xref: /llvm-project-15.0.7/lld/ELF/Writer.cpp (revision dcc8fc9e)
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "Writer.h"
11 #include "AArch64ErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "Filesystem.h"
15 #include "LinkerScript.h"
16 #include "MapFile.h"
17 #include "OutputSections.h"
18 #include "Relocations.h"
19 #include "SymbolTable.h"
20 #include "Symbols.h"
21 #include "SyntheticSections.h"
22 #include "Target.h"
23 #include "lld/Common/Memory.h"
24 #include "lld/Common/Strings.h"
25 #include "lld/Common/Threads.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include <climits>
29 
30 using namespace llvm;
31 using namespace llvm::ELF;
32 using namespace llvm::object;
33 using namespace llvm::support;
34 using namespace llvm::support::endian;
35 
36 using namespace lld;
37 using namespace lld::elf;
38 
39 namespace {
40 // The writer writes a SymbolTable result to a file.
41 template <class ELFT> class Writer {
42 public:
43   Writer() : Buffer(errorHandler().OutputBuffer) {}
44   typedef typename ELFT::Shdr Elf_Shdr;
45   typedef typename ELFT::Ehdr Elf_Ehdr;
46   typedef typename ELFT::Phdr Elf_Phdr;
47 
48   void run();
49 
50 private:
51   void copyLocalSymbols();
52   void addSectionSymbols();
53   void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> Fn);
54   void sortSections();
55   void resolveShfLinkOrder();
56   void maybeAddThunks();
57   void sortInputSections();
58   void finalizeSections();
59   void checkExecuteOnly();
60   void setReservedSymbolSections();
61 
62   std::vector<PhdrEntry *> createPhdrs();
63   void removeEmptyPTLoad();
64   void addPtArmExid(std::vector<PhdrEntry *> &Phdrs);
65   void assignFileOffsets();
66   void assignFileOffsetsBinary();
67   void setPhdrs();
68   void checkSections();
69   void fixSectionAlignments();
70   void openFile();
71   void writeTrapInstr();
72   void writeHeader();
73   void writeSections();
74   void writeSectionsBinary();
75   void writeBuildId();
76 
77   std::unique_ptr<FileOutputBuffer> &Buffer;
78 
79   void addRelIpltSymbols();
80   void addStartEndSymbols();
81   void addStartStopSymbols(OutputSection *Sec);
82 
83   std::vector<PhdrEntry *> Phdrs;
84 
85   uint64_t FileSize;
86   uint64_t SectionHeaderOff;
87 };
88 } // anonymous namespace
89 
90 static bool isSectionPrefix(StringRef Prefix, StringRef Name) {
91   return Name.startswith(Prefix) || Name == Prefix.drop_back();
92 }
93 
94 StringRef elf::getOutputSectionName(const InputSectionBase *S) {
95   if (Config->Relocatable)
96     return S->Name;
97 
98   // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
99   // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
100   // technically required, but not doing it is odd). This code guarantees that.
101   if (auto *IS = dyn_cast<InputSection>(S)) {
102     if (InputSectionBase *Rel = IS->getRelocatedSection()) {
103       OutputSection *Out = Rel->getOutputSection();
104       if (S->Type == SHT_RELA)
105         return Saver.save(".rela" + Out->Name);
106       return Saver.save(".rel" + Out->Name);
107     }
108   }
109 
110   // This check is for -z keep-text-section-prefix.  This option separates text
111   // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or
112   // ".text.exit".
113   // When enabled, this allows identifying the hot code region (.text.hot) in
114   // the final binary which can be selectively mapped to huge pages or mlocked,
115   // for instance.
116   if (Config->ZKeepTextSectionPrefix)
117     for (StringRef V :
118          {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."})
119       if (isSectionPrefix(V, S->Name))
120         return V.drop_back();
121 
122   for (StringRef V :
123        {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
124         ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
125         ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
126     if (isSectionPrefix(V, S->Name))
127       return V.drop_back();
128 
129   // CommonSection is identified as "COMMON" in linker scripts.
130   // By default, it should go to .bss section.
131   if (S->Name == "COMMON")
132     return ".bss";
133 
134   return S->Name;
135 }
136 
137 static bool needsInterpSection() {
138   return !SharedFiles.empty() && !Config->DynamicLinker.empty() &&
139          Script->needsInterpSection();
140 }
141 
142 template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); }
143 
144 template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() {
145   llvm::erase_if(Phdrs, [&](const PhdrEntry *P) {
146     if (P->p_type != PT_LOAD)
147       return false;
148     if (!P->FirstSec)
149       return true;
150     uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr;
151     return Size == 0;
152   });
153 }
154 
155 template <class ELFT> static void combineEhFrameSections() {
156   for (InputSectionBase *&S : InputSections) {
157     EhInputSection *ES = dyn_cast<EhInputSection>(S);
158     if (!ES || !ES->Live)
159       continue;
160 
161     In.EhFrame->addSection<ELFT>(ES);
162     S = nullptr;
163   }
164 
165   std::vector<InputSectionBase *> &V = InputSections;
166   V.erase(std::remove(V.begin(), V.end(), nullptr), V.end());
167 }
168 
169 static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec,
170                                    uint64_t Val, uint8_t StOther = STV_HIDDEN,
171                                    uint8_t Binding = STB_GLOBAL) {
172   Symbol *S = Symtab->find(Name);
173   if (!S || S->isDefined())
174     return nullptr;
175   return Symtab->addDefined(Name, StOther, STT_NOTYPE, Val,
176                             /*Size=*/0, Binding, Sec,
177                             /*File=*/nullptr);
178 }
179 
180 static Defined *addAbsolute(StringRef Name) {
181   return Symtab->addDefined(Name, STV_HIDDEN, STT_NOTYPE, 0, 0, STB_GLOBAL,
182                             nullptr, nullptr);
183 }
184 
185 // The linker is expected to define some symbols depending on
186 // the linking result. This function defines such symbols.
187 void elf::addReservedSymbols() {
188   if (Config->EMachine == EM_MIPS) {
189     // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
190     // so that it points to an absolute address which by default is relative
191     // to GOT. Default offset is 0x7ff0.
192     // See "Global Data Symbols" in Chapter 6 in the following document:
193     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
194     ElfSym::MipsGp = addAbsolute("_gp");
195 
196     // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
197     // start of function and 'gp' pointer into GOT.
198     if (Symtab->find("_gp_disp"))
199       ElfSym::MipsGpDisp = addAbsolute("_gp_disp");
200 
201     // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
202     // pointer. This symbol is used in the code generated by .cpload pseudo-op
203     // in case of using -mno-shared option.
204     // https://sourceware.org/ml/binutils/2004-12/msg00094.html
205     if (Symtab->find("__gnu_local_gp"))
206       ElfSym::MipsLocalGp = addAbsolute("__gnu_local_gp");
207   }
208 
209   // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
210   // combines the typical ELF GOT with the small data sections. It commonly
211   // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
212   // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
213   // represent the TOC base which is offset by 0x8000 bytes from the start of
214   // the .got section.
215   // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
216   // correctness of some relocations depends on its value.
217   StringRef GotTableSymName =
218       (Config->EMachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
219   if (Symbol *S = Symtab->find(GotTableSymName)) {
220     if (S->isDefined())
221       error(toString(S->File) + " cannot redefine linker defined symbol '" +
222             GotTableSymName + "'");
223     else
224       ElfSym::GlobalOffsetTable = Symtab->addDefined(
225           GotTableSymName, STV_HIDDEN, STT_NOTYPE, Target->GotBaseSymOff,
226           /*Size=*/0, STB_GLOBAL, Out::ElfHeader,
227           /*File=*/nullptr);
228   }
229 
230   // __ehdr_start is the location of ELF file headers. Note that we define
231   // this symbol unconditionally even when using a linker script, which
232   // differs from the behavior implemented by GNU linker which only define
233   // this symbol if ELF headers are in the memory mapped segment.
234   addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN);
235 
236   // __executable_start is not documented, but the expectation of at
237   // least the Android libc is that it points to the ELF header.
238   addOptionalRegular("__executable_start", Out::ElfHeader, 0, STV_HIDDEN);
239 
240   // __dso_handle symbol is passed to cxa_finalize as a marker to identify
241   // each DSO. The address of the symbol doesn't matter as long as they are
242   // different in different DSOs, so we chose the start address of the DSO.
243   addOptionalRegular("__dso_handle", Out::ElfHeader, 0, STV_HIDDEN);
244 
245   // If linker script do layout we do not need to create any standart symbols.
246   if (Script->HasSectionsCommand)
247     return;
248 
249   auto Add = [](StringRef S, int64_t Pos) {
250     return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT);
251   };
252 
253   ElfSym::Bss = Add("__bss_start", 0);
254   ElfSym::End1 = Add("end", -1);
255   ElfSym::End2 = Add("_end", -1);
256   ElfSym::Etext1 = Add("etext", -1);
257   ElfSym::Etext2 = Add("_etext", -1);
258   ElfSym::Edata1 = Add("edata", -1);
259   ElfSym::Edata2 = Add("_edata", -1);
260 }
261 
262 static OutputSection *findSection(StringRef Name) {
263   for (BaseCommand *Base : Script->SectionCommands)
264     if (auto *Sec = dyn_cast<OutputSection>(Base))
265       if (Sec->Name == Name)
266         return Sec;
267   return nullptr;
268 }
269 
270 // Initialize Out members.
271 template <class ELFT> static void createSyntheticSections() {
272   // Initialize all pointers with NULL. This is needed because
273   // you can call lld::elf::main more than once as a library.
274   memset(&Out::First, 0, sizeof(Out));
275 
276   auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); };
277 
278   In.DynStrTab = make<StringTableSection>(".dynstr", true);
279   In.Dynamic = make<DynamicSection<ELFT>>();
280   if (Config->AndroidPackDynRelocs) {
281     In.RelaDyn = make<AndroidPackedRelocationSection<ELFT>>(
282         Config->IsRela ? ".rela.dyn" : ".rel.dyn");
283   } else {
284     In.RelaDyn = make<RelocationSection<ELFT>>(
285         Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc);
286   }
287   In.ShStrTab = make<StringTableSection>(".shstrtab", false);
288 
289   Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC);
290   Out::ProgramHeaders->Alignment = Config->Wordsize;
291 
292   if (needsInterpSection()) {
293     In.Interp = createInterpSection();
294     Add(In.Interp);
295   }
296 
297   if (Config->Strip != StripPolicy::All) {
298     In.StrTab = make<StringTableSection>(".strtab", false);
299     In.SymTab = make<SymbolTableSection<ELFT>>(*In.StrTab);
300     In.SymTabShndx = make<SymtabShndxSection>();
301   }
302 
303   if (Config->BuildId != BuildIdKind::None) {
304     In.BuildId = make<BuildIdSection>();
305     Add(In.BuildId);
306   }
307 
308   In.Bss = make<BssSection>(".bss", 0, 1);
309   Add(In.Bss);
310 
311   // If there is a SECTIONS command and a .data.rel.ro section name use name
312   // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
313   // This makes sure our relro is contiguous.
314   bool HasDataRelRo = Script->HasSectionsCommand && findSection(".data.rel.ro");
315   In.BssRelRo =
316       make<BssSection>(HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
317   Add(In.BssRelRo);
318 
319   // Add MIPS-specific sections.
320   if (Config->EMachine == EM_MIPS) {
321     if (!Config->Shared && Config->HasDynSymTab) {
322       In.MipsRldMap = make<MipsRldMapSection>();
323       Add(In.MipsRldMap);
324     }
325     if (auto *Sec = MipsAbiFlagsSection<ELFT>::create())
326       Add(Sec);
327     if (auto *Sec = MipsOptionsSection<ELFT>::create())
328       Add(Sec);
329     if (auto *Sec = MipsReginfoSection<ELFT>::create())
330       Add(Sec);
331   }
332 
333   if (Config->HasDynSymTab) {
334     In.DynSymTab = make<SymbolTableSection<ELFT>>(*In.DynStrTab);
335     Add(In.DynSymTab);
336 
337     InX<ELFT>::VerSym = make<VersionTableSection<ELFT>>();
338     Add(InX<ELFT>::VerSym);
339 
340     if (!Config->VersionDefinitions.empty()) {
341       In.VerDef = make<VersionDefinitionSection>();
342       Add(In.VerDef);
343     }
344 
345     InX<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>();
346     Add(InX<ELFT>::VerNeed);
347 
348     if (Config->GnuHash) {
349       In.GnuHashTab = make<GnuHashTableSection>();
350       Add(In.GnuHashTab);
351     }
352 
353     if (Config->SysvHash) {
354       In.HashTab = make<HashTableSection>();
355       Add(In.HashTab);
356     }
357 
358     Add(In.Dynamic);
359     Add(In.DynStrTab);
360     Add(In.RelaDyn);
361   }
362 
363   if (Config->RelrPackDynRelocs) {
364     In.RelrDyn = make<RelrSection<ELFT>>();
365     Add(In.RelrDyn);
366   }
367 
368   // Add .got. MIPS' .got is so different from the other archs,
369   // it has its own class.
