1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "Writer.h" 11 #include "AArch64ErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "Filesystem.h" 15 #include "LinkerScript.h" 16 #include "MapFile.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SymbolTable.h" 20 #include "Symbols.h" 21 #include "SyntheticSections.h" 22 #include "Target.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "lld/Common/Threads.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include <climits> 29 30 using namespace llvm; 31 using namespace llvm::ELF; 32 using namespace llvm::object; 33 using namespace llvm::support; 34 using namespace llvm::support::endian; 35 36 using namespace lld; 37 using namespace lld::elf; 38 39 namespace { 40 // The writer writes a SymbolTable result to a file. 41 template <class ELFT> class Writer { 42 public: 43 Writer() : Buffer(errorHandler().OutputBuffer) {} 44 typedef typename ELFT::Shdr Elf_Shdr; 45 typedef typename ELFT::Ehdr Elf_Ehdr; 46 typedef typename ELFT::Phdr Elf_Phdr; 47 48 void run(); 49 50 private: 51 void copyLocalSymbols(); 52 void addSectionSymbols(); 53 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> Fn); 54 void sortSections(); 55 void resolveShfLinkOrder(); 56 void maybeAddThunks(); 57 void sortInputSections(); 58 void finalizeSections(); 59 void checkExecuteOnly(); 60 void setReservedSymbolSections(); 61 62 std::vector<PhdrEntry *> createPhdrs(); 63 void removeEmptyPTLoad(); 64 void addPtArmExid(std::vector<PhdrEntry *> &Phdrs); 65 void assignFileOffsets(); 66 void assignFileOffsetsBinary(); 67 void setPhdrs(); 68 void checkSections(); 69 void fixSectionAlignments(); 70 void openFile(); 71 void writeTrapInstr(); 72 void writeHeader(); 73 void writeSections(); 74 void writeSectionsBinary(); 75 void writeBuildId(); 76 77 std::unique_ptr<FileOutputBuffer> &Buffer; 78 79 void addRelIpltSymbols(); 80 void addStartEndSymbols(); 81 void addStartStopSymbols(OutputSection *Sec); 82 83 std::vector<PhdrEntry *> Phdrs; 84 85 uint64_t FileSize; 86 uint64_t SectionHeaderOff; 87 }; 88 } // anonymous namespace 89 90 static bool isSectionPrefix(StringRef Prefix, StringRef Name) { 91 return Name.startswith(Prefix) || Name == Prefix.drop_back(); 92 } 93 94 StringRef elf::getOutputSectionName(const InputSectionBase *S) { 95 if (Config->Relocatable) 96 return S->Name; 97 98 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 99 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 100 // technically required, but not doing it is odd). This code guarantees that. 101 if (auto *IS = dyn_cast<InputSection>(S)) { 102 if (InputSectionBase *Rel = IS->getRelocatedSection()) { 103 OutputSection *Out = Rel->getOutputSection(); 104 if (S->Type == SHT_RELA) 105 return Saver.save(".rela" + Out->Name); 106 return Saver.save(".rel" + Out->Name); 107 } 108 } 109 110 // This check is for -z keep-text-section-prefix. This option separates text 111 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or 112 // ".text.exit". 113 // When enabled, this allows identifying the hot code region (.text.hot) in 114 // the final binary which can be selectively mapped to huge pages or mlocked, 115 // for instance. 116 if (Config->ZKeepTextSectionPrefix) 117 for (StringRef V : 118 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) 119 if (isSectionPrefix(V, S->Name)) 120 return V.drop_back(); 121 122 for (StringRef V : 123 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 124 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 125 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 126 if (isSectionPrefix(V, S->Name)) 127 return V.drop_back(); 128 129 // CommonSection is identified as "COMMON" in linker scripts. 130 // By default, it should go to .bss section. 131 if (S->Name == "COMMON") 132 return ".bss"; 133 134 return S->Name; 135 } 136 137 static bool needsInterpSection() { 138 return !SharedFiles.empty() && !Config->DynamicLinker.empty() && 139 Script->needsInterpSection(); 140 } 141 142 template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } 143 144 template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() { 145 llvm::erase_if(Phdrs, [&](const PhdrEntry *P) { 146 if (P->p_type != PT_LOAD) 147 return false; 148 if (!P->FirstSec) 149 return true; 150 uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr; 151 return Size == 0; 152 }); 153 } 154 155 template <class ELFT> static void combineEhFrameSections() { 156 for (InputSectionBase *&S : InputSections) { 157 EhInputSection *ES = dyn_cast<EhInputSection>(S); 158 if (!ES || !ES->Live) 159 continue; 160 161 In.EhFrame->addSection<ELFT>(ES); 162 S = nullptr; 163 } 164 165 std::vector<InputSectionBase *> &V = InputSections; 166 V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); 167 } 168 169 static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec, 170 uint64_t Val, uint8_t StOther = STV_HIDDEN, 171 uint8_t Binding = STB_GLOBAL) { 172 Symbol *S = Symtab->find(Name); 173 if (!S || S->isDefined()) 174 return nullptr; 175 return Symtab->addDefined(Name, StOther, STT_NOTYPE, Val, 176 /*Size=*/0, Binding, Sec, 177 /*File=*/nullptr); 178 } 179 180 static Defined *addAbsolute(StringRef Name) { 181 return Symtab->addDefined(Name, STV_HIDDEN, STT_NOTYPE, 0, 0, STB_GLOBAL, 182 nullptr, nullptr); 183 } 184 185 // The linker is expected to define some symbols depending on 186 // the linking result. This function defines such symbols. 187 void elf::addReservedSymbols() { 188 if (Config->EMachine == EM_MIPS) { 189 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 190 // so that it points to an absolute address which by default is relative 191 // to GOT. Default offset is 0x7ff0. 192 // See "Global Data Symbols" in Chapter 6 in the following document: 193 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 194 ElfSym::MipsGp = addAbsolute("_gp"); 195 196 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 197 // start of function and 'gp' pointer into GOT. 198 if (Symtab->find("_gp_disp")) 199 ElfSym::MipsGpDisp = addAbsolute("_gp_disp"); 200 201 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 202 // pointer. This symbol is used in the code generated by .cpload pseudo-op 203 // in case of using -mno-shared option. 204 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 205 if (Symtab->find("__gnu_local_gp")) 206 ElfSym::MipsLocalGp = addAbsolute("__gnu_local_gp"); 207 } 208 209 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 210 // combines the typical ELF GOT with the small data sections. It commonly 211 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 212 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 213 // represent the TOC base which is offset by 0x8000 bytes from the start of 214 // the .got section. 215 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 216 // correctness of some relocations depends on its value. 217 StringRef GotTableSymName = 218 (Config->EMachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 219 if (Symbol *S = Symtab->find(GotTableSymName)) { 220 if (S->isDefined()) 221 error(toString(S->File) + " cannot redefine linker defined symbol '" + 222 GotTableSymName + "'"); 223 else 224 ElfSym::GlobalOffsetTable = Symtab->addDefined( 225 GotTableSymName, STV_HIDDEN, STT_NOTYPE, Target->GotBaseSymOff, 226 /*Size=*/0, STB_GLOBAL, Out::ElfHeader, 227 /*File=*/nullptr); 228 } 229 230 // __ehdr_start is the location of ELF file headers. Note that we define 231 // this symbol unconditionally even when using a linker script, which 232 // differs from the behavior implemented by GNU linker which only define 233 // this symbol if ELF headers are in the memory mapped segment. 234 addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN); 235 236 // __executable_start is not documented, but the expectation of at 237 // least the Android libc is that it points to the ELF header. 238 addOptionalRegular("__executable_start", Out::ElfHeader, 0, STV_HIDDEN); 239 240 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 241 // each DSO. The address of the symbol doesn't matter as long as they are 242 // different in different DSOs, so we chose the start address of the DSO. 243 addOptionalRegular("__dso_handle", Out::ElfHeader, 0, STV_HIDDEN); 244 245 // If linker script do layout we do not need to create any standart symbols. 246 if (Script->HasSectionsCommand) 247 return; 248 249 auto Add = [](StringRef S, int64_t Pos) { 250 return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT); 251 }; 252 253 ElfSym::Bss = Add("__bss_start", 0); 254 ElfSym::End1 = Add("end", -1); 255 ElfSym::End2 = Add("_end", -1); 256 ElfSym::Etext1 = Add("etext", -1); 257 ElfSym::Etext2 = Add("_etext", -1); 258 ElfSym::Edata1 = Add("edata", -1); 259 ElfSym::Edata2 = Add("_edata", -1); 260 } 261 262 static OutputSection *findSection(StringRef Name) { 263 for (BaseCommand *Base : Script->SectionCommands) 264 if (auto *Sec = dyn_cast<OutputSection>(Base)) 265 if (Sec->Name == Name) 266 return Sec; 267 return nullptr; 268 } 269 270 // Initialize Out members. 271 template <class ELFT> static void createSyntheticSections() { 272 // Initialize all pointers with NULL. This is needed because 273 // you can call lld::elf::main more than once as a library. 274 memset(&Out::First, 0, sizeof(Out)); 275 276 auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; 277 278 In.DynStrTab = make<StringTableSection>(".dynstr", true); 279 In.Dynamic = make<DynamicSection<ELFT>>(); 280 if (Config->AndroidPackDynRelocs) { 281 In.RelaDyn = make<AndroidPackedRelocationSection<ELFT>>( 282 Config->IsRela ? ".rela.dyn" : ".rel.dyn"); 283 } else { 284 In.RelaDyn = make<RelocationSection<ELFT>>( 285 Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); 286 } 287 In.ShStrTab = make<StringTableSection>(".shstrtab", false); 288 289 Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC); 290 Out::ProgramHeaders->Alignment = Config->Wordsize; 291 292 if (needsInterpSection()) { 293 In.Interp = createInterpSection(); 294 Add(In.Interp); 295 } 296 297 if (Config->Strip != StripPolicy::All) { 298 In.StrTab = make<StringTableSection>(".strtab", false); 299 In.SymTab = make<SymbolTableSection<ELFT>>(*In.StrTab); 300 In.SymTabShndx = make<SymtabShndxSection>(); 301 } 302 303 if (Config->BuildId != BuildIdKind::None) { 304 In.BuildId = make<BuildIdSection>(); 305 Add(In.BuildId); 306 } 307 308 In.Bss = make<BssSection>(".bss", 0, 1); 309 Add(In.Bss); 310 311 // If there is a SECTIONS command and a .data.rel.ro section name use name 312 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 313 // This makes sure our relro is contiguous. 314 bool HasDataRelRo = Script->HasSectionsCommand && findSection(".data.rel.ro"); 315 In.BssRelRo = 316 make<BssSection>(HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 317 Add(In.BssRelRo); 318 319 // Add MIPS-specific sections. 320 if (Config->EMachine == EM_MIPS) { 321 if (!Config->Shared && Config->HasDynSymTab) { 322 In.MipsRldMap = make<MipsRldMapSection>(); 323 Add(In.MipsRldMap); 324 } 325 if (auto *Sec = MipsAbiFlagsSection<ELFT>::create()) 326 Add(Sec); 327 if (auto *Sec = MipsOptionsSection<ELFT>::create()) 328 Add(Sec); 329 if (auto *Sec = MipsReginfoSection<ELFT>::create()) 330 Add(Sec); 331 } 332 333 if (Config->HasDynSymTab) { 334 In.DynSymTab = make<SymbolTableSection<ELFT>>(*In.DynStrTab); 335 Add(In.DynSymTab); 336 337 InX<ELFT>::VerSym = make<VersionTableSection<ELFT>>(); 338 Add(InX<ELFT>::VerSym); 339 340 if (!Config->VersionDefinitions.empty()) { 341 In.VerDef = make<VersionDefinitionSection>(); 342 Add(In.VerDef); 343 } 344 345 InX<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>(); 346 Add(InX<ELFT>::VerNeed); 347 348 if (Config->GnuHash) { 349 In.GnuHashTab = make<GnuHashTableSection>(); 350 Add(In.GnuHashTab); 351 } 352 353 if (Config->SysvHash) { 354 In.HashTab = make<HashTableSection>(); 355 Add(In.HashTab); 356 } 357 358 Add(In.Dynamic); 359 Add(In.DynStrTab); 360 Add(In.RelaDyn); 361 } 362 363 if (Config->RelrPackDynRelocs) { 364 In.RelrDyn = make<RelrSection<ELFT>>(); 365 Add(In.RelrDyn); 366 } 367 368 // Add .got. MIPS' .got is so different from the other archs, 369 // it has its own class. 