2704 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2705 p->p_offset; 2706 } 2707 } 2708 } 2709 2710 // A helper struct for checkSectionOverlap. 2711 namespace { 2712 struct SectionOffset { 2713 OutputSection *sec; 2714 uint64_t offset; 2715 }; 2716 } // namespace 2717 2718 // Check whether sections overlap for a specific address range (file offsets, 2719 // load and virtual addresses). 2720 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2721 bool isVirtualAddr) { 2722 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2723 return a.offset < b.offset; 2724 }); 2725 2726 // Finding overlap is easy given a vector is sorted by start position. 2727 // If an element starts before the end of the previous element, they overlap. 2728 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2729 SectionOffset a = sections[i - 1]; 2730 SectionOffset b = sections[i]; 2731 if (b.offset >= a.offset + a.sec->size) 2732 continue; 2733 2734 // If both sections are in OVERLAY we allow the overlapping of virtual 2735 // addresses, because it is what OVERLAY was designed for. 2736 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2737 continue; 2738 2739 errorOrWarn("section " + a.sec->name + " " + name + 2740 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2741 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2742 b.sec->name + " range is " + 2743 rangeToString(b.offset, b.sec->size)); 2744 } 2745 } 2746 2747 // Check for overlapping sections and address overflows. 2748 // 2749 // In this function we check that none of the output sections have overlapping 2750 // file offsets. For SHF_ALLOC sections we also check that the load address 2751 // ranges and the virtual address ranges don't overlap 2752 template <class ELFT> void Writer<ELFT>::checkSections() { 2753 // First, check that section's VAs fit in available address space for target. 2754 for (OutputSection *os : outputSections) 2755 if ((os->addr + os->size < os->addr) || 2756 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2757 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2758 " of size 0x" + utohexstr(os->size) + 2759 " exceeds available address space"); 2760 2761 // Check for overlapping file offsets. In this case we need to skip any 2762 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2763 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2764 // binary is specified only add SHF_ALLOC sections are added to the output 2765 // file so we skip any non-allocated sections in that case. 2766 std::vector<SectionOffset> fileOffs; 2767 for (OutputSection *sec : outputSections) 2768 if (sec->size > 0 && sec->type != SHT_NOBITS && 2769 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2770 fileOffs.push_back({sec, sec->offset}); 2771 checkOverlap("file", fileOffs, false); 2772 2773 // When linking with -r there is no need to check for overlapping virtual/load 2774 // addresses since those addresses will only be assigned when the final 2775 // executable/shared object is created. 2776 if (config->relocatable) 2777 return; 2778 2779 // Checking for overlapping virtual and load addresses only needs to take 2780 // into account SHF_ALLOC sections since others will not be loaded. 2781 // Furthermore, we also need to skip SHF_TLS sections since these will be 2782 // mapped to other addresses at runtime and can therefore have overlapping 2783 // ranges in the file. 2784 std::vector<SectionOffset> vmas; 2785 for (OutputSection *sec : outputSections) 2786 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2787 vmas.push_back({sec, sec->addr}); 2788 checkOverlap("virtual address", vmas, true); 2789 2790 // Finally, check that the load addresses don't overlap. This will usually be 2791 // the same as the virtual addresses but can be different when using a linker 2792 // script with AT(). 2793 std::vector<SectionOffset> lmas; 2794 for (OutputSection *sec : outputSections) 2795 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2796 lmas.push_back({sec, sec->getLMA()}); 2797 checkOverlap("load address", lmas, false); 2798 } 2799 2800 // The entry point address is chosen in the following ways. 2801 // 2802 // 1. the '-e' entry command-line option; 2803 // 2. the ENTRY(symbol) command in a linker control script; 2804 // 3. the value of the symbol _start, if present; 2805 // 4. the number represented by the entry symbol, if it is a number; 2806 // 5. the address of the first byte of the .text section, if present; 2807 // 6. the address 0. 