1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "Writer.h" 11 #include "AArch64ErrataFix.h" 12 #include "Config.h" 13 #include "Filesystem.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "lld/Common/Threads.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include <climits> 28 29 using namespace llvm; 30 using namespace llvm::ELF; 31 using namespace llvm::object; 32 using namespace llvm::support; 33 using namespace llvm::support::endian; 34 35 using namespace lld; 36 using namespace lld::elf; 37 38 namespace { 39 // The writer writes a SymbolTable result to a file. 40 template <class ELFT> class Writer { 41 public: 42 Writer() : Buffer(errorHandler().OutputBuffer) {} 43 typedef typename ELFT::Shdr Elf_Shdr; 44 typedef typename ELFT::Ehdr Elf_Ehdr; 45 typedef typename ELFT::Phdr Elf_Phdr; 46 47 void run(); 48 49 private: 50 void copyLocalSymbols(); 51 void addSectionSymbols(); 52 void forEachRelSec(std::function<void(InputSectionBase &)> Fn); 53 void sortSections(); 54 void resolveShfLinkOrder(); 55 void sortInputSections(); 56 void finalizeSections(); 57 void setReservedSymbolSections(); 58 59 std::vector<PhdrEntry *> createPhdrs(); 60 void removeEmptyPTLoad(); 61 void addPtArmExid(std::vector<PhdrEntry *> &Phdrs); 62 void assignFileOffsets(); 63 void assignFileOffsetsBinary(); 64 void setPhdrs(); 65 void checkNoOverlappingSections(); 66 void fixSectionAlignments(); 67 void openFile(); 68 void writeTrapInstr(); 69 void writeHeader(); 70 void writeSections(); 71 void writeSectionsBinary(); 72 void writeBuildId(); 73 74 std::unique_ptr<FileOutputBuffer> &Buffer; 75 76 void addRelIpltSymbols(); 77 void addStartEndSymbols(); 78 void addStartStopSymbols(OutputSection *Sec); 79 uint64_t getEntryAddr(); 80 81 std::vector<PhdrEntry *> Phdrs; 82 83 uint64_t FileSize; 84 uint64_t SectionHeaderOff; 85 86 bool HasGotBaseSym = false; 87 }; 88 } // anonymous namespace 89 90 StringRef elf::getOutputSectionName(InputSectionBase *S) { 91 if (Config->Relocatable) 92 return S->Name; 93 94 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 95 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 96 // technically required, but not doing it is odd). This code guarantees that. 97 if ((S->Type == SHT_REL || S->Type == SHT_RELA) && 98 !isa<SyntheticSection>(S)) { 99 OutputSection *Out = 100 cast<InputSection>(S)->getRelocatedSection()->getOutputSection(); 101 if (S->Type == SHT_RELA) 102 return Saver.save(".rela" + Out->Name); 103 return Saver.save(".rel" + Out->Name); 104 } 105 106 for (StringRef V : 107 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 108 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 109 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) { 110 StringRef Prefix = V.drop_back(); 111 if (S->Name.startswith(V) || S->Name == Prefix) 112 return Prefix; 113 } 114 115 // CommonSection is identified as "COMMON" in linker scripts. 116 // By default, it should go to .bss section. 117 if (S->Name == "COMMON") 118 return ".bss"; 119 120 return S->Name; 121 } 122 123 static bool needsInterpSection() { 124 return !SharedFiles.empty() && !Config->DynamicLinker.empty() && 125 Script->needsInterpSection(); 126 } 127 128 template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); } 129 130 template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() { 131 llvm::erase_if(Phdrs, [&](const PhdrEntry *P) { 132 if (P->p_type != PT_LOAD) 133 return false; 134 if (!P->FirstSec) 135 return true; 136 uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr; 137 return Size == 0; 138 }); 139 } 140 141 template <class ELFT> static void combineEhFrameSections() { 142 for (InputSectionBase *&S : InputSections) { 143 EhInputSection *ES = dyn_cast<EhInputSection>(S); 144 if (!ES || !ES->Live) 145 continue; 146 147 InX::EhFrame->addSection<ELFT>(ES); 148 S = nullptr; 149 } 150 151 std::vector<InputSectionBase *> &V = InputSections; 152 V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); 153 } 154 155 static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec, 156 uint64_t Val, uint8_t StOther = STV_HIDDEN, 157 uint8_t Binding = STB_GLOBAL) { 158 Symbol *S = Symtab->find(Name); 159 if (!S || S->isDefined()) 160 return nullptr; 161 Symbol *Sym = Symtab->addRegular(Name, StOther, STT_NOTYPE, Val, 162 /*Size=*/0, Binding, Sec, 163 /*File=*/nullptr); 164 return cast<Defined>(Sym); 165 } 166 167 // The linker is expected to define some symbols depending on 168 // the linking result. This function defines such symbols. 