1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Filesystem.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/Parallel.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/TimeProfiler.h" 31 #include "llvm/Support/xxhash.h" 32 #include <climits> 33 34 #define DEBUG_TYPE "lld" 35 36 using namespace llvm; 37 using namespace llvm::ELF; 38 using namespace llvm::object; 39 using namespace llvm::support; 40 using namespace llvm::support::endian; 41 using namespace lld; 42 using namespace lld::elf; 43 44 namespace { 45 // The writer writes a SymbolTable result to a file. 46 template <class ELFT> class Writer { 47 public: 48 Writer() : buffer(errorHandler().outputBuffer) {} 49 using Elf_Shdr = typename ELFT::Shdr; 50 using Elf_Ehdr = typename ELFT::Ehdr; 51 using Elf_Phdr = typename ELFT::Phdr; 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 59 void sortSections(); 60 void resolveShfLinkOrder(); 61 void finalizeAddressDependentContent(); 62 void optimizeBasicBlockJumps(); 63 void sortInputSections(); 64 void finalizeSections(); 65 void checkExecuteOnly(); 66 void setReservedSymbolSections(); 67 68 std::vector<PhdrEntry *> createPhdrs(Partition &part); 69 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 70 unsigned pFlags); 71 void assignFileOffsets(); 72 void assignFileOffsetsBinary(); 73 void setPhdrs(Partition &part); 74 void checkSections(); 75 void fixSectionAlignments(); 76 void openFile(); 77 void writeTrapInstr(); 78 void writeHeader(); 79 void writeSections(); 80 void writeSectionsBinary(); 81 void writeBuildId(); 82 83 std::unique_ptr<FileOutputBuffer> &buffer; 84 85 void addRelIpltSymbols(); 86 void addStartEndSymbols(); 87 void addStartStopSymbols(OutputSection *sec); 88 89 uint64_t fileSize; 90 uint64_t sectionHeaderOff; 91 }; 92 } // anonymous namespace 93 94 static bool isSectionPrefix(StringRef prefix, StringRef name) { 95 return name.startswith(prefix) || name == prefix.drop_back(); 96 } 97 98 StringRef elf::getOutputSectionName(const InputSectionBase *s) { 99 if (config->relocatable) 100 return s->name; 101 102 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 103 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 104 // technically required, but not doing it is odd). This code guarantees that. 105 if (auto *isec = dyn_cast<InputSection>(s)) { 106 if (InputSectionBase *rel = isec->getRelocatedSection()) { 107 OutputSection *out = rel->getOutputSection(); 108 if (s->type == SHT_RELA) 109 return saver.save(".rela" + out->name); 110 return saver.save(".rel" + out->name); 111 } 112 } 113 114 // A BssSection created for a common symbol is identified as "COMMON" in 115 // linker scripts. It should go to .bss section. 116 if (s->name == "COMMON") 117 return ".bss"; 118 119 if (script->hasSectionsCommand) 120 return s->name; 121 122 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 123 // by grouping sections with certain prefixes. 124 125 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 126 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 127 // We provide an option -z keep-text-section-prefix to group such sections 128 // into separate output sections. This is more flexible. See also 129 // sortISDBySectionOrder(). 130 // ".text.unknown" means the hotness of the section is unknown. When 131 // SampleFDO is used, if a function doesn't have sample, it could be very 132 // cold or it could be a new function never being sampled. Those functions 133 // will be kept in the ".text.unknown" section. 134 if (config->zKeepTextSectionPrefix) 135 for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", 136 ".text.startup.", ".text.exit."}) 137 if (isSectionPrefix(v, s->name)) 138 return v.drop_back(); 139 140 for (StringRef v : 141 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 142 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 143 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 144 if (isSectionPrefix(v, s->name)) 145 return v.drop_back(); 146 147 return s->name; 148 } 149 150 static bool needsInterpSection() { 151 return !config->relocatable && !config->shared && 152 !config->dynamicLinker.empty() && script->needsInterpSection(); 153 } 154 155 template <class ELFT> void elf::writeResult() { 156 llvm::TimeTraceScope timeScope("Write output file"); 157 Writer<ELFT>().run(); 158 } 159 160 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 161 auto it = std::stable_partition( 162 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 163 if (p->p_type != PT_LOAD) 164 return true; 165 if (!p->firstSec) 166 return false; 167 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 168 return size != 0; 169 }); 170 171 // Clear OutputSection::ptLoad for sections contained in removed 172 // segments. 173 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 174 for (OutputSection *sec : outputSections) 175 if (removed.count(sec->ptLoad)) 176 sec->ptLoad = nullptr; 177 phdrs.erase(it, phdrs.end()); 178 } 179 180 void elf::copySectionsIntoPartitions() { 181 std::vector<InputSectionBase *> newSections; 182 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 183 for (InputSectionBase *s : inputSections) { 184 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 185 continue; 186 InputSectionBase *copy; 187 if (s->type == SHT_NOTE) 188 copy = make<InputSection>(cast<InputSection>(*s)); 189 else if (auto *es = dyn_cast<EhInputSection>(s)) 190 copy = make<EhInputSection>(*es); 191 else 192 continue; 193 copy->partition = part; 194 newSections.push_back(copy); 195 } 196 } 197 198 inputSections.insert(inputSections.end(), newSections.begin(), 199 newSections.end()); 200 } 201 202 void elf::combineEhSections() { 203 for (InputSectionBase *&s : inputSections) { 204 // Ignore dead sections and the partition end marker (.part.end), 205 // whose partition number is out of bounds. 206 if (!s->isLive() || s->partition == 255) 207 continue; 208 209 Partition &part = s->getPartition(); 210 if (auto *es = dyn_cast<EhInputSection>(s)) { 211 part.ehFrame->addSection(es); 212 s = nullptr; 213 } else if (s->kind() == SectionBase::Regular && part.armExidx && 214 part.armExidx->addSection(cast<InputSection>(s))) { 215 s = nullptr; 216 } 217 } 218 219 std::vector<InputSectionBase *> &v = inputSections; 220 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 221 } 222 223 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 224 uint64_t val, uint8_t stOther = STV_HIDDEN, 225 uint8_t binding = STB_GLOBAL) { 226 Symbol *s = symtab->find(name); 227 if (!s || s->isDefined()) 228 return nullptr; 229 230 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 231 /*size=*/0, sec}); 232 return cast<Defined>(s); 233 } 234 235 static Defined *addAbsolute(StringRef name) { 236 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 237 STT_NOTYPE, 0, 0, nullptr}); 238 return cast<Defined>(sym); 239 } 240 241 // The linker is expected to define some symbols depending on 242 // the linking result. This function defines such symbols. 243 void elf::addReservedSymbols() { 244 if (config->emachine == EM_MIPS) { 245 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 246 // so that it points to an absolute address which by default is relative 247 // to GOT. Default offset is 0x7ff0. 248 // See "Global Data Symbols" in Chapter 6 in the following document: 249 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 250 ElfSym::mipsGp = addAbsolute("_gp"); 251 252 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 253 // start of function and 'gp' pointer into GOT. 254 if (symtab->find("_gp_disp")) 255 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 256 257 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 258 // pointer. This symbol is used in the code generated by .cpload pseudo-op 259 // in case of using -mno-shared option. 260 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 261 if (symtab->find("__gnu_local_gp")) 262 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 263 } else if (config->emachine == EM_PPC) { 264 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 265 // support Small Data Area, define it arbitrarily as 0. 266 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 267 } else if (config->emachine == EM_PPC64) { 268 addPPC64SaveRestore(); 269 } 270 271 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 272 // combines the typical ELF GOT with the small data sections. It commonly 273 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 274 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 275 // represent the TOC base which is offset by 0x8000 bytes from the start of 276 // the .got section. 277 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 278 // correctness of some relocations depends on its value. 279 StringRef gotSymName = 280 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 281 282 if (Symbol *s = symtab->find(gotSymName)) { 283 if (s->isDefined()) { 284 error(toString(s->file) + " cannot redefine linker defined symbol '" + 285 gotSymName + "'"); 286 return; 287 } 288 289 uint64_t gotOff = 0; 290 if (config->emachine == EM_PPC64) 291 gotOff = 0x8000; 292 293 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 294 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 295 ElfSym::globalOffsetTable = cast<Defined>(s); 296 } 297 298 // __ehdr_start is the location of ELF file headers. Note that we define 299 // this symbol unconditionally even when using a linker script, which 300 // differs from the behavior implemented by GNU linker which only define 301 // this symbol if ELF headers are in the memory mapped segment. 302 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 303 304 // __executable_start is not documented, but the expectation of at 305 // least the Android libc is that it points to the ELF header. 306 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 307 308 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 309 // each DSO. The address of the symbol doesn't matter as long as they are 310 // different in different DSOs, so we chose the start address of the DSO. 311 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 312 313 // If linker script do layout we do not need to create any standard symbols. 314 if (script->hasSectionsCommand) 315 return; 316 317 auto add = [](StringRef s, int64_t pos) { 318 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 319 }; 320 321 ElfSym::bss = add("__bss_start", 0); 322 ElfSym::end1 = add("end", -1); 323 ElfSym::end2 = add("_end", -1); 324 ElfSym::etext1 = add("etext", -1); 325 ElfSym::etext2 = add("_etext", -1); 326 ElfSym::edata1 = add("edata", -1); 327 ElfSym::edata2 = add("_edata", -1); 328 } 329 330 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 331 for (BaseCommand *base : script->sectionCommands) 332 if (auto *sec = dyn_cast<OutputSection>(base)) 333 if (sec->name == name && sec->partition == partition) 334 return sec; 335 return nullptr; 336 } 337 338 template <class ELFT> void elf::createSyntheticSections() { 339 // Initialize all pointers with NULL. This is needed because 340 // you can call lld::elf::main more than once as a library. 341 memset(&Out::first, 0, sizeof(Out)); 342 343 // Add the .interp section first because it is not a SyntheticSection. 344 // The removeUnusedSyntheticSections() function relies on the 345 // SyntheticSections coming last. 346 if (needsInterpSection()) { 347 for (size_t i = 1; i <= partitions.size(); ++i) { 348 InputSection *sec = createInterpSection(); 349 sec->partition = i; 350 inputSections.push_back(sec); 351 } 352 } 353 354 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 355 356 in.shStrTab = make<StringTableSection>(".shstrtab", false); 357 358 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 359 Out::programHeaders->alignment = config->wordsize; 360 361 if (config->strip != StripPolicy::All) { 362 in.strTab = make<StringTableSection>(".strtab", false); 363 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 364 in.symTabShndx = make<SymtabShndxSection>(); 365 } 366 367 in.bss = make<BssSection>(".bss", 0, 1); 368 add(in.bss); 369 370 // If there is a SECTIONS command and a .data.rel.ro section name use name 371 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 372 // This makes sure our relro is contiguous. 373 bool hasDataRelRo = 374 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 375 in.bssRelRo = 376 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 377 add(in.bssRelRo); 378 379 // Add MIPS-specific sections. 380 if (config->emachine == EM_MIPS) { 381 if (!config->shared && config->hasDynSymTab) { 382 in.mipsRldMap = make<MipsRldMapSection>(); 383 add(in.mipsRldMap); 384 } 385 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 386 add(sec); 387 if (auto *sec = MipsOptionsSection<ELFT>::create()) 388 add(sec); 389 if (auto *sec = MipsReginfoSection<ELFT>::create()) 390 add(sec); 391 } 392 393 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 394 395 for (Partition &part : partitions) { 396 auto add = [&](SyntheticSection *sec) { 397 sec->partition = part.getNumber(); 398 inputSections.push_back(sec); 399 }; 400 401 if (!part.name.empty()) { 402 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 403 part.elfHeader->name = part.name; 404 add(part.elfHeader); 405 406 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 407 add(part.programHeaders); 408 } 409 410 if (config->buildId != BuildIdKind::None) { 411 part.buildId = make<BuildIdSection>(); 412 add(part.buildId); 413 } 414 415 part.dynStrTab = make<StringTableSection>(".dynstr", true); 416 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 417 part.dynamic = make<DynamicSection<ELFT>>(); 418 if (config->androidPackDynRelocs) 419 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 420 else 421 part.relaDyn = 422 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 423 424 if (config->hasDynSymTab) { 425 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 426 add(part.dynSymTab); 427 428 part.verSym = make<VersionTableSection>(); 429 add(part.verSym); 430 431 if (!namedVersionDefs().empty()) { 432 part.verDef = make<VersionDefinitionSection>(); 433 add(part.verDef); 434 } 435 436 part.verNeed = make<VersionNeedSection<ELFT>>(); 437 add(part.verNeed); 438 439 if (config->gnuHash) { 440 part.gnuHashTab = make<GnuHashTableSection>(); 441 add(part.gnuHashTab); 442 } 443 444 if (config->sysvHash) { 445 part.hashTab = make<HashTableSection>(); 446 add(part.hashTab); 447 } 448 449 add(part.dynamic); 450 add(part.dynStrTab); 451 add(part.relaDyn); 452 } 453 454 if (config->relrPackDynRelocs) { 455 part.relrDyn = make<RelrSection<ELFT>>(); 456 add(part.relrDyn); 457 } 458 459 if (!config->relocatable) { 460 if (config->ehFrameHdr) { 461 part.ehFrameHdr = make<EhFrameHeader>(); 462 add(part.ehFrameHdr); 463 } 464 part.ehFrame = make<EhFrameSection>(); 465 add(part.ehFrame); 466 } 467 468 if (config->emachine == EM_ARM && !config->relocatable) { 469 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 470 // InputSections. 