370 if (Config->EMachine == EM_MIPS) { 371 In.MipsGot = make<MipsGotSection>(); 372 Add(In.MipsGot); 373 } else { 374 In.Got = make<GotSection>(); 375 Add(In.Got); 376 } 377 378 if (Config->EMachine == EM_PPC64) { 379 In.PPC64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 380 Add(In.PPC64LongBranchTarget); 381 } 382 383 In.GotPlt = make<GotPltSection>(); 384 Add(In.GotPlt); 385 In.IgotPlt = make<IgotPltSection>(); 386 Add(In.IgotPlt); 387 388 if (Config->GdbIndex) { 389 In.GdbIndex = GdbIndexSection::create<ELFT>(); 390 Add(In.GdbIndex); 391 } 392 393 // We always need to add rel[a].plt to output if it has entries. 394 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 395 In.RelaPlt = make<RelocationSection<ELFT>>( 396 Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); 397 Add(In.RelaPlt); 398 399 // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure 400 // that the IRelative relocations are processed last by the dynamic loader. 401 // We cannot place the iplt section in .rel.dyn when Android relocation 402 // packing is enabled because that would cause a section type mismatch. 403 // However, because the Android dynamic loader reads .rel.plt after .rel.dyn, 404 // we can get the desired behaviour by placing the iplt section in .rel.plt. 405 In.RelaIplt = make<RelocationSection<ELFT>>( 406 (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs) 407 ? ".rel.dyn" 408 : In.RelaPlt->Name, 409 false /*Sort*/); 410 Add(In.RelaIplt); 411 412 In.Plt = make<PltSection>(false); 413 Add(In.Plt); 414 In.Iplt = make<PltSection>(true); 415 Add(In.Iplt); 416 417 // .note.GNU-stack is always added when we are creating a re-linkable 418 // object file. Other linkers are using the presence of this marker 419 // section to control the executable-ness of the stack area, but that 420 // is irrelevant these days. Stack area should always be non-executable 421 // by default. So we emit this section unconditionally. 422 if (Config->Relocatable) 423 Add(make<GnuStackSection>()); 424 425 if (!Config->Relocatable) { 426 if (Config->EhFrameHdr) { 427 In.EhFrameHdr = make<EhFrameHeader>(); 428 Add(In.EhFrameHdr); 429 } 430 In.EhFrame = make<EhFrameSection>(); 431 Add(In.EhFrame); 432 } 433 434 if (In.SymTab) 435 Add(In.SymTab); 436 if (In.SymTabShndx) 437 Add(In.SymTabShndx); 438 Add(In.ShStrTab); 439 if (In.StrTab) 440 Add(In.StrTab); 441 442 if (Config->EMachine == EM_ARM && !Config->Relocatable) 443 // Add a sentinel to terminate .ARM.exidx. It helps an unwinder 444 // to find the exact address range of the last entry. 445 Add(make<ARMExidxSentinelSection>()); 446 } 447 448 // The main function of the writer. 449 template <class ELFT> void Writer<ELFT>::run() { 450 // Create linker-synthesized sections such as .got or .plt. 451 // Such sections are of type input section. 452 createSyntheticSections<ELFT>(); 453 454 if (!Config->Relocatable) 455 combineEhFrameSections<ELFT>(); 456 457 // We want to process linker script commands. When SECTIONS command 458 // is given we let it create sections. 459 Script->processSectionCommands(); 460 461 // Linker scripts controls how input sections are assigned to output sections. 462 // Input sections that were not handled by scripts are called "orphans", and 463 // they are assigned to output sections by the default rule. Process that. 464 Script->addOrphanSections(); 465 466 if (Config->Discard != DiscardPolicy::All) 467 copyLocalSymbols(); 468 469 if (Config->CopyRelocs) 470 addSectionSymbols(); 471 472 // Now that we have a complete set of output sections. This function 473 // completes section contents. For example, we need to add strings 474 // to the string table, and add entries to .got and .plt. 475 // finalizeSections does that. 476 finalizeSections(); 477 checkExecuteOnly(); 478 if (errorCount()) 479 return; 480 481 Script->assignAddresses(); 482 483 // If -compressed-debug-sections is specified, we need to compress 484 // .debug_* sections. Do it right now because it changes the size of 485 // output sections. 486 for (OutputSection *Sec : OutputSections) 487 Sec->maybeCompress<ELFT>(); 488 489 Script->allocateHeaders(Phdrs); 490 491 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 492 // 0 sized region. This has to be done late since only after assignAddresses 493 // we know the size of the sections. 494 removeEmptyPTLoad(); 495 496 if (!Config->OFormatBinary) 497 assignFileOffsets(); 498 else 499 assignFileOffsetsBinary(); 500 501 setPhdrs(); 502 503 if (Config->Relocatable) 504 for (OutputSection *Sec : OutputSections) 505 Sec->Addr = 0; 506 507 if (Config->CheckSections) 508 checkSections(); 509 510 // It does not make sense try to open the file if we have error already. 511 if (errorCount()) 512 return; 513 // Write the result down to a file. 514 openFile(); 515 if (errorCount()) 516 return; 517 518 if (!Config->OFormatBinary) { 519 writeTrapInstr(); 520 writeHeader(); 521 writeSections(); 522 } else { 523 writeSectionsBinary(); 524 } 525 526 // Backfill .note.gnu.build-id section content. This is done at last 527 // because the content is usually a hash value of the entire output file. 528 writeBuildId(); 529 if (errorCount()) 530 return; 531 532 // Handle -Map and -cref options. 533 writeMapFile(); 534 writeCrossReferenceTable(); 535 if (errorCount()) 536 return; 537 538 if (auto E = Buffer->commit()) 539 error("failed to write to the output file: " + toString(std::move(E))); 540 } 541 542 static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName, 543 const Symbol &B) { 544 if (B.isSection()) 545 return false; 546 547 if (Config->Discard == DiscardPolicy::None) 548 return true; 549 550 // In ELF assembly .L symbols are normally discarded by the assembler. 551 // If the assembler fails to do so, the linker discards them if 552 // * --discard-locals is used. 553 // * The symbol is in a SHF_MERGE section, which is normally the reason for 554 // the assembler keeping the .L symbol. 555 if (!SymName.startswith(".L") && !SymName.empty()) 556 return true; 557 558 if (Config->Discard == DiscardPolicy::Locals) 559 return false; 560 561 return !Sec || !(Sec->Flags & SHF_MERGE); 562 } 563 564 static bool includeInSymtab(const Symbol &B) { 565 if (!B.isLocal() && !B.IsUsedInRegularObj) 566 return false; 567 568 if (auto *D = dyn_cast<Defined>(&B)) { 569 // Always include absolute symbols. 570 SectionBase *Sec = D->Section; 571 if (!Sec) 572 return true; 573 Sec = Sec->Repl; 574 575 // Exclude symbols pointing to garbage-collected sections. 576 if (isa<InputSectionBase>(Sec) && !Sec->Live) 577 return false; 578 579 if (auto *S = dyn_cast<MergeInputSection>(Sec)) 580 if (!S->getSectionPiece(D->Value)->Live) 581 return false; 582 return true; 583 } 584 return B.Used; 585 } 586 587 // Local symbols are not in the linker's symbol table. This function scans 588 // each object file's symbol table to copy local symbols to the output. 589 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 590 if (!In.SymTab) 591 return; 592 for (InputFile *File : ObjectFiles) { 593 ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File); 594 for (Symbol *B : F->getLocalSymbols()) { 595 if (!B->isLocal()) 596 fatal(toString(F) + 597 ": broken object: getLocalSymbols returns a non-local symbol"); 598 auto *DR = dyn_cast<Defined>(B); 599 600 // No reason to keep local undefined symbol in symtab. 601 if (!DR) 602 continue; 603 if (!includeInSymtab(*B)) 604 continue; 605 606 SectionBase *Sec = DR->Section; 607 if (!shouldKeepInSymtab(Sec, B->getName(), *B)) 608 continue; 609 In.SymTab->addSymbol(B); 610 } 611 } 612 } 613 614 // Create a section symbol for each output section so that we can represent 615 // relocations that point to the section. If we know that no relocation is 616 // referring to a section (that happens if the section is a synthetic one), we 617 // don't create a section symbol for that section. 618 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 619 for (BaseCommand *Base : Script->SectionCommands) { 620 auto *Sec = dyn_cast<OutputSection>(Base); 621 if (!Sec) 622 continue; 623 auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) { 624 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 625 return !ISD->Sections.empty(); 626 return false; 627 }); 628 if (I == Sec->SectionCommands.end()) 629 continue; 630 InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0]; 631 632 // Relocations are not using REL[A] section symbols. 633 if (IS->Type == SHT_REL || IS->Type == SHT_RELA) 634 continue; 635 636 // Unlike other synthetic sections, mergeable output sections contain data 637 // copied from input sections, and there may be a relocation pointing to its 638 // contents if -r or -emit-reloc are given. 639 if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE)) 640 continue; 641 642 auto *Sym = 643 make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION, 644 /*Value=*/0, /*Size=*/0, IS); 645 In.SymTab->addSymbol(Sym); 646 } 647 } 648 649 // Today's loaders have a feature to make segments read-only after 650 // processing dynamic relocations to enhance security. PT_GNU_RELRO 651 // is defined for that. 652 // 653 // This function returns true if a section needs to be put into a 654 // PT_GNU_RELRO segment. 655 static bool isRelroSection(const OutputSection *Sec) { 656 if (!Config->ZRelro) 657 return false; 658 659 uint64_t Flags = Sec->Flags; 660 661 // Non-allocatable or non-writable sections don't need RELRO because 662 // they are not writable or not even mapped to memory in the first place. 663 // RELRO is for sections that are essentially read-only but need to 664 // be writable only at process startup to allow dynamic linker to 665 // apply relocations. 666 if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) 667 return false; 668 669 // Once initialized, TLS data segments are used as data templates 670 // for a thread-local storage. For each new thread, runtime 671 // allocates memory for a TLS and copy templates there. No thread 672 // are supposed to use templates directly. Thus, it can be in RELRO. 673 if (Flags & SHF_TLS) 674 return true; 675 676 // .init_array, .preinit_array and .fini_array contain pointers to 677 // functions that are executed on process startup or exit. These 678 // pointers are set by the static linker, and they are not expected 679 // to change at runtime. But if you are an attacker, you could do 680 // interesting things by manipulating pointers in .fini_array, for 681 // example. So they are put into RELRO. 682 uint32_t Type = Sec->Type; 683 if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || 684 Type == SHT_PREINIT_ARRAY) 685 return true; 686 687 // .got contains pointers to external symbols. They are resolved by 688 // the dynamic linker when a module is loaded into memory, and after 689 // that they are not expected to change. So, it can be in RELRO. 690 if (In.Got && Sec == In.Got->getParent()) 691 return true; 692 693 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 694 // through r2 register, which is reserved for that purpose. Since r2 is used 695 // for accessing .got as well, .got and .toc need to be close enough in the 696 // virtual address space. Usually, .toc comes just after .got. Since we place 697 // .got into RELRO, .toc needs to be placed into RELRO too. 698 if (Sec->Name.equals(".toc")) 699 return true; 700 701 // .got.plt contains pointers to external function symbols. They are 702 // by default resolved lazily, so we usually cannot put it into RELRO. 