370   if (Config->EMachine == EM_MIPS) {
371     In.MipsGot = make<MipsGotSection>();
372     Add(In.MipsGot);
373   } else {
374     In.Got = make<GotSection>();
375     Add(In.Got);
376   }
377 
378   if (Config->EMachine == EM_PPC64) {
379     In.PPC64LongBranchTarget = make<PPC64LongBranchTargetSection>();
380     Add(In.PPC64LongBranchTarget);
381   }
382 
383   In.GotPlt = make<GotPltSection>();
384   Add(In.GotPlt);
385   In.IgotPlt = make<IgotPltSection>();
386   Add(In.IgotPlt);
387 
388   if (Config->GdbIndex) {
389     In.GdbIndex = GdbIndexSection::create<ELFT>();
390     Add(In.GdbIndex);
391   }
392 
393   // We always need to add rel[a].plt to output if it has entries.
394   // Even for static linking it can contain R_[*]_IRELATIVE relocations.
395   In.RelaPlt = make<RelocationSection<ELFT>>(
396       Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/);
397   Add(In.RelaPlt);
398 
399   // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure
400   // that the IRelative relocations are processed last by the dynamic loader.
401   // We cannot place the iplt section in .rel.dyn when Android relocation
402   // packing is enabled because that would cause a section type mismatch.
403   // However, because the Android dynamic loader reads .rel.plt after .rel.dyn,
404   // we can get the desired behaviour by placing the iplt section in .rel.plt.
405   In.RelaIplt = make<RelocationSection<ELFT>>(
406       (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs)
407           ? ".rel.dyn"
408           : In.RelaPlt->Name,
409       false /*Sort*/);
410   Add(In.RelaIplt);
411 
412   In.Plt = make<PltSection>(false);
413   Add(In.Plt);
414   In.Iplt = make<PltSection>(true);
415   Add(In.Iplt);
416 
417   // .note.GNU-stack is always added when we are creating a re-linkable
418   // object file. Other linkers are using the presence of this marker
419   // section to control the executable-ness of the stack area, but that
420   // is irrelevant these days. Stack area should always be non-executable
421   // by default. So we emit this section unconditionally.
422   if (Config->Relocatable)
423     Add(make<GnuStackSection>());
424 
425   if (!Config->Relocatable) {
426     if (Config->EhFrameHdr) {
427       In.EhFrameHdr = make<EhFrameHeader>();
428       Add(In.EhFrameHdr);
429     }
430     In.EhFrame = make<EhFrameSection>();
431     Add(In.EhFrame);
432   }
433 
434   if (In.SymTab)
435     Add(In.SymTab);
436   if (In.SymTabShndx)
437     Add(In.SymTabShndx);
438   Add(In.ShStrTab);
439   if (In.StrTab)
440     Add(In.StrTab);
441 
442   if (Config->EMachine == EM_ARM && !Config->Relocatable)
443     // Add a sentinel to terminate .ARM.exidx. It helps an unwinder
444     // to find the exact address range of the last entry.
445     Add(make<ARMExidxSentinelSection>());
446 }
447 
448 // The main function of the writer.
449 template <class ELFT> void Writer<ELFT>::run() {
450   // Create linker-synthesized sections such as .got or .plt.
451   // Such sections are of type input section.
452   createSyntheticSections<ELFT>();
453 
454   if (!Config->Relocatable)
455     combineEhFrameSections<ELFT>();
456 
457   // We want to process linker script commands. When SECTIONS command
458   // is given we let it create sections.
459   Script->processSectionCommands();
460 
461   // Linker scripts controls how input sections are assigned to output sections.
462   // Input sections that were not handled by scripts are called "orphans", and
463   // they are assigned to output sections by the default rule. Process that.
464   Script->addOrphanSections();
465 
466   if (Config->Discard != DiscardPolicy::All)
467     copyLocalSymbols();
468 
469   if (Config->CopyRelocs)
470     addSectionSymbols();
471 
472   // Now that we have a complete set of output sections. This function
473   // completes section contents. For example, we need to add strings
474   // to the string table, and add entries to .got and .plt.
475   // finalizeSections does that.
476   finalizeSections();
477   checkExecuteOnly();
478   if (errorCount())
479     return;
480 
481   Script->assignAddresses();
482 
483   // If -compressed-debug-sections is specified, we need to compress
484   // .debug_* sections. Do it right now because it changes the size of
485   // output sections.
486   for (OutputSection *Sec : OutputSections)
487     Sec->maybeCompress<ELFT>();
488 
489   Script->allocateHeaders(Phdrs);
490 
491   // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
492   // 0 sized region. This has to be done late since only after assignAddresses
493   // we know the size of the sections.
494   removeEmptyPTLoad();
495 
496   if (!Config->OFormatBinary)
497     assignFileOffsets();
498   else
499     assignFileOffsetsBinary();
500 
501   setPhdrs();
502 
503   if (Config->Relocatable)
504     for (OutputSection *Sec : OutputSections)
505       Sec->Addr = 0;
506 
507   if (Config->CheckSections)
508     checkSections();
509 
510   // It does not make sense try to open the file if we have error already.
511   if (errorCount())
512     return;
513   // Write the result down to a file.
514   openFile();
515   if (errorCount())
516     return;
517 
518   if (!Config->OFormatBinary) {
519     writeTrapInstr();
520     writeHeader();
521     writeSections();
522   } else {
523     writeSectionsBinary();
524   }
525 
526   // Backfill .note.gnu.build-id section content. This is done at last
527   // because the content is usually a hash value of the entire output file.
528   writeBuildId();
529   if (errorCount())
530     return;
531 
532   // Handle -Map and -cref options.
533   writeMapFile();
534   writeCrossReferenceTable();
535   if (errorCount())
536     return;
537 
538   if (auto E = Buffer->commit())
539     error("failed to write to the output file: " + toString(std::move(E)));
540 }
541 
542 static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName,
543                                const Symbol &B) {
544   if (B.isSection())
545     return false;
546 
547   if (Config->Discard == DiscardPolicy::None)
548     return true;
549 
550   // In ELF assembly .L symbols are normally discarded by the assembler.
551   // If the assembler fails to do so, the linker discards them if
552   // * --discard-locals is used.
553   // * The symbol is in a SHF_MERGE section, which is normally the reason for
554   //   the assembler keeping the .L symbol.
555   if (!SymName.startswith(".L") && !SymName.empty())
556     return true;
557 
558   if (Config->Discard == DiscardPolicy::Locals)
559     return false;
560 
561   return !Sec || !(Sec->Flags & SHF_MERGE);
562 }
563 
564 static bool includeInSymtab(const Symbol &B) {
565   if (!B.isLocal() && !B.IsUsedInRegularObj)
566     return false;
567 
568   if (auto *D = dyn_cast<Defined>(&B)) {
569     // Always include absolute symbols.
570     SectionBase *Sec = D->Section;
571     if (!Sec)
572       return true;
573     Sec = Sec->Repl;
574 
575     // Exclude symbols pointing to garbage-collected sections.
576     if (isa<InputSectionBase>(Sec) && !Sec->Live)
577       return false;
578 
579     if (auto *S = dyn_cast<MergeInputSection>(Sec))
580       if (!S->getSectionPiece(D->Value)->Live)
581         return false;
582     return true;
583   }
584   return B.Used;
585 }
586 
587 // Local symbols are not in the linker's symbol table. This function scans
588 // each object file's symbol table to copy local symbols to the output.
589 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
590   if (!In.SymTab)
591     return;
592   for (InputFile *File : ObjectFiles) {
593     ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File);
594     for (Symbol *B : F->getLocalSymbols()) {
595       if (!B->isLocal())
596         fatal(toString(F) +
597               ": broken object: getLocalSymbols returns a non-local symbol");
598       auto *DR = dyn_cast<Defined>(B);
599 
600       // No reason to keep local undefined symbol in symtab.
601       if (!DR)
602         continue;
603       if (!includeInSymtab(*B))
604         continue;
605 
606       SectionBase *Sec = DR->Section;
607       if (!shouldKeepInSymtab(Sec, B->getName(), *B))
608         continue;
609       In.SymTab->addSymbol(B);
610     }
611   }
612 }
613 
614 // Create a section symbol for each output section so that we can represent
615 // relocations that point to the section. If we know that no relocation is
616 // referring to a section (that happens if the section is a synthetic one), we
617 // don't create a section symbol for that section.
618 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
619   for (BaseCommand *Base : Script->SectionCommands) {
620     auto *Sec = dyn_cast<OutputSection>(Base);
621     if (!Sec)
622       continue;
623     auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) {
624       if (auto *ISD = dyn_cast<InputSectionDescription>(Base))
625         return !ISD->Sections.empty();
626       return false;
627     });
628     if (I == Sec->SectionCommands.end())
629       continue;
630     InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0];
631 
632     // Relocations are not using REL[A] section symbols.
633     if (IS->Type == SHT_REL || IS->Type == SHT_RELA)
634       continue;
635 
636     // Unlike other synthetic sections, mergeable output sections contain data
637     // copied from input sections, and there may be a relocation pointing to its
638     // contents if -r or -emit-reloc are given.
639     if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE))
640       continue;
641 
642     auto *Sym =
643         make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION,
644                       /*Value=*/0, /*Size=*/0, IS);
645     In.SymTab->addSymbol(Sym);
646   }
647 }
648 
649 // Today's loaders have a feature to make segments read-only after
650 // processing dynamic relocations to enhance security. PT_GNU_RELRO
651 // is defined for that.
652 //
653 // This function returns true if a section needs to be put into a
654 // PT_GNU_RELRO segment.
655 static bool isRelroSection(const OutputSection *Sec) {
656   if (!Config->ZRelro)
657     return false;
658 
659   uint64_t Flags = Sec->Flags;
660 
661   // Non-allocatable or non-writable sections don't need RELRO because
662   // they are not writable or not even mapped to memory in the first place.
663   // RELRO is for sections that are essentially read-only but need to
664   // be writable only at process startup to allow dynamic linker to
665   // apply relocations.
666   if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE))
667     return false;
668 
669   // Once initialized, TLS data segments are used as data templates
670   // for a thread-local storage. For each new thread, runtime
671   // allocates memory for a TLS and copy templates there. No thread
672   // are supposed to use templates directly. Thus, it can be in RELRO.
673   if (Flags & SHF_TLS)
674     return true;
675 
676   // .init_array, .preinit_array and .fini_array contain pointers to
677   // functions that are executed on process startup or exit. These
678   // pointers are set by the static linker, and they are not expected
679   // to change at runtime. But if you are an attacker, you could do
680   // interesting things by manipulating pointers in .fini_array, for
681   // example. So they are put into RELRO.
682   uint32_t Type = Sec->Type;
683   if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY ||
684       Type == SHT_PREINIT_ARRAY)
685     return true;
686 
687   // .got contains pointers to external symbols. They are resolved by
688   // the dynamic linker when a module is loaded into memory, and after
689   // that they are not expected to change. So, it can be in RELRO.
690   if (In.Got && Sec == In.Got->getParent())
691     return true;
692 
693   // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
694   // through r2 register, which is reserved for that purpose. Since r2 is used
695   // for accessing .got as well, .got and .toc need to be close enough in the
696   // virtual address space. Usually, .toc comes just after .got. Since we place
697   // .got into RELRO, .toc needs to be placed into RELRO too.
698   if (Sec->Name.equals(".toc"))
699     return true;
700 
701   // .got.plt contains pointers to external function symbols. They are
702   // by default resolved lazily, so we usually cannot put it into RELRO.
703   // However, if "-z now" is given, the lazy symbol resolution is
704   // disabled, which enables us to put it into RELRO.
705   if (Sec == In.GotPlt->getParent())
706     return Config->ZNow;
707 
708   // .dynamic section contains data for the dynamic linker, and
709   // there's no need to write to it at runtime, so it's better to put
710   // it into RELRO.
711   if (Sec == In.Dynamic->getParent())
712     return true;
713 
714   // Sections with some special names are put into RELRO. This is a
715   // bit unfortunate because section names shouldn't be significant in
716   // ELF in spirit. But in reality many linker features depend on
717   // magic section names.