471 part.armExidx = make<ARMExidxSyntheticSection>(); 472 add(part.armExidx); 473 } 474 } 475 476 if (partitions.size() != 1) { 477 // Create the partition end marker. This needs to be in partition number 255 478 // so that it is sorted after all other partitions. It also has other 479 // special handling (see createPhdrs() and combineEhSections()). 480 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 481 in.partEnd->partition = 255; 482 add(in.partEnd); 483 484 in.partIndex = make<PartitionIndexSection>(); 485 addOptionalRegular("__part_index_begin", in.partIndex, 0); 486 addOptionalRegular("__part_index_end", in.partIndex, 487 in.partIndex->getSize()); 488 add(in.partIndex); 489 } 490 491 // Add .got. MIPS' .got is so different from the other archs, 492 // it has its own class. 493 if (config->emachine == EM_MIPS) { 494 in.mipsGot = make<MipsGotSection>(); 495 add(in.mipsGot); 496 } else { 497 in.got = make<GotSection>(); 498 add(in.got); 499 } 500 501 if (config->emachine == EM_PPC) { 502 in.ppc32Got2 = make<PPC32Got2Section>(); 503 add(in.ppc32Got2); 504 } 505 506 if (config->emachine == EM_PPC64) { 507 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 508 add(in.ppc64LongBranchTarget); 509 } 510 511 in.gotPlt = make<GotPltSection>(); 512 add(in.gotPlt); 513 in.igotPlt = make<IgotPltSection>(); 514 add(in.igotPlt); 515 516 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 517 // it as a relocation and ensure the referenced section is created. 518 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 519 if (target->gotBaseSymInGotPlt) 520 in.gotPlt->hasGotPltOffRel = true; 521 else 522 in.got->hasGotOffRel = true; 523 } 524 525 if (config->gdbIndex) 526 add(GdbIndexSection::create<ELFT>()); 527 528 // We always need to add rel[a].plt to output if it has entries. 529 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 530 in.relaPlt = make<RelocationSection<ELFT>>( 531 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 532 add(in.relaPlt); 533 534 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 535 // relocations are processed last by the dynamic loader. We cannot place the 536 // iplt section in .rel.dyn when Android relocation packing is enabled because 537 // that would cause a section type mismatch. However, because the Android 538 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 539 // behaviour by placing the iplt section in .rel.plt. 540 in.relaIplt = make<RelocationSection<ELFT>>( 541 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 542 /*sort=*/false); 543 add(in.relaIplt); 544 545 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 546 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 547 in.ibtPlt = make<IBTPltSection>(); 548 add(in.ibtPlt); 549 } 550 551 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 552 : make<PltSection>(); 553 add(in.plt); 554 in.iplt = make<IpltSection>(); 555 add(in.iplt); 556 557 if (config->andFeatures) 558 add(make<GnuPropertySection>()); 559 560 // .note.GNU-stack is always added when we are creating a re-linkable 561 // object file. Other linkers are using the presence of this marker 562 // section to control the executable-ness of the stack area, but that 563 // is irrelevant these days. Stack area should always be non-executable 564 // by default. So we emit this section unconditionally. 565 if (config->relocatable) 566 add(make<GnuStackSection>()); 567 568 if (in.symTab) 569 add(in.symTab); 570 if (in.symTabShndx) 571 add(in.symTabShndx); 572 add(in.shStrTab); 573 if (in.strTab) 574 add(in.strTab); 575 } 576 577 // The main function of the writer. 578 template <class ELFT> void Writer<ELFT>::run() { 579 copyLocalSymbols(); 580 581 if (config->copyRelocs) 582 addSectionSymbols(); 583 584 // Now that we have a complete set of output sections. This function 585 // completes section contents. For example, we need to add strings 586 // to the string table, and add entries to .got and .plt. 587 // finalizeSections does that. 588 finalizeSections(); 589 checkExecuteOnly(); 590 if (errorCount()) 591 return; 592 593 // If -compressed-debug-sections is specified, we need to compress 594 // .debug_* sections. Do it right now because it changes the size of 595 // output sections. 596 for (OutputSection *sec : outputSections) 597 sec->maybeCompress<ELFT>(); 598 599 if (script->hasSectionsCommand) 600 script->allocateHeaders(mainPart->phdrs); 601 602 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 603 // 0 sized region. This has to be done late since only after assignAddresses 604 // we know the size of the sections. 605 for (Partition &part : partitions) 606 removeEmptyPTLoad(part.phdrs); 607 608 if (!config->oFormatBinary) 609 assignFileOffsets(); 610 else 611 assignFileOffsetsBinary(); 612 613 for (Partition &part : partitions) 614 setPhdrs(part); 615 616 if (config->relocatable) 617 for (OutputSection *sec : outputSections) 618 sec->addr = 0; 619 620 // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them 621 // before checkSections() because the files may be useful in case 622 // checkSections() or openFile() fails, for example, due to an erroneous file 623 // size. 624 writeMapFile(); 625 writeCrossReferenceTable(); 626 writeArchiveStats(); 627 628 if (config->checkSections) 629 checkSections(); 630 631 // It does not make sense try to open the file if we have error already. 632 if (errorCount()) 633 return; 634 // Write the result down to a file. 635 openFile(); 636 if (errorCount()) 637 return; 638 639 if (!config->oFormatBinary) { 640 if (config->zSeparate != SeparateSegmentKind::None) 641 writeTrapInstr(); 642 writeHeader(); 643 writeSections(); 644 } else { 645 writeSectionsBinary(); 646 } 647 648 // Backfill .note.gnu.build-id section content. This is done at last 649 // because the content is usually a hash value of the entire output file. 650 writeBuildId(); 651 if (errorCount()) 652 return; 653 654 if (auto e = buffer->commit()) 655 error("failed to write to the output file: " + toString(std::move(e))); 656 } 657 658 template <class ELFT, class RelTy> 659 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 660 llvm::ArrayRef<RelTy> rels) { 661 for (const RelTy &rel : rels) { 662 Symbol &sym = file->getRelocTargetSym(rel); 663 if (sym.isLocal()) 664 sym.used = true; 665 } 666 } 667 668 // The function ensures that the "used" field of local symbols reflects the fact 669 // that the symbol is used in a relocation from a live section. 670 template <class ELFT> static void markUsedLocalSymbols() { 671 // With --gc-sections, the field is already filled. 672 // See MarkLive<ELFT>::resolveReloc(). 673 if (config->gcSections) 674 return; 675 // Without --gc-sections, the field is initialized with "true". 676 // Drop the flag first and then rise for symbols referenced in relocations. 677 for (InputFile *file : objectFiles) { 678 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 679 for (Symbol *b : f->getLocalSymbols()) 680 b->used = false; 681 for (InputSectionBase *s : f->getSections()) { 682 InputSection *isec = dyn_cast_or_null<InputSection>(s); 683 if (!isec) 684 continue; 685 if (isec->type == SHT_REL) 686 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 687 else if (isec->type == SHT_RELA) 688 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 689 } 690 } 691 } 692 693 static bool shouldKeepInSymtab(const Defined &sym) { 694 if (sym.isSection()) 695 return false; 696 697 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 698 // from live sections. 699 if (config->copyRelocs && sym.used) 700 return true; 701 702 // Exclude local symbols pointing to .ARM.exidx sections. 703 // They are probably mapping symbols "$d", which are optional for these 704 // sections. After merging the .ARM.exidx sections, some of these symbols 705 // may become dangling. The easiest way to avoid the issue is not to add 706 // them to the symbol table from the beginning. 707 if (config->emachine == EM_ARM && sym.section && 708 sym.section->type == SHT_ARM_EXIDX) 709 return false; 710 711 if (config->discard == DiscardPolicy::None) 712 return true; 713 if (config->discard == DiscardPolicy::All) 714 return false; 715 716 // In ELF assembly .L symbols are normally discarded by the assembler. 717 // If the assembler fails to do so, the linker discards them if 718 // * --discard-locals is used. 719 // * The symbol is in a SHF_MERGE section, which is normally the reason for 720 // the assembler keeping the .L symbol. 721 StringRef name = sym.getName(); 722 bool isLocal = name.startswith(".L") || name.empty(); 723 if (!isLocal) 724 return true; 725 726 if (config->discard == DiscardPolicy::Locals) 727 return false; 728 729 SectionBase *sec = sym.section; 730 return !sec || !(sec->flags & SHF_MERGE); 731 } 732 733 static bool includeInSymtab(const Symbol &b) { 734 if (!b.isLocal() && !b.isUsedInRegularObj) 735 return false; 736 737 if (auto *d = dyn_cast<Defined>(&b)) { 738 // Always include absolute symbols. 739 SectionBase *sec = d->section; 740 if (!sec) 741 return true; 742 sec = sec->repl; 743 744 // Exclude symbols pointing to garbage-collected sections. 745 if (isa<InputSectionBase>(sec) && !sec->isLive()) 746 return false; 747 748 if (auto *s = dyn_cast<MergeInputSection>(sec)) 749 if (!s->getSectionPiece(d->value)->live) 750 return false; 751 return true; 752 } 753 return b.used; 754 } 755 756 // Local symbols are not in the linker's symbol table. This function scans 757 // each object file's symbol table to copy local symbols to the output. 758 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 759 if (!in.symTab) 760 return; 761 if (config->copyRelocs && config->discard != DiscardPolicy::None) 762 markUsedLocalSymbols<ELFT>(); 763 for (InputFile *file : objectFiles) { 764 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 765 for (Symbol *b : f->getLocalSymbols()) { 766 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 767 auto *dr = dyn_cast<Defined>(b); 768 769 // No reason to keep local undefined symbol in symtab. 770 if (!dr) 771 continue; 772 if (!includeInSymtab(*b)) 773 continue; 774 if (!shouldKeepInSymtab(*dr)) 775 continue; 776 in.symTab->addSymbol(b); 777 } 778 } 779 } 780 781 // Create a section symbol for each output section so that we can represent 782 // relocations that point to the section. If we know that no relocation is 783 // referring to a section (that happens if the section is a synthetic one), we 784 // don't create a section symbol for that section. 785 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 786 for (BaseCommand *base : script->sectionCommands) { 787 auto *sec = dyn_cast<OutputSection>(base); 788 if (!sec) 789 continue; 790 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 791 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 792 return !isd->sections.empty(); 793 return false; 794 }); 795 if (i == sec->sectionCommands.end()) 796 continue; 797 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 798 799 // Relocations are not using REL[A] section symbols. 800 if (isec->type == SHT_REL || isec->type == SHT_RELA) 801 continue; 802 803 // Unlike other synthetic sections, mergeable output sections contain data 804 // copied from input sections, and there may be a relocation pointing to its 805 // contents if -r or -emit-reloc are given. 806 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 807 continue; 808 809 auto *sym = 810 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 811 /*value=*/0, /*size=*/0, isec); 812 in.symTab->addSymbol(sym); 813 } 814 } 815 816 // Today's loaders have a feature to make segments read-only after 817 // processing dynamic relocations to enhance security. PT_GNU_RELRO 818 // is defined for that. 819 // 820 // This function returns true if a section needs to be put into a 821 // PT_GNU_RELRO segment. 822 static bool isRelroSection(const OutputSection *sec) { 823 if (!config->zRelro) 824 return false; 825 826 uint64_t flags = sec->flags; 827 828 // Non-allocatable or non-writable sections don't need RELRO because 829 // they are not writable or not even mapped to memory in the first place. 830 // RELRO is for sections that are essentially read-only but need to 831 // be writable only at process startup to allow dynamic linker to 832 // apply relocations. 833 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 834 return false; 835 836 // Once initialized, TLS data segments are used as data templates 837 // for a thread-local storage. For each new thread, runtime 838 // allocates memory for a TLS and copy templates there. No thread 839 // are supposed to use templates directly. Thus, it can be in RELRO. 