703 // However, if "-z now" is given, the lazy symbol resolution is 704 // disabled, which enables us to put it into RELRO. 705 if (Sec == In.GotPlt->getParent()) 706 return Config->ZNow; 707 708 // .dynamic section contains data for the dynamic linker, and 709 // there's no need to write to it at runtime, so it's better to put 710 // it into RELRO. 711 if (Sec == In.Dynamic->getParent()) 712 return true; 713 714 // Sections with some special names are put into RELRO. This is a 715 // bit unfortunate because section names shouldn't be significant in 716 // ELF in spirit. But in reality many linker features depend on 717 // magic section names. 718 StringRef S = Sec->Name; 719 return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" || 720 S == ".dtors" || S == ".jcr" || S == ".eh_frame" || 721 S == ".openbsd.randomdata"; 722 } 723 724 // We compute a rank for each section. The rank indicates where the 725 // section should be placed in the file. Instead of using simple 726 // numbers (0,1,2...), we use a series of flags. One for each decision 727 // point when placing the section. 728 // Using flags has two key properties: 729 // * It is easy to check if a give branch was taken. 730 // * It is easy two see how similar two ranks are (see getRankProximity). 731 enum RankFlags { 732 RF_NOT_ADDR_SET = 1 << 18, 733 RF_NOT_ALLOC = 1 << 17, 734 RF_NOT_INTERP = 1 << 16, 735 RF_NOT_NOTE = 1 << 15, 736 RF_WRITE = 1 << 14, 737 RF_EXEC_WRITE = 1 << 13, 738 RF_EXEC = 1 << 12, 739 RF_RODATA = 1 << 11, 740 RF_NON_TLS_BSS = 1 << 10, 741 RF_NON_TLS_BSS_RO = 1 << 9, 742 RF_NOT_TLS = 1 << 8, 743 RF_BSS = 1 << 7, 744 RF_PPC_NOT_TOCBSS = 1 << 6, 745 RF_PPC_TOCL = 1 << 5, 746 RF_PPC_TOC = 1 << 4, 747 RF_PPC_GOT = 1 << 3, 748 RF_PPC_BRANCH_LT = 1 << 2, 749 RF_MIPS_GPREL = 1 << 1, 750 RF_MIPS_NOT_GOT = 1 << 0 751 }; 752 753 static unsigned getSectionRank(const OutputSection *Sec) { 754 unsigned Rank = 0; 755 756 // We want to put section specified by -T option first, so we 757 // can start assigning VA starting from them later. 758 if (Config->SectionStartMap.count(Sec->Name)) 759 return Rank; 760 Rank |= RF_NOT_ADDR_SET; 761 762 // Allocatable sections go first to reduce the total PT_LOAD size and 763 // so debug info doesn't change addresses in actual code. 764 if (!(Sec->Flags & SHF_ALLOC)) 765 return Rank | RF_NOT_ALLOC; 766 767 // Put .interp first because some loaders want to see that section 768 // on the first page of the executable file when loaded into memory. 769 if (Sec->Name == ".interp") 770 return Rank; 771 Rank |= RF_NOT_INTERP; 772 773 // Put .note sections (which make up one PT_NOTE) at the beginning so that 774 // they are likely to be included in a core file even if core file size is 775 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 776 // included in a core to match core files with executables. 777 if (Sec->Type == SHT_NOTE) 778 return Rank; 779 Rank |= RF_NOT_NOTE; 780 781 // Sort sections based on their access permission in the following 782 // order: R, RX, RWX, RW. This order is based on the following 783 // considerations: 784 // * Read-only sections come first such that they go in the 785 // PT_LOAD covering the program headers at the start of the file. 786 // * Read-only, executable sections come next. 787 // * Writable, executable sections follow such that .plt on 788 // architectures where it needs to be writable will be placed 789 // between .text and .data. 790 // * Writable sections come last, such that .bss lands at the very 791 // end of the last PT_LOAD. 792 bool IsExec = Sec->Flags & SHF_EXECINSTR; 793 bool IsWrite = Sec->Flags & SHF_WRITE; 794 795 if (IsExec) { 796 if (IsWrite) 797 Rank |= RF_EXEC_WRITE; 798 else 799 Rank |= RF_EXEC; 800 } else if (IsWrite) { 801 Rank |= RF_WRITE; 802 } else if (Sec->Type == SHT_PROGBITS) { 803 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 804 // .eh_frame) closer to .text. They likely contain PC or GOT relative 805 // relocations and there could be relocation overflow if other huge sections 806 // (.dynstr .dynsym) were placed in between. 807 Rank |= RF_RODATA; 808 } 809 810 // If we got here we know that both A and B are in the same PT_LOAD. 811 812 bool IsTls = Sec->Flags & SHF_TLS; 813 bool IsNoBits = Sec->Type == SHT_NOBITS; 814 815 // The first requirement we have is to put (non-TLS) nobits sections last. The 816 // reason is that the only thing the dynamic linker will see about them is a 817 // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the 818 // PT_LOAD, so that has to correspond to the nobits sections. 819 bool IsNonTlsNoBits = IsNoBits && !IsTls; 820 if (IsNonTlsNoBits) 821 Rank |= RF_NON_TLS_BSS; 822 823 // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo 824 // sections after r/w ones, so that the RelRo sections are contiguous. 825 bool IsRelRo = isRelroSection(Sec); 826 if (IsNonTlsNoBits && !IsRelRo) 827 Rank |= RF_NON_TLS_BSS_RO; 828 if (!IsNonTlsNoBits && IsRelRo) 829 Rank |= RF_NON_TLS_BSS_RO; 830 831 // The TLS initialization block needs to be a single contiguous block in a R/W 832 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 833 // sections. The TLS NOBITS sections are placed here as they don't take up 834 // virtual address space in the PT_LOAD. 835 if (!IsTls) 836 Rank |= RF_NOT_TLS; 837 838 // Within the TLS initialization block, the non-nobits sections need to appear 839 // first. 840 if (IsNoBits) 841 Rank |= RF_BSS; 842 843 // Some architectures have additional ordering restrictions for sections 844 // within the same PT_LOAD. 845 if (Config->EMachine == EM_PPC64) { 846 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 847 // that we would like to make sure appear is a specific order to maximize 848 // their coverage by a single signed 16-bit offset from the TOC base 849 // pointer. Conversely, the special .tocbss section should be first among 850 // all SHT_NOBITS sections. This will put it next to the loaded special 851 // PPC64 sections (and, thus, within reach of the TOC base pointer). 852 StringRef Name = Sec->Name; 853 if (Name != ".tocbss") 854 Rank |= RF_PPC_NOT_TOCBSS; 855 856 if (Name == ".toc1") 857 Rank |= RF_PPC_TOCL; 858 859 if (Name == ".toc") 860 Rank |= RF_PPC_TOC; 861 862 if (Name == ".got") 863 Rank |= RF_PPC_GOT; 864 865 if (Name == ".branch_lt") 866 Rank |= RF_PPC_BRANCH_LT; 867 } 868 869 if (Config->EMachine == EM_MIPS) { 870 // All sections with SHF_MIPS_GPREL flag should be grouped together 871 // because data in these sections is addressable with a gp relative address. 872 if (Sec->Flags & SHF_MIPS_GPREL) 873 Rank |= RF_MIPS_GPREL; 874 875 if (Sec->Name != ".got") 876 Rank |= RF_MIPS_NOT_GOT; 877 } 878 879 return Rank; 880 } 881 882 static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) { 883 const OutputSection *A = cast<OutputSection>(ACmd); 884 const OutputSection *B = cast<OutputSection>(BCmd); 885 886 if (A->SortRank != B->SortRank) 887 return A->SortRank < B->SortRank; 888 889 if (!(A->SortRank & RF_NOT_ADDR_SET)) 890 return Config->SectionStartMap.lookup(A->Name) < 891 Config->SectionStartMap.lookup(B->Name); 892 return false; 893 } 894 895 void PhdrEntry::add(OutputSection *Sec) { 896 LastSec = Sec; 897 if (!FirstSec) 898 FirstSec = Sec; 899 p_align = std::max(p_align, Sec->Alignment); 900 if (p_type == PT_LOAD) 901 Sec->PtLoad = this; 902 } 903 904 // The beginning and the ending of .rel[a].plt section are marked 905 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 906 // executable. The runtime needs these symbols in order to resolve 907 // all IRELATIVE relocs on startup. For dynamic executables, we don't 908 // need these symbols, since IRELATIVE relocs are resolved through GOT 909 // and PLT. For details, see http://www.airs.com/blog/archives/403. 910 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 911 if (Config->Relocatable || needsInterpSection()) 912 return; 913 StringRef S = Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start"; 914 addOptionalRegular(S, In.RelaIplt, 0, STV_HIDDEN, STB_WEAK); 915 916 S = Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end"; 917 ElfSym::RelaIpltEnd = 918 addOptionalRegular(S, In.RelaIplt, 0, STV_HIDDEN, STB_WEAK); 919 } 920 921 template <class ELFT> 922 void Writer<ELFT>::forEachRelSec( 923 llvm::function_ref<void(InputSectionBase &)> Fn) { 924 // Scan all relocations. Each relocation goes through a series 925 // of tests to determine if it needs special treatment, such as 926 // creating GOT, PLT, copy relocations, etc. 927 // Note that relocations for non-alloc sections are directly 928 // processed by InputSection::relocateNonAlloc. 929 for (InputSectionBase *IS : InputSections) 930 if (IS->Live && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC)) 931 Fn(*IS); 932 for (EhInputSection *ES : In.EhFrame->Sections) 933 Fn(*ES); 934 } 935 936 // This function generates assignments for predefined symbols (e.g. _end or 937 // _etext) and inserts them into the commands sequence to be processed at the 938 // appropriate time. This ensures that the value is going to be correct by the 939 // time any references to these symbols are processed and is equivalent to 940 // defining these symbols explicitly in the linker script. 941 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 942 if (ElfSym::GlobalOffsetTable) { 943 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 944 // to the start of the .got or .got.plt section. 945 InputSection *GotSection = In.GotPlt; 946 if (!Target->GotBaseSymInGotPlt) 947 GotSection = In.MipsGot ? cast<InputSection>(In.MipsGot) 948 : cast<InputSection>(In.Got); 949 ElfSym::GlobalOffsetTable->Section = GotSection; 950 } 951 952 if (ElfSym::RelaIpltEnd) 953 ElfSym::RelaIpltEnd->Value = In.RelaIplt->getSize(); 954 955 PhdrEntry *Last = nullptr; 956 PhdrEntry *LastRO = nullptr; 957 958 for (PhdrEntry *P : Phdrs) { 959 if (P->p_type != PT_LOAD) 960 continue; 961 Last = P; 962 if (!(P->p_flags & PF_W)) 963 LastRO = P; 964 } 965 966 if (LastRO) { 967 // _etext is the first location after the last read-only loadable segment. 968 if (ElfSym::Etext1) 969 ElfSym::Etext1->Section = LastRO->LastSec; 970 if (ElfSym::Etext2) 971 ElfSym::Etext2->Section = LastRO->LastSec; 972 } 973 974 if (Last) { 975 // _edata points to the end of the last mapped initialized section. 976 OutputSection *Edata = nullptr; 977 for (OutputSection *OS : OutputSections) { 978 if (OS->Type != SHT_NOBITS) 979 Edata = OS; 980 if (OS == Last->LastSec) 981 break; 982 } 983 984 if (ElfSym::Edata1) 985 ElfSym::Edata1->Section = Edata; 986 if (ElfSym::Edata2) 987 ElfSym::Edata2->Section = Edata; 988 989 // _end is the first location after the uninitialized data region. 990 if (ElfSym::End1) 991 ElfSym::End1->Section = Last->LastSec; 992 if (ElfSym::End2) 993 ElfSym::End2->Section = Last->LastSec; 994 } 995 996 if (ElfSym::Bss) 997 ElfSym::Bss->Section = findSection(".bss"); 998 999 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1000 // be equal to the _gp symbol's value. 1001 if (ElfSym::MipsGp) { 1002 // Find GP-relative section with the lowest address 1003 // and use this address to calculate default _gp value. 1004 for (OutputSection *OS : OutputSections) { 1005 if (OS->Flags & SHF_MIPS_GPREL) { 1006 ElfSym::MipsGp->Section = OS; 1007 ElfSym::MipsGp->Value = 0x7ff0; 1008 break; 1009 } 1010 } 1011 } 1012 } 1013 1014 // We want to find how similar two ranks are. 1015 // The more branches in getSectionRank that match, the more similar they are. 1016 // Since each branch corresponds to a bit flag, we can just use 1017 // countLeadingZeros. 