718   StringRef S = Sec->Name;
719   return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" ||
720          S == ".dtors" || S == ".jcr" || S == ".eh_frame" ||
721          S == ".openbsd.randomdata";
722 }
723 
724 // We compute a rank for each section. The rank indicates where the
725 // section should be placed in the file.  Instead of using simple
726 // numbers (0,1,2...), we use a series of flags. One for each decision
727 // point when placing the section.
728 // Using flags has two key properties:
729 // * It is easy to check if a give branch was taken.
730 // * It is easy two see how similar two ranks are (see getRankProximity).
731 enum RankFlags {
732   RF_NOT_ADDR_SET = 1 << 18,
733   RF_NOT_ALLOC = 1 << 17,
734   RF_NOT_INTERP = 1 << 16,
735   RF_NOT_NOTE = 1 << 15,
736   RF_WRITE = 1 << 14,
737   RF_EXEC_WRITE = 1 << 13,
738   RF_EXEC = 1 << 12,
739   RF_RODATA = 1 << 11,
740   RF_NON_TLS_BSS = 1 << 10,
741   RF_NON_TLS_BSS_RO = 1 << 9,
742   RF_NOT_TLS = 1 << 8,
743   RF_BSS = 1 << 7,
744   RF_PPC_NOT_TOCBSS = 1 << 6,
745   RF_PPC_TOCL = 1 << 5,
746   RF_PPC_TOC = 1 << 4,
747   RF_PPC_GOT = 1 << 3,
748   RF_PPC_BRANCH_LT = 1 << 2,
749   RF_MIPS_GPREL = 1 << 1,
750   RF_MIPS_NOT_GOT = 1 << 0
751 };
752 
753 static unsigned getSectionRank(const OutputSection *Sec) {
754   unsigned Rank = 0;
755 
756   // We want to put section specified by -T option first, so we
757   // can start assigning VA starting from them later.
758   if (Config->SectionStartMap.count(Sec->Name))
759     return Rank;
760   Rank |= RF_NOT_ADDR_SET;
761 
762   // Allocatable sections go first to reduce the total PT_LOAD size and
763   // so debug info doesn't change addresses in actual code.
764   if (!(Sec->Flags & SHF_ALLOC))
765     return Rank | RF_NOT_ALLOC;
766 
767   // Put .interp first because some loaders want to see that section
768   // on the first page of the executable file when loaded into memory.
769   if (Sec->Name == ".interp")
770     return Rank;
771   Rank |= RF_NOT_INTERP;
772 
773   // Put .note sections (which make up one PT_NOTE) at the beginning so that
774   // they are likely to be included in a core file even if core file size is
775   // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
776   // included in a core to match core files with executables.
777   if (Sec->Type == SHT_NOTE)
778     return Rank;
779   Rank |= RF_NOT_NOTE;
780 
781   // Sort sections based on their access permission in the following
782   // order: R, RX, RWX, RW.  This order is based on the following
783   // considerations:
784   // * Read-only sections come first such that they go in the
785   //   PT_LOAD covering the program headers at the start of the file.
786   // * Read-only, executable sections come next.
787   // * Writable, executable sections follow such that .plt on
788   //   architectures where it needs to be writable will be placed
789   //   between .text and .data.
790   // * Writable sections come last, such that .bss lands at the very
791   //   end of the last PT_LOAD.
792   bool IsExec = Sec->Flags & SHF_EXECINSTR;
793   bool IsWrite = Sec->Flags & SHF_WRITE;
794 
795   if (IsExec) {
796     if (IsWrite)
797       Rank |= RF_EXEC_WRITE;
798     else
799       Rank |= RF_EXEC;
800   } else if (IsWrite) {
801     Rank |= RF_WRITE;
802   } else if (Sec->Type == SHT_PROGBITS) {
803     // Make non-executable and non-writable PROGBITS sections (e.g .rodata
804     // .eh_frame) closer to .text. They likely contain PC or GOT relative
805     // relocations and there could be relocation overflow if other huge sections
806     // (.dynstr .dynsym) were placed in between.
807     Rank |= RF_RODATA;
808   }
809 
810   // If we got here we know that both A and B are in the same PT_LOAD.
811 
812   bool IsTls = Sec->Flags & SHF_TLS;
813   bool IsNoBits = Sec->Type == SHT_NOBITS;
814 
815   // The first requirement we have is to put (non-TLS) nobits sections last. The
816   // reason is that the only thing the dynamic linker will see about them is a
817   // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the
818   // PT_LOAD, so that has to correspond to the nobits sections.
819   bool IsNonTlsNoBits = IsNoBits && !IsTls;
820   if (IsNonTlsNoBits)
821     Rank |= RF_NON_TLS_BSS;
822 
823   // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo
824   // sections after r/w ones, so that the RelRo sections are contiguous.
825   bool IsRelRo = isRelroSection(Sec);
826   if (IsNonTlsNoBits && !IsRelRo)
827     Rank |= RF_NON_TLS_BSS_RO;
828   if (!IsNonTlsNoBits && IsRelRo)
829     Rank |= RF_NON_TLS_BSS_RO;
830 
831   // The TLS initialization block needs to be a single contiguous block in a R/W
832   // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
833   // sections. The TLS NOBITS sections are placed here as they don't take up
834   // virtual address space in the PT_LOAD.
835   if (!IsTls)
836     Rank |= RF_NOT_TLS;
837 
838   // Within the TLS initialization block, the non-nobits sections need to appear
839   // first.
840   if (IsNoBits)
841     Rank |= RF_BSS;
842 
843   // Some architectures have additional ordering restrictions for sections
844   // within the same PT_LOAD.
845   if (Config->EMachine == EM_PPC64) {
846     // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
847     // that we would like to make sure appear is a specific order to maximize
848     // their coverage by a single signed 16-bit offset from the TOC base
849     // pointer. Conversely, the special .tocbss section should be first among
850     // all SHT_NOBITS sections. This will put it next to the loaded special
851     // PPC64 sections (and, thus, within reach of the TOC base pointer).
852     StringRef Name = Sec->Name;
853     if (Name != ".tocbss")
854       Rank |= RF_PPC_NOT_TOCBSS;
855 
856     if (Name == ".toc1")
857       Rank |= RF_PPC_TOCL;
858 
859     if (Name == ".toc")
860       Rank |= RF_PPC_TOC;
861 
862     if (Name == ".got")
863       Rank |= RF_PPC_GOT;
864 
865     if (Name == ".branch_lt")
866       Rank |= RF_PPC_BRANCH_LT;
867   }
868 
869   if (Config->EMachine == EM_MIPS) {
870     // All sections with SHF_MIPS_GPREL flag should be grouped together
871     // because data in these sections is addressable with a gp relative address.
872     if (Sec->Flags & SHF_MIPS_GPREL)
873       Rank |= RF_MIPS_GPREL;
874 
875     if (Sec->Name != ".got")
876       Rank |= RF_MIPS_NOT_GOT;
877   }
878 
879   return Rank;
880 }
881 
882 static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) {
883   const OutputSection *A = cast<OutputSection>(ACmd);
884   const OutputSection *B = cast<OutputSection>(BCmd);
885 
886   if (A->SortRank != B->SortRank)
887     return A->SortRank < B->SortRank;
888 
889   if (!(A->SortRank & RF_NOT_ADDR_SET))
890     return Config->SectionStartMap.lookup(A->Name) <
891            Config->SectionStartMap.lookup(B->Name);
892   return false;
893 }
894 
895 void PhdrEntry::add(OutputSection *Sec) {
896   LastSec = Sec;
897   if (!FirstSec)
898     FirstSec = Sec;
899   p_align = std::max(p_align, Sec->Alignment);
900   if (p_type == PT_LOAD)
901     Sec->PtLoad = this;
902 }
903 
904 // The beginning and the ending of .rel[a].plt section are marked
905 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
906 // executable. The runtime needs these symbols in order to resolve
907 // all IRELATIVE relocs on startup. For dynamic executables, we don't
908 // need these symbols, since IRELATIVE relocs are resolved through GOT
909 // and PLT. For details, see http://www.airs.com/blog/archives/403.
910 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
911   if (Config->Relocatable || needsInterpSection())
912     return;
913   StringRef S = Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start";
914   addOptionalRegular(S, In.RelaIplt, 0, STV_HIDDEN, STB_WEAK);
915 
916   S = Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end";
917   ElfSym::RelaIpltEnd =
918       addOptionalRegular(S, In.RelaIplt, 0, STV_HIDDEN, STB_WEAK);
919 }
920 
921 template <class ELFT>
922 void Writer<ELFT>::forEachRelSec(
923     llvm::function_ref<void(InputSectionBase &)> Fn) {
924   // Scan all relocations. Each relocation goes through a series
925   // of tests to determine if it needs special treatment, such as
926   // creating GOT, PLT, copy relocations, etc.
927   // Note that relocations for non-alloc sections are directly
928   // processed by InputSection::relocateNonAlloc.
929   for (InputSectionBase *IS : InputSections)
930     if (IS->Live && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC))
931       Fn(*IS);
932   for (EhInputSection *ES : In.EhFrame->Sections)
933     Fn(*ES);
934 }
935 
936 // This function generates assignments for predefined symbols (e.g. _end or
937 // _etext) and inserts them into the commands sequence to be processed at the
938 // appropriate time. This ensures that the value is going to be correct by the
939 // time any references to these symbols are processed and is equivalent to
940 // defining these symbols explicitly in the linker script.
941 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
942   if (ElfSym::GlobalOffsetTable) {
943     // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
944     // to the start of the .got or .got.plt section.
945     InputSection *GotSection = In.GotPlt;
946     if (!Target->GotBaseSymInGotPlt)
947       GotSection = In.MipsGot ? cast<InputSection>(In.MipsGot)
948                               : cast<InputSection>(In.Got);
949     ElfSym::GlobalOffsetTable->Section = GotSection;
950   }
951 
952   if (ElfSym::RelaIpltEnd)
953     ElfSym::RelaIpltEnd->Value = In.RelaIplt->getSize();
954 
955   PhdrEntry *Last = nullptr;
956   PhdrEntry *LastRO = nullptr;
957 
958   for (PhdrEntry *P : Phdrs) {
959     if (P->p_type != PT_LOAD)
960       continue;
961     Last = P;
962     if (!(P->p_flags & PF_W))
963       LastRO = P;
964   }
965 
966   if (LastRO) {
967     // _etext is the first location after the last read-only loadable segment.
968     if (ElfSym::Etext1)
969       ElfSym::Etext1->Section = LastRO->LastSec;
970     if (ElfSym::Etext2)
971       ElfSym::Etext2->Section = LastRO->LastSec;
972   }
973 
974   if (Last) {
975     // _edata points to the end of the last mapped initialized section.
976     OutputSection *Edata = nullptr;
977     for (OutputSection *OS : OutputSections) {
978       if (OS->Type != SHT_NOBITS)
979         Edata = OS;
980       if (OS == Last->LastSec)
981         break;
982     }
983 
984     if (ElfSym::Edata1)
985       ElfSym::Edata1->Section = Edata;
986     if (ElfSym::Edata2)
987       ElfSym::Edata2->Section = Edata;
988 
989     // _end is the first location after the uninitialized data region.
990     if (ElfSym::End1)
991       ElfSym::End1->Section = Last->LastSec;
992     if (ElfSym::End2)
993       ElfSym::End2->Section = Last->LastSec;
994   }
995 
996   if (ElfSym::Bss)
997     ElfSym::Bss->Section = findSection(".bss");
998 
999   // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1000   // be equal to the _gp symbol's value.
1001   if (ElfSym::MipsGp) {
1002     // Find GP-relative section with the lowest address
1003     // and use this address to calculate default _gp value.
1004     for (OutputSection *OS : OutputSections) {
1005       if (OS->Flags & SHF_MIPS_GPREL) {
1006         ElfSym::MipsGp->Section = OS;
1007         ElfSym::MipsGp->Value = 0x7ff0;
1008         break;
1009       }
1010     }
1011   }
1012 }
1013 
1014 // We want to find how similar two ranks are.
1015 // The more branches in getSectionRank that match, the more similar they are.
1016 // Since each branch corresponds to a bit flag, we can just use
1017 // countLeadingZeros.