840 if (flags & SHF_TLS) 841 return true; 842 843 // .init_array, .preinit_array and .fini_array contain pointers to 844 // functions that are executed on process startup or exit. These 845 // pointers are set by the static linker, and they are not expected 846 // to change at runtime. But if you are an attacker, you could do 847 // interesting things by manipulating pointers in .fini_array, for 848 // example. So they are put into RELRO. 849 uint32_t type = sec->type; 850 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 851 type == SHT_PREINIT_ARRAY) 852 return true; 853 854 // .got contains pointers to external symbols. They are resolved by 855 // the dynamic linker when a module is loaded into memory, and after 856 // that they are not expected to change. So, it can be in RELRO. 857 if (in.got && sec == in.got->getParent()) 858 return true; 859 860 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 861 // through r2 register, which is reserved for that purpose. Since r2 is used 862 // for accessing .got as well, .got and .toc need to be close enough in the 863 // virtual address space. Usually, .toc comes just after .got. Since we place 864 // .got into RELRO, .toc needs to be placed into RELRO too. 865 if (sec->name.equals(".toc")) 866 return true; 867 868 // .got.plt contains pointers to external function symbols. They are 869 // by default resolved lazily, so we usually cannot put it into RELRO. 870 // However, if "-z now" is given, the lazy symbol resolution is 871 // disabled, which enables us to put it into RELRO. 872 if (sec == in.gotPlt->getParent()) 873 return config->zNow; 874 875 // .dynamic section contains data for the dynamic linker, and 876 // there's no need to write to it at runtime, so it's better to put 877 // it into RELRO. 878 if (sec->name == ".dynamic") 879 return true; 880 881 // Sections with some special names are put into RELRO. This is a 882 // bit unfortunate because section names shouldn't be significant in 883 // ELF in spirit. But in reality many linker features depend on 884 // magic section names. 885 StringRef s = sec->name; 886 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 887 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 888 s == ".fini_array" || s == ".init_array" || 889 s == ".openbsd.randomdata" || s == ".preinit_array"; 890 } 891 892 // We compute a rank for each section. The rank indicates where the 893 // section should be placed in the file. Instead of using simple 894 // numbers (0,1,2...), we use a series of flags. One for each decision 895 // point when placing the section. 896 // Using flags has two key properties: 897 // * It is easy to check if a give branch was taken. 898 // * It is easy two see how similar two ranks are (see getRankProximity). 899 enum RankFlags { 900 RF_NOT_ADDR_SET = 1 << 27, 901 RF_NOT_ALLOC = 1 << 26, 902 RF_PARTITION = 1 << 18, // Partition number (8 bits) 903 RF_NOT_PART_EHDR = 1 << 17, 904 RF_NOT_PART_PHDR = 1 << 16, 905 RF_NOT_INTERP = 1 << 15, 906 RF_NOT_NOTE = 1 << 14, 907 RF_WRITE = 1 << 13, 908 RF_EXEC_WRITE = 1 << 12, 909 RF_EXEC = 1 << 11, 910 RF_RODATA = 1 << 10, 911 RF_NOT_RELRO = 1 << 9, 912 RF_NOT_TLS = 1 << 8, 913 RF_BSS = 1 << 7, 914 RF_PPC_NOT_TOCBSS = 1 << 6, 915 RF_PPC_TOCL = 1 << 5, 916 RF_PPC_TOC = 1 << 4, 917 RF_PPC_GOT = 1 << 3, 918 RF_PPC_BRANCH_LT = 1 << 2, 919 RF_MIPS_GPREL = 1 << 1, 920 RF_MIPS_NOT_GOT = 1 << 0 921 }; 922 923 static unsigned getSectionRank(const OutputSection *sec) { 924 unsigned rank = sec->partition * RF_PARTITION; 925 926 // We want to put section specified by -T option first, so we 927 // can start assigning VA starting from them later. 928 if (config->sectionStartMap.count(sec->name)) 929 return rank; 930 rank |= RF_NOT_ADDR_SET; 931 932 // Allocatable sections go first to reduce the total PT_LOAD size and 933 // so debug info doesn't change addresses in actual code. 934 if (!(sec->flags & SHF_ALLOC)) 935 return rank | RF_NOT_ALLOC; 936 937 if (sec->type == SHT_LLVM_PART_EHDR) 938 return rank; 939 rank |= RF_NOT_PART_EHDR; 940 941 if (sec->type == SHT_LLVM_PART_PHDR) 942 return rank; 943 rank |= RF_NOT_PART_PHDR; 944 945 // Put .interp first because some loaders want to see that section 946 // on the first page of the executable file when loaded into memory. 947 if (sec->name == ".interp") 948 return rank; 949 rank |= RF_NOT_INTERP; 950 951 // Put .note sections (which make up one PT_NOTE) at the beginning so that 952 // they are likely to be included in a core file even if core file size is 953 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 954 // included in a core to match core files with executables. 955 if (sec->type == SHT_NOTE) 956 return rank; 957 rank |= RF_NOT_NOTE; 958 959 // Sort sections based on their access permission in the following 960 // order: R, RX, RWX, RW. This order is based on the following 961 // considerations: 962 // * Read-only sections come first such that they go in the 963 // PT_LOAD covering the program headers at the start of the file. 964 // * Read-only, executable sections come next. 965 // * Writable, executable sections follow such that .plt on 966 // architectures where it needs to be writable will be placed 967 // between .text and .data. 968 // * Writable sections come last, such that .bss lands at the very 969 // end of the last PT_LOAD. 970 bool isExec = sec->flags & SHF_EXECINSTR; 971 bool isWrite = sec->flags & SHF_WRITE; 972 973 if (isExec) { 974 if (isWrite) 975 rank |= RF_EXEC_WRITE; 976 else 977 rank |= RF_EXEC; 978 } else if (isWrite) { 979 rank |= RF_WRITE; 980 } else if (sec->type == SHT_PROGBITS) { 981 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 982 // .eh_frame) closer to .text. They likely contain PC or GOT relative 983 // relocations and there could be relocation overflow if other huge sections 984 // (.dynstr .dynsym) were placed in between. 985 rank |= RF_RODATA; 986 } 987 988 // Place RelRo sections first. After considering SHT_NOBITS below, the 989 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 990 // where | marks where page alignment happens. An alternative ordering is 991 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 992 // waste more bytes due to 2 alignment places. 993 if (!isRelroSection(sec)) 994 rank |= RF_NOT_RELRO; 995 996 // If we got here we know that both A and B are in the same PT_LOAD. 997 998 // The TLS initialization block needs to be a single contiguous block in a R/W 999 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 1000 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 1001 // after PROGBITS. 1002 if (!(sec->flags & SHF_TLS)) 1003 rank |= RF_NOT_TLS; 1004 1005 // Within TLS sections, or within other RelRo sections, or within non-RelRo 1006 // sections, place non-NOBITS sections first. 1007 if (sec->type == SHT_NOBITS) 1008 rank |= RF_BSS; 1009 1010 // Some architectures have additional ordering restrictions for sections 1011 // within the same PT_LOAD. 1012 if (config->emachine == EM_PPC64) { 1013 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 1014 // that we would like to make sure appear is a specific order to maximize 1015 // their coverage by a single signed 16-bit offset from the TOC base 1016 // pointer. Conversely, the special .tocbss section should be first among 1017 // all SHT_NOBITS sections. This will put it next to the loaded special 1018 // PPC64 sections (and, thus, within reach of the TOC base pointer). 1019 StringRef name = sec->name; 1020 if (name != ".tocbss") 1021 rank |= RF_PPC_NOT_TOCBSS; 1022 1023 if (name == ".toc1") 1024 rank |= RF_PPC_TOCL; 1025 1026 if (name == ".toc") 1027 rank |= RF_PPC_TOC; 1028 1029 if (name == ".got") 1030 rank |= RF_PPC_GOT; 1031 1032 if (name == ".branch_lt") 1033 rank |= RF_PPC_BRANCH_LT; 1034 } 1035 1036 if (config->emachine == EM_MIPS) { 1037 // All sections with SHF_MIPS_GPREL flag should be grouped together 1038 // because data in these sections is addressable with a gp relative address. 1039 if (sec->flags & SHF_MIPS_GPREL) 1040 rank |= RF_MIPS_GPREL; 1041 1042 if (sec->name != ".got") 1043 rank |= RF_MIPS_NOT_GOT; 1044 } 1045 1046 return rank; 1047 } 1048 1049 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 1050 const OutputSection *a = cast<OutputSection>(aCmd); 1051 const OutputSection *b = cast<OutputSection>(bCmd); 1052 1053 if (a->sortRank != b->sortRank) 1054 return a->sortRank < b->sortRank; 1055 1056 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1057 return config->sectionStartMap.lookup(a->name) < 1058 config->sectionStartMap.lookup(b->name); 1059 return false; 1060 } 1061 1062 void PhdrEntry::add(OutputSection *sec) { 1063 lastSec = sec; 1064 if (!firstSec) 1065 firstSec = sec; 1066 p_align = std::max(p_align, sec->alignment); 1067 if (p_type == PT_LOAD) 1068 sec->ptLoad = this; 1069 } 1070 1071 // The beginning and the ending of .rel[a].plt section are marked 1072 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1073 // executable. The runtime needs these symbols in order to resolve 1074 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1075 // need these symbols, since IRELATIVE relocs are resolved through GOT 1076 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1077 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1078 if (config->relocatable || needsInterpSection()) 1079 return; 1080 1081 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1082 // because .rela.plt might be empty and thus removed from output. 1083 // We'll override Out::elfHeader with In.relaIplt later when we are 1084 // sure that .rela.plt exists in output. 1085 ElfSym::relaIpltStart = addOptionalRegular( 1086 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1087 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1088 1089 ElfSym::relaIpltEnd = addOptionalRegular( 1090 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1091 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1092 } 1093 1094 template <class ELFT> 1095 void Writer<ELFT>::forEachRelSec( 1096 llvm::function_ref<void(InputSectionBase &)> fn) { 1097 // Scan all relocations. Each relocation goes through a series 1098 // of tests to determine if it needs special treatment, such as 1099 // creating GOT, PLT, copy relocations, etc. 1100 // Note that relocations for non-alloc sections are directly 1101 // processed by InputSection::relocateNonAlloc. 1102 for (InputSectionBase *isec : inputSections) 1103 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1104 fn(*isec); 1105 for (Partition &part : partitions) { 1106 for (EhInputSection *es : part.ehFrame->sections) 1107 fn(*es); 1108 if (part.armExidx && part.armExidx->isLive()) 1109 for (InputSection *ex : part.armExidx->exidxSections) 1110 fn(*ex); 1111 } 1112 } 1113 1114 // This function generates assignments for predefined symbols (e.g. _end or 1115 // _etext) and inserts them into the commands sequence to be processed at the 1116 // appropriate time. This ensures that the value is going to be correct by the 1117 // time any references to these symbols are processed and is equivalent to 1118 // defining these symbols explicitly in the linker script. 1119 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1120 if (ElfSym::globalOffsetTable) { 1121 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1122 // to the start of the .got or .got.plt section. 1123 InputSection *gotSection = in.gotPlt; 1124 if (!target->gotBaseSymInGotPlt) 1125 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1126 : cast<InputSection>(in.got); 1127 ElfSym::globalOffsetTable->section = gotSection; 1128 } 1129 1130 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1131 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1132 ElfSym::relaIpltStart->section = in.relaIplt; 1133 ElfSym::relaIpltEnd->section = in.relaIplt; 1134 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1135 } 1136 1137 PhdrEntry *last = nullptr; 1138 PhdrEntry *lastRO = nullptr; 1139 1140 for (Partition &part : partitions) { 1141 for (PhdrEntry *p : part.phdrs) { 1142 if (p->p_type != PT_LOAD) 1143 continue; 1144 last = p; 1145 if (!(p->p_flags & PF_W)) 1146 lastRO = p; 1147 } 1148 } 1149 1150 if (lastRO) { 1151 // _etext is the first location after the last read-only loadable segment. 1152 if (ElfSym::etext1) 1153 ElfSym::etext1->section = lastRO->lastSec; 1154 if (ElfSym::etext2) 1155 ElfSym::etext2->section = lastRO->lastSec; 1156 } 1157 1158 if (last) { 1159 // _edata points to the end of the last mapped initialized section. 1160 OutputSection *edata = nullptr; 1161 for (OutputSection *os : outputSections) { 1162 if (os->type != SHT_NOBITS) 1163 edata = os; 1164 if (os == last->lastSec) 1165 break; 1166 } 1167 1168 if (ElfSym::edata1) 1169 ElfSym::edata1->section = edata; 1170 if (ElfSym::edata2) 1171 ElfSym::edata2->section = edata; 1172 1173 // _end is the first location after the uninitialized data region. 1174 if (ElfSym::end1) 1175 ElfSym::end1->section = last->lastSec; 1176 if (ElfSym::end2) 1177 ElfSym::end2->section = last->lastSec; 1178 } 1179 1180 if (ElfSym::bss) 1181 ElfSym::bss->section = findSection(".bss"); 1182 1183 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1184 // be equal to the _gp symbol's value. 1185 if (ElfSym::mipsGp) { 1186 // Find GP-relative section with the lowest address 1187 // and use this address to calculate default _gp value. 1188 for (OutputSection *os : outputSections) { 1189 if (os->flags & SHF_MIPS_GPREL) { 1190 ElfSym::mipsGp->section = os; 1191 ElfSym::mipsGp->value = 0x7ff0; 1192 break; 1193 } 1194 } 1195 } 1196 } 1197 1198 // We want to find how similar two ranks are. 1199 // The more branches in getSectionRank that match, the more similar they are. 1200 // Since each branch corresponds to a bit flag, we can just use 1201 // countLeadingZeros. 1202 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1203 return countLeadingZeros(a->sortRank ^ b->sortRank); 1204 } 1205 1206 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1207 auto *sec = dyn_cast<OutputSection>(b); 1208 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1209 } 1210 1211 // When placing orphan sections, we want to place them after symbol assignments 1212 // so that an orphan after 1213 // begin_foo = .; 1214 // foo : { *(foo) } 1215 // end_foo = .; 1216 // doesn't break the intended meaning of the begin/end symbols. 