1018 static int getRankProximityAux(OutputSection *A, OutputSection *B) { 1019 return countLeadingZeros(A->SortRank ^ B->SortRank); 1020 } 1021 1022 static int getRankProximity(OutputSection *A, BaseCommand *B) { 1023 if (auto *Sec = dyn_cast<OutputSection>(B)) 1024 return getRankProximityAux(A, Sec); 1025 return -1; 1026 } 1027 1028 // When placing orphan sections, we want to place them after symbol assignments 1029 // so that an orphan after 1030 // begin_foo = .; 1031 // foo : { *(foo) } 1032 // end_foo = .; 1033 // doesn't break the intended meaning of the begin/end symbols. 1034 // We don't want to go over sections since findOrphanPos is the 1035 // one in charge of deciding the order of the sections. 1036 // We don't want to go over changes to '.', since doing so in 1037 // rx_sec : { *(rx_sec) } 1038 // . = ALIGN(0x1000); 1039 // /* The RW PT_LOAD starts here*/ 1040 // rw_sec : { *(rw_sec) } 1041 // would mean that the RW PT_LOAD would become unaligned. 1042 static bool shouldSkip(BaseCommand *Cmd) { 1043 if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd)) 1044 return Assign->Name != "."; 1045 return false; 1046 } 1047 1048 // We want to place orphan sections so that they share as much 1049 // characteristics with their neighbors as possible. For example, if 1050 // both are rw, or both are tls. 1051 template <typename ELFT> 1052 static std::vector<BaseCommand *>::iterator 1053 findOrphanPos(std::vector<BaseCommand *>::iterator B, 1054 std::vector<BaseCommand *>::iterator E) { 1055 OutputSection *Sec = cast<OutputSection>(*E); 1056 1057 // Find the first element that has as close a rank as possible. 1058 auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) { 1059 return getRankProximity(Sec, A) < getRankProximity(Sec, B); 1060 }); 1061 if (I == E) 1062 return E; 1063 1064 // Consider all existing sections with the same proximity. 1065 int Proximity = getRankProximity(Sec, *I); 1066 for (; I != E; ++I) { 1067 auto *CurSec = dyn_cast<OutputSection>(*I); 1068 if (!CurSec) 1069 continue; 1070 if (getRankProximity(Sec, CurSec) != Proximity || 1071 Sec->SortRank < CurSec->SortRank) 1072 break; 1073 } 1074 1075 auto IsOutputSec = [](BaseCommand *Cmd) { return isa<OutputSection>(Cmd); }; 1076 auto J = std::find_if(llvm::make_reverse_iterator(I), 1077 llvm::make_reverse_iterator(B), IsOutputSec); 1078 I = J.base(); 1079 1080 // As a special case, if the orphan section is the last section, put 1081 // it at the very end, past any other commands. 1082 // This matches bfd's behavior and is convenient when the linker script fully 1083 // specifies the start of the file, but doesn't care about the end (the non 1084 // alloc sections for example). 1085 auto NextSec = std::find_if(I, E, IsOutputSec); 1086 if (NextSec == E) 1087 return E; 1088 1089 while (I != E && shouldSkip(*I)) 1090 ++I; 1091 return I; 1092 } 1093 1094 // Builds section order for handling --symbol-ordering-file. 1095 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1096 DenseMap<const InputSectionBase *, int> SectionOrder; 1097 // Use the rarely used option -call-graph-ordering-file to sort sections. 1098 if (!Config->CallGraphProfile.empty()) 1099 return computeCallGraphProfileOrder(); 1100 1101 if (Config->SymbolOrderingFile.empty()) 1102 return SectionOrder; 1103 1104 struct SymbolOrderEntry { 1105 int Priority; 1106 bool Present; 1107 }; 1108 1109 // Build a map from symbols to their priorities. Symbols that didn't 1110 // appear in the symbol ordering file have the lowest priority 0. 1111 // All explicitly mentioned symbols have negative (higher) priorities. 1112 DenseMap<StringRef, SymbolOrderEntry> SymbolOrder; 1113 int Priority = -Config->SymbolOrderingFile.size(); 1114 for (StringRef S : Config->SymbolOrderingFile) 1115 SymbolOrder.insert({S, {Priority++, false}}); 1116 1117 // Build a map from sections to their priorities. 1118 auto AddSym = [&](Symbol &Sym) { 1119 auto It = SymbolOrder.find(Sym.getName()); 1120 if (It == SymbolOrder.end()) 1121 return; 1122 SymbolOrderEntry &Ent = It->second; 1123 Ent.Present = true; 1124 1125 maybeWarnUnorderableSymbol(&Sym); 1126 1127 if (auto *D = dyn_cast<Defined>(&Sym)) { 1128 if (auto *Sec = dyn_cast_or_null<InputSectionBase>(D->Section)) { 1129 int &Priority = SectionOrder[cast<InputSectionBase>(Sec->Repl)]; 1130 Priority = std::min(Priority, Ent.Priority); 1131 } 1132 } 1133 }; 1134 1135 // We want both global and local symbols. We get the global ones from the 1136 // symbol table and iterate the object files for the local ones. 1137 for (Symbol *Sym : Symtab->getSymbols()) 1138 if (!Sym->isLazy()) 1139 AddSym(*Sym); 1140 for (InputFile *File : ObjectFiles) 1141 for (Symbol *Sym : File->getSymbols()) 1142 if (Sym->isLocal()) 1143 AddSym(*Sym); 1144 1145 if (Config->WarnSymbolOrdering) 1146 for (auto OrderEntry : SymbolOrder) 1147 if (!OrderEntry.second.Present) 1148 warn("symbol ordering file: no such symbol: " + OrderEntry.first); 1149 1150 return SectionOrder; 1151 } 1152 1153 // Sorts the sections in ISD according to the provided section order. 1154 static void 1155 sortISDBySectionOrder(InputSectionDescription *ISD, 1156 const DenseMap<const InputSectionBase *, int> &Order) { 1157 std::vector<InputSection *> UnorderedSections; 1158 std::vector<std::pair<InputSection *, int>> OrderedSections; 1159 uint64_t UnorderedSize = 0; 1160 1161 for (InputSection *IS : ISD->Sections) { 1162 auto I = Order.find(IS); 1163 if (I == Order.end()) { 1164 UnorderedSections.push_back(IS); 1165 UnorderedSize += IS->getSize(); 1166 continue; 1167 } 1168 OrderedSections.push_back({IS, I->second}); 1169 } 1170 llvm::sort(OrderedSections, [&](std::pair<InputSection *, int> A, 1171 std::pair<InputSection *, int> B) { 1172 return A.second < B.second; 1173 }); 1174 1175 // Find an insertion point for the ordered section list in the unordered 1176 // section list. On targets with limited-range branches, this is the mid-point 1177 // of the unordered section list. This decreases the likelihood that a range 1178 // extension thunk will be needed to enter or exit the ordered region. If the 1179 // ordered section list is a list of hot functions, we can generally expect 1180 // the ordered functions to be called more often than the unordered functions, 1181 // making it more likely that any particular call will be within range, and 1182 // therefore reducing the number of thunks required. 1183 // 1184 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1185 // If the layout is: 1186 // 1187 // 8MB hot 1188 // 32MB cold 1189 // 1190 // only the first 8-16MB of the cold code (depending on which hot function it 1191 // is actually calling) can call the hot code without a range extension thunk. 1192 // However, if we use this layout: 1193 // 1194 // 16MB cold 1195 // 8MB hot 1196 // 16MB cold 1197 // 1198 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1199 // of the second block of cold code can call the hot code without a thunk. So 1200 // we effectively double the amount of code that could potentially call into 1201 // the hot code without a thunk. 1202 size_t InsPt = 0; 1203 if (Target->getThunkSectionSpacing() && !OrderedSections.empty()) { 1204 uint64_t UnorderedPos = 0; 1205 for (; InsPt != UnorderedSections.size(); ++InsPt) { 1206 UnorderedPos += UnorderedSections[InsPt]->getSize(); 1207 if (UnorderedPos > UnorderedSize / 2) 1208 break; 1209 } 1210 } 1211 1212 ISD->Sections.clear(); 1213 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(0, InsPt)) 1214 ISD->Sections.push_back(IS); 1215 for (std::pair<InputSection *, int> P : OrderedSections) 1216 ISD->Sections.push_back(P.first); 1217 for (InputSection *IS : makeArrayRef(UnorderedSections).slice(InsPt)) 1218 ISD->Sections.push_back(IS); 1219 } 1220 1221 static void sortSection(OutputSection *Sec, 1222 const DenseMap<const InputSectionBase *, int> &Order) { 1223 StringRef Name = Sec->Name; 1224 1225 // Sort input sections by section name suffixes for 1226 // __attribute__((init_priority(N))). 1227 if (Name == ".init_array" || Name == ".fini_array") { 1228 if (!Script->HasSectionsCommand) 1229 Sec->sortInitFini(); 1230 return; 1231 } 1232 1233 // Sort input sections by the special rule for .ctors and .dtors. 1234 if (Name == ".ctors" || Name == ".dtors") { 1235 if (!Script->HasSectionsCommand) 1236 Sec->sortCtorsDtors(); 1237 return; 1238 } 1239 1240 // Never sort these. 1241 if (Name == ".init" || Name == ".fini") 1242 return; 1243 1244 // Sort input sections by priority using the list provided 1245 // by --symbol-ordering-file. 1246 if (!Order.empty()) 1247 for (BaseCommand *B : Sec->SectionCommands) 1248 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1249 sortISDBySectionOrder(ISD, Order); 1250 } 1251 1252 // If no layout was provided by linker script, we want to apply default 1253 // sorting for special input sections. This also handles --symbol-ordering-file. 1254 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1255 // Build the order once since it is expensive. 1256 DenseMap<const InputSectionBase *, int> Order = buildSectionOrder(); 1257 for (BaseCommand *Base : Script->SectionCommands) 1258 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1259 sortSection(Sec, Order); 1260 } 1261 1262 template <class ELFT> void Writer<ELFT>::sortSections() { 1263 Script->adjustSectionsBeforeSorting(); 1264 1265 // Don't sort if using -r. It is not necessary and we want to preserve the 1266 // relative order for SHF_LINK_ORDER sections. 1267 if (Config->Relocatable) 1268 return; 1269 1270 sortInputSections(); 1271 1272 for (BaseCommand *Base : Script->SectionCommands) { 1273 auto *OS = dyn_cast<OutputSection>(Base); 1274 if (!OS) 1275 continue; 1276 OS->SortRank = getSectionRank(OS); 1277 1278 // We want to assign rude approximation values to OutSecOff fields 1279 // to know the relative order of the input sections. We use it for 1280 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1281 uint64_t I = 0; 1282 for (InputSection *Sec : getInputSections(OS)) 1283 Sec->OutSecOff = I++; 1284 } 1285 1286 if (!Script->HasSectionsCommand) { 1287 // We know that all the OutputSections are contiguous in this case. 1288 auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); }; 1289 std::stable_sort( 1290 llvm::find_if(Script->SectionCommands, IsSection), 1291 llvm::find_if(llvm::reverse(Script->SectionCommands), IsSection).base(), 1292 compareSections); 1293 return; 1294 } 1295 1296 // Orphan sections are sections present in the input files which are 1297 // not explicitly placed into the output file by the linker script. 1298 // 1299 // The sections in the linker script are already in the correct 1300 // order. We have to figuere out where to insert the orphan 1301 // sections. 1302 // 1303 // The order of the sections in the script is arbitrary and may not agree with 1304 // compareSections. This means that we cannot easily define a strict weak 1305 // ordering. To see why, consider a comparison of a section in the script and 1306 // one not in the script. We have a two simple options: 1307 // * Make them equivalent (a is not less than b, and b is not less than a). 1308 // The problem is then that equivalence has to be transitive and we can 1309 // have sections a, b and c with only b in a script and a less than c 1310 // which breaks this property. 