1018 static int getRankProximityAux(OutputSection *A, OutputSection *B) {
1019   return countLeadingZeros(A->SortRank ^ B->SortRank);
1020 }
1021 
1022 static int getRankProximity(OutputSection *A, BaseCommand *B) {
1023   if (auto *Sec = dyn_cast<OutputSection>(B))
1024     return getRankProximityAux(A, Sec);
1025   return -1;
1026 }
1027 
1028 // When placing orphan sections, we want to place them after symbol assignments
1029 // so that an orphan after
1030 //   begin_foo = .;
1031 //   foo : { *(foo) }
1032 //   end_foo = .;
1033 // doesn't break the intended meaning of the begin/end symbols.
1034 // We don't want to go over sections since findOrphanPos is the
1035 // one in charge of deciding the order of the sections.
1036 // We don't want to go over changes to '.', since doing so in
1037 //  rx_sec : { *(rx_sec) }
1038 //  . = ALIGN(0x1000);
1039 //  /* The RW PT_LOAD starts here*/
1040 //  rw_sec : { *(rw_sec) }
1041 // would mean that the RW PT_LOAD would become unaligned.
1042 static bool shouldSkip(BaseCommand *Cmd) {
1043   if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd))
1044     return Assign->Name != ".";
1045   return false;
1046 }
1047 
1048 // We want to place orphan sections so that they share as much
1049 // characteristics with their neighbors as possible. For example, if
1050 // both are rw, or both are tls.
1051 template <typename ELFT>
1052 static std::vector<BaseCommand *>::iterator
1053 findOrphanPos(std::vector<BaseCommand *>::iterator B,
1054               std::vector<BaseCommand *>::iterator E) {
1055   OutputSection *Sec = cast<OutputSection>(*E);
1056 
1057   // Find the first element that has as close a rank as possible.
1058   auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) {
1059     return getRankProximity(Sec, A) < getRankProximity(Sec, B);
1060   });
1061   if (I == E)
1062     return E;
1063 
1064   // Consider all existing sections with the same proximity.
1065   int Proximity = getRankProximity(Sec, *I);
1066   for (; I != E; ++I) {
1067     auto *CurSec = dyn_cast<OutputSection>(*I);
1068     if (!CurSec)
1069       continue;
1070     if (getRankProximity(Sec, CurSec) != Proximity ||
1071         Sec->SortRank < CurSec->SortRank)
1072       break;
1073   }
1074 
1075   auto IsOutputSec = [](BaseCommand *Cmd) { return isa<OutputSection>(Cmd); };
1076   auto J = std::find_if(llvm::make_reverse_iterator(I),
1077                         llvm::make_reverse_iterator(B), IsOutputSec);
1078   I = J.base();
1079 
1080   // As a special case, if the orphan section is the last section, put
1081   // it at the very end, past any other commands.
1082   // This matches bfd's behavior and is convenient when the linker script fully
1083   // specifies the start of the file, but doesn't care about the end (the non
1084   // alloc sections for example).
1085   auto NextSec = std::find_if(I, E, IsOutputSec);
1086   if (NextSec == E)
1087     return E;
1088 
1089   while (I != E && shouldSkip(*I))
1090     ++I;
1091   return I;
1092 }
1093 
1094 // Builds section order for handling --symbol-ordering-file.
1095 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1096   DenseMap<const InputSectionBase *, int> SectionOrder;
1097   // Use the rarely used option -call-graph-ordering-file to sort sections.
1098   if (!Config->CallGraphProfile.empty())
1099     return computeCallGraphProfileOrder();
1100 
1101   if (Config->SymbolOrderingFile.empty())
1102     return SectionOrder;
1103 
1104   struct SymbolOrderEntry {
1105     int Priority;
1106     bool Present;
1107   };
1108 
1109   // Build a map from symbols to their priorities. Symbols that didn't
1110   // appear in the symbol ordering file have the lowest priority 0.
1111   // All explicitly mentioned symbols have negative (higher) priorities.
1112   DenseMap<StringRef, SymbolOrderEntry> SymbolOrder;
1113   int Priority = -Config->SymbolOrderingFile.size();
1114   for (StringRef S : Config->SymbolOrderingFile)
1115     SymbolOrder.insert({S, {Priority++, false}});
1116 
1117   // Build a map from sections to their priorities.
1118   auto AddSym = [&](Symbol &Sym) {
1119     auto It = SymbolOrder.find(Sym.getName());
1120     if (It == SymbolOrder.end())
1121       return;
1122     SymbolOrderEntry &Ent = It->second;
1123     Ent.Present = true;
1124 
1125     maybeWarnUnorderableSymbol(&Sym);
1126 
1127     if (auto *D = dyn_cast<Defined>(&Sym)) {
1128       if (auto *Sec = dyn_cast_or_null<InputSectionBase>(D->Section)) {
1129         int &Priority = SectionOrder[cast<InputSectionBase>(Sec->Repl)];
1130         Priority = std::min(Priority, Ent.Priority);
1131       }
1132     }
1133   };
1134 
1135   // We want both global and local symbols. We get the global ones from the
1136   // symbol table and iterate the object files for the local ones.
1137   for (Symbol *Sym : Symtab->getSymbols())
1138     if (!Sym->isLazy())
1139       AddSym(*Sym);
1140   for (InputFile *File : ObjectFiles)
1141     for (Symbol *Sym : File->getSymbols())
1142       if (Sym->isLocal())
1143         AddSym(*Sym);
1144 
1145   if (Config->WarnSymbolOrdering)
1146     for (auto OrderEntry : SymbolOrder)
1147       if (!OrderEntry.second.Present)
1148         warn("symbol ordering file: no such symbol: " + OrderEntry.first);
1149 
1150   return SectionOrder;
1151 }
1152 
1153 // Sorts the sections in ISD according to the provided section order.
1154 static void
1155 sortISDBySectionOrder(InputSectionDescription *ISD,
1156                       const DenseMap<const InputSectionBase *, int> &Order) {
1157   std::vector<InputSection *> UnorderedSections;
1158   std::vector<std::pair<InputSection *, int>> OrderedSections;
1159   uint64_t UnorderedSize = 0;
1160 
1161   for (InputSection *IS : ISD->Sections) {
1162     auto I = Order.find(IS);
1163     if (I == Order.end()) {
1164       UnorderedSections.push_back(IS);
1165       UnorderedSize += IS->getSize();
1166       continue;
1167     }
1168     OrderedSections.push_back({IS, I->second});
1169   }
1170   llvm::sort(OrderedSections, [&](std::pair<InputSection *, int> A,
1171                                   std::pair<InputSection *, int> B) {
1172     return A.second < B.second;
1173   });
1174 
1175   // Find an insertion point for the ordered section list in the unordered
1176   // section list. On targets with limited-range branches, this is the mid-point
1177   // of the unordered section list. This decreases the likelihood that a range
1178   // extension thunk will be needed to enter or exit the ordered region. If the
1179   // ordered section list is a list of hot functions, we can generally expect
1180   // the ordered functions to be called more often than the unordered functions,
1181   // making it more likely that any particular call will be within range, and
1182   // therefore reducing the number of thunks required.
1183   //
1184   // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1185   // If the layout is:
1186   //
1187   // 8MB hot
1188   // 32MB cold
1189   //
1190   // only the first 8-16MB of the cold code (depending on which hot function it
1191   // is actually calling) can call the hot code without a range extension thunk.
1192   // However, if we use this layout:
1193   //
1194   // 16MB cold
1195   // 8MB hot
1196   // 16MB cold
1197   //
1198   // both the last 8-16MB of the first block of cold code and the first 8-16MB
1199   // of the second block of cold code can call the hot code without a thunk. So
1200   // we effectively double the amount of code that could potentially call into
1201   // the hot code without a thunk.
1202   size_t InsPt = 0;
1203   if (Target->getThunkSectionSpacing() && !OrderedSections.empty()) {
1204     uint64_t UnorderedPos = 0;
1205     for (; InsPt != UnorderedSections.size(); ++InsPt) {
1206       UnorderedPos += UnorderedSections[InsPt]->getSize();
1207       if (UnorderedPos > UnorderedSize / 2)
1208         break;
1209     }
1210   }
1211 
1212   ISD->Sections.clear();
1213   for (InputSection *IS : makeArrayRef(UnorderedSections).slice(0, InsPt))
1214     ISD->Sections.push_back(IS);
1215   for (std::pair<InputSection *, int> P : OrderedSections)
1216     ISD->Sections.push_back(P.first);
1217   for (InputSection *IS : makeArrayRef(UnorderedSections).slice(InsPt))
1218     ISD->Sections.push_back(IS);
1219 }
1220 
1221 static void sortSection(OutputSection *Sec,
1222                         const DenseMap<const InputSectionBase *, int> &Order) {
1223   StringRef Name = Sec->Name;
1224 
1225   // Sort input sections by section name suffixes for
1226   // __attribute__((init_priority(N))).
1227   if (Name == ".init_array" || Name == ".fini_array") {
1228     if (!Script->HasSectionsCommand)
1229       Sec->sortInitFini();
1230     return;
1231   }
1232 
1233   // Sort input sections by the special rule for .ctors and .dtors.
1234   if (Name == ".ctors" || Name == ".dtors") {
1235     if (!Script->HasSectionsCommand)
1236       Sec->sortCtorsDtors();
1237     return;
1238   }
1239 
1240   // Never sort these.
1241   if (Name == ".init" || Name == ".fini")
1242     return;
1243 
1244   // Sort input sections by priority using the list provided
1245   // by --symbol-ordering-file.
1246   if (!Order.empty())
1247     for (BaseCommand *B : Sec->SectionCommands)
1248       if (auto *ISD = dyn_cast<InputSectionDescription>(B))
1249         sortISDBySectionOrder(ISD, Order);
1250 }
1251 
1252 // If no layout was provided by linker script, we want to apply default
1253 // sorting for special input sections. This also handles --symbol-ordering-file.
1254 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1255   // Build the order once since it is expensive.
1256   DenseMap<const InputSectionBase *, int> Order = buildSectionOrder();
1257   for (BaseCommand *Base : Script->SectionCommands)
1258     if (auto *Sec = dyn_cast<OutputSection>(Base))
1259       sortSection(Sec, Order);
1260 }
1261 
1262 template <class ELFT> void Writer<ELFT>::sortSections() {
1263   Script->adjustSectionsBeforeSorting();
1264 
1265   // Don't sort if using -r. It is not necessary and we want to preserve the
1266   // relative order for SHF_LINK_ORDER sections.
1267   if (Config->Relocatable)
1268     return;
1269 
1270   sortInputSections();
1271 
1272   for (BaseCommand *Base : Script->SectionCommands) {
1273     auto *OS = dyn_cast<OutputSection>(Base);
1274     if (!OS)
1275       continue;
1276     OS->SortRank = getSectionRank(OS);
1277 
1278     // We want to assign rude approximation values to OutSecOff fields
1279     // to know the relative order of the input sections. We use it for
1280     // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
1281     uint64_t I = 0;
1282     for (InputSection *Sec : getInputSections(OS))
1283       Sec->OutSecOff = I++;
1284   }
1285 
1286   if (!Script->HasSectionsCommand) {
1287     // We know that all the OutputSections are contiguous in this case.
1288     auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); };
1289     std::stable_sort(
1290         llvm::find_if(Script->SectionCommands, IsSection),
1291         llvm::find_if(llvm::reverse(Script->SectionCommands), IsSection).base(),
1292         compareSections);
1293     return;
1294   }
1295 
1296   // Orphan sections are sections present in the input files which are
1297   // not explicitly placed into the output file by the linker script.
1298   //
1299   // The sections in the linker script are already in the correct
1300   // order. We have to figuere out where to insert the orphan
1301   // sections.
1302   //
1303   // The order of the sections in the script is arbitrary and may not agree with
1304   // compareSections. This means that we cannot easily define a strict weak
1305   // ordering. To see why, consider a comparison of a section in the script and
1306   // one not in the script. We have a two simple options:
1307   // * Make them equivalent (a is not less than b, and b is not less than a).
1308   //   The problem is then that equivalence has to be transitive and we can
1309   //   have sections a, b and c with only b in a script and a less than c
1310   //   which breaks this property.
1311   // * Use compareSectionsNonScript. Given that the script order doesn't have
1312   //   to match, we can end up with sections a, b, c, d where b and c are in the
1313   //   script and c is compareSectionsNonScript less than b. In which case d
1314   //   can be equivalent to c, a to b and d < a. As a concrete example:
1315   //   .a (rx) # not in script
1316   //   .b (rx) # in script
1317   //   .c (ro) # in script
1318   //   .d (ro) # not in script
1319   //
1320   // The way we define an order then is:
1321   // *  Sort only the orphan sections. They are in the end right now.
1322   // *  Move each orphan section to its preferred position. We try
1323   //    to put each section in the last position where it can share
1324   //    a PT_LOAD.