1217 // We don't want to go over sections since findOrphanPos is the 1218 // one in charge of deciding the order of the sections. 1219 // We don't want to go over changes to '.', since doing so in 1220 // rx_sec : { *(rx_sec) } 1221 // . = ALIGN(0x1000); 1222 // /* The RW PT_LOAD starts here*/ 1223 // rw_sec : { *(rw_sec) } 1224 // would mean that the RW PT_LOAD would become unaligned. 1225 static bool shouldSkip(BaseCommand *cmd) { 1226 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1227 return assign->name != "."; 1228 return false; 1229 } 1230 1231 // We want to place orphan sections so that they share as much 1232 // characteristics with their neighbors as possible. For example, if 1233 // both are rw, or both are tls. 1234 static std::vector<BaseCommand *>::iterator 1235 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1236 std::vector<BaseCommand *>::iterator e) { 1237 // OutputSections without the SHF_ALLOC flag are not part of the memory image 1238 // and their addresses usually don't matter. Place any orphan sections without 1239 // the SHF_ALLOC flag at the end so that these do not affect the address 1240 // assignment of OutputSections with the SHF_ALLOC flag. 1241 OutputSection *sec = cast<OutputSection>(*e); 1242 if (!(sec->flags & SHF_ALLOC)) 1243 return e; 1244 1245 // Find the first element that has as close a rank as possible. 1246 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1247 return getRankProximity(sec, a) < getRankProximity(sec, b); 1248 }); 1249 if (i == e) 1250 return e; 1251 1252 // Consider all existing sections with the same proximity. 1253 int proximity = getRankProximity(sec, *i); 1254 for (; i != e; ++i) { 1255 auto *curSec = dyn_cast<OutputSection>(*i); 1256 if (!curSec || !curSec->hasInputSections) 1257 continue; 1258 if (getRankProximity(sec, curSec) != proximity || 1259 sec->sortRank < curSec->sortRank) 1260 break; 1261 } 1262 1263 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1264 auto *os = dyn_cast<OutputSection>(cmd); 1265 return os && os->hasInputSections; 1266 }; 1267 auto j = std::find_if(llvm::make_reverse_iterator(i), 1268 llvm::make_reverse_iterator(b), 1269 isOutputSecWithInputSections); 1270 i = j.base(); 1271 1272 // As a special case, if the orphan section is the last section, put 1273 // it at the very end, past any other commands. 1274 // This matches bfd's behavior and is convenient when the linker script fully 1275 // specifies the start of the file, but doesn't care about the end (the non 1276 // alloc sections for example). 1277 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1278 if (nextSec == e) 1279 return e; 1280 1281 while (i != e && shouldSkip(*i)) 1282 ++i; 1283 return i; 1284 } 1285 1286 // Adds random priorities to sections not already in the map. 1287 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1288 if (!config->shuffleSectionSeed) 1289 return; 1290 1291 std::vector<int> priorities(inputSections.size() - order.size()); 1292 // Existing priorities are < 0, so use priorities >= 0 for the missing 1293 // sections. 1294 int curPrio = 0; 1295 for (int &prio : priorities) 1296 prio = curPrio++; 1297 uint32_t seed = *config->shuffleSectionSeed; 1298 std::mt19937 g(seed ? seed : std::random_device()()); 1299 llvm::shuffle(priorities.begin(), priorities.end(), g); 1300 int prioIndex = 0; 1301 for (InputSectionBase *sec : inputSections) { 1302 if (order.try_emplace(sec, priorities[prioIndex]).second) 1303 ++prioIndex; 1304 } 1305 } 1306 1307 // Builds section order for handling --symbol-ordering-file. 1308 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1309 DenseMap<const InputSectionBase *, int> sectionOrder; 1310 // Use the rarely used option -call-graph-ordering-file to sort sections. 1311 if (!config->callGraphProfile.empty()) 1312 return computeCallGraphProfileOrder(); 1313 1314 if (config->symbolOrderingFile.empty()) 1315 return sectionOrder; 1316 1317 struct SymbolOrderEntry { 1318 int priority; 1319 bool present; 1320 }; 1321 1322 // Build a map from symbols to their priorities. Symbols that didn't 1323 // appear in the symbol ordering file have the lowest priority 0. 1324 // All explicitly mentioned symbols have negative (higher) priorities. 1325 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1326 int priority = -config->symbolOrderingFile.size(); 1327 for (StringRef s : config->symbolOrderingFile) 1328 symbolOrder.insert({s, {priority++, false}}); 1329 1330 // Build a map from sections to their priorities. 1331 auto addSym = [&](Symbol &sym) { 1332 auto it = symbolOrder.find(sym.getName()); 1333 if (it == symbolOrder.end()) 1334 return; 1335 SymbolOrderEntry &ent = it->second; 1336 ent.present = true; 1337 1338 maybeWarnUnorderableSymbol(&sym); 1339 1340 if (auto *d = dyn_cast<Defined>(&sym)) { 1341 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1342 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1343 priority = std::min(priority, ent.priority); 1344 } 1345 } 1346 }; 1347 1348 // We want both global and local symbols. We get the global ones from the 1349 // symbol table and iterate the object files for the local ones. 1350 for (Symbol *sym : symtab->symbols()) 1351 if (!sym->isLazy()) 1352 addSym(*sym); 1353 1354 for (InputFile *file : objectFiles) 1355 for (Symbol *sym : file->getSymbols()) 1356 if (sym->isLocal()) 1357 addSym(*sym); 1358 1359 if (config->warnSymbolOrdering) 1360 for (auto orderEntry : symbolOrder) 1361 if (!orderEntry.second.present) 1362 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1363 1364 return sectionOrder; 1365 } 1366 1367 // Sorts the sections in ISD according to the provided section order. 1368 static void 1369 sortISDBySectionOrder(InputSectionDescription *isd, 1370 const DenseMap<const InputSectionBase *, int> &order) { 1371 std::vector<InputSection *> unorderedSections; 1372 std::vector<std::pair<InputSection *, int>> orderedSections; 1373 uint64_t unorderedSize = 0; 1374 1375 for (InputSection *isec : isd->sections) { 1376 auto i = order.find(isec); 1377 if (i == order.end()) { 1378 unorderedSections.push_back(isec); 1379 unorderedSize += isec->getSize(); 1380 continue; 1381 } 1382 orderedSections.push_back({isec, i->second}); 1383 } 1384 llvm::sort(orderedSections, llvm::less_second()); 1385 1386 // Find an insertion point for the ordered section list in the unordered 1387 // section list. On targets with limited-range branches, this is the mid-point 1388 // of the unordered section list. This decreases the likelihood that a range 1389 // extension thunk will be needed to enter or exit the ordered region. If the 1390 // ordered section list is a list of hot functions, we can generally expect 1391 // the ordered functions to be called more often than the unordered functions, 1392 // making it more likely that any particular call will be within range, and 1393 // therefore reducing the number of thunks required. 1394 // 1395 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1396 // If the layout is: 1397 // 1398 // 8MB hot 1399 // 32MB cold 1400 // 1401 // only the first 8-16MB of the cold code (depending on which hot function it 1402 // is actually calling) can call the hot code without a range extension thunk. 1403 // However, if we use this layout: 1404 // 1405 // 16MB cold 1406 // 8MB hot 1407 // 16MB cold 1408 // 1409 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1410 // of the second block of cold code can call the hot code without a thunk. So 1411 // we effectively double the amount of code that could potentially call into 1412 // the hot code without a thunk. 1413 size_t insPt = 0; 1414 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1415 uint64_t unorderedPos = 0; 1416 for (; insPt != unorderedSections.size(); ++insPt) { 1417 unorderedPos += unorderedSections[insPt]->getSize(); 1418 if (unorderedPos > unorderedSize / 2) 1419 break; 1420 } 1421 } 1422 1423 isd->sections.clear(); 1424 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1425 isd->sections.push_back(isec); 1426 for (std::pair<InputSection *, int> p : orderedSections) 1427 isd->sections.push_back(p.first); 1428 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1429 isd->sections.push_back(isec); 1430 } 1431 1432 static void sortSection(OutputSection *sec, 1433 const DenseMap<const InputSectionBase *, int> &order) { 1434 StringRef name = sec->name; 1435 1436 // Never sort these. 1437 if (name == ".init" || name == ".fini") 1438 return; 1439 1440 // Sort input sections by priority using the list provided by 1441 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1442 // digit radix sort. The sections may be sorted stably again by a more 1443 // significant key. 1444 if (!order.empty()) 1445 for (BaseCommand *b : sec->sectionCommands) 1446 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1447 sortISDBySectionOrder(isd, order); 1448 1449 // Sort input sections by section name suffixes for 1450 // __attribute__((init_priority(N))). 1451 if (name == ".init_array" || name == ".fini_array") { 1452 if (!script->hasSectionsCommand) 1453 sec->sortInitFini(); 1454 return; 1455 } 1456 1457 // Sort input sections by the special rule for .ctors and .dtors. 1458 if (name == ".ctors" || name == ".dtors") { 1459 if (!script->hasSectionsCommand) 1460 sec->sortCtorsDtors(); 1461 return; 1462 } 1463 1464 // .toc is allocated just after .got and is accessed using GOT-relative 1465 // relocations. Object files compiled with small code model have an 1466 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1467 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1468 // sections having smaller relocation offsets are at beginning of .toc 1469 if (config->emachine == EM_PPC64 && name == ".toc") { 1470 if (script->hasSectionsCommand) 1471 return; 1472 assert(sec->sectionCommands.size() == 1); 1473 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1474 llvm::stable_sort(isd->sections, 1475 [](const InputSection *a, const InputSection *b) -> bool { 1476 return a->file->ppc64SmallCodeModelTocRelocs && 1477 !b->file->ppc64SmallCodeModelTocRelocs; 1478 }); 1479 return; 1480 } 1481 } 1482 1483 // If no layout was provided by linker script, we want to apply default 1484 // sorting for special input sections. This also handles --symbol-ordering-file. 1485 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1486 // Build the order once since it is expensive. 1487 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1488 maybeShuffle(order); 1489 for (BaseCommand *base : script->sectionCommands) 1490 if (auto *sec = dyn_cast<OutputSection>(base)) 1491 sortSection(sec, order); 1492 } 1493 1494 template <class ELFT> void Writer<ELFT>::sortSections() { 1495 script->adjustSectionsBeforeSorting(); 1496 1497 // Don't sort if using -r. It is not necessary and we want to preserve the 1498 // relative order for SHF_LINK_ORDER sections. 1499 if (config->relocatable) 1500 return; 1501 1502 sortInputSections(); 1503 1504 for (BaseCommand *base : script->sectionCommands) { 1505 auto *os = dyn_cast<OutputSection>(base); 1506 if (!os) 1507 continue; 1508 os->sortRank = getSectionRank(os); 1509 1510 // We want to assign rude approximation values to outSecOff fields 1511 // to know the relative order of the input sections. We use it for 1512 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1513 uint64_t i = 0; 1514 for (InputSection *sec : getInputSections(os)) 1515 sec->outSecOff = i++; 1516 } 1517 1518 if (!script->hasSectionsCommand) { 1519 // We know that all the OutputSections are contiguous in this case. 1520 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1521 std::stable_sort( 1522 llvm::find_if(script->sectionCommands, isSection), 1523 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1524 compareSections); 1525 1526 // Process INSERT commands. From this point onwards the order of 1527 // script->sectionCommands is fixed. 1528 script->processInsertCommands(); 1529 return; 1530 } 1531 1532 script->processInsertCommands(); 1533 1534 // Orphan sections are sections present in the input files which are 1535 // not explicitly placed into the output file by the linker script. 1536 // 1537 // The sections in the linker script are already in the correct 1538 // order. We have to figuere out where to insert the orphan 1539 // sections. 1540 // 1541 // The order of the sections in the script is arbitrary and may not agree with 1542 // compareSections. This means that we cannot easily define a strict weak 1543 // ordering. To see why, consider a comparison of a section in the script and 1544 // one not in the script. We have a two simple options: 1545 // * Make them equivalent (a is not less than b, and b is not less than a). 1546 // The problem is then that equivalence has to be transitive and we can 1547 // have sections a, b and c with only b in a script and a less than c 1548 // which breaks this property. 1549 // * Use compareSectionsNonScript. Given that the script order doesn't have 1550 // to match, we can end up with sections a, b, c, d where b and c are in the 1551 // script and c is compareSectionsNonScript less than b. In which case d 1552 // can be equivalent to c, a to b and d < a. As a concrete example: 1553 // .a (rx) # not in script 1554 // .b (rx) # in script 1555 // .c (ro) # in script 1556 // .d (ro) # not in script 1557 // 1558 // The way we define an order then is: 1559 // * Sort only the orphan sections. They are in the end right now. 1560 // * Move each orphan section to its preferred position. We try 1561 // to put each section in the last position where it can share 1562 // a PT_LOAD. 1563 // 1564 // There is some ambiguity as to where exactly a new entry should be 1565 // inserted, because Commands contains not only output section 1566 // commands but also other types of commands such as symbol assignment 1567 // expressions. There's no correct answer here due to the lack of the 1568 // formal specification of the linker script. We use heuristics to 1569 // determine whether a new output command should be added before or 1570 // after another commands. For the details, look at shouldSkip 1571 // function. 