1311 // * Use compareSectionsNonScript. Given that the script order doesn't have 1312 // to match, we can end up with sections a, b, c, d where b and c are in the 1313 // script and c is compareSectionsNonScript less than b. In which case d 1314 // can be equivalent to c, a to b and d < a. As a concrete example: 1315 // .a (rx) # not in script 1316 // .b (rx) # in script 1317 // .c (ro) # in script 1318 // .d (ro) # not in script 1319 // 1320 // The way we define an order then is: 1321 // * Sort only the orphan sections. They are in the end right now. 1322 // * Move each orphan section to its preferred position. We try 1323 // to put each section in the last position where it can share 1324 // a PT_LOAD. 1325 // 1326 // There is some ambiguity as to where exactly a new entry should be 1327 // inserted, because Commands contains not only output section 1328 // commands but also other types of commands such as symbol assignment 1329 // expressions. There's no correct answer here due to the lack of the 1330 // formal specification of the linker script. We use heuristics to 1331 // determine whether a new output command should be added before or 1332 // after another commands. For the details, look at shouldSkip 1333 // function. 1334 1335 auto I = Script->SectionCommands.begin(); 1336 auto E = Script->SectionCommands.end(); 1337 auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) { 1338 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1339 return Sec->SectionIndex == UINT32_MAX; 1340 return false; 1341 }); 1342 1343 // Sort the orphan sections. 1344 std::stable_sort(NonScriptI, E, compareSections); 1345 1346 // As a horrible special case, skip the first . assignment if it is before any 1347 // section. We do this because it is common to set a load address by starting 1348 // the script with ". = 0xabcd" and the expectation is that every section is 1349 // after that. 1350 auto FirstSectionOrDotAssignment = 1351 std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); 1352 if (FirstSectionOrDotAssignment != E && 1353 isa<SymbolAssignment>(**FirstSectionOrDotAssignment)) 1354 ++FirstSectionOrDotAssignment; 1355 I = FirstSectionOrDotAssignment; 1356 1357 while (NonScriptI != E) { 1358 auto Pos = findOrphanPos<ELFT>(I, NonScriptI); 1359 OutputSection *Orphan = cast<OutputSection>(*NonScriptI); 1360 1361 // As an optimization, find all sections with the same sort rank 1362 // and insert them with one rotate. 1363 unsigned Rank = Orphan->SortRank; 1364 auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) { 1365 return cast<OutputSection>(Cmd)->SortRank != Rank; 1366 }); 1367 std::rotate(Pos, NonScriptI, End); 1368 NonScriptI = End; 1369 } 1370 1371 Script->adjustSectionsAfterSorting(); 1372 } 1373 1374 static bool compareByFilePosition(InputSection *A, InputSection *B) { 1375 // Synthetic, i. e. a sentinel section, should go last. 1376 if (A->kind() == InputSectionBase::Synthetic || 1377 B->kind() == InputSectionBase::Synthetic) 1378 return A->kind() != InputSectionBase::Synthetic; 1379 1380 InputSection *LA = A->getLinkOrderDep(); 1381 InputSection *LB = B->getLinkOrderDep(); 1382 OutputSection *AOut = LA->getParent(); 1383 OutputSection *BOut = LB->getParent(); 1384 1385 if (AOut != BOut) 1386 return AOut->SectionIndex < BOut->SectionIndex; 1387 return LA->OutSecOff < LB->OutSecOff; 1388 } 1389 1390 // This function is used by the --merge-exidx-entries to detect duplicate 1391 // .ARM.exidx sections. It is Arm only. 1392 // 1393 // The .ARM.exidx section is of the form: 1394 // | PREL31 offset to function | Unwind instructions for function | 1395 // where the unwind instructions are either a small number of unwind 1396 // instructions inlined into the table entry, the special CANT_UNWIND value of 1397 // 0x1 or a PREL31 offset into a .ARM.extab Section that contains unwind 1398 // instructions. 1399 // 1400 // We return true if all the unwind instructions in the .ARM.exidx entries of 1401 // Cur can be merged into the last entry of Prev. 1402 static bool isDuplicateArmExidxSec(InputSection *Prev, InputSection *Cur) { 1403 1404 // References to .ARM.Extab Sections have bit 31 clear and are not the 1405 // special EXIDX_CANTUNWIND bit-pattern. 1406 auto IsExtabRef = [](uint32_t Unwind) { 1407 return (Unwind & 0x80000000) == 0 && Unwind != 0x1; 1408 }; 1409 1410 struct ExidxEntry { 1411 ulittle32_t Fn; 1412 ulittle32_t Unwind; 1413 }; 1414 1415 // Get the last table Entry from the previous .ARM.exidx section. 1416 const ExidxEntry &PrevEntry = Prev->getDataAs<ExidxEntry>().back(); 1417 if (IsExtabRef(PrevEntry.Unwind)) 1418 return false; 1419 1420 // We consider the unwind instructions of an .ARM.exidx table entry 1421 // a duplicate if the previous unwind instructions if: 1422 // - Both are the special EXIDX_CANTUNWIND. 1423 // - Both are the same inline unwind instructions. 1424 // We do not attempt to follow and check links into .ARM.extab tables as 1425 // consecutive identical entries are rare and the effort to check that they 1426 // are identical is high. 1427 1428 for (const ExidxEntry Entry : Cur->getDataAs<ExidxEntry>()) 1429 if (IsExtabRef(Entry.Unwind) || Entry.Unwind != PrevEntry.Unwind) 1430 return false; 1431 1432 // All table entries in this .ARM.exidx Section can be merged into the 1433 // previous Section. 1434 return true; 1435 } 1436 1437 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1438 for (OutputSection *Sec : OutputSections) { 1439 if (!(Sec->Flags & SHF_LINK_ORDER)) 1440 continue; 1441 1442 // Link order may be distributed across several InputSectionDescriptions 1443 // but sort must consider them all at once. 1444 std::vector<InputSection **> ScriptSections; 1445 std::vector<InputSection *> Sections; 1446 for (BaseCommand *Base : Sec->SectionCommands) { 1447 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) { 1448 for (InputSection *&IS : ISD->Sections) { 1449 ScriptSections.push_back(&IS); 1450 Sections.push_back(IS); 1451 } 1452 } 1453 } 1454 std::stable_sort(Sections.begin(), Sections.end(), compareByFilePosition); 1455 1456 if (!Config->Relocatable && Config->EMachine == EM_ARM && 1457 Sec->Type == SHT_ARM_EXIDX) { 1458 1459 if (auto *Sentinel = dyn_cast<ARMExidxSentinelSection>(Sections.back())) { 1460 assert(Sections.size() >= 2 && 1461 "We should create a sentinel section only if there are " 1462 "alive regular exidx sections."); 1463 1464 // The last executable section is required to fill the sentinel. 1465 // Remember it here so that we don't have to find it again. 1466 Sentinel->Highest = Sections[Sections.size() - 2]->getLinkOrderDep(); 1467 } 1468 1469 // The EHABI for the Arm Architecture permits consecutive identical 1470 // table entries to be merged. We use a simple implementation that 1471 // removes a .ARM.exidx Input Section if it can be merged into the 1472 // previous one. This does not require any rewriting of InputSection 1473 // contents but misses opportunities for fine grained deduplication 1474 // where only a subset of the InputSection contents can be merged. 1475 if (Config->MergeArmExidx) { 1476 size_t Prev = 0; 1477 // The last one is a sentinel entry which should not be removed. 1478 for (size_t I = 1; I < Sections.size() - 1; ++I) { 1479 if (isDuplicateArmExidxSec(Sections[Prev], Sections[I])) 1480 Sections[I] = nullptr; 1481 else 1482 Prev = I; 1483 } 1484 } 1485 } 1486 1487 for (int I = 0, N = Sections.size(); I < N; ++I) 1488 *ScriptSections[I] = Sections[I]; 1489 1490 // Remove the Sections we marked as duplicate earlier. 1491 for (BaseCommand *Base : Sec->SectionCommands) 1492 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 1493 llvm::erase_if(ISD->Sections, [](InputSection *IS) { return !IS; }); 1494 } 1495 } 1496 1497 // For most RISC ISAs, we need to generate content that depends on the address 1498 // of InputSections. For example some architectures such as AArch64 use small 1499 // displacements for jump instructions that is the linker's responsibility for 1500 // creating range extension thunks for. As the generation of the content may 1501 // also alter InputSection addresses we must converge to a fixed point. 1502 template <class ELFT> void Writer<ELFT>::maybeAddThunks() { 1503 if (!Target->NeedsThunks && !Config->AndroidPackDynRelocs && 1504 !Config->RelrPackDynRelocs) 1505 return; 1506 1507 ThunkCreator TC; 1508 AArch64Err843419Patcher A64P; 1509 1510 for (;;) { 1511 bool Changed = false; 1512 1513 Script->assignAddresses(); 1514 1515 if (Target->NeedsThunks) 1516 Changed |= TC.createThunks(OutputSections); 1517 1518 if (Config->FixCortexA53Errata843419) { 1519 if (Changed) 1520 Script->assignAddresses(); 1521 Changed |= A64P.createFixes(); 1522 } 1523 1524 if (In.MipsGot) 1525 In.MipsGot->updateAllocSize(); 1526 1527 Changed |= In.RelaDyn->updateAllocSize(); 1528 1529 if (In.RelrDyn) 1530 Changed |= In.RelrDyn->updateAllocSize(); 1531 1532 if (!Changed) 1533 return; 1534 } 1535 } 1536 1537 static void finalizeSynthetic(SyntheticSection *Sec) { 1538 if (Sec && !Sec->empty() && Sec->getParent()) 1539 Sec->finalizeContents(); 1540 } 1541 1542 // In order to allow users to manipulate linker-synthesized sections, 1543 // we had to add synthetic sections to the input section list early, 1544 // even before we make decisions whether they are needed. This allows 1545 // users to write scripts like this: ".mygot : { .got }". 1546 // 1547 // Doing it has an unintended side effects. If it turns out that we 1548 // don't need a .got (for example) at all because there's no 1549 // relocation that needs a .got, we don't want to emit .got. 1550 // 1551 // To deal with the above problem, this function is called after 1552 // scanRelocations is called to remove synthetic sections that turn 1553 // out to be empty. 1554 static void removeUnusedSyntheticSections() { 1555 // All input synthetic sections that can be empty are placed after 1556 // all regular ones. We iterate over them all and exit at first 1557 // non-synthetic. 1558 for (InputSectionBase *S : llvm::reverse(InputSections)) { 1559 SyntheticSection *SS = dyn_cast<SyntheticSection>(S); 1560 if (!SS) 1561 return; 1562 OutputSection *OS = SS->getParent(); 1563 if (!OS || !SS->empty()) 1564 continue; 1565 1566 // If we reach here, then SS is an unused synthetic section and we want to 1567 // remove it from corresponding input section description of output section. 1568 for (BaseCommand *B : OS->SectionCommands) 1569 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1570 llvm::erase_if(ISD->Sections, 1571 [=](InputSection *IS) { return IS == SS; }); 1572 } 1573 } 1574 1575 // Returns true if a symbol can be replaced at load-time by a symbol 1576 // with the same name defined in other ELF executable or DSO. 1577 static bool computeIsPreemptible(const Symbol &B) { 1578 assert(!B.isLocal()); 1579 1580 // Only symbols that appear in dynsym can be preempted. 1581 if (!B.includeInDynsym()) 1582 return false; 1583 1584 // Only default visibility symbols can be preempted. 1585 if (B.Visibility != STV_DEFAULT) 1586 return false; 1587 1588 // At this point copy relocations have not been created yet, so any 1589 // symbol that is not defined locally is preemptible. 1590 if (!B.isDefined()) 1591 return true; 1592 1593 // If we have a dynamic list it specifies which local symbols are preemptible. 1594 if (Config->HasDynamicList) 1595 return false; 1596 1597 if (!Config->Shared) 1598 return false; 1599 1600 // -Bsymbolic means that definitions are not preempted. 1601 if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc())) 1602 return false; 1603 return true; 1604 } 1605 1606 // Create output section objects and add them to OutputSections. 1607 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1608 Out::PreinitArray = findSection(".preinit_array"); 1609 Out::InitArray = findSection(".init_array"); 1610 Out::FiniArray = findSection(".fini_array"); 1611 1612 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1613 // symbols for sections, so that the runtime can get the start and end 1614 // addresses of each section by section name. Add such symbols. 