1325   //
1326   // There is some ambiguity as to where exactly a new entry should be
1327   // inserted, because Commands contains not only output section
1328   // commands but also other types of commands such as symbol assignment
1329   // expressions. There's no correct answer here due to the lack of the
1330   // formal specification of the linker script. We use heuristics to
1331   // determine whether a new output command should be added before or
1332   // after another commands. For the details, look at shouldSkip
1333   // function.
1334 
1335   auto I = Script->SectionCommands.begin();
1336   auto E = Script->SectionCommands.end();
1337   auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) {
1338     if (auto *Sec = dyn_cast<OutputSection>(Base))
1339       return Sec->SectionIndex == UINT32_MAX;
1340     return false;
1341   });
1342 
1343   // Sort the orphan sections.
1344   std::stable_sort(NonScriptI, E, compareSections);
1345 
1346   // As a horrible special case, skip the first . assignment if it is before any
1347   // section. We do this because it is common to set a load address by starting
1348   // the script with ". = 0xabcd" and the expectation is that every section is
1349   // after that.
1350   auto FirstSectionOrDotAssignment =
1351       std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); });
1352   if (FirstSectionOrDotAssignment != E &&
1353       isa<SymbolAssignment>(**FirstSectionOrDotAssignment))
1354     ++FirstSectionOrDotAssignment;
1355   I = FirstSectionOrDotAssignment;
1356 
1357   while (NonScriptI != E) {
1358     auto Pos = findOrphanPos<ELFT>(I, NonScriptI);
1359     OutputSection *Orphan = cast<OutputSection>(*NonScriptI);
1360 
1361     // As an optimization, find all sections with the same sort rank
1362     // and insert them with one rotate.
1363     unsigned Rank = Orphan->SortRank;
1364     auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) {
1365       return cast<OutputSection>(Cmd)->SortRank != Rank;
1366     });
1367     std::rotate(Pos, NonScriptI, End);
1368     NonScriptI = End;
1369   }
1370 
1371   Script->adjustSectionsAfterSorting();
1372 }
1373 
1374 static bool compareByFilePosition(InputSection *A, InputSection *B) {
1375   // Synthetic, i. e. a sentinel section, should go last.
1376   if (A->kind() == InputSectionBase::Synthetic ||
1377       B->kind() == InputSectionBase::Synthetic)
1378     return A->kind() != InputSectionBase::Synthetic;
1379 
1380   InputSection *LA = A->getLinkOrderDep();
1381   InputSection *LB = B->getLinkOrderDep();
1382   OutputSection *AOut = LA->getParent();
1383   OutputSection *BOut = LB->getParent();
1384 
1385   if (AOut != BOut)
1386     return AOut->SectionIndex < BOut->SectionIndex;
1387   return LA->OutSecOff < LB->OutSecOff;
1388 }
1389 
1390 // This function is used by the --merge-exidx-entries to detect duplicate
1391 // .ARM.exidx sections. It is Arm only.
1392 //
1393 // The .ARM.exidx section is of the form:
1394 // | PREL31 offset to function | Unwind instructions for function |
1395 // where the unwind instructions are either a small number of unwind
1396 // instructions inlined into the table entry, the special CANT_UNWIND value of
1397 // 0x1 or a PREL31 offset into a .ARM.extab Section that contains unwind
1398 // instructions.
1399 //
1400 // We return true if all the unwind instructions in the .ARM.exidx entries of
1401 // Cur can be merged into the last entry of Prev.
1402 static bool isDuplicateArmExidxSec(InputSection *Prev, InputSection *Cur) {
1403 
1404   // References to .ARM.Extab Sections have bit 31 clear and are not the
1405   // special EXIDX_CANTUNWIND bit-pattern.
1406   auto IsExtabRef = [](uint32_t Unwind) {
1407     return (Unwind & 0x80000000) == 0 && Unwind != 0x1;
1408   };
1409 
1410   struct ExidxEntry {
1411     ulittle32_t Fn;
1412     ulittle32_t Unwind;
1413   };
1414 
1415   // Get the last table Entry from the previous .ARM.exidx section.
1416   const ExidxEntry &PrevEntry = Prev->getDataAs<ExidxEntry>().back();
1417   if (IsExtabRef(PrevEntry.Unwind))
1418     return false;
1419 
1420   // We consider the unwind instructions of an .ARM.exidx table entry
1421   // a duplicate if the previous unwind instructions if:
1422   // - Both are the special EXIDX_CANTUNWIND.
1423   // - Both are the same inline unwind instructions.
1424   // We do not attempt to follow and check links into .ARM.extab tables as
1425   // consecutive identical entries are rare and the effort to check that they
1426   // are identical is high.
1427 
1428   for (const ExidxEntry Entry : Cur->getDataAs<ExidxEntry>())
1429     if (IsExtabRef(Entry.Unwind) || Entry.Unwind != PrevEntry.Unwind)
1430       return false;
1431 
1432   // All table entries in this .ARM.exidx Section can be merged into the
1433   // previous Section.
1434   return true;
1435 }
1436 
1437 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1438   for (OutputSection *Sec : OutputSections) {
1439     if (!(Sec->Flags & SHF_LINK_ORDER))
1440       continue;
1441 
1442     // Link order may be distributed across several InputSectionDescriptions
1443     // but sort must consider them all at once.
1444     std::vector<InputSection **> ScriptSections;
1445     std::vector<InputSection *> Sections;
1446     for (BaseCommand *Base : Sec->SectionCommands) {
1447       if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) {
1448         for (InputSection *&IS : ISD->Sections) {
1449           ScriptSections.push_back(&IS);
1450           Sections.push_back(IS);
1451         }
1452       }
1453     }
1454     std::stable_sort(Sections.begin(), Sections.end(), compareByFilePosition);
1455 
1456     if (!Config->Relocatable && Config->EMachine == EM_ARM &&
1457         Sec->Type == SHT_ARM_EXIDX) {
1458 
1459       if (auto *Sentinel = dyn_cast<ARMExidxSentinelSection>(Sections.back())) {
1460         assert(Sections.size() >= 2 &&
1461                "We should create a sentinel section only if there are "
1462                "alive regular exidx sections.");
1463 
1464         // The last executable section is required to fill the sentinel.
1465         // Remember it here so that we don't have to find it again.
1466         Sentinel->Highest = Sections[Sections.size() - 2]->getLinkOrderDep();
1467       }
1468 
1469       // The EHABI for the Arm Architecture permits consecutive identical
1470       // table entries to be merged. We use a simple implementation that
1471       // removes a .ARM.exidx Input Section if it can be merged into the
1472       // previous one. This does not require any rewriting of InputSection
1473       // contents but misses opportunities for fine grained deduplication
1474       // where only a subset of the InputSection contents can be merged.
1475       if (Config->MergeArmExidx) {
1476         size_t Prev = 0;
1477         // The last one is a sentinel entry which should not be removed.
1478         for (size_t I = 1; I < Sections.size() - 1; ++I) {
1479           if (isDuplicateArmExidxSec(Sections[Prev], Sections[I]))
1480             Sections[I] = nullptr;
1481           else
1482             Prev = I;
1483         }
1484       }
1485     }
1486 
1487     for (int I = 0, N = Sections.size(); I < N; ++I)
1488       *ScriptSections[I] = Sections[I];
1489 
1490     // Remove the Sections we marked as duplicate earlier.
1491     for (BaseCommand *Base : Sec->SectionCommands)
1492       if (auto *ISD = dyn_cast<InputSectionDescription>(Base))
1493         llvm::erase_if(ISD->Sections, [](InputSection *IS) { return !IS; });
1494   }
1495 }
1496 
1497 // For most RISC ISAs, we need to generate content that depends on the address
1498 // of InputSections. For example some architectures such as AArch64 use small
1499 // displacements for jump instructions that is the linker's responsibility for
1500 // creating range extension thunks for. As the generation of the content may
1501 // also alter InputSection addresses we must converge to a fixed point.
1502 template <class ELFT> void Writer<ELFT>::maybeAddThunks() {
1503   if (!Target->NeedsThunks && !Config->AndroidPackDynRelocs &&
1504       !Config->RelrPackDynRelocs)
1505     return;
1506 
1507   ThunkCreator TC;
1508   AArch64Err843419Patcher A64P;
1509 
1510   for (;;) {
1511     bool Changed = false;
1512 
1513     Script->assignAddresses();
1514 
1515     if (Target->NeedsThunks)
1516       Changed |= TC.createThunks(OutputSections);
1517 
1518     if (Config->FixCortexA53Errata843419) {
1519       if (Changed)
1520         Script->assignAddresses();
1521       Changed |= A64P.createFixes();
1522     }
1523 
1524     if (In.MipsGot)
1525       In.MipsGot->updateAllocSize();
1526 
1527     Changed |= In.RelaDyn->updateAllocSize();
1528 
1529     if (In.RelrDyn)
1530       Changed |= In.RelrDyn->updateAllocSize();
1531 
1532     if (!Changed)
1533       return;
1534   }
1535 }
1536 
1537 static void finalizeSynthetic(SyntheticSection *Sec) {
1538   if (Sec && !Sec->empty() && Sec->getParent())
1539     Sec->finalizeContents();
1540 }
1541 
1542 // In order to allow users to manipulate linker-synthesized sections,
1543 // we had to add synthetic sections to the input section list early,
1544 // even before we make decisions whether they are needed. This allows
1545 // users to write scripts like this: ".mygot : { .got }".
1546 //
1547 // Doing it has an unintended side effects. If it turns out that we
1548 // don't need a .got (for example) at all because there's no
1549 // relocation that needs a .got, we don't want to emit .got.
1550 //
1551 // To deal with the above problem, this function is called after
1552 // scanRelocations is called to remove synthetic sections that turn
1553 // out to be empty.
1554 static void removeUnusedSyntheticSections() {
1555   // All input synthetic sections that can be empty are placed after
1556   // all regular ones. We iterate over them all and exit at first
1557   // non-synthetic.
1558   for (InputSectionBase *S : llvm::reverse(InputSections)) {
1559     SyntheticSection *SS = dyn_cast<SyntheticSection>(S);
1560     if (!SS)
1561       return;
1562     OutputSection *OS = SS->getParent();
1563     if (!OS || !SS->empty())
1564       continue;
1565 
1566     // If we reach here, then SS is an unused synthetic section and we want to
1567     // remove it from corresponding input section description of output section.
1568     for (BaseCommand *B : OS->SectionCommands)
1569       if (auto *ISD = dyn_cast<InputSectionDescription>(B))
1570         llvm::erase_if(ISD->Sections,
1571                        [=](InputSection *IS) { return IS == SS; });
1572   }
1573 }
1574 
1575 // Returns true if a symbol can be replaced at load-time by a symbol
1576 // with the same name defined in other ELF executable or DSO.
1577 static bool computeIsPreemptible(const Symbol &B) {
1578   assert(!B.isLocal());
1579 
1580   // Only symbols that appear in dynsym can be preempted.
1581   if (!B.includeInDynsym())
1582     return false;
1583 
1584   // Only default visibility symbols can be preempted.
1585   if (B.Visibility != STV_DEFAULT)
1586     return false;
1587 
1588   // At this point copy relocations have not been created yet, so any
1589   // symbol that is not defined locally is preemptible.
1590   if (!B.isDefined())
1591     return true;
1592 
1593   // If we have a dynamic list it specifies which local symbols are preemptible.
1594   if (Config->HasDynamicList)
1595     return false;
1596 
1597   if (!Config->Shared)
1598     return false;
1599 
1600   // -Bsymbolic means that definitions are not preempted.
1601   if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc()))
1602     return false;
1603   return true;
1604 }
1605 
1606 // Create output section objects and add them to OutputSections.
1607 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1608   Out::PreinitArray = findSection(".preinit_array");
1609   Out::InitArray = findSection(".init_array");
1610   Out::FiniArray = findSection(".fini_array");
1611 
1612   // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1613   // symbols for sections, so that the runtime can get the start and end
1614   // addresses of each section by section name. Add such symbols.
1615   if (!Config->Relocatable) {
1616     addStartEndSymbols();
1617     for (BaseCommand *Base : Script->SectionCommands)
1618       if (auto *Sec = dyn_cast<OutputSection>(Base))
1619         addStartStopSymbols(Sec);
1620   }
1621 
1622   // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1623   // It should be okay as no one seems to care about the type.
1624   // Even the author of gold doesn't remember why gold behaves that way.