2808 static uint64_t getEntryAddr() { 2809 // Case 1, 2 or 3 2810 if (Symbol *b = symtab->find(config->entry)) 2811 return b->getVA(); 2812 2813 // Case 4 2814 uint64_t addr; 2815 if (to_integer(config->entry, addr)) 2816 return addr; 2817 2818 // Case 5 2819 if (OutputSection *sec = findSection(".text")) { 2820 if (config->warnMissingEntry) 2821 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2822 utohexstr(sec->addr)); 2823 return sec->addr; 2824 } 2825 2826 // Case 6 2827 if (config->warnMissingEntry) 2828 warn("cannot find entry symbol " + config->entry + 2829 "; not setting start address"); 2830 return 0; 2831 } 2832 2833 static uint16_t getELFType() { 2834 if (config->isPic) 2835 return ET_DYN; 2836 if (config->relocatable) 2837 return ET_REL; 2838 return ET_EXEC; 2839 } 2840 2841 template <class ELFT> void Writer<ELFT>::writeHeader() { 2842 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2843 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2844 2845 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2846 eHdr->e_type = getELFType(); 2847 eHdr->e_entry = getEntryAddr(); 2848 eHdr->e_shoff = sectionHeaderOff; 2849 2850 // Write the section header table. 2851 // 2852 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2853 // and e_shstrndx fields. When the value of one of these fields exceeds 2854 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2855 // use fields in the section header at index 0 to store 2856 // the value. The sentinel values and fields are: 2857 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2858 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2859 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2860 size_t num = outputSections.size() + 1; 2861 if (num >= SHN_LORESERVE) 2862 sHdrs->sh_size = num; 2863 else 2864 eHdr->e_shnum = num; 2865 2866 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2867 if (strTabIndex >= SHN_LORESERVE) { 2868 sHdrs->sh_link = strTabIndex; 2869 eHdr->e_shstrndx = SHN_XINDEX; 2870 } else { 2871 eHdr->e_shstrndx = strTabIndex; 2872 } 2873 2874 for (OutputSection *sec : outputSections) 2875 sec->writeHeaderTo<ELFT>(++sHdrs); 2876 } 2877 2878 // Open a result file. 2879 template <class ELFT> void Writer<ELFT>::openFile() { 2880 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2881 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2882 std::string msg; 2883 raw_string_ostream s(msg); 2884 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2885 << "section sizes:\n"; 2886 for (OutputSection *os : outputSections) 2887 s << os->name << ' ' << os->size << "\n"; 2888 error(s.str()); 2889 return; 2890 } 2891 2892 unlinkAsync(config->outputFile); 2893 unsigned flags = 0; 2894 if (!config->relocatable) 2895 flags |= FileOutputBuffer::F_executable; 2896 if (!config->mmapOutputFile) 2897 flags |= FileOutputBuffer::F_no_mmap; 2898 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2899 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2900 2901 if (!bufferOrErr) { 2902 error("failed to open " + config->outputFile + ": " + 2903 llvm::toString(bufferOrErr.takeError())); 2904 return; 2905 } 2906 buffer = std::move(*bufferOrErr); 2907 Out::bufferStart = buffer->getBufferStart(); 2908 } 2909 2910 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2911 for (OutputSection *sec : outputSections) 2912 if (sec->flags & SHF_ALLOC) 2913 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2914 } 2915 2916 static void fillTrap(uint8_t *i, uint8_t *end) { 2917 for (; i + 4 <= end; i += 4) 2918 memcpy(i, &target->trapInstr, 4); 2919 } 2920 2921 // Fill the last page of executable segments with trap instructions 2922 // instead of leaving them as zero. Even though it is not required by any 2923 // standard, it is in general a good thing to do for security reasons. 2924 // 2925 // We'll leave other pages in segments as-is because the rest will be 2926 // overwritten by output sections. 