1572 1573 auto i = script->sectionCommands.begin(); 1574 auto e = script->sectionCommands.end(); 1575 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1576 if (auto *sec = dyn_cast<OutputSection>(base)) 1577 return sec->sectionIndex == UINT32_MAX; 1578 return false; 1579 }); 1580 1581 // Sort the orphan sections. 1582 std::stable_sort(nonScriptI, e, compareSections); 1583 1584 // As a horrible special case, skip the first . assignment if it is before any 1585 // section. We do this because it is common to set a load address by starting 1586 // the script with ". = 0xabcd" and the expectation is that every section is 1587 // after that. 1588 auto firstSectionOrDotAssignment = 1589 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1590 if (firstSectionOrDotAssignment != e && 1591 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1592 ++firstSectionOrDotAssignment; 1593 i = firstSectionOrDotAssignment; 1594 1595 while (nonScriptI != e) { 1596 auto pos = findOrphanPos(i, nonScriptI); 1597 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1598 1599 // As an optimization, find all sections with the same sort rank 1600 // and insert them with one rotate. 1601 unsigned rank = orphan->sortRank; 1602 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1603 return cast<OutputSection>(cmd)->sortRank != rank; 1604 }); 1605 std::rotate(pos, nonScriptI, end); 1606 nonScriptI = end; 1607 } 1608 1609 script->adjustSectionsAfterSorting(); 1610 } 1611 1612 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1613 InputSection *la = a->getLinkOrderDep(); 1614 InputSection *lb = b->getLinkOrderDep(); 1615 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before others. 1616 if (!la || !lb) 1617 return la && !lb; 1618 OutputSection *aOut = la->getParent(); 1619 OutputSection *bOut = lb->getParent(); 1620 1621 if (aOut != bOut) 1622 return aOut->addr < bOut->addr; 1623 return la->outSecOff < lb->outSecOff; 1624 } 1625 1626 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1627 for (OutputSection *sec : outputSections) { 1628 if (!(sec->flags & SHF_LINK_ORDER)) 1629 continue; 1630 1631 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1632 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1633 if (!config->relocatable && config->emachine == EM_ARM && 1634 sec->type == SHT_ARM_EXIDX) 1635 continue; 1636 1637 // Link order may be distributed across several InputSectionDescriptions 1638 // but sort must consider them all at once. 1639 std::vector<InputSection **> scriptSections; 1640 std::vector<InputSection *> sections; 1641 bool started = false, stopped = false; 1642 for (BaseCommand *base : sec->sectionCommands) { 1643 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 1644 for (InputSection *&isec : isd->sections) { 1645 if (!(isec->flags & SHF_LINK_ORDER)) { 1646 if (started) 1647 stopped = true; 1648 } else if (stopped) { 1649 error(toString(isec) + ": SHF_LINK_ORDER sections in " + sec->name + 1650 " are not contiguous"); 1651 } else { 1652 started = true; 1653 1654 scriptSections.push_back(&isec); 1655 sections.push_back(isec); 1656 1657 InputSection *link = isec->getLinkOrderDep(); 1658 if (link && !link->getParent()) 1659 error(toString(isec) + ": sh_link points to discarded section " + 1660 toString(link)); 1661 } 1662 } 1663 } else if (started) { 1664 stopped = true; 1665 } 1666 } 1667 1668 if (errorCount()) 1669 continue; 1670 1671 llvm::stable_sort(sections, compareByFilePosition); 1672 1673 for (int i = 0, n = sections.size(); i < n; ++i) 1674 *scriptSections[i] = sections[i]; 1675 } 1676 } 1677 1678 static void finalizeSynthetic(SyntheticSection *sec) { 1679 if (sec && sec->isNeeded() && sec->getParent()) 1680 sec->finalizeContents(); 1681 } 1682 1683 // We need to generate and finalize the content that depends on the address of 1684 // InputSections. As the generation of the content may also alter InputSection 1685 // addresses we must converge to a fixed point. We do that here. See the comment 1686 // in Writer<ELFT>::finalizeSections(). 1687 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1688 ThunkCreator tc; 1689 AArch64Err843419Patcher a64p; 1690 ARMErr657417Patcher a32p; 1691 script->assignAddresses(); 1692 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1693 // do require the relative addresses of OutputSections because linker scripts 1694 // can assign Virtual Addresses to OutputSections that are not monotonically 1695 // increasing. 1696 for (Partition &part : partitions) 1697 finalizeSynthetic(part.armExidx); 1698 resolveShfLinkOrder(); 1699 1700 // Converts call x@GDPLT to call __tls_get_addr 1701 if (config->emachine == EM_HEXAGON) 1702 hexagonTLSSymbolUpdate(outputSections); 1703 1704 int assignPasses = 0; 1705 for (;;) { 1706 bool changed = target->needsThunks && tc.createThunks(outputSections); 1707 1708 // With Thunk Size much smaller than branch range we expect to 1709 // converge quickly; if we get to 10 something has gone wrong. 1710 if (changed && tc.pass >= 10) { 1711 error("thunk creation not converged"); 1712 break; 1713 } 1714 1715 if (config->fixCortexA53Errata843419) { 1716 if (changed) 1717 script->assignAddresses(); 1718 changed |= a64p.createFixes(); 1719 } 1720 if (config->fixCortexA8) { 1721 if (changed) 1722 script->assignAddresses(); 1723 changed |= a32p.createFixes(); 1724 } 1725 1726 if (in.mipsGot) 1727 in.mipsGot->updateAllocSize(); 1728 1729 for (Partition &part : partitions) { 1730 changed |= part.relaDyn->updateAllocSize(); 1731 if (part.relrDyn) 1732 changed |= part.relrDyn->updateAllocSize(); 1733 } 1734 1735 const Defined *changedSym = script->assignAddresses(); 1736 if (!changed) { 1737 // Some symbols may be dependent on section addresses. When we break the 1738 // loop, the symbol values are finalized because a previous 1739 // assignAddresses() finalized section addresses. 1740 if (!changedSym) 1741 break; 1742 if (++assignPasses == 5) { 1743 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1744 " does not converge"); 1745 break; 1746 } 1747 } 1748 } 1749 1750 // If addrExpr is set, the address may not be a multiple of the alignment. 1751 // Warn because this is error-prone. 1752 for (BaseCommand *cmd : script->sectionCommands) 1753 if (auto *os = dyn_cast<OutputSection>(cmd)) 1754 if (os->addr % os->alignment != 0) 1755 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1756 os->name + " is not a multiple of alignment (" + 1757 Twine(os->alignment) + ")"); 1758 } 1759 1760 // If Input Sections have been shrinked (basic block sections) then 1761 // update symbol values and sizes associated with these sections. With basic 1762 // block sections, input sections can shrink when the jump instructions at 1763 // the end of the section are relaxed. 1764 static void fixSymbolsAfterShrinking() { 1765 for (InputFile *File : objectFiles) { 1766 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1767 auto *def = dyn_cast<Defined>(Sym); 1768 if (!def) 1769 return; 1770 1771 const SectionBase *sec = def->section; 1772 if (!sec) 1773 return; 1774 1775 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl); 1776 if (!inputSec || !inputSec->bytesDropped) 1777 return; 1778 1779 const size_t OldSize = inputSec->data().size(); 1780 const size_t NewSize = OldSize - inputSec->bytesDropped; 1781 1782 if (def->value > NewSize && def->value <= OldSize) { 1783 LLVM_DEBUG(llvm::dbgs() 1784 << "Moving symbol " << Sym->getName() << " from " 1785 << def->value << " to " 1786 << def->value - inputSec->bytesDropped << " bytes\n"); 1787 def->value -= inputSec->bytesDropped; 1788 return; 1789 } 1790 1791 if (def->value + def->size > NewSize && def->value <= OldSize && 1792 def->value + def->size <= OldSize) { 1793 LLVM_DEBUG(llvm::dbgs() 1794 << "Shrinking symbol " << Sym->getName() << " from " 1795 << def->size << " to " << def->size - inputSec->bytesDropped 1796 << " bytes\n"); 1797 def->size -= inputSec->bytesDropped; 1798 } 1799 }); 1800 } 1801 } 1802 1803 // If basic block sections exist, there are opportunities to delete fall thru 1804 // jumps and shrink jump instructions after basic block reordering. This 1805 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1806 // option is used. 1807 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1808 assert(config->optimizeBBJumps); 1809 1810 script->assignAddresses(); 1811 // For every output section that has executable input sections, this 1812 // does the following: 1813 // 1. Deletes all direct jump instructions in input sections that 1814 // jump to the following section as it is not required. 1815 // 2. If there are two consecutive jump instructions, it checks 1816 // if they can be flipped and one can be deleted. 1817 for (OutputSection *os : outputSections) { 1818 if (!(os->flags & SHF_EXECINSTR)) 1819 continue; 1820 std::vector<InputSection *> sections = getInputSections(os); 1821 std::vector<unsigned> result(sections.size()); 1822 // Delete all fall through jump instructions. Also, check if two 1823 // consecutive jump instructions can be flipped so that a fall 1824 // through jmp instruction can be deleted. 1825 parallelForEachN(0, sections.size(), [&](size_t i) { 1826 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1827 InputSection &is = *sections[i]; 1828 result[i] = 1829 target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0; 1830 }); 1831 size_t numDeleted = std::count(result.begin(), result.end(), 1); 1832 if (numDeleted > 0) { 1833 script->assignAddresses(); 1834 LLVM_DEBUG(llvm::dbgs() 1835 << "Removing " << numDeleted << " fall through jumps\n"); 1836 } 1837 } 1838 1839 fixSymbolsAfterShrinking(); 1840 1841 for (OutputSection *os : outputSections) { 1842 std::vector<InputSection *> sections = getInputSections(os); 1843 for (InputSection *is : sections) 1844 is->trim(); 1845 } 1846 } 1847 1848 // In order to allow users to manipulate linker-synthesized sections, 1849 // we had to add synthetic sections to the input section list early, 1850 // even before we make decisions whether they are needed. This allows 1851 // users to write scripts like this: ".mygot : { .got }". 1852 // 1853 // Doing it has an unintended side effects. If it turns out that we 1854 // don't need a .got (for example) at all because there's no 1855 // relocation that needs a .got, we don't want to emit .got. 1856 // 1857 // To deal with the above problem, this function is called after 1858 // scanRelocations is called to remove synthetic sections that turn 1859 // out to be empty. 1860 static void removeUnusedSyntheticSections() { 1861 // All input synthetic sections that can be empty are placed after 1862 // all regular ones. We iterate over them all and exit at first 1863 // non-synthetic. 1864 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1865 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1866 if (!ss) 1867 return; 1868 OutputSection *os = ss->getParent(); 1869 if (!os || ss->isNeeded()) 1870 continue; 1871 1872 // If we reach here, then ss is an unused synthetic section and we want to 1873 // remove it from the corresponding input section description, and 1874 // orphanSections. 1875 for (BaseCommand *b : os->sectionCommands) 1876 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1877 llvm::erase_if(isd->sections, 1878 [=](InputSection *isec) { return isec == ss; }); 1879 llvm::erase_if(script->orphanSections, 1880 [=](const InputSectionBase *isec) { return isec == ss; }); 1881 } 1882 } 1883 1884 // Create output section objects and add them to OutputSections. 1885 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1886 Out::preinitArray = findSection(".preinit_array"); 1887 Out::initArray = findSection(".init_array"); 1888 Out::finiArray = findSection(".fini_array"); 1889 1890 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1891 // symbols for sections, so that the runtime can get the start and end 1892 // addresses of each section by section name. Add such symbols. 1893 if (!config->relocatable) { 1894 addStartEndSymbols(); 1895 for (BaseCommand *base : script->sectionCommands) 1896 if (auto *sec = dyn_cast<OutputSection>(base)) 1897 addStartStopSymbols(sec); 1898 } 1899 1900 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1901 // It should be okay as no one seems to care about the type. 1902 // Even the author of gold doesn't remember why gold behaves that way. 1903 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1904 if (mainPart->dynamic->parent) 1905 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1906 STV_HIDDEN, STT_NOTYPE, 1907 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1908 1909 // Define __rel[a]_iplt_{start,end} symbols if needed. 1910 addRelIpltSymbols(); 1911 1912 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1913 // should only be defined in an executable. If .sdata does not exist, its 1914 // value/section does not matter but it has to be relative, so set its 1915 // st_shndx arbitrarily to 1 (Out::elfHeader). 1916 if (config->emachine == EM_RISCV && !config->shared) { 1917 OutputSection *sec = findSection(".sdata"); 1918 ElfSym::riscvGlobalPointer = 1919 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1920 0x800, STV_DEFAULT, STB_GLOBAL); 1921 } 1922 1923 if (config->emachine == EM_X86_64) { 1924 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1925 // way that: 1926 // 1927 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1928 // computes 0. 