1615 if (!Config->Relocatable) { 1616 addStartEndSymbols(); 1617 for (BaseCommand *Base : Script->SectionCommands) 1618 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1619 addStartStopSymbols(Sec); 1620 } 1621 1622 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1623 // It should be okay as no one seems to care about the type. 1624 // Even the author of gold doesn't remember why gold behaves that way. 1625 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1626 if (In.Dynamic->Parent) 1627 Symtab->addDefined("_DYNAMIC", STV_HIDDEN, STT_NOTYPE, 0 /*Value*/, 1628 /*Size=*/0, STB_WEAK, In.Dynamic, 1629 /*File=*/nullptr); 1630 1631 // Define __rel[a]_iplt_{start,end} symbols if needed. 1632 addRelIpltSymbols(); 1633 1634 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800 if not defined. 1635 if (Config->EMachine == EM_RISCV) 1636 if (!dyn_cast_or_null<Defined>(Symtab->find("__global_pointer$"))) 1637 addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800); 1638 1639 // This responsible for splitting up .eh_frame section into 1640 // pieces. The relocation scan uses those pieces, so this has to be 1641 // earlier. 1642 finalizeSynthetic(In.EhFrame); 1643 1644 for (Symbol *S : Symtab->getSymbols()) 1645 if (!S->IsPreemptible) 1646 S->IsPreemptible = computeIsPreemptible(*S); 1647 1648 // Scan relocations. This must be done after every symbol is declared so that 1649 // we can correctly decide if a dynamic relocation is needed. 1650 if (!Config->Relocatable) 1651 forEachRelSec(scanRelocations<ELFT>); 1652 1653 if (In.Plt && !In.Plt->empty()) 1654 In.Plt->addSymbols(); 1655 if (In.Iplt && !In.Iplt->empty()) 1656 In.Iplt->addSymbols(); 1657 1658 // Now that we have defined all possible global symbols including linker- 1659 // synthesized ones. Visit all symbols to give the finishing touches. 1660 for (Symbol *Sym : Symtab->getSymbols()) { 1661 if (!includeInSymtab(*Sym)) 1662 continue; 1663 if (In.SymTab) 1664 In.SymTab->addSymbol(Sym); 1665 1666 if (Sym->includeInDynsym()) { 1667 In.DynSymTab->addSymbol(Sym); 1668 if (auto *File = dyn_cast_or_null<SharedFile<ELFT>>(Sym->File)) 1669 if (File->IsNeeded && !Sym->isUndefined()) 1670 InX<ELFT>::VerNeed->addSymbol(Sym); 1671 } 1672 } 1673 1674 // Do not proceed if there was an undefined symbol. 1675 if (errorCount()) 1676 return; 1677 1678 if (In.MipsGot) 1679 In.MipsGot->build<ELFT>(); 1680 1681 removeUnusedSyntheticSections(); 1682 1683 sortSections(); 1684 1685 // Now that we have the final list, create a list of all the 1686 // OutputSections for convenience. 1687 for (BaseCommand *Base : Script->SectionCommands) 1688 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1689 OutputSections.push_back(Sec); 1690 1691 // Prefer command line supplied address over other constraints. 1692 for (OutputSection *Sec : OutputSections) { 1693 auto I = Config->SectionStartMap.find(Sec->Name); 1694 if (I != Config->SectionStartMap.end()) 1695 Sec->AddrExpr = [=] { return I->second; }; 1696 } 1697 1698 // This is a bit of a hack. A value of 0 means undef, so we set it 1699 // to 1 to make __ehdr_start defined. The section number is not 1700 // particularly relevant. 1701 Out::ElfHeader->SectionIndex = 1; 1702 1703 for (size_t I = 0, E = OutputSections.size(); I != E; ++I) { 1704 OutputSection *Sec = OutputSections[I]; 1705 Sec->SectionIndex = I + 1; 1706 Sec->ShName = In.ShStrTab->addString(Sec->Name); 1707 } 1708 1709 // Binary and relocatable output does not have PHDRS. 1710 // The headers have to be created before finalize as that can influence the 1711 // image base and the dynamic section on mips includes the image base. 1712 if (!Config->Relocatable && !Config->OFormatBinary) { 1713 Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs(); 1714 addPtArmExid(Phdrs); 1715 Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); 1716 1717 // Find the TLS segment. This happens before the section layout loop so that 1718 // Android relocation packing can look up TLS symbol addresses. 1719 for (PhdrEntry *P : Phdrs) 1720 if (P->p_type == PT_TLS) 1721 Out::TlsPhdr = P; 1722 } 1723 1724 // Some symbols are defined in term of program headers. Now that we 1725 // have the headers, we can find out which sections they point to. 1726 setReservedSymbolSections(); 1727 1728 // Dynamic section must be the last one in this list and dynamic 1729 // symbol table section (DynSymTab) must be the first one. 1730 finalizeSynthetic(In.DynSymTab); 1731 finalizeSynthetic(In.Bss); 1732 finalizeSynthetic(In.BssRelRo); 1733 finalizeSynthetic(In.GnuHashTab); 1734 finalizeSynthetic(In.HashTab); 1735 finalizeSynthetic(In.SymTabShndx); 1736 finalizeSynthetic(In.ShStrTab); 1737 finalizeSynthetic(In.StrTab); 1738 finalizeSynthetic(In.VerDef); 1739 finalizeSynthetic(In.DynStrTab); 1740 finalizeSynthetic(In.Got); 1741 finalizeSynthetic(In.MipsGot); 1742 finalizeSynthetic(In.IgotPlt); 1743 finalizeSynthetic(In.GotPlt); 1744 finalizeSynthetic(In.RelaDyn); 1745 finalizeSynthetic(In.RelrDyn); 1746 finalizeSynthetic(In.RelaIplt); 1747 finalizeSynthetic(In.RelaPlt); 1748 finalizeSynthetic(In.Plt); 1749 finalizeSynthetic(In.Iplt); 1750 finalizeSynthetic(In.EhFrameHdr); 1751 finalizeSynthetic(InX<ELFT>::VerSym); 1752 finalizeSynthetic(InX<ELFT>::VerNeed); 1753 finalizeSynthetic(In.Dynamic); 1754 1755 if (!Script->HasSectionsCommand && !Config->Relocatable) 1756 fixSectionAlignments(); 1757 1758 // After link order processing .ARM.exidx sections can be deduplicated, which 1759 // needs to be resolved before any other address dependent operation. 1760 resolveShfLinkOrder(); 1761 1762 // Jump instructions in many ISAs have small displacements, and therefore they 1763 // cannot jump to arbitrary addresses in memory. For example, RISC-V JAL 1764 // instruction can target only +-1 MiB from PC. It is a linker's 1765 // responsibility to create and insert small pieces of code between sections 1766 // to extend the ranges if jump targets are out of range. Such code pieces are 1767 // called "thunks". 1768 // 1769 // We add thunks at this stage. We couldn't do this before this point because 1770 // this is the earliest point where we know sizes of sections and their 1771 // layouts (that are needed to determine if jump targets are in range). 1772 maybeAddThunks(); 1773 1774 // maybeAddThunks may have added local symbols to the static symbol table. 1775 finalizeSynthetic(In.SymTab); 1776 finalizeSynthetic(In.PPC64LongBranchTarget); 1777 1778 // Fill other section headers. The dynamic table is finalized 1779 // at the end because some tags like RELSZ depend on result 1780 // of finalizing other sections. 1781 for (OutputSection *Sec : OutputSections) 1782 Sec->finalize<ELFT>(); 1783 } 1784 1785 // Ensure data sections are not mixed with executable sections when 1786 // -execute-only is used. -execute-only is a feature to make pages executable 1787 // but not readable, and the feature is currently supported only on AArch64. 1788 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 1789 if (!Config->ExecuteOnly) 1790 return; 1791 1792 for (OutputSection *OS : OutputSections) 1793 if (OS->Flags & SHF_EXECINSTR) 1794 for (InputSection *IS : getInputSections(OS)) 1795 if (!(IS->Flags & SHF_EXECINSTR)) 1796 error("cannot place " + toString(IS) + " into " + toString(OS->Name) + 1797 ": -execute-only does not support intermingling data and code"); 1798 } 1799 1800 // The linker is expected to define SECNAME_start and SECNAME_end 1801 // symbols for a few sections. This function defines them. 1802 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1803 // If a section does not exist, there's ambiguity as to how we 1804 // define _start and _end symbols for an init/fini section. Since 1805 // the loader assume that the symbols are always defined, we need to 1806 // always define them. But what value? The loader iterates over all 1807 // pointers between _start and _end to run global ctors/dtors, so if 1808 // the section is empty, their symbol values don't actually matter 1809 // as long as _start and _end point to the same location. 1810 // 1811 // That said, we don't want to set the symbols to 0 (which is 1812 // probably the simplest value) because that could cause some 1813 // program to fail to link due to relocation overflow, if their 1814 // program text is above 2 GiB. We use the address of the .text 1815 // section instead to prevent that failure. 1816 // 1817 // In a rare sitaution, .text section may not exist. If that's the 1818 // case, use the image base address as a last resort. 1819 OutputSection *Default = findSection(".text"); 1820 if (!Default) 1821 Default = Out::ElfHeader; 1822 1823 auto Define = [=](StringRef Start, StringRef End, OutputSection *OS) { 1824 if (OS) { 1825 addOptionalRegular(Start, OS, 0); 1826 addOptionalRegular(End, OS, -1); 1827 } else { 1828 addOptionalRegular(Start, Default, 0); 1829 addOptionalRegular(End, Default, 0); 1830 } 1831 }; 1832 1833 Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); 1834 Define("__init_array_start", "__init_array_end", Out::InitArray); 1835 Define("__fini_array_start", "__fini_array_end", Out::FiniArray); 1836 1837 if (OutputSection *Sec = findSection(".ARM.exidx")) 1838 Define("__exidx_start", "__exidx_end", Sec); 1839 } 1840 1841 // If a section name is valid as a C identifier (which is rare because of 1842 // the leading '.'), linkers are expected to define __start_<secname> and 1843 // __stop_<secname> symbols. They are at beginning and end of the section, 1844 // respectively. This is not requested by the ELF standard, but GNU ld and 1845 // gold provide the feature, and used by many programs. 1846 template <class ELFT> 1847 void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) { 1848 StringRef S = Sec->Name; 1849 if (!isValidCIdentifier(S)) 1850 return; 1851 addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_PROTECTED); 1852 addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_PROTECTED); 1853 } 1854 1855 static bool needsPtLoad(OutputSection *Sec) { 1856 if (!(Sec->Flags & SHF_ALLOC) || Sec->Noload) 1857 return false; 1858 1859 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 1860 // responsible for allocating space for them, not the PT_LOAD that 1861 // contains the TLS initialization image. 1862 if ((Sec->Flags & SHF_TLS) && Sec->Type == SHT_NOBITS) 1863 return false; 1864 return true; 1865 } 1866 1867 // Linker scripts are responsible for aligning addresses. Unfortunately, most 1868 // linker scripts are designed for creating two PT_LOADs only, one RX and one 1869 // RW. This means that there is no alignment in the RO to RX transition and we 1870 // cannot create a PT_LOAD there. 1871 static uint64_t computeFlags(uint64_t Flags) { 1872 if (Config->Omagic) 1873 return PF_R | PF_W | PF_X; 1874 if (Config->ExecuteOnly && (Flags & PF_X)) 1875 return Flags & ~PF_R; 1876 if (Config->SingleRoRx && !(Flags & PF_W)) 1877 return Flags | PF_X; 1878 return Flags; 1879 } 1880 1881 // Decide which program headers to create and which sections to include in each 1882 // one. 1883 template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() { 1884 std::vector<PhdrEntry *> Ret; 1885 auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { 1886 Ret.push_back(make<PhdrEntry>(Type, Flags)); 1887 return Ret.back(); 1888 }; 1889 1890 // The first phdr entry is PT_PHDR which describes the program header itself. 1891 AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); 1892 1893 // PT_INTERP must be the second entry if exists. 