2927 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2928 for (Partition &part : partitions) { 2929 // Fill the last page. 2930 for (PhdrEntry *p : part.phdrs) 2931 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2932 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2933 config->commonPageSize), 2934 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2935 config->commonPageSize)); 2936 2937 // Round up the file size of the last segment to the page boundary iff it is 2938 // an executable segment to ensure that other tools don't accidentally 2939 // trim the instruction padding (e.g. when stripping the file). 2940 PhdrEntry *last = nullptr; 2941 for (PhdrEntry *p : part.phdrs) 2942 if (p->p_type == PT_LOAD) 2943 last = p; 2944 2945 if (last && (last->p_flags & PF_X)) 2946 last->p_memsz = last->p_filesz = 2947 alignTo(last->p_filesz, config->commonPageSize); 2948 } 2949 } 2950 2951 // Write section contents to a mmap'ed file. 2952 template <class ELFT> void Writer<ELFT>::writeSections() { 2953 // In -r or -emit-relocs mode, write the relocation sections first as in 2954 // ELf_Rel targets we might find out that we need to modify the relocated 2955 // section while doing it. 2956 for (OutputSection *sec : outputSections) 2957 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2958 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2959 2960 for (OutputSection *sec : outputSections) 2961 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2962 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2963 } 2964 2965 // Split one uint8 array into small pieces of uint8 arrays. 2966 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2967 size_t chunkSize) { 2968 std::vector<ArrayRef<uint8_t>> ret; 2969 while (arr.size() > chunkSize) { 2970 ret.push_back(arr.take_front(chunkSize)); 2971 arr = arr.drop_front(chunkSize); 2972 } 2973 if (!arr.empty()) 2974 ret.push_back(arr); 2975 return ret; 2976 } 2977 2978 // Computes a hash value of Data using a given hash function. 2979 // In order to utilize multiple cores, we first split data into 1MB 2980 // chunks, compute a hash for each chunk, and then compute a hash value 2981 // of the hash values. 2982 static void 2983 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2984 llvm::ArrayRef<uint8_t> data, 2985 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2986 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2987 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2988 2989 // Compute hash values. 2990 parallelForEachN(0, chunks.size(), [&](size_t i) { 2991 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2992 }); 2993 2994 // Write to the final output buffer. 2995 hashFn(hashBuf.data(), hashes); 2996 } 2997 2998 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2999 if (!mainPart->buildId || !mainPart->buildId->getParent()) 3000 return; 3001 3002 if (config->buildId == BuildIdKind::Hexstring) { 3003 for (Partition &part : partitions) 3004 part.buildId->writeBuildId(config->buildIdVector); 3005 return; 3006 } 3007 3008 // Compute a hash of all sections of the output file. 3009 size_t hashSize = mainPart->buildId->hashSize; 3010 std::vector<uint8_t> buildId(hashSize); 3011 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 3012 3013 switch (config->buildId) { 3014 case BuildIdKind::Fast: 3015 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 3016 write64le(dest, xxHash64(arr)); 3017 }); 3018 break; 3019 case BuildIdKind::Md5: 3020 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3021 memcpy(dest, MD5::hash(arr).data(), hashSize); 3022 }); 3023 break; 3024 case BuildIdKind::Sha1: 3025 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3026 memcpy(dest, SHA1::hash(arr).data(), hashSize); 3027 }); 3028 break; 3029 case BuildIdKind::Uuid: 3030 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 3031 error("entropy source failure: " + ec.message()); 3032 break; 3033 default: 3034 llvm_unreachable("unknown BuildIdKind"); 3035 } 3036 for (Partition &part : partitions) 3037 part.buildId->writeBuildId(buildId); 3038 } 3039 3040 template void elf::createSyntheticSections<ELF32LE>(); 3041 template void elf::createSyntheticSections<ELF32BE>(); 3042 template void elf::createSyntheticSections<ELF64LE>(); 3043 template void elf::createSyntheticSections<ELF64BE>(); 3044 3045 template void elf::writeResult<ELF32LE>(); 3046 template void elf::writeResult<ELF32BE>(); 3047 template void elf::writeResult<ELF64LE>(); 3048 template void elf::writeResult<ELF64BE>(); 3049