1929 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1930 // the TLS block). 1931 // 1932 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1933 // an absolute symbol of zero. This is different from GNU linkers which 1934 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1935 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1936 if (s && s->isUndefined()) { 1937 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1938 STT_TLS, /*value=*/0, 0, 1939 /*section=*/nullptr}); 1940 ElfSym::tlsModuleBase = cast<Defined>(s); 1941 } 1942 } 1943 1944 // This responsible for splitting up .eh_frame section into 1945 // pieces. The relocation scan uses those pieces, so this has to be 1946 // earlier. 1947 for (Partition &part : partitions) 1948 finalizeSynthetic(part.ehFrame); 1949 1950 for (Symbol *sym : symtab->symbols()) 1951 sym->isPreemptible = computeIsPreemptible(*sym); 1952 1953 // Change values of linker-script-defined symbols from placeholders (assigned 1954 // by declareSymbols) to actual definitions. 1955 script->processSymbolAssignments(); 1956 1957 // Scan relocations. This must be done after every symbol is declared so that 1958 // we can correctly decide if a dynamic relocation is needed. This is called 1959 // after processSymbolAssignments() because it needs to know whether a 1960 // linker-script-defined symbol is absolute. 1961 ppc64noTocRelax.clear(); 1962 if (!config->relocatable) { 1963 forEachRelSec(scanRelocations<ELFT>); 1964 reportUndefinedSymbols<ELFT>(); 1965 } 1966 1967 if (in.plt && in.plt->isNeeded()) 1968 in.plt->addSymbols(); 1969 if (in.iplt && in.iplt->isNeeded()) 1970 in.iplt->addSymbols(); 1971 1972 if (!config->allowShlibUndefined) { 1973 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1974 // entries are seen. These cases would otherwise lead to runtime errors 1975 // reported by the dynamic linker. 1976 // 1977 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1978 // catch more cases. That is too much for us. Our approach resembles the one 1979 // used in ld.gold, achieves a good balance to be useful but not too smart. 1980 for (SharedFile *file : sharedFiles) 1981 file->allNeededIsKnown = 1982 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1983 return symtab->soNames.count(needed); 1984 }); 1985 1986 for (Symbol *sym : symtab->symbols()) 1987 if (sym->isUndefined() && !sym->isWeak()) 1988 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 1989 if (f->allNeededIsKnown) 1990 errorOrWarn(toString(f) + ": undefined reference to " + 1991 toString(*sym) + " [--no-allow-shlib-undefined]"); 1992 } 1993 1994 // Now that we have defined all possible global symbols including linker- 1995 // synthesized ones. Visit all symbols to give the finishing touches. 1996 for (Symbol *sym : symtab->symbols()) { 1997 if (!includeInSymtab(*sym)) 1998 continue; 1999 if (in.symTab) 2000 in.symTab->addSymbol(sym); 2001 2002 if (sym->includeInDynsym()) { 2003 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 2004 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 2005 if (file->isNeeded && !sym->isUndefined()) 2006 addVerneed(sym); 2007 } 2008 } 2009 2010 // We also need to scan the dynamic relocation tables of the other partitions 2011 // and add any referenced symbols to the partition's dynsym. 2012 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2013 DenseSet<Symbol *> syms; 2014 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2015 syms.insert(e.sym); 2016 for (DynamicReloc &reloc : part.relaDyn->relocs) 2017 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 2018 part.dynSymTab->addSymbol(reloc.sym); 2019 } 2020 2021 // Do not proceed if there was an undefined symbol. 2022 if (errorCount()) 2023 return; 2024 2025 if (in.mipsGot) 2026 in.mipsGot->build(); 2027 2028 removeUnusedSyntheticSections(); 2029 script->diagnoseOrphanHandling(); 2030 2031 sortSections(); 2032 2033 // Now that we have the final list, create a list of all the 2034 // OutputSections for convenience. 2035 for (BaseCommand *base : script->sectionCommands) 2036 if (auto *sec = dyn_cast<OutputSection>(base)) 2037 outputSections.push_back(sec); 2038 2039 // Prefer command line supplied address over other constraints. 2040 for (OutputSection *sec : outputSections) { 2041 auto i = config->sectionStartMap.find(sec->name); 2042 if (i != config->sectionStartMap.end()) 2043 sec->addrExpr = [=] { return i->second; }; 2044 } 2045 2046 // With the outputSections available check for GDPLT relocations 2047 // and add __tls_get_addr symbol if needed. 2048 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2049 Symbol *sym = symtab->addSymbol(Undefined{ 2050 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2051 sym->isPreemptible = true; 2052 partitions[0].dynSymTab->addSymbol(sym); 2053 } 2054 2055 // This is a bit of a hack. A value of 0 means undef, so we set it 2056 // to 1 to make __ehdr_start defined. The section number is not 2057 // particularly relevant. 2058 Out::elfHeader->sectionIndex = 1; 2059 2060 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 2061 OutputSection *sec = outputSections[i]; 2062 sec->sectionIndex = i + 1; 2063 sec->shName = in.shStrTab->addString(sec->name); 2064 } 2065 2066 // Binary and relocatable output does not have PHDRS. 2067 // The headers have to be created before finalize as that can influence the 2068 // image base and the dynamic section on mips includes the image base. 2069 if (!config->relocatable && !config->oFormatBinary) { 2070 for (Partition &part : partitions) { 2071 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2072 : createPhdrs(part); 2073 if (config->emachine == EM_ARM) { 2074 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2075 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2076 } 2077 if (config->emachine == EM_MIPS) { 2078 // Add separate segments for MIPS-specific sections. 2079 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2080 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2081 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2082 } 2083 } 2084 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2085 2086 // Find the TLS segment. This happens before the section layout loop so that 2087 // Android relocation packing can look up TLS symbol addresses. We only need 2088 // to care about the main partition here because all TLS symbols were moved 2089 // to the main partition (see MarkLive.cpp). 2090 for (PhdrEntry *p : mainPart->phdrs) 2091 if (p->p_type == PT_TLS) 2092 Out::tlsPhdr = p; 2093 } 2094 2095 // Some symbols are defined in term of program headers. Now that we 2096 // have the headers, we can find out which sections they point to. 2097 setReservedSymbolSections(); 2098 2099 finalizeSynthetic(in.bss); 2100 finalizeSynthetic(in.bssRelRo); 2101 finalizeSynthetic(in.symTabShndx); 2102 finalizeSynthetic(in.shStrTab); 2103 finalizeSynthetic(in.strTab); 2104 finalizeSynthetic(in.got); 2105 finalizeSynthetic(in.mipsGot); 2106 finalizeSynthetic(in.igotPlt); 2107 finalizeSynthetic(in.gotPlt); 2108 finalizeSynthetic(in.relaIplt); 2109 finalizeSynthetic(in.relaPlt); 2110 finalizeSynthetic(in.plt); 2111 finalizeSynthetic(in.iplt); 2112 finalizeSynthetic(in.ppc32Got2); 2113 finalizeSynthetic(in.partIndex); 2114 2115 // Dynamic section must be the last one in this list and dynamic 2116 // symbol table section (dynSymTab) must be the first one. 2117 for (Partition &part : partitions) { 2118 finalizeSynthetic(part.dynSymTab); 2119 finalizeSynthetic(part.gnuHashTab); 2120 finalizeSynthetic(part.hashTab); 2121 finalizeSynthetic(part.verDef); 2122 finalizeSynthetic(part.relaDyn); 2123 finalizeSynthetic(part.relrDyn); 2124 finalizeSynthetic(part.ehFrameHdr); 2125 finalizeSynthetic(part.verSym); 2126 finalizeSynthetic(part.verNeed); 2127 finalizeSynthetic(part.dynamic); 2128 } 2129 2130 if (!script->hasSectionsCommand && !config->relocatable) 2131 fixSectionAlignments(); 2132 2133 // This is used to: 2134 // 1) Create "thunks": 2135 // Jump instructions in many ISAs have small displacements, and therefore 2136 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2137 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2138 // responsibility to create and insert small pieces of code between 2139 // sections to extend the ranges if jump targets are out of range. Such 2140 // code pieces are called "thunks". 2141 // 2142 // We add thunks at this stage. We couldn't do this before this point 2143 // because this is the earliest point where we know sizes of sections and 2144 // their layouts (that are needed to determine if jump targets are in 2145 // range). 2146 // 2147 // 2) Update the sections. We need to generate content that depends on the 2148 // address of InputSections. For example, MIPS GOT section content or 2149 // android packed relocations sections content. 2150 // 2151 // 3) Assign the final values for the linker script symbols. Linker scripts 2152 // sometimes using forward symbol declarations. We want to set the correct 2153 // values. They also might change after adding the thunks. 2154 finalizeAddressDependentContent(); 2155 if (errorCount()) 2156 return; 2157 2158 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 2159 finalizeSynthetic(in.symTab); 2160 finalizeSynthetic(in.ppc64LongBranchTarget); 2161 2162 // Relaxation to delete inter-basic block jumps created by basic block 2163 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2164 // can relax jump instructions based on symbol offset. 2165 if (config->optimizeBBJumps) 2166 optimizeBasicBlockJumps(); 2167 2168 // Fill other section headers. The dynamic table is finalized 2169 // at the end because some tags like RELSZ depend on result 2170 // of finalizing other sections. 2171 for (OutputSection *sec : outputSections) 2172 sec->finalize(); 2173 } 2174 2175 // Ensure data sections are not mixed with executable sections when 2176 // -execute-only is used. -execute-only is a feature to make pages executable 2177 // but not readable, and the feature is currently supported only on AArch64. 2178 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2179 if (!config->executeOnly) 2180 return; 2181 2182 for (OutputSection *os : outputSections) 2183 if (os->flags & SHF_EXECINSTR) 2184 for (InputSection *isec : getInputSections(os)) 2185 if (!(isec->flags & SHF_EXECINSTR)) 2186 error("cannot place " + toString(isec) + " into " + toString(os->name) + 2187 ": -execute-only does not support intermingling data and code"); 2188 } 2189 2190 // The linker is expected to define SECNAME_start and SECNAME_end 2191 // symbols for a few sections. This function defines them. 2192 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2193 // If a section does not exist, there's ambiguity as to how we 2194 // define _start and _end symbols for an init/fini section. Since 2195 // the loader assume that the symbols are always defined, we need to 2196 // always define them. But what value? The loader iterates over all 2197 // pointers between _start and _end to run global ctors/dtors, so if 2198 // the section is empty, their symbol values don't actually matter 2199 // as long as _start and _end point to the same location. 2200 // 2201 // That said, we don't want to set the symbols to 0 (which is 2202 // probably the simplest value) because that could cause some 2203 // program to fail to link due to relocation overflow, if their 2204 // program text is above 2 GiB. We use the address of the .text 2205 // section instead to prevent that failure. 2206 // 2207 // In rare situations, the .text section may not exist. If that's the 2208 // case, use the image base address as a last resort. 2209 OutputSection *Default = findSection(".text"); 2210 if (!Default) 2211 Default = Out::elfHeader; 2212 2213 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2214 if (os) { 2215 addOptionalRegular(start, os, 0); 2216 addOptionalRegular(end, os, -1); 2217 } else { 2218 addOptionalRegular(start, Default, 0); 2219 addOptionalRegular(end, Default, 0); 2220 } 2221 }; 2222 2223 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2224 define("__init_array_start", "__init_array_end", Out::initArray); 2225 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2226 2227 if (OutputSection *sec = findSection(".ARM.exidx")) 2228 define("__exidx_start", "__exidx_end", sec); 2229 } 2230 2231 // If a section name is valid as a C identifier (which is rare because of 2232 // the leading '.'), linkers are expected to define __start_<secname> and 2233 // __stop_<secname> symbols. They are at beginning and end of the section, 2234 // respectively. This is not requested by the ELF standard, but GNU ld and 2235 // gold provide the feature, and used by many programs. 2236 template <class ELFT> 2237 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2238 StringRef s = sec->name; 2239 if (!isValidCIdentifier(s)) 2240 return; 2241 addOptionalRegular(saver.save("__start_" + s), sec, 0, 2242 config->zStartStopVisibility); 2243 addOptionalRegular(saver.save("__stop_" + s), sec, -1, 2244 config->zStartStopVisibility); 2245 } 2246 2247 static bool needsPtLoad(OutputSection *sec) { 2248 if (!(sec->flags & SHF_ALLOC) || sec->noload) 2249 return false; 2250 2251 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2252 // responsible for allocating space for them, not the PT_LOAD that 2253 // contains the TLS initialization image. 2254 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2255 return false; 2256 return true; 2257 } 2258 2259 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2260 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2261 // RW. This means that there is no alignment in the RO to RX transition and we 2262 // cannot create a PT_LOAD there. 2263 static uint64_t computeFlags(uint64_t flags) { 2264 if (config->omagic) 2265 return PF_R | PF_W | PF_X; 2266 if (config->executeOnly && (flags & PF_X)) 2267 return flags & ~PF_R; 2268 if (config->singleRoRx && !