1625   // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1626   if (In.Dynamic->Parent)
1627     Symtab->addDefined("_DYNAMIC", STV_HIDDEN, STT_NOTYPE, 0 /*Value*/,
1628                        /*Size=*/0, STB_WEAK, In.Dynamic,
1629                        /*File=*/nullptr);
1630 
1631   // Define __rel[a]_iplt_{start,end} symbols if needed.
1632   addRelIpltSymbols();
1633 
1634   // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800 if not defined.
1635   if (Config->EMachine == EM_RISCV)
1636     if (!dyn_cast_or_null<Defined>(Symtab->find("__global_pointer$")))
1637       addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800);
1638 
1639   // This responsible for splitting up .eh_frame section into
1640   // pieces. The relocation scan uses those pieces, so this has to be
1641   // earlier.
1642   finalizeSynthetic(In.EhFrame);
1643 
1644   for (Symbol *S : Symtab->getSymbols())
1645     if (!S->IsPreemptible)
1646       S->IsPreemptible = computeIsPreemptible(*S);
1647 
1648   // Scan relocations. This must be done after every symbol is declared so that
1649   // we can correctly decide if a dynamic relocation is needed.
1650   if (!Config->Relocatable)
1651     forEachRelSec(scanRelocations<ELFT>);
1652 
1653   if (In.Plt && !In.Plt->empty())
1654     In.Plt->addSymbols();
1655   if (In.Iplt && !In.Iplt->empty())
1656     In.Iplt->addSymbols();
1657 
1658   // Now that we have defined all possible global symbols including linker-
1659   // synthesized ones. Visit all symbols to give the finishing touches.
1660   for (Symbol *Sym : Symtab->getSymbols()) {
1661     if (!includeInSymtab(*Sym))
1662       continue;
1663     if (In.SymTab)
1664       In.SymTab->addSymbol(Sym);
1665 
1666     if (Sym->includeInDynsym()) {
1667       In.DynSymTab->addSymbol(Sym);
1668       if (auto *File = dyn_cast_or_null<SharedFile<ELFT>>(Sym->File))
1669         if (File->IsNeeded && !Sym->isUndefined())
1670           InX<ELFT>::VerNeed->addSymbol(Sym);
1671     }
1672   }
1673 
1674   // Do not proceed if there was an undefined symbol.
1675   if (errorCount())
1676     return;
1677 
1678   if (In.MipsGot)
1679     In.MipsGot->build<ELFT>();
1680 
1681   removeUnusedSyntheticSections();
1682 
1683   sortSections();
1684 
1685   // Now that we have the final list, create a list of all the
1686   // OutputSections for convenience.
1687   for (BaseCommand *Base : Script->SectionCommands)
1688     if (auto *Sec = dyn_cast<OutputSection>(Base))
1689       OutputSections.push_back(Sec);
1690 
1691   // Prefer command line supplied address over other constraints.
1692   for (OutputSection *Sec : OutputSections) {
1693     auto I = Config->SectionStartMap.find(Sec->Name);
1694     if (I != Config->SectionStartMap.end())
1695       Sec->AddrExpr = [=] { return I->second; };
1696   }
1697 
1698   // This is a bit of a hack. A value of 0 means undef, so we set it
1699   // to 1 to make __ehdr_start defined. The section number is not
1700   // particularly relevant.
1701   Out::ElfHeader->SectionIndex = 1;
1702 
1703   for (size_t I = 0, E = OutputSections.size(); I != E; ++I) {
1704     OutputSection *Sec = OutputSections[I];
1705     Sec->SectionIndex = I + 1;
1706     Sec->ShName = In.ShStrTab->addString(Sec->Name);
1707   }
1708 
1709   // Binary and relocatable output does not have PHDRS.
1710   // The headers have to be created before finalize as that can influence the
1711   // image base and the dynamic section on mips includes the image base.
1712   if (!Config->Relocatable && !Config->OFormatBinary) {
1713     Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs();
1714     addPtArmExid(Phdrs);
1715     Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size();
1716 
1717     // Find the TLS segment. This happens before the section layout loop so that
1718     // Android relocation packing can look up TLS symbol addresses.
1719     for (PhdrEntry *P : Phdrs)
1720       if (P->p_type == PT_TLS)
1721         Out::TlsPhdr = P;
1722   }
1723 
1724   // Some symbols are defined in term of program headers. Now that we
1725   // have the headers, we can find out which sections they point to.
1726   setReservedSymbolSections();
1727 
1728   // Dynamic section must be the last one in this list and dynamic
1729   // symbol table section (DynSymTab) must be the first one.
1730   finalizeSynthetic(In.DynSymTab);
1731   finalizeSynthetic(In.Bss);
1732   finalizeSynthetic(In.BssRelRo);
1733   finalizeSynthetic(In.GnuHashTab);
1734   finalizeSynthetic(In.HashTab);
1735   finalizeSynthetic(In.SymTabShndx);
1736   finalizeSynthetic(In.ShStrTab);
1737   finalizeSynthetic(In.StrTab);
1738   finalizeSynthetic(In.VerDef);
1739   finalizeSynthetic(In.DynStrTab);
1740   finalizeSynthetic(In.Got);
1741   finalizeSynthetic(In.MipsGot);
1742   finalizeSynthetic(In.IgotPlt);
1743   finalizeSynthetic(In.GotPlt);
1744   finalizeSynthetic(In.RelaDyn);
1745   finalizeSynthetic(In.RelrDyn);
1746   finalizeSynthetic(In.RelaIplt);
1747   finalizeSynthetic(In.RelaPlt);
1748   finalizeSynthetic(In.Plt);
1749   finalizeSynthetic(In.Iplt);
1750   finalizeSynthetic(In.EhFrameHdr);
1751   finalizeSynthetic(InX<ELFT>::VerSym);
1752   finalizeSynthetic(InX<ELFT>::VerNeed);
1753   finalizeSynthetic(In.Dynamic);
1754 
1755   if (!Script->HasSectionsCommand && !Config->Relocatable)
1756     fixSectionAlignments();
1757 
1758   // After link order processing .ARM.exidx sections can be deduplicated, which
1759   // needs to be resolved before any other address dependent operation.
1760   resolveShfLinkOrder();
1761 
1762   // Jump instructions in many ISAs have small displacements, and therefore they
1763   // cannot jump to arbitrary addresses in memory. For example, RISC-V JAL
1764   // instruction can target only +-1 MiB from PC. It is a linker's
1765   // responsibility to create and insert small pieces of code between sections
1766   // to extend the ranges if jump targets are out of range. Such code pieces are
1767   // called "thunks".
1768   //
1769   // We add thunks at this stage. We couldn't do this before this point because
1770   // this is the earliest point where we know sizes of sections and their
1771   // layouts (that are needed to determine if jump targets are in range).
1772   maybeAddThunks();
1773 
1774   // maybeAddThunks may have added local symbols to the static symbol table.
1775   finalizeSynthetic(In.SymTab);
1776   finalizeSynthetic(In.PPC64LongBranchTarget);
1777 
1778   // Fill other section headers. The dynamic table is finalized
1779   // at the end because some tags like RELSZ depend on result
1780   // of finalizing other sections.
1781   for (OutputSection *Sec : OutputSections)
1782     Sec->finalize<ELFT>();
1783 }
1784 
1785 // Ensure data sections are not mixed with executable sections when
1786 // -execute-only is used. -execute-only is a feature to make pages executable
1787 // but not readable, and the feature is currently supported only on AArch64.
1788 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
1789   if (!Config->ExecuteOnly)
1790     return;
1791 
1792   for (OutputSection *OS : OutputSections)
1793     if (OS->Flags & SHF_EXECINSTR)
1794       for (InputSection *IS : getInputSections(OS))
1795         if (!(IS->Flags & SHF_EXECINSTR))
1796           error("cannot place " + toString(IS) + " into " + toString(OS->Name) +
1797                 ": -execute-only does not support intermingling data and code");
1798 }
1799 
1800 // The linker is expected to define SECNAME_start and SECNAME_end
1801 // symbols for a few sections. This function defines them.
1802 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
1803   // If a section does not exist, there's ambiguity as to how we
1804   // define _start and _end symbols for an init/fini section. Since
1805   // the loader assume that the symbols are always defined, we need to
1806   // always define them. But what value? The loader iterates over all
1807   // pointers between _start and _end to run global ctors/dtors, so if
1808   // the section is empty, their symbol values don't actually matter
1809   // as long as _start and _end point to the same location.
1810   //
1811   // That said, we don't want to set the symbols to 0 (which is
1812   // probably the simplest value) because that could cause some
1813   // program to fail to link due to relocation overflow, if their
1814   // program text is above 2 GiB. We use the address of the .text
1815   // section instead to prevent that failure.
1816   //
1817   // In a rare sitaution, .text section may not exist. If that's the
1818   // case, use the image base address as a last resort.
1819   OutputSection *Default = findSection(".text");
1820   if (!Default)
1821     Default = Out::ElfHeader;
1822 
1823   auto Define = [=](StringRef Start, StringRef End, OutputSection *OS) {
1824     if (OS) {
1825       addOptionalRegular(Start, OS, 0);
1826       addOptionalRegular(End, OS, -1);
1827     } else {
1828       addOptionalRegular(Start, Default, 0);
1829       addOptionalRegular(End, Default, 0);
1830     }
1831   };
1832 
1833   Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray);
1834   Define("__init_array_start", "__init_array_end", Out::InitArray);
1835   Define("__fini_array_start", "__fini_array_end", Out::FiniArray);
1836 
1837   if (OutputSection *Sec = findSection(".ARM.exidx"))
1838     Define("__exidx_start", "__exidx_end", Sec);
1839 }
1840 
1841 // If a section name is valid as a C identifier (which is rare because of
1842 // the leading '.'), linkers are expected to define __start_<secname> and
1843 // __stop_<secname> symbols. They are at beginning and end of the section,
1844 // respectively. This is not requested by the ELF standard, but GNU ld and
1845 // gold provide the feature, and used by many programs.
1846 template <class ELFT>
1847 void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) {
1848   StringRef S = Sec->Name;
1849   if (!isValidCIdentifier(S))
1850     return;
1851   addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_PROTECTED);
1852   addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_PROTECTED);
1853 }
1854 
1855 static bool needsPtLoad(OutputSection *Sec) {
1856   if (!(Sec->Flags & SHF_ALLOC) || Sec->Noload)
1857     return false;
1858 
1859   // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
1860   // responsible for allocating space for them, not the PT_LOAD that
1861   // contains the TLS initialization image.
1862   if ((Sec->Flags & SHF_TLS) && Sec->Type == SHT_NOBITS)
1863     return false;
1864   return true;
1865 }
1866 
1867 // Linker scripts are responsible for aligning addresses. Unfortunately, most
1868 // linker scripts are designed for creating two PT_LOADs only, one RX and one
1869 // RW. This means that there is no alignment in the RO to RX transition and we
1870 // cannot create a PT_LOAD there.
1871 static uint64_t computeFlags(uint64_t Flags) {
1872   if (Config->Omagic)
1873     return PF_R | PF_W | PF_X;
1874   if (Config->ExecuteOnly && (Flags & PF_X))
1875     return Flags & ~PF_R;
1876   if (Config->SingleRoRx && !(Flags & PF_W))
1877     return Flags | PF_X;
1878   return Flags;
1879 }
1880 
1881 // Decide which program headers to create and which sections to include in each
1882 // one.
1883 template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() {
1884   std::vector<PhdrEntry *> Ret;
1885   auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * {
1886     Ret.push_back(make<PhdrEntry>(Type, Flags));
1887     return Ret.back();
1888   };
1889 
1890   // The first phdr entry is PT_PHDR which describes the program header itself.
1891   AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders);
1892 
1893   // PT_INTERP must be the second entry if exists.
1894   if (OutputSection *Cmd = findSection(".interp"))
1895     AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd);
1896 
1897   // Add the first PT_LOAD segment for regular output sections.
1898   uint64_t Flags = computeFlags(PF_R);
1899   PhdrEntry *Load = AddHdr(PT_LOAD, Flags);
1900 
1901   // Add the headers. We will remove them if they don't fit.
1902   Load->add(Out::ElfHeader);
1903   Load->add(Out::ProgramHeaders);
1904 
1905   for (OutputSection *Sec : OutputSections) {
1906     if (!(Sec->Flags & SHF_ALLOC))
1907       break;
1908     if (!needsPtLoad(Sec))
1909       continue;
1910 
1911     // Segments are contiguous memory regions that has the same attributes
1912     // (e.g. executable or writable). There is one phdr for each segment.
1913     // Therefore, we need to create a new phdr when the next section has
1914     // different flags or is loaded at a discontiguous address or memory
1915     // region using AT or AT> linker script command, respectively. At the same
1916     // time, we don't want to create a separate load segment for the headers,
1917     // even if the first output section has an AT or AT> attribute.