1894 if (OutputSection *Cmd = findSection(".interp")) 1895 AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd); 1896 1897 // Add the first PT_LOAD segment for regular output sections. 1898 uint64_t Flags = computeFlags(PF_R); 1899 PhdrEntry *Load = AddHdr(PT_LOAD, Flags); 1900 1901 // Add the headers. We will remove them if they don't fit. 1902 Load->add(Out::ElfHeader); 1903 Load->add(Out::ProgramHeaders); 1904 1905 for (OutputSection *Sec : OutputSections) { 1906 if (!(Sec->Flags & SHF_ALLOC)) 1907 break; 1908 if (!needsPtLoad(Sec)) 1909 continue; 1910 1911 // Segments are contiguous memory regions that has the same attributes 1912 // (e.g. executable or writable). There is one phdr for each segment. 1913 // Therefore, we need to create a new phdr when the next section has 1914 // different flags or is loaded at a discontiguous address or memory 1915 // region using AT or AT> linker script command, respectively. At the same 1916 // time, we don't want to create a separate load segment for the headers, 1917 // even if the first output section has an AT or AT> attribute. 1918 uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); 1919 if (((Sec->LMAExpr || 1920 (Sec->LMARegion && (Sec->LMARegion != Load->FirstSec->LMARegion))) && 1921 Load->LastSec != Out::ProgramHeaders) || 1922 Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags) { 1923 1924 Load = AddHdr(PT_LOAD, NewFlags); 1925 Flags = NewFlags; 1926 } 1927 1928 Load->add(Sec); 1929 } 1930 1931 // Add a TLS segment if any. 1932 PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 1933 for (OutputSection *Sec : OutputSections) 1934 if (Sec->Flags & SHF_TLS) 1935 TlsHdr->add(Sec); 1936 if (TlsHdr->FirstSec) 1937 Ret.push_back(TlsHdr); 1938 1939 // Add an entry for .dynamic. 1940 if (OutputSection *Sec = In.Dynamic->getParent()) 1941 AddHdr(PT_DYNAMIC, Sec->getPhdrFlags())->add(Sec); 1942 1943 // PT_GNU_RELRO includes all sections that should be marked as 1944 // read-only by dynamic linker after proccessing relocations. 1945 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 1946 // an error message if more than one PT_GNU_RELRO PHDR is required. 1947 PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 1948 bool InRelroPhdr = false; 1949 bool IsRelroFinished = false; 1950 for (OutputSection *Sec : OutputSections) { 1951 if (!needsPtLoad(Sec)) 1952 continue; 1953 if (isRelroSection(Sec)) { 1954 InRelroPhdr = true; 1955 if (!IsRelroFinished) 1956 RelRo->add(Sec); 1957 else 1958 error("section: " + Sec->Name + " is not contiguous with other relro" + 1959 " sections"); 1960 } else if (InRelroPhdr) { 1961 InRelroPhdr = false; 1962 IsRelroFinished = true; 1963 } 1964 } 1965 if (RelRo->FirstSec) 1966 Ret.push_back(RelRo); 1967 1968 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 1969 if (!In.EhFrame->empty() && In.EhFrameHdr && In.EhFrame->getParent() && 1970 In.EhFrameHdr->getParent()) 1971 AddHdr(PT_GNU_EH_FRAME, In.EhFrameHdr->getParent()->getPhdrFlags()) 1972 ->add(In.EhFrameHdr->getParent()); 1973 1974 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 1975 // the dynamic linker fill the segment with random data. 1976 if (OutputSection *Cmd = findSection(".openbsd.randomdata")) 1977 AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd); 1978 1979 // PT_GNU_STACK is a special section to tell the loader to make the 1980 // pages for the stack non-executable. If you really want an executable 1981 // stack, you can pass -z execstack, but that's not recommended for 1982 // security reasons. 1983 unsigned Perm = PF_R | PF_W; 1984 if (Config->ZExecstack) 1985 Perm |= PF_X; 1986 AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; 1987 1988 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 1989 // is expected to perform W^X violations, such as calling mprotect(2) or 1990 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 1991 // OpenBSD. 1992 if (Config->ZWxneeded) 1993 AddHdr(PT_OPENBSD_WXNEEDED, PF_X); 1994 1995 // Create one PT_NOTE per a group of contiguous .note sections. 1996 PhdrEntry *Note = nullptr; 1997 for (OutputSection *Sec : OutputSections) { 1998 if (Sec->Type == SHT_NOTE && (Sec->Flags & SHF_ALLOC)) { 1999 if (!Note || Sec->LMAExpr) 2000 Note = AddHdr(PT_NOTE, PF_R); 2001 Note->add(Sec); 2002 } else { 2003 Note = nullptr; 2004 } 2005 } 2006 return Ret; 2007 } 2008 2009 template <class ELFT> 2010 void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry *> &Phdrs) { 2011 if (Config->EMachine != EM_ARM) 2012 return; 2013 auto I = llvm::find_if(OutputSections, [](OutputSection *Cmd) { 2014 return Cmd->Type == SHT_ARM_EXIDX; 2015 }); 2016 if (I == OutputSections.end()) 2017 return; 2018 2019 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2020 PhdrEntry *ARMExidx = make<PhdrEntry>(PT_ARM_EXIDX, PF_R); 2021 ARMExidx->add(*I); 2022 Phdrs.push_back(ARMExidx); 2023 } 2024 2025 // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the 2026 // first section after PT_GNU_RELRO have to be page aligned so that the dynamic 2027 // linker can set the permissions. 2028 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2029 auto PageAlign = [](OutputSection *Cmd) { 2030 if (Cmd && !Cmd->AddrExpr) 2031 Cmd->AddrExpr = [=] { 2032 return alignTo(Script->getDot(), Config->MaxPageSize); 2033 }; 2034 }; 2035 2036 for (const PhdrEntry *P : Phdrs) 2037 if (P->p_type == PT_LOAD && P->FirstSec) 2038 PageAlign(P->FirstSec); 2039 2040 for (const PhdrEntry *P : Phdrs) { 2041 if (P->p_type != PT_GNU_RELRO) 2042 continue; 2043 2044 if (P->FirstSec) 2045 PageAlign(P->FirstSec); 2046 2047 // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we 2048 // have to align it to a page. 2049 auto End = OutputSections.end(); 2050 auto I = std::find(OutputSections.begin(), End, P->LastSec); 2051 if (I == End || (I + 1) == End) 2052 continue; 2053 2054 OutputSection *Cmd = (*(I + 1)); 2055 if (needsPtLoad(Cmd)) 2056 PageAlign(Cmd); 2057 } 2058 } 2059 2060 // Compute an in-file position for a given section. The file offset must be the 2061 // same with its virtual address modulo the page size, so that the loader can 2062 // load executables without any address adjustment. 2063 static uint64_t computeFileOffset(OutputSection *OS, uint64_t Off) { 2064 // File offsets are not significant for .bss sections. By convention, we keep 2065 // section offsets monotonically increasing rather than setting to zero. 2066 if (OS->Type == SHT_NOBITS) 2067 return Off; 2068 2069 // If the section is not in a PT_LOAD, we just have to align it. 2070 if (!OS->PtLoad) 2071 return alignTo(Off, OS->Alignment); 2072 2073 // The first section in a PT_LOAD has to have congruent offset and address 2074 // module the page size. 2075 OutputSection *First = OS->PtLoad->FirstSec; 2076 if (OS == First) { 2077 uint64_t Alignment = std::max<uint64_t>(OS->Alignment, Config->MaxPageSize); 2078 return alignTo(Off, Alignment, OS->Addr); 2079 } 2080 2081 // If two sections share the same PT_LOAD the file offset is calculated 2082 // using this formula: Off2 = Off1 + (VA2 - VA1). 2083 return First->Offset + OS->Addr - First->Addr; 2084 } 2085 2086 // Set an in-file position to a given section and returns the end position of 2087 // the section. 2088 static uint64_t setFileOffset(OutputSection *OS, uint64_t Off) { 2089 Off = computeFileOffset(OS, Off); 2090 OS->Offset = Off; 2091 2092 if (OS->Type == SHT_NOBITS) 2093 return Off; 2094 return Off + OS->Size; 2095 } 2096 2097 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2098 uint64_t Off = 0; 2099 for (OutputSection *Sec : OutputSections) 2100 if (Sec->Flags & SHF_ALLOC) 2101 Off = setFileOffset(Sec, Off); 2102 FileSize = alignTo(Off, Config->Wordsize); 2103 } 2104 2105 static std::string rangeToString(uint64_t Addr, uint64_t Len) { 2106 return "[0x" + utohexstr(Addr) + ", 0x" + utohexstr(Addr + Len - 1) + "]"; 2107 } 2108 2109 // Assign file offsets to output sections. 2110 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2111 uint64_t Off = 0; 2112 Off = setFileOffset(Out::ElfHeader, Off); 2113 Off = setFileOffset(Out::ProgramHeaders, Off); 2114 2115 PhdrEntry *LastRX = nullptr; 2116 for (PhdrEntry *P : Phdrs) 2117 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2118 LastRX = P; 2119 2120 for (OutputSection *Sec : OutputSections) { 2121 Off = setFileOffset(Sec, Off); 2122 if (Script->HasSectionsCommand) 2123 continue; 2124 2125 // If this is a last section of the last executable segment and that 2126 // segment is the last loadable segment, align the offset of the 2127 // following section to avoid loading non-segments parts of the file. 2128 if (LastRX && LastRX->LastSec == Sec) 2129 Off = alignTo(Off, Target->PageSize); 2130 } 2131 2132 SectionHeaderOff = alignTo(Off, Config->Wordsize); 2133 FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); 2134 2135 // Our logic assumes that sections have rising VA within the same segment. 2136 // With use of linker scripts it is possible to violate this rule and get file 2137 // offset overlaps or overflows. That should never happen with a valid script 2138 // which does not move the location counter backwards and usually scripts do 2139 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2140 // kernel, which control segment distribution explicitly and move the counter 2141 // backwards, so we have to allow doing that to support linking them. We 2142 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2143 // we want to prevent file size overflows because it would crash the linker. 2144 for (OutputSection *Sec : OutputSections) { 2145 if (Sec->Type == SHT_NOBITS) 2146 continue; 2147 if ((Sec->Offset > FileSize) || (Sec->Offset + Sec->Size > FileSize)) 2148 error("unable to place section " + Sec->Name + " at file offset " + 2149 rangeToString(Sec->Offset, Sec->Size) + 2150 "; check your linker script for overflows"); 2151 } 2152 } 2153 2154 // Finalize the program headers. We call this function after we assign 2155 // file offsets and VAs to all sections. 2156 template <class ELFT> void Writer<ELFT>::setPhdrs() { 2157 for (PhdrEntry *P : Phdrs) { 2158 OutputSection *First = P->FirstSec; 2159 OutputSection *Last = P->LastSec; 2160 2161 if (First) { 2162 P->p_filesz = Last->Offset - First->Offset; 2163 if (Last->Type != SHT_NOBITS) 2164 P->p_filesz += Last->Size; 2165 2166 P->p_memsz = Last->Addr + Last->Size - First->Addr; 2167 P->p_offset = First->Offset; 2168 P->p_vaddr = First->Addr; 2169 2170 if (!P->HasLMA) 2171 P->p_paddr = First->getLMA(); 2172 } 2173 2174 if (P->p_type == PT_LOAD) { 2175 P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize); 2176 } else if (P->p_type == PT_GNU_RELRO) { 2177 P->p_align = 1; 2178 // The glibc dynamic loader rounds the size down, so we need to round up 2179 // to protect the last page. This is a no-op on FreeBSD which always 2180 // rounds up. 2181 P->p_memsz = alignTo(P->p_memsz, Target->PageSize); 2182 } 2183 2184 // The TLS pointer goes after PT_TLS for variant 2 targets. At least glibc 2185 // will align it, so round up the size to make sure the offsets are 2186 // correct. 2187 if (P->p_type == PT_TLS && P->p_memsz) 2188 P->p_memsz = alignTo(P->p_memsz, P->p_align); 2189 } 2190 } 2191 2192 // A helper struct for checkSectionOverlap. 2193 namespace { 2194 struct SectionOffset { 2195 OutputSection *Sec; 2196 uint64_t Offset; 2197 }; 2198 } // namespace 2199 2200 // Check whether sections overlap for a specific address range (file offsets, 2201 // load and virtual adresses). 2202 static void checkOverlap(StringRef Name, std::vector<SectionOffset> &Sections, 2203 bool IsVirtualAddr) { 2204 llvm::sort(Sections, [=](const SectionOffset &A, const SectionOffset &B) { 2205 return A.Offset < B.Offset; 2206 }); 2207 2208 // Finding overlap is easy given a vector is sorted by start position. 