(flags & PF_W)) 2269 return flags | PF_X; 2270 return flags; 2271 } 2272 2273 // Decide which program headers to create and which sections to include in each 2274 // one. 2275 template <class ELFT> 2276 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2277 std::vector<PhdrEntry *> ret; 2278 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2279 ret.push_back(make<PhdrEntry>(type, flags)); 2280 return ret.back(); 2281 }; 2282 2283 unsigned partNo = part.getNumber(); 2284 bool isMain = partNo == 1; 2285 2286 // Add the first PT_LOAD segment for regular output sections. 2287 uint64_t flags = computeFlags(PF_R); 2288 PhdrEntry *load = nullptr; 2289 2290 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2291 // PT_LOAD. 2292 if (!config->nmagic && !config->omagic) { 2293 // The first phdr entry is PT_PHDR which describes the program header 2294 // itself. 2295 if (isMain) 2296 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2297 else 2298 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2299 2300 // PT_INTERP must be the second entry if exists. 2301 if (OutputSection *cmd = findSection(".interp", partNo)) 2302 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2303 2304 // Add the headers. We will remove them if they don't fit. 2305 // In the other partitions the headers are ordinary sections, so they don't 2306 // need to be added here. 2307 if (isMain) { 2308 load = addHdr(PT_LOAD, flags); 2309 load->add(Out::elfHeader); 2310 load->add(Out::programHeaders); 2311 } 2312 } 2313 2314 // PT_GNU_RELRO includes all sections that should be marked as 2315 // read-only by dynamic linker after processing relocations. 2316 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2317 // an error message if more than one PT_GNU_RELRO PHDR is required. 2318 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2319 bool inRelroPhdr = false; 2320 OutputSection *relroEnd = nullptr; 2321 for (OutputSection *sec : outputSections) { 2322 if (sec->partition != partNo || !needsPtLoad(sec)) 2323 continue; 2324 if (isRelroSection(sec)) { 2325 inRelroPhdr = true; 2326 if (!relroEnd) 2327 relRo->add(sec); 2328 else 2329 error("section: " + sec->name + " is not contiguous with other relro" + 2330 " sections"); 2331 } else if (inRelroPhdr) { 2332 inRelroPhdr = false; 2333 relroEnd = sec; 2334 } 2335 } 2336 2337 for (OutputSection *sec : outputSections) { 2338 if (!needsPtLoad(sec)) 2339 continue; 2340 2341 // Normally, sections in partitions other than the current partition are 2342 // ignored. But partition number 255 is a special case: it contains the 2343 // partition end marker (.part.end). It needs to be added to the main 2344 // partition so that a segment is created for it in the main partition, 2345 // which will cause the dynamic loader to reserve space for the other 2346 // partitions. 2347 if (sec->partition != partNo) { 2348 if (isMain && sec->partition == 255) 2349 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2350 continue; 2351 } 2352 2353 // Segments are contiguous memory regions that has the same attributes 2354 // (e.g. executable or writable). There is one phdr for each segment. 2355 // Therefore, we need to create a new phdr when the next section has 2356 // different flags or is loaded at a discontiguous address or memory 2357 // region using AT or AT> linker script command, respectively. At the same 2358 // time, we don't want to create a separate load segment for the headers, 2359 // even if the first output section has an AT or AT> attribute. 2360 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2361 bool sameLMARegion = 2362 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2363 if (!(load && newFlags == flags && sec != relroEnd && 2364 sec->memRegion == load->firstSec->memRegion && 2365 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2366 load = addHdr(PT_LOAD, newFlags); 2367 flags = newFlags; 2368 } 2369 2370 load->add(sec); 2371 } 2372 2373 // Add a TLS segment if any. 2374 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2375 for (OutputSection *sec : outputSections) 2376 if (sec->partition == partNo && sec->flags & SHF_TLS) 2377 tlsHdr->add(sec); 2378 if (tlsHdr->firstSec) 2379 ret.push_back(tlsHdr); 2380 2381 // Add an entry for .dynamic. 2382 if (OutputSection *sec = part.dynamic->getParent()) 2383 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2384 2385 if (relRo->firstSec) 2386 ret.push_back(relRo); 2387 2388 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2389 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2390 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2391 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2392 ->add(part.ehFrameHdr->getParent()); 2393 2394 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2395 // the dynamic linker fill the segment with random data. 2396 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2397 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2398 2399 if (config->zGnustack != GnuStackKind::None) { 2400 // PT_GNU_STACK is a special section to tell the loader to make the 2401 // pages for the stack non-executable. If you really want an executable 2402 // stack, you can pass -z execstack, but that's not recommended for 2403 // security reasons. 2404 unsigned perm = PF_R | PF_W; 2405 if (config->zGnustack == GnuStackKind::Exec) 2406 perm |= PF_X; 2407 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2408 } 2409 2410 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2411 // is expected to perform W^X violations, such as calling mprotect(2) or 2412 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2413 // OpenBSD. 2414 if (config->zWxneeded) 2415 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2416 2417 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2418 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2419 2420 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2421 // same alignment. 2422 PhdrEntry *note = nullptr; 2423 for (OutputSection *sec : outputSections) { 2424 if (sec->partition != partNo) 2425 continue; 2426 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2427 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2428 note = addHdr(PT_NOTE, PF_R); 2429 note->add(sec); 2430 } else { 2431 note = nullptr; 2432 } 2433 } 2434 return ret; 2435 } 2436 2437 template <class ELFT> 2438 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2439 unsigned pType, unsigned pFlags) { 2440 unsigned partNo = part.getNumber(); 2441 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2442 return cmd->partition == partNo && cmd->type == shType; 2443 }); 2444 if (i == outputSections.end()) 2445 return; 2446 2447 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2448 entry->add(*i); 2449 part.phdrs.push_back(entry); 2450 } 2451 2452 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2453 // This is achieved by assigning an alignment expression to addrExpr of each 2454 // such section. 2455 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2456 const PhdrEntry *prev; 2457 auto pageAlign = [&](const PhdrEntry *p) { 2458 OutputSection *cmd = p->firstSec; 2459 if (!cmd) 2460 return; 2461 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2462 if (!cmd->addrExpr) { 2463 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2464 // padding in the file contents. 2465 // 2466 // When -z separate-code is used we must not have any overlap in pages 2467 // between an executable segment and a non-executable segment. We align to 2468 // the next maximum page size boundary on transitions between executable 2469 // and non-executable segments. 2470 // 2471 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2472 // sections will be extracted to a separate file. Align to the next 2473 // maximum page size boundary so that we can find the ELF header at the 2474 // start. We cannot benefit from overlapping p_offset ranges with the 2475 // previous segment anyway. 2476 if (config->zSeparate == SeparateSegmentKind::Loadable || 2477 (config->zSeparate == SeparateSegmentKind::Code && prev && 2478 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2479 cmd->type == SHT_LLVM_PART_EHDR) 2480 cmd->addrExpr = [] { 2481 return alignTo(script->getDot(), config->maxPageSize); 2482 }; 2483 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2484 // it must be the RW. Align to p_align(PT_TLS) to make sure 2485 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2486 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2487 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2488 // be congruent to 0 modulo p_align(PT_TLS). 2489 // 2490 // Technically this is not required, but as of 2019, some dynamic loaders 2491 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2492 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2493 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2494 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2495 // blocks correctly. We need to keep the workaround for a while. 2496 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2497 cmd->addrExpr = [] { 2498 return alignTo(script->getDot(), config->maxPageSize) + 2499 alignTo(script->getDot() % config->maxPageSize, 2500 Out::tlsPhdr->p_align); 2501 }; 2502 else 2503 cmd->addrExpr = [] { 2504 return alignTo(script->getDot(), config->maxPageSize) + 2505 script->getDot() % config->maxPageSize; 2506 }; 2507 } 2508 }; 2509 2510 for (Partition &part : partitions) { 2511 prev = nullptr; 2512 for (const PhdrEntry *p : part.phdrs) 2513 if (p->p_type == PT_LOAD && p->firstSec) { 2514 pageAlign(p); 2515 prev = p; 2516 } 2517 } 2518 } 2519 2520 // Compute an in-file position for a given section. The file offset must be the 2521 // same with its virtual address modulo the page size, so that the loader can 2522 // load executables without any address adjustment. 2523 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2524 // The first section in a PT_LOAD has to have congruent offset and address 2525 // modulo the maximum page size. 2526 if (os->ptLoad && os->ptLoad->firstSec == os) 2527 return alignTo(off, os->ptLoad->p_align, os->addr); 2528 2529 // File offsets are not significant for .bss sections other than the first one 2530 // in a PT_LOAD. By convention, we keep section offsets monotonically 2531 // increasing rather than setting to zero. 2532 if (os->type == SHT_NOBITS) 2533 return off; 2534 2535 // If the section is not in a PT_LOAD, we just have to align it. 2536 if (!os->ptLoad) 2537 return alignTo(off, os->alignment); 2538 2539 // If two sections share the same PT_LOAD the file offset is calculated 2540 // using this formula: Off2 = Off1 + (VA2 - VA1). 2541 OutputSection *first = os->ptLoad->firstSec; 2542 return first->offset + os->addr - first->addr; 2543 } 2544 2545 // Set an in-file position to a given section and returns the end position of 2546 // the section. 2547 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2548 off = computeFileOffset(os, off); 2549 os->offset = off; 2550 2551 if (os->type == SHT_NOBITS) 2552 return off; 2553 return off + os->size; 2554 } 2555 2556 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2557 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2558 auto needsOffset = [](OutputSection &sec) { 2559 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2560 }; 2561 uint64_t minAddr = UINT64_MAX; 2562 for (OutputSection *sec : outputSections) 2563 if (needsOffset(*sec)) { 2564 sec->offset = sec->getLMA(); 2565 minAddr = std::min(minAddr, sec->offset); 2566 } 2567 2568 // Sections are laid out at LMA minus minAddr. 2569 fileSize = 0; 2570 for (OutputSection *sec : outputSections) 2571 if (needsOffset(*sec)) { 2572 sec->offset -= minAddr; 2573 fileSize = std::max(fileSize, sec->offset + sec->size); 2574 } 2575 } 2576 2577 static std::string rangeToString(uint64_t addr, uint64_t len) { 2578 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2579 } 2580 2581 // Assign file offsets to output sections. 2582 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2583 uint64_t off = 0; 2584 off = setFileOffset(Out::elfHeader, off); 2585 off = setFileOffset(Out::programHeaders, off); 2586 2587 PhdrEntry *lastRX = nullptr; 2588 for (Partition &part : partitions) 2589 for (PhdrEntry *p : part.phdrs) 2590 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2591 lastRX = p; 2592 2593 for (OutputSection *sec : outputSections) { 2594 off = setFileOffset(sec, off); 2595 2596 // If this is a last section of the last executable segment and that 2597 // segment is the last loadable segment, align the offset of the 2598 // following section to avoid loading non-segments parts of the file. 2599 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2600 lastRX->lastSec == sec) 2601 off = alignTo(off, config->commonPageSize); 2602 } 2603 2604 sectionHeaderOff = alignTo(off, config->wordsize); 2605 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2606 2607 // Our logic assumes that sections have rising VA within the same segment. 2608 // With use of linker scripts it is possible to violate this rule and get file 2609 // offset overlaps or overflows. That should never happen with a valid script 2610 // which does not move the location counter backwards and usually scripts do 2611 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2612 // kernel, which control segment distribution explicitly and move the counter 2613 // backwards, so we have to allow doing that to support linking them. We 2614 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2615 // we want to prevent file size overflows because it would crash the linker. 2616 for (OutputSection *sec : outputSections) { 2617 if (sec->type == SHT_NOBITS) 2618 continue; 2619 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2620 error("unable to place section " + sec->name + " at file offset " + 2621 rangeToString(sec->offset, sec->size) + 2622 "; check your linker script for overflows"); 2623 } 2624 } 2625 2626 // Finalize the program headers. We call this function after we assign 2627 // file offsets and VAs to all sections. 