1918     uint64_t NewFlags = computeFlags(Sec->getPhdrFlags());
1919     if (((Sec->LMAExpr ||
1920           (Sec->LMARegion && (Sec->LMARegion != Load->FirstSec->LMARegion))) &&
1921          Load->LastSec != Out::ProgramHeaders) ||
1922         Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags) {
1923 
1924       Load = AddHdr(PT_LOAD, NewFlags);
1925       Flags = NewFlags;
1926     }
1927 
1928     Load->add(Sec);
1929   }
1930 
1931   // Add a TLS segment if any.
1932   PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
1933   for (OutputSection *Sec : OutputSections)
1934     if (Sec->Flags & SHF_TLS)
1935       TlsHdr->add(Sec);
1936   if (TlsHdr->FirstSec)
1937     Ret.push_back(TlsHdr);
1938 
1939   // Add an entry for .dynamic.
1940   if (OutputSection *Sec = In.Dynamic->getParent())
1941     AddHdr(PT_DYNAMIC, Sec->getPhdrFlags())->add(Sec);
1942 
1943   // PT_GNU_RELRO includes all sections that should be marked as
1944   // read-only by dynamic linker after proccessing relocations.
1945   // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
1946   // an error message if more than one PT_GNU_RELRO PHDR is required.
1947   PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
1948   bool InRelroPhdr = false;
1949   bool IsRelroFinished = false;
1950   for (OutputSection *Sec : OutputSections) {
1951     if (!needsPtLoad(Sec))
1952       continue;
1953     if (isRelroSection(Sec)) {
1954       InRelroPhdr = true;
1955       if (!IsRelroFinished)
1956         RelRo->add(Sec);
1957       else
1958         error("section: " + Sec->Name + " is not contiguous with other relro" +
1959               " sections");
1960     } else if (InRelroPhdr) {
1961       InRelroPhdr = false;
1962       IsRelroFinished = true;
1963     }
1964   }
1965   if (RelRo->FirstSec)
1966     Ret.push_back(RelRo);
1967 
1968   // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
1969   if (!In.EhFrame->empty() && In.EhFrameHdr && In.EhFrame->getParent() &&
1970       In.EhFrameHdr->getParent())
1971     AddHdr(PT_GNU_EH_FRAME, In.EhFrameHdr->getParent()->getPhdrFlags())
1972         ->add(In.EhFrameHdr->getParent());
1973 
1974   // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
1975   // the dynamic linker fill the segment with random data.
1976   if (OutputSection *Cmd = findSection(".openbsd.randomdata"))
1977     AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd);
1978 
1979   // PT_GNU_STACK is a special section to tell the loader to make the
1980   // pages for the stack non-executable. If you really want an executable
1981   // stack, you can pass -z execstack, but that's not recommended for
1982   // security reasons.
1983   unsigned Perm = PF_R | PF_W;
1984   if (Config->ZExecstack)
1985     Perm |= PF_X;
1986   AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize;
1987 
1988   // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
1989   // is expected to perform W^X violations, such as calling mprotect(2) or
1990   // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
1991   // OpenBSD.
1992   if (Config->ZWxneeded)
1993     AddHdr(PT_OPENBSD_WXNEEDED, PF_X);
1994 
1995   // Create one PT_NOTE per a group of contiguous .note sections.
1996   PhdrEntry *Note = nullptr;
1997   for (OutputSection *Sec : OutputSections) {
1998     if (Sec->Type == SHT_NOTE && (Sec->Flags & SHF_ALLOC)) {
1999       if (!Note || Sec->LMAExpr)
2000         Note = AddHdr(PT_NOTE, PF_R);
2001       Note->add(Sec);
2002     } else {
2003       Note = nullptr;
2004     }
2005   }
2006   return Ret;
2007 }
2008 
2009 template <class ELFT>
2010 void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry *> &Phdrs) {
2011   if (Config->EMachine != EM_ARM)
2012     return;
2013   auto I = llvm::find_if(OutputSections, [](OutputSection *Cmd) {
2014     return Cmd->Type == SHT_ARM_EXIDX;
2015   });
2016   if (I == OutputSections.end())
2017     return;
2018 
2019   // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2020   PhdrEntry *ARMExidx = make<PhdrEntry>(PT_ARM_EXIDX, PF_R);
2021   ARMExidx->add(*I);
2022   Phdrs.push_back(ARMExidx);
2023 }
2024 
2025 // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the
2026 // first section after PT_GNU_RELRO have to be page aligned so that the dynamic
2027 // linker can set the permissions.
2028 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2029   auto PageAlign = [](OutputSection *Cmd) {
2030     if (Cmd && !Cmd->AddrExpr)
2031       Cmd->AddrExpr = [=] {
2032         return alignTo(Script->getDot(), Config->MaxPageSize);
2033       };
2034   };
2035 
2036   for (const PhdrEntry *P : Phdrs)
2037     if (P->p_type == PT_LOAD && P->FirstSec)
2038       PageAlign(P->FirstSec);
2039 
2040   for (const PhdrEntry *P : Phdrs) {
2041     if (P->p_type != PT_GNU_RELRO)
2042       continue;
2043 
2044     if (P->FirstSec)
2045       PageAlign(P->FirstSec);
2046 
2047     // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we
2048     // have to align it to a page.
2049     auto End = OutputSections.end();
2050     auto I = std::find(OutputSections.begin(), End, P->LastSec);
2051     if (I == End || (I + 1) == End)
2052       continue;
2053 
2054     OutputSection *Cmd = (*(I + 1));
2055     if (needsPtLoad(Cmd))
2056       PageAlign(Cmd);
2057   }
2058 }
2059 
2060 // Compute an in-file position for a given section. The file offset must be the
2061 // same with its virtual address modulo the page size, so that the loader can
2062 // load executables without any address adjustment.
2063 static uint64_t computeFileOffset(OutputSection *OS, uint64_t Off) {
2064   // File offsets are not significant for .bss sections. By convention, we keep
2065   // section offsets monotonically increasing rather than setting to zero.
2066   if (OS->Type == SHT_NOBITS)
2067     return Off;
2068 
2069   // If the section is not in a PT_LOAD, we just have to align it.
2070   if (!OS->PtLoad)
2071     return alignTo(Off, OS->Alignment);
2072 
2073   // The first section in a PT_LOAD has to have congruent offset and address
2074   // module the page size.
2075   OutputSection *First = OS->PtLoad->FirstSec;
2076   if (OS == First) {
2077     uint64_t Alignment = std::max<uint64_t>(OS->Alignment, Config->MaxPageSize);
2078     return alignTo(Off, Alignment, OS->Addr);
2079   }
2080 
2081   // If two sections share the same PT_LOAD the file offset is calculated
2082   // using this formula: Off2 = Off1 + (VA2 - VA1).
2083   return First->Offset + OS->Addr - First->Addr;
2084 }
2085 
2086 // Set an in-file position to a given section and returns the end position of
2087 // the section.
2088 static uint64_t setFileOffset(OutputSection *OS, uint64_t Off) {
2089   Off = computeFileOffset(OS, Off);
2090   OS->Offset = Off;
2091 
2092   if (OS->Type == SHT_NOBITS)
2093     return Off;
2094   return Off + OS->Size;
2095 }
2096 
2097 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2098   uint64_t Off = 0;
2099   for (OutputSection *Sec : OutputSections)
2100     if (Sec->Flags & SHF_ALLOC)
2101       Off = setFileOffset(Sec, Off);
2102   FileSize = alignTo(Off, Config->Wordsize);
2103 }
2104 
2105 static std::string rangeToString(uint64_t Addr, uint64_t Len) {
2106   return "[0x" + utohexstr(Addr) + ", 0x" + utohexstr(Addr + Len - 1) + "]";
2107 }
2108 
2109 // Assign file offsets to output sections.
2110 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2111   uint64_t Off = 0;
2112   Off = setFileOffset(Out::ElfHeader, Off);
2113   Off = setFileOffset(Out::ProgramHeaders, Off);
2114 
2115   PhdrEntry *LastRX = nullptr;
2116   for (PhdrEntry *P : Phdrs)
2117     if (P->p_type == PT_LOAD && (P->p_flags & PF_X))
2118       LastRX = P;
2119 
2120   for (OutputSection *Sec : OutputSections) {
2121     Off = setFileOffset(Sec, Off);
2122     if (Script->HasSectionsCommand)
2123       continue;
2124 
2125     // If this is a last section of the last executable segment and that
2126     // segment is the last loadable segment, align the offset of the
2127     // following section to avoid loading non-segments parts of the file.
2128     if (LastRX && LastRX->LastSec == Sec)
2129       Off = alignTo(Off, Target->PageSize);
2130   }
2131 
2132   SectionHeaderOff = alignTo(Off, Config->Wordsize);
2133   FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr);
2134 
2135   // Our logic assumes that sections have rising VA within the same segment.
2136   // With use of linker scripts it is possible to violate this rule and get file
2137   // offset overlaps or overflows. That should never happen with a valid script
2138   // which does not move the location counter backwards and usually scripts do
2139   // not do that. Unfortunately, there are apps in the wild, for example, Linux
2140   // kernel, which control segment distribution explicitly and move the counter
2141   // backwards, so we have to allow doing that to support linking them. We
2142   // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2143   // we want to prevent file size overflows because it would crash the linker.
2144   for (OutputSection *Sec : OutputSections) {
2145     if (Sec->Type == SHT_NOBITS)
2146       continue;
2147     if ((Sec->Offset > FileSize) || (Sec->Offset + Sec->Size > FileSize))
2148       error("unable to place section " + Sec->Name + " at file offset " +
2149             rangeToString(Sec->Offset, Sec->Size) +
2150             "; check your linker script for overflows");
2151   }
2152 }
2153 
2154 // Finalize the program headers. We call this function after we assign
2155 // file offsets and VAs to all sections.
2156 template <class ELFT> void Writer<ELFT>::setPhdrs() {
2157   for (PhdrEntry *P : Phdrs) {
2158     OutputSection *First = P->FirstSec;
2159     OutputSection *Last = P->LastSec;
2160 
2161     if (First) {
2162       P->p_filesz = Last->Offset - First->Offset;
2163       if (Last->Type != SHT_NOBITS)
2164         P->p_filesz += Last->Size;
2165 
2166       P->p_memsz = Last->Addr + Last->Size - First->Addr;
2167       P->p_offset = First->Offset;
2168       P->p_vaddr = First->Addr;
2169 
2170       if (!P->HasLMA)
2171         P->p_paddr = First->getLMA();
2172     }
2173 
2174     if (P->p_type == PT_LOAD) {
2175       P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize);
2176     } else if (P->p_type == PT_GNU_RELRO) {
2177       P->p_align = 1;
2178       // The glibc dynamic loader rounds the size down, so we need to round up
2179       // to protect the last page. This is a no-op on FreeBSD which always
2180       // rounds up.
2181       P->p_memsz = alignTo(P->p_memsz, Target->PageSize);
2182     }
2183 
2184     // The TLS pointer goes after PT_TLS for variant 2 targets. At least glibc
2185     // will align it, so round up the size to make sure the offsets are
2186     // correct.
2187     if (P->p_type == PT_TLS && P->p_memsz)
2188       P->p_memsz = alignTo(P->p_memsz, P->p_align);
2189   }
2190 }
2191 
2192 // A helper struct for checkSectionOverlap.
2193 namespace {
2194 struct SectionOffset {
2195   OutputSection *Sec;
2196   uint64_t Offset;
2197 };
2198 } // namespace
2199 
2200 // Check whether sections overlap for a specific address range (file offsets,
2201 // load and virtual adresses).
2202 static void checkOverlap(StringRef Name, std::vector<SectionOffset> &Sections,
2203                          bool IsVirtualAddr) {
2204   llvm::sort(Sections, [=](const SectionOffset &A, const SectionOffset &B) {
2205     return A.Offset < B.Offset;
2206   });
2207 
2208   // Finding overlap is easy given a vector is sorted by start position.
2209   // If an element starts before the end of the previous element, they overlap.
2210   for (size_t I = 1, End = Sections.size(); I < End; ++I) {
2211     SectionOffset A = Sections[I - 1];
2212     SectionOffset B = Sections[I];
2213     if (B.Offset >= A.Offset + A.Sec->Size)
2214       continue;
2215 
2216     // If both sections are in OVERLAY we allow the overlapping of virtual
2217     // addresses, because it is what OVERLAY was designed for.