2209 // If an element starts before the end of the previous element, they overlap. 2210 for (size_t I = 1, End = Sections.size(); I < End; ++I) { 2211 SectionOffset A = Sections[I - 1]; 2212 SectionOffset B = Sections[I]; 2213 if (B.Offset >= A.Offset + A.Sec->Size) 2214 continue; 2215 2216 // If both sections are in OVERLAY we allow the overlapping of virtual 2217 // addresses, because it is what OVERLAY was designed for. 2218 if (IsVirtualAddr && A.Sec->InOverlay && B.Sec->InOverlay) 2219 continue; 2220 2221 errorOrWarn("section " + A.Sec->Name + " " + Name + 2222 " range overlaps with " + B.Sec->Name + "\n>>> " + A.Sec->Name + 2223 " range is " + rangeToString(A.Offset, A.Sec->Size) + "\n>>> " + 2224 B.Sec->Name + " range is " + 2225 rangeToString(B.Offset, B.Sec->Size)); 2226 } 2227 } 2228 2229 // Check for overlapping sections and address overflows. 2230 // 2231 // In this function we check that none of the output sections have overlapping 2232 // file offsets. For SHF_ALLOC sections we also check that the load address 2233 // ranges and the virtual address ranges don't overlap 2234 template <class ELFT> void Writer<ELFT>::checkSections() { 2235 // First, check that section's VAs fit in available address space for target. 2236 for (OutputSection *OS : OutputSections) 2237 if ((OS->Addr + OS->Size < OS->Addr) || 2238 (!ELFT::Is64Bits && OS->Addr + OS->Size > UINT32_MAX)) 2239 errorOrWarn("section " + OS->Name + " at 0x" + utohexstr(OS->Addr) + 2240 " of size 0x" + utohexstr(OS->Size) + 2241 " exceeds available address space"); 2242 2243 // Check for overlapping file offsets. In this case we need to skip any 2244 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2245 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2246 // binary is specified only add SHF_ALLOC sections are added to the output 2247 // file so we skip any non-allocated sections in that case. 2248 std::vector<SectionOffset> FileOffs; 2249 for (OutputSection *Sec : OutputSections) 2250 if (Sec->Size > 0 && Sec->Type != SHT_NOBITS && 2251 (!Config->OFormatBinary || (Sec->Flags & SHF_ALLOC))) 2252 FileOffs.push_back({Sec, Sec->Offset}); 2253 checkOverlap("file", FileOffs, false); 2254 2255 // When linking with -r there is no need to check for overlapping virtual/load 2256 // addresses since those addresses will only be assigned when the final 2257 // executable/shared object is created. 2258 if (Config->Relocatable) 2259 return; 2260 2261 // Checking for overlapping virtual and load addresses only needs to take 2262 // into account SHF_ALLOC sections since others will not be loaded. 2263 // Furthermore, we also need to skip SHF_TLS sections since these will be 2264 // mapped to other addresses at runtime and can therefore have overlapping 2265 // ranges in the file. 2266 std::vector<SectionOffset> VMAs; 2267 for (OutputSection *Sec : OutputSections) 2268 if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2269 VMAs.push_back({Sec, Sec->Addr}); 2270 checkOverlap("virtual address", VMAs, true); 2271 2272 // Finally, check that the load addresses don't overlap. This will usually be 2273 // the same as the virtual addresses but can be different when using a linker 2274 // script with AT(). 2275 std::vector<SectionOffset> LMAs; 2276 for (OutputSection *Sec : OutputSections) 2277 if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS)) 2278 LMAs.push_back({Sec, Sec->getLMA()}); 2279 checkOverlap("load address", LMAs, false); 2280 } 2281 2282 // The entry point address is chosen in the following ways. 2283 // 2284 // 1. the '-e' entry command-line option; 2285 // 2. the ENTRY(symbol) command in a linker control script; 2286 // 3. the value of the symbol _start, if present; 2287 // 4. the number represented by the entry symbol, if it is a number; 2288 // 5. the address of the first byte of the .text section, if present; 2289 // 6. the address 0. 2290 static uint64_t getEntryAddr() { 2291 // Case 1, 2 or 3 2292 if (Symbol *B = Symtab->find(Config->Entry)) 2293 return B->getVA(); 2294 2295 // Case 4 2296 uint64_t Addr; 2297 if (to_integer(Config->Entry, Addr)) 2298 return Addr; 2299 2300 // Case 5 2301 if (OutputSection *Sec = findSection(".text")) { 2302 if (Config->WarnMissingEntry) 2303 warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + 2304 utohexstr(Sec->Addr)); 2305 return Sec->Addr; 2306 } 2307 2308 // Case 6 2309 if (Config->WarnMissingEntry) 2310 warn("cannot find entry symbol " + Config->Entry + 2311 "; not setting start address"); 2312 return 0; 2313 } 2314 2315 static uint16_t getELFType() { 2316 if (Config->Pic) 2317 return ET_DYN; 2318 if (Config->Relocatable) 2319 return ET_REL; 2320 return ET_EXEC; 2321 } 2322 2323 static uint8_t getAbiVersion() { 2324 // MIPS non-PIC executable gets ABI version 1. 2325 if (Config->EMachine == EM_MIPS && getELFType() == ET_EXEC && 2326 (Config->EFlags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 2327 return 1; 2328 return 0; 2329 } 2330 2331 template <class ELFT> void Writer<ELFT>::writeHeader() { 2332 uint8_t *Buf = Buffer->getBufferStart(); 2333 2334 // For executable segments, the trap instructions are written before writing 2335 // the header. Setting Elf header bytes to zero ensures that any unused bytes 2336 // in header are zero-cleared, instead of having trap instructions. 2337 memset(Buf, 0, sizeof(Elf_Ehdr)); 2338 memcpy(Buf, "\177ELF", 4); 2339 2340 // Write the ELF header. 2341 auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); 2342 EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32; 2343 EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB; 2344 EHdr->e_ident[EI_VERSION] = EV_CURRENT; 2345 EHdr->e_ident[EI_OSABI] = Config->OSABI; 2346 EHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 2347 EHdr->e_type = getELFType(); 2348 EHdr->e_machine = Config->EMachine; 2349 EHdr->e_version = EV_CURRENT; 2350 EHdr->e_entry = getEntryAddr(); 2351 EHdr->e_shoff = SectionHeaderOff; 2352 EHdr->e_flags = Config->EFlags; 2353 EHdr->e_ehsize = sizeof(Elf_Ehdr); 2354 EHdr->e_phnum = Phdrs.size(); 2355 EHdr->e_shentsize = sizeof(Elf_Shdr); 2356 2357 if (!Config->Relocatable) { 2358 EHdr->e_phoff = sizeof(Elf_Ehdr); 2359 EHdr->e_phentsize = sizeof(Elf_Phdr); 2360 } 2361 2362 // Write the program header table. 2363 auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); 2364 for (PhdrEntry *P : Phdrs) { 2365 HBuf->p_type = P->p_type; 2366 HBuf->p_flags = P->p_flags; 2367 HBuf->p_offset = P->p_offset; 2368 HBuf->p_vaddr = P->p_vaddr; 2369 HBuf->p_paddr = P->p_paddr; 2370 HBuf->p_filesz = P->p_filesz; 2371 HBuf->p_memsz = P->p_memsz; 2372 HBuf->p_align = P->p_align; 2373 ++HBuf; 2374 } 2375 2376 // Write the section header table. 2377 // 2378 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2379 // and e_shstrndx fields. When the value of one of these fields exceeds 2380 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2381 // use fields in the section header at index 0 to store 2382 // the value. The sentinel values and fields are: 2383 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2384 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2385 auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); 2386 size_t Num = OutputSections.size() + 1; 2387 if (Num >= SHN_LORESERVE) 2388 SHdrs->sh_size = Num; 2389 else 2390 EHdr->e_shnum = Num; 2391 2392 uint32_t StrTabIndex = In.ShStrTab->getParent()->SectionIndex; 2393 if (StrTabIndex >= SHN_LORESERVE) { 2394 SHdrs->sh_link = StrTabIndex; 2395 EHdr->e_shstrndx = SHN_XINDEX; 2396 } else { 2397 EHdr->e_shstrndx = StrTabIndex; 2398 } 2399 2400 for (OutputSection *Sec : OutputSections) 2401 Sec->writeHeaderTo<ELFT>(++SHdrs); 2402 } 2403 2404 // Open a result file. 2405 template <class ELFT> void Writer<ELFT>::openFile() { 2406 uint64_t MaxSize = Config->Is64 ? INT64_MAX : UINT32_MAX; 2407 if (MaxSize < FileSize) { 2408 error("output file too large: " + Twine(FileSize) + " bytes"); 2409 return; 2410 } 2411 2412 unlinkAsync(Config->OutputFile); 2413 unsigned Flags = 0; 2414 if (!Config->Relocatable) 2415 Flags = FileOutputBuffer::F_executable; 2416 Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr = 2417 FileOutputBuffer::create(Config->OutputFile, FileSize, Flags); 2418 2419 if (!BufferOrErr) 2420 error("failed to open " + Config->OutputFile + ": " + 2421 llvm::toString(BufferOrErr.takeError())); 2422 else 2423 Buffer = std::move(*BufferOrErr); 2424 } 2425 2426 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2427 uint8_t *Buf = Buffer->getBufferStart(); 2428 for (OutputSection *Sec : OutputSections) 2429 if (Sec->Flags & SHF_ALLOC) 2430 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2431 } 2432 2433 static void fillTrap(uint8_t *I, uint8_t *End) { 2434 for (; I + 4 <= End; I += 4) 2435 memcpy(I, &Target->TrapInstr, 4); 2436 } 2437 2438 // Fill the last page of executable segments with trap instructions 2439 // instead of leaving them as zero. Even though it is not required by any 2440 // standard, it is in general a good thing to do for security reasons. 2441 // 2442 // We'll leave other pages in segments as-is because the rest will be 2443 // overwritten by output sections. 2444 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2445 if (Script->HasSectionsCommand) 2446 return; 2447 2448 // Fill the last page. 2449 uint8_t *Buf = Buffer->getBufferStart(); 2450 for (PhdrEntry *P : Phdrs) 2451 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2452 fillTrap(Buf + alignDown(P->p_offset + P->p_filesz, Target->PageSize), 2453 Buf + alignTo(P->p_offset + P->p_filesz, Target->PageSize)); 2454 2455 // Round up the file size of the last segment to the page boundary iff it is 2456 // an executable segment to ensure that other tools don't accidentally 2457 // trim the instruction padding (e.g. when stripping the file). 2458 PhdrEntry *Last = nullptr; 2459 for (PhdrEntry *P : Phdrs) 2460 if (P->p_type == PT_LOAD) 2461 Last = P; 2462 2463 if (Last && (Last->p_flags & PF_X)) 2464 Last->p_memsz = Last->p_filesz = alignTo(Last->p_filesz, Target->PageSize); 2465 } 2466 2467 // Write section contents to a mmap'ed file. 2468 template <class ELFT> void Writer<ELFT>::writeSections() { 2469 uint8_t *Buf = Buffer->getBufferStart(); 2470 2471 OutputSection *EhFrameHdr = nullptr; 2472 if (In.EhFrameHdr && !In.EhFrameHdr->empty()) 2473 EhFrameHdr = In.EhFrameHdr->getParent(); 2474 2475 // In -r or -emit-relocs mode, write the relocation sections first as in 2476 // ELf_Rel targets we might find out that we need to modify the relocated 2477 // section while doing it. 2478 for (OutputSection *Sec : OutputSections) 2479 if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) 2480 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2481 2482 for (OutputSection *Sec : OutputSections) 2483 if (Sec != EhFrameHdr && Sec->Type != SHT_REL && Sec->Type != SHT_RELA) 2484 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2485 2486 // The .eh_frame_hdr depends on .eh_frame section contents, therefore 2487 // it should be written after .eh_frame is written. 2488 if (EhFrameHdr) 2489 EhFrameHdr->writeTo<ELFT>(Buf + EhFrameHdr->Offset); 2490 } 2491 2492 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2493 if (!In.BuildId || !In.BuildId->getParent()) 2494 return; 2495 2496 // Compute a hash of all sections of the output file. 2497 uint8_t *Start = Buffer->getBufferStart(); 2498 uint8_t *End = Start + FileSize; 2499 In.BuildId->writeBuildId({Start, End}); 2500 } 2501 2502 template void elf::writeResult<ELF32LE>(); 2503 template void elf::writeResult<ELF32BE>(); 2504 template void elf::writeResult<ELF64LE>(); 2505 template void elf::writeResult<ELF64BE>(); 2506