2628 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2629 for (PhdrEntry *p : part.phdrs) { 2630 OutputSection *first = p->firstSec; 2631 OutputSection *last = p->lastSec; 2632 2633 if (first) { 2634 p->p_filesz = last->offset - first->offset; 2635 if (last->type != SHT_NOBITS) 2636 p->p_filesz += last->size; 2637 2638 p->p_memsz = last->addr + last->size - first->addr; 2639 p->p_offset = first->offset; 2640 p->p_vaddr = first->addr; 2641 2642 // File offsets in partitions other than the main partition are relative 2643 // to the offset of the ELF headers. Perform that adjustment now. 2644 if (part.elfHeader) 2645 p->p_offset -= part.elfHeader->getParent()->offset; 2646 2647 if (!p->hasLMA) 2648 p->p_paddr = first->getLMA(); 2649 } 2650 2651 if (p->p_type == PT_GNU_RELRO) { 2652 p->p_align = 1; 2653 // musl/glibc ld.so rounds the size down, so we need to round up 2654 // to protect the last page. This is a no-op on FreeBSD which always 2655 // rounds up. 2656 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2657 p->p_offset; 2658 } 2659 } 2660 } 2661 2662 // A helper struct for checkSectionOverlap. 2663 namespace { 2664 struct SectionOffset { 2665 OutputSection *sec; 2666 uint64_t offset; 2667 }; 2668 } // namespace 2669 2670 // Check whether sections overlap for a specific address range (file offsets, 2671 // load and virtual addresses). 2672 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2673 bool isVirtualAddr) { 2674 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2675 return a.offset < b.offset; 2676 }); 2677 2678 // Finding overlap is easy given a vector is sorted by start position. 2679 // If an element starts before the end of the previous element, they overlap. 2680 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2681 SectionOffset a = sections[i - 1]; 2682 SectionOffset b = sections[i]; 2683 if (b.offset >= a.offset + a.sec->size) 2684 continue; 2685 2686 // If both sections are in OVERLAY we allow the overlapping of virtual 2687 // addresses, because it is what OVERLAY was designed for. 2688 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2689 continue; 2690 2691 errorOrWarn("section " + a.sec->name + " " + name + 2692 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2693 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2694 b.sec->name + " range is " + 2695 rangeToString(b.offset, b.sec->size)); 2696 } 2697 } 2698 2699 // Check for overlapping sections and address overflows. 2700 // 2701 // In this function we check that none of the output sections have overlapping 2702 // file offsets. For SHF_ALLOC sections we also check that the load address 2703 // ranges and the virtual address ranges don't overlap 2704 template <class ELFT> void Writer<ELFT>::checkSections() { 2705 // First, check that section's VAs fit in available address space for target. 2706 for (OutputSection *os : outputSections) 2707 if ((os->addr + os->size < os->addr) || 2708 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2709 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2710 " of size 0x" + utohexstr(os->size) + 2711 " exceeds available address space"); 2712 2713 // Check for overlapping file offsets. In this case we need to skip any 2714 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2715 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2716 // binary is specified only add SHF_ALLOC sections are added to the output 2717 // file so we skip any non-allocated sections in that case. 2718 std::vector<SectionOffset> fileOffs; 2719 for (OutputSection *sec : outputSections) 2720 if (sec->size > 0 && sec->type != SHT_NOBITS && 2721 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2722 fileOffs.push_back({sec, sec->offset}); 2723 checkOverlap("file", fileOffs, false); 2724 2725 // When linking with -r there is no need to check for overlapping virtual/load 2726 // addresses since those addresses will only be assigned when the final 2727 // executable/shared object is created. 2728 if (config->relocatable) 2729 return; 2730 2731 // Checking for overlapping virtual and load addresses only needs to take 2732 // into account SHF_ALLOC sections since others will not be loaded. 2733 // Furthermore, we also need to skip SHF_TLS sections since these will be 2734 // mapped to other addresses at runtime and can therefore have overlapping 2735 // ranges in the file. 2736 std::vector<SectionOffset> vmas; 2737 for (OutputSection *sec : outputSections) 2738 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2739 vmas.push_back({sec, sec->addr}); 2740 checkOverlap("virtual address", vmas, true); 2741 2742 // Finally, check that the load addresses don't overlap. This will usually be 2743 // the same as the virtual addresses but can be different when using a linker 2744 // script with AT(). 2745 std::vector<SectionOffset> lmas; 2746 for (OutputSection *sec : outputSections) 2747 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2748 lmas.push_back({sec, sec->getLMA()}); 2749 checkOverlap("load address", lmas, false); 2750 } 2751 2752 // The entry point address is chosen in the following ways. 2753 // 2754 // 1. the '-e' entry command-line option; 2755 // 2. the ENTRY(symbol) command in a linker control script; 2756 // 3. the value of the symbol _start, if present; 2757 // 4. the number represented by the entry symbol, if it is a number; 2758 // 5. the address of the first byte of the .text section, if present; 2759 // 6. the address 0. 2760 static uint64_t getEntryAddr() { 2761 // Case 1, 2 or 3 2762 if (Symbol *b = symtab->find(config->entry)) 2763 return b->getVA(); 2764 2765 // Case 4 2766 uint64_t addr; 2767 if (to_integer(config->entry, addr)) 2768 return addr; 2769 2770 // Case 5 2771 if (OutputSection *sec = findSection(".text")) { 2772 if (config->warnMissingEntry) 2773 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2774 utohexstr(sec->addr)); 2775 return sec->addr; 2776 } 2777 2778 // Case 6 2779 if (config->warnMissingEntry) 2780 warn("cannot find entry symbol " + config->entry + 2781 "; not setting start address"); 2782 return 0; 2783 } 2784 2785 static uint16_t getELFType() { 2786 if (config->isPic) 2787 return ET_DYN; 2788 if (config->relocatable) 2789 return ET_REL; 2790 return ET_EXEC; 2791 } 2792 2793 template <class ELFT> void Writer<ELFT>::writeHeader() { 2794 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2795 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2796 2797 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2798 eHdr->e_type = getELFType(); 2799 eHdr->e_entry = getEntryAddr(); 2800 eHdr->e_shoff = sectionHeaderOff; 2801 2802 // Write the section header table. 2803 // 2804 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2805 // and e_shstrndx fields. When the value of one of these fields exceeds 2806 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2807 // use fields in the section header at index 0 to store 2808 // the value. The sentinel values and fields are: 2809 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2810 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2811 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2812 size_t num = outputSections.size() + 1; 2813 if (num >= SHN_LORESERVE) 2814 sHdrs->sh_size = num; 2815 else 2816 eHdr->e_shnum = num; 2817 2818 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2819 if (strTabIndex >= SHN_LORESERVE) { 2820 sHdrs->sh_link = strTabIndex; 2821 eHdr->e_shstrndx = SHN_XINDEX; 2822 } else { 2823 eHdr->e_shstrndx = strTabIndex; 2824 } 2825 2826 for (OutputSection *sec : outputSections) 2827 sec->writeHeaderTo<ELFT>(++sHdrs); 2828 } 2829 2830 // Open a result file. 2831 template <class ELFT> void Writer<ELFT>::openFile() { 2832 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2833 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2834 error("output file too large: " + Twine(fileSize) + " bytes"); 2835 return; 2836 } 2837 2838 unlinkAsync(config->outputFile); 2839 unsigned flags = 0; 2840 if (!config->relocatable) 2841 flags |= FileOutputBuffer::F_executable; 2842 if (!config->mmapOutputFile) 2843 flags |= FileOutputBuffer::F_no_mmap; 2844 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2845 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2846 2847 if (!bufferOrErr) { 2848 error("failed to open " + config->outputFile + ": " + 2849 llvm::toString(bufferOrErr.takeError())); 2850 return; 2851 } 2852 buffer = std::move(*bufferOrErr); 2853 Out::bufferStart = buffer->getBufferStart(); 2854 } 2855 2856 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2857 for (OutputSection *sec : outputSections) 2858 if (sec->flags & SHF_ALLOC) 2859 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2860 } 2861 2862 static void fillTrap(uint8_t *i, uint8_t *end) { 2863 for (; i + 4 <= end; i += 4) 2864 memcpy(i, &target->trapInstr, 4); 2865 } 2866 2867 // Fill the last page of executable segments with trap instructions 2868 // instead of leaving them as zero. Even though it is not required by any 2869 // standard, it is in general a good thing to do for security reasons. 2870 // 2871 // We'll leave other pages in segments as-is because the rest will be 2872 // overwritten by output sections. 2873 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2874 for (Partition &part : partitions) { 2875 // Fill the last page. 2876 for (PhdrEntry *p : part.phdrs) 2877 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2878 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2879 config->commonPageSize), 2880 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2881 config->commonPageSize)); 2882 2883 // Round up the file size of the last segment to the page boundary iff it is 2884 // an executable segment to ensure that other tools don't accidentally 2885 // trim the instruction padding (e.g. when stripping the file). 2886 PhdrEntry *last = nullptr; 2887 for (PhdrEntry *p : part.phdrs) 2888 if (p->p_type == PT_LOAD) 2889 last = p; 2890 2891 if (last && (last->p_flags & PF_X)) 2892 last->p_memsz = last->p_filesz = 2893 alignTo(last->p_filesz, config->commonPageSize); 2894 } 2895 } 2896 2897 // Write section contents to a mmap'ed file. 2898 template <class ELFT> void Writer<ELFT>::writeSections() { 2899 // In -r or -emit-relocs mode, write the relocation sections first as in 2900 // ELf_Rel targets we might find out that we need to modify the relocated 2901 // section while doing it. 2902 for (OutputSection *sec : outputSections) 2903 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2904 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2905 2906 for (OutputSection *sec : outputSections) 2907 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2908 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2909 } 2910 2911 // Split one uint8 array into small pieces of uint8 arrays. 2912 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2913 size_t chunkSize) { 2914 std::vector<ArrayRef<uint8_t>> ret; 2915 while (arr.size() > chunkSize) { 2916 ret.push_back(arr.take_front(chunkSize)); 2917 arr = arr.drop_front(chunkSize); 2918 } 2919 if (!arr.empty()) 2920 ret.push_back(arr); 2921 return ret; 2922 } 2923 2924 // Computes a hash value of Data using a given hash function. 2925 // In order to utilize multiple cores, we first split data into 1MB 2926 // chunks, compute a hash for each chunk, and then compute a hash value 2927 // of the hash values. 2928 static void 2929 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2930 llvm::ArrayRef<uint8_t> data, 2931 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2932 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2933 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2934 2935 // Compute hash values. 2936 parallelForEachN(0, chunks.size(), [&](size_t i) { 2937 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2938 }); 2939 2940 // Write to the final output buffer. 2941 hashFn(hashBuf.data(), hashes); 2942 } 2943 2944 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2945 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2946 return; 2947 2948 if (config->buildId == BuildIdKind::Hexstring) { 2949 for (Partition &part : partitions) 2950 part.buildId->writeBuildId(config->buildIdVector); 2951 return; 2952 } 2953 2954 // Compute a hash of all sections of the output file. 2955 size_t hashSize = mainPart->buildId->hashSize; 2956 std::vector<uint8_t> buildId(hashSize); 2957 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 2958 2959 switch (config->buildId) { 2960 case BuildIdKind::Fast: 2961 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2962 write64le(dest, xxHash64(arr)); 2963 }); 2964 break; 2965 case BuildIdKind::Md5: 2966 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2967 memcpy(dest, MD5::hash(arr).data(), hashSize); 2968 }); 2969 break; 2970 case BuildIdKind::Sha1: 2971 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2972 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2973 }); 2974 break; 2975 case BuildIdKind::Uuid: 2976 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 2977 error("entropy source failure: " + ec.message()); 2978 break; 2979 default: 2980 llvm_unreachable("unknown BuildIdKind"); 2981 } 2982 for (Partition &part : partitions) 2983 part.buildId->writeBuildId(buildId); 2984 } 2985 2986 template void elf::createSyntheticSections<ELF32LE>(); 2987 template void elf::createSyntheticSections<ELF32BE>(); 2988 template void elf::createSyntheticSections<ELF64LE>(); 2989 template void elf::createSyntheticSections<ELF64BE>(); 2990 2991 template void elf::writeResult<ELF32LE>(); 2992 template void elf::writeResult<ELF32BE>(); 2993 template void elf::writeResult<ELF64LE>(); 2994 template void elf::writeResult<ELF64BE>(); 2995