2218     if (IsVirtualAddr && A.Sec->InOverlay && B.Sec->InOverlay)
2219       continue;
2220 
2221     errorOrWarn("section " + A.Sec->Name + " " + Name +
2222                 " range overlaps with " + B.Sec->Name + "\n>>> " + A.Sec->Name +
2223                 " range is " + rangeToString(A.Offset, A.Sec->Size) + "\n>>> " +
2224                 B.Sec->Name + " range is " +
2225                 rangeToString(B.Offset, B.Sec->Size));
2226   }
2227 }
2228 
2229 // Check for overlapping sections and address overflows.
2230 //
2231 // In this function we check that none of the output sections have overlapping
2232 // file offsets. For SHF_ALLOC sections we also check that the load address
2233 // ranges and the virtual address ranges don't overlap
2234 template <class ELFT> void Writer<ELFT>::checkSections() {
2235   // First, check that section's VAs fit in available address space for target.
2236   for (OutputSection *OS : OutputSections)
2237     if ((OS->Addr + OS->Size < OS->Addr) ||
2238         (!ELFT::Is64Bits && OS->Addr + OS->Size > UINT32_MAX))
2239       errorOrWarn("section " + OS->Name + " at 0x" + utohexstr(OS->Addr) +
2240                   " of size 0x" + utohexstr(OS->Size) +
2241                   " exceeds available address space");
2242 
2243   // Check for overlapping file offsets. In this case we need to skip any
2244   // section marked as SHT_NOBITS. These sections don't actually occupy space in
2245   // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2246   // binary is specified only add SHF_ALLOC sections are added to the output
2247   // file so we skip any non-allocated sections in that case.
2248   std::vector<SectionOffset> FileOffs;
2249   for (OutputSection *Sec : OutputSections)
2250     if (Sec->Size > 0 && Sec->Type != SHT_NOBITS &&
2251         (!Config->OFormatBinary || (Sec->Flags & SHF_ALLOC)))
2252       FileOffs.push_back({Sec, Sec->Offset});
2253   checkOverlap("file", FileOffs, false);
2254 
2255   // When linking with -r there is no need to check for overlapping virtual/load
2256   // addresses since those addresses will only be assigned when the final
2257   // executable/shared object is created.
2258   if (Config->Relocatable)
2259     return;
2260 
2261   // Checking for overlapping virtual and load addresses only needs to take
2262   // into account SHF_ALLOC sections since others will not be loaded.
2263   // Furthermore, we also need to skip SHF_TLS sections since these will be
2264   // mapped to other addresses at runtime and can therefore have overlapping
2265   // ranges in the file.
2266   std::vector<SectionOffset> VMAs;
2267   for (OutputSection *Sec : OutputSections)
2268     if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS))
2269       VMAs.push_back({Sec, Sec->Addr});
2270   checkOverlap("virtual address", VMAs, true);
2271 
2272   // Finally, check that the load addresses don't overlap. This will usually be
2273   // the same as the virtual addresses but can be different when using a linker
2274   // script with AT().
2275   std::vector<SectionOffset> LMAs;
2276   for (OutputSection *Sec : OutputSections)
2277     if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS))
2278       LMAs.push_back({Sec, Sec->getLMA()});
2279   checkOverlap("load address", LMAs, false);
2280 }
2281 
2282 // The entry point address is chosen in the following ways.
2283 //
2284 // 1. the '-e' entry command-line option;
2285 // 2. the ENTRY(symbol) command in a linker control script;
2286 // 3. the value of the symbol _start, if present;
2287 // 4. the number represented by the entry symbol, if it is a number;
2288 // 5. the address of the first byte of the .text section, if present;
2289 // 6. the address 0.
2290 static uint64_t getEntryAddr() {
2291   // Case 1, 2 or 3
2292   if (Symbol *B = Symtab->find(Config->Entry))
2293     return B->getVA();
2294 
2295   // Case 4
2296   uint64_t Addr;
2297   if (to_integer(Config->Entry, Addr))
2298     return Addr;
2299 
2300   // Case 5
2301   if (OutputSection *Sec = findSection(".text")) {
2302     if (Config->WarnMissingEntry)
2303       warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" +
2304            utohexstr(Sec->Addr));
2305     return Sec->Addr;
2306   }
2307 
2308   // Case 6
2309   if (Config->WarnMissingEntry)
2310     warn("cannot find entry symbol " + Config->Entry +
2311          "; not setting start address");
2312   return 0;
2313 }
2314 
2315 static uint16_t getELFType() {
2316   if (Config->Pic)
2317     return ET_DYN;
2318   if (Config->Relocatable)
2319     return ET_REL;
2320   return ET_EXEC;
2321 }
2322 
2323 static uint8_t getAbiVersion() {
2324   // MIPS non-PIC executable gets ABI version 1.
2325   if (Config->EMachine == EM_MIPS && getELFType() == ET_EXEC &&
2326       (Config->EFlags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
2327     return 1;
2328   return 0;
2329 }
2330 
2331 template <class ELFT> void Writer<ELFT>::writeHeader() {
2332   uint8_t *Buf = Buffer->getBufferStart();
2333 
2334   // For executable segments, the trap instructions are written before writing
2335   // the header. Setting Elf header bytes to zero ensures that any unused bytes
2336   // in header are zero-cleared, instead of having trap instructions.
2337   memset(Buf, 0, sizeof(Elf_Ehdr));
2338   memcpy(Buf, "\177ELF", 4);
2339 
2340   // Write the ELF header.
2341   auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf);
2342   EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32;
2343   EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB;
2344   EHdr->e_ident[EI_VERSION] = EV_CURRENT;
2345   EHdr->e_ident[EI_OSABI] = Config->OSABI;
2346   EHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
2347   EHdr->e_type = getELFType();
2348   EHdr->e_machine = Config->EMachine;
2349   EHdr->e_version = EV_CURRENT;
2350   EHdr->e_entry = getEntryAddr();
2351   EHdr->e_shoff = SectionHeaderOff;
2352   EHdr->e_flags = Config->EFlags;
2353   EHdr->e_ehsize = sizeof(Elf_Ehdr);
2354   EHdr->e_phnum = Phdrs.size();
2355   EHdr->e_shentsize = sizeof(Elf_Shdr);
2356 
2357   if (!Config->Relocatable) {
2358     EHdr->e_phoff = sizeof(Elf_Ehdr);
2359     EHdr->e_phentsize = sizeof(Elf_Phdr);
2360   }
2361 
2362   // Write the program header table.
2363   auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff);
2364   for (PhdrEntry *P : Phdrs) {
2365     HBuf->p_type = P->p_type;
2366     HBuf->p_flags = P->p_flags;
2367     HBuf->p_offset = P->p_offset;
2368     HBuf->p_vaddr = P->p_vaddr;
2369     HBuf->p_paddr = P->p_paddr;
2370     HBuf->p_filesz = P->p_filesz;
2371     HBuf->p_memsz = P->p_memsz;
2372     HBuf->p_align = P->p_align;
2373     ++HBuf;
2374   }
2375 
2376   // Write the section header table.
2377   //
2378   // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2379   // and e_shstrndx fields. When the value of one of these fields exceeds
2380   // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2381   // use fields in the section header at index 0 to store
2382   // the value. The sentinel values and fields are:
2383   // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2384   // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2385   auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff);
2386   size_t Num = OutputSections.size() + 1;
2387   if (Num >= SHN_LORESERVE)
2388     SHdrs->sh_size = Num;
2389   else
2390     EHdr->e_shnum = Num;
2391 
2392   uint32_t StrTabIndex = In.ShStrTab->getParent()->SectionIndex;
2393   if (StrTabIndex >= SHN_LORESERVE) {
2394     SHdrs->sh_link = StrTabIndex;
2395     EHdr->e_shstrndx = SHN_XINDEX;
2396   } else {
2397     EHdr->e_shstrndx = StrTabIndex;
2398   }
2399 
2400   for (OutputSection *Sec : OutputSections)
2401     Sec->writeHeaderTo<ELFT>(++SHdrs);
2402 }
2403 
2404 // Open a result file.
2405 template <class ELFT> void Writer<ELFT>::openFile() {
2406   uint64_t MaxSize = Config->Is64 ? INT64_MAX : UINT32_MAX;
2407   if (MaxSize < FileSize) {
2408     error("output file too large: " + Twine(FileSize) + " bytes");
2409     return;
2410   }
2411 
2412   unlinkAsync(Config->OutputFile);
2413   unsigned Flags = 0;
2414   if (!Config->Relocatable)
2415     Flags = FileOutputBuffer::F_executable;
2416   Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
2417       FileOutputBuffer::create(Config->OutputFile, FileSize, Flags);
2418 
2419   if (!BufferOrErr)
2420     error("failed to open " + Config->OutputFile + ": " +
2421           llvm::toString(BufferOrErr.takeError()));
2422   else
2423     Buffer = std::move(*BufferOrErr);
2424 }
2425 
2426 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2427   uint8_t *Buf = Buffer->getBufferStart();
2428   for (OutputSection *Sec : OutputSections)
2429     if (Sec->Flags & SHF_ALLOC)
2430       Sec->writeTo<ELFT>(Buf + Sec->Offset);
2431 }
2432 
2433 static void fillTrap(uint8_t *I, uint8_t *End) {
2434   for (; I + 4 <= End; I += 4)
2435     memcpy(I, &Target->TrapInstr, 4);
2436 }
2437 
2438 // Fill the last page of executable segments with trap instructions
2439 // instead of leaving them as zero. Even though it is not required by any
2440 // standard, it is in general a good thing to do for security reasons.
2441 //
2442 // We'll leave other pages in segments as-is because the rest will be
2443 // overwritten by output sections.
2444 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2445   if (Script->HasSectionsCommand)
2446     return;
2447 
2448   // Fill the last page.
2449   uint8_t *Buf = Buffer->getBufferStart();
2450   for (PhdrEntry *P : Phdrs)
2451     if (P->p_type == PT_LOAD && (P->p_flags & PF_X))
2452       fillTrap(Buf + alignDown(P->p_offset + P->p_filesz, Target->PageSize),
2453                Buf + alignTo(P->p_offset + P->p_filesz, Target->PageSize));
2454 
2455   // Round up the file size of the last segment to the page boundary iff it is
2456   // an executable segment to ensure that other tools don't accidentally
2457   // trim the instruction padding (e.g. when stripping the file).
2458   PhdrEntry *Last = nullptr;
2459   for (PhdrEntry *P : Phdrs)
2460     if (P->p_type == PT_LOAD)
2461       Last = P;
2462 
2463   if (Last && (Last->p_flags & PF_X))
2464     Last->p_memsz = Last->p_filesz = alignTo(Last->p_filesz, Target->PageSize);
2465 }
2466 
2467 // Write section contents to a mmap'ed file.
2468 template <class ELFT> void Writer<ELFT>::writeSections() {
2469   uint8_t *Buf = Buffer->getBufferStart();
2470 
2471   OutputSection *EhFrameHdr = nullptr;
2472   if (In.EhFrameHdr && !In.EhFrameHdr->empty())
2473     EhFrameHdr = In.EhFrameHdr->getParent();
2474 
2475   // In -r or -emit-relocs mode, write the relocation sections first as in
2476   // ELf_Rel targets we might find out that we need to modify the relocated
2477   // section while doing it.
2478   for (OutputSection *Sec : OutputSections)
2479     if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA)
2480       Sec->writeTo<ELFT>(Buf + Sec->Offset);
2481 
2482   for (OutputSection *Sec : OutputSections)
2483     if (Sec != EhFrameHdr && Sec->Type != SHT_REL && Sec->Type != SHT_RELA)
2484       Sec->writeTo<ELFT>(Buf + Sec->Offset);
2485 
2486   // The .eh_frame_hdr depends on .eh_frame section contents, therefore
2487   // it should be written after .eh_frame is written.
2488   if (EhFrameHdr)
2489     EhFrameHdr->writeTo<ELFT>(Buf + EhFrameHdr->Offset);
2490 }
2491 
2492 template <class ELFT> void Writer<ELFT>::writeBuildId() {
2493   if (!In.BuildId || !In.BuildId->getParent())
2494     return;
2495 
2496   // Compute a hash of all sections of the output file.
2497   uint8_t *Start = Buffer->getBufferStart();
2498   uint8_t *End = Start + FileSize;
2499   In.BuildId->writeBuildId({Start, End});
2500 }
2501 
2502 template void elf::writeResult<ELF32LE>();
2503 template void elf::writeResult<ELF32BE>();
2504 template void elf::writeResult<ELF64LE>();
2505 template void elf::writeResult<ELF64BE>();
2506