169 void elf::addReservedSymbols() { 170 if (Config->EMachine == EM_MIPS) { 171 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 172 // so that it points to an absolute address which by default is relative 173 // to GOT. Default offset is 0x7ff0. 174 // See "Global Data Symbols" in Chapter 6 in the following document: 175 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 176 ElfSym::MipsGp = Symtab->addAbsolute("_gp", STV_HIDDEN, STB_GLOBAL); 177 178 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 179 // start of function and 'gp' pointer into GOT. 180 if (Symtab->find("_gp_disp")) 181 ElfSym::MipsGpDisp = 182 Symtab->addAbsolute("_gp_disp", STV_HIDDEN, STB_GLOBAL); 183 184 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 185 // pointer. This symbol is used in the code generated by .cpload pseudo-op 186 // in case of using -mno-shared option. 187 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 188 if (Symtab->find("__gnu_local_gp")) 189 ElfSym::MipsLocalGp = 190 Symtab->addAbsolute("__gnu_local_gp", STV_HIDDEN, STB_GLOBAL); 191 } 192 193 ElfSym::GlobalOffsetTable = addOptionalRegular( 194 "_GLOBAL_OFFSET_TABLE_", Out::ElfHeader, Target->GotBaseSymOff); 195 196 // __ehdr_start is the location of ELF file headers. Note that we define 197 // this symbol unconditionally even when using a linker script, which 198 // differs from the behavior implemented by GNU linker which only define 199 // this symbol if ELF headers are in the memory mapped segment. 200 // __executable_start is not documented, but the expectation of at 201 // least the android libc is that it points to the elf header too. 202 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 203 // each DSO. The address of the symbol doesn't matter as long as they are 204 // different in different DSOs, so we chose the start address of the DSO. 205 for (const char *Name : 206 {"__ehdr_start", "__executable_start", "__dso_handle"}) 207 addOptionalRegular(Name, Out::ElfHeader, 0, STV_HIDDEN); 208 209 // If linker script do layout we do not need to create any standart symbols. 210 if (Script->HasSectionsCommand) 211 return; 212 213 auto Add = [](StringRef S, int64_t Pos) { 214 return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT); 215 }; 216 217 ElfSym::Bss = Add("__bss_start", 0); 218 ElfSym::End1 = Add("end", -1); 219 ElfSym::End2 = Add("_end", -1); 220 ElfSym::Etext1 = Add("etext", -1); 221 ElfSym::Etext2 = Add("_etext", -1); 222 ElfSym::Edata1 = Add("edata", -1); 223 ElfSym::Edata2 = Add("_edata", -1); 224 } 225 226 static OutputSection *findSection(StringRef Name) { 227 for (BaseCommand *Base : Script->SectionCommands) 228 if (auto *Sec = dyn_cast<OutputSection>(Base)) 229 if (Sec->Name == Name) 230 return Sec; 231 return nullptr; 232 } 233 234 // Initialize Out members. 235 template <class ELFT> static void createSyntheticSections() { 236 // Initialize all pointers with NULL. This is needed because 237 // you can call lld::elf::main more than once as a library. 238 memset(&Out::First, 0, sizeof(Out)); 239 240 auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; 241 242 InX::DynStrTab = make<StringTableSection>(".dynstr", true); 243 InX::Dynamic = make<DynamicSection<ELFT>>(); 244 if (Config->AndroidPackDynRelocs) { 245 InX::RelaDyn = make<AndroidPackedRelocationSection<ELFT>>( 246 Config->IsRela ? ".rela.dyn" : ".rel.dyn"); 247 } else { 248 InX::RelaDyn = make<RelocationSection<ELFT>>( 249 Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); 250 } 251 InX::ShStrTab = make<StringTableSection>(".shstrtab", false); 252 253 Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC); 254 Out::ProgramHeaders->Alignment = Config->Wordsize; 255 256 if (needsInterpSection()) { 257 InX::Interp = createInterpSection(); 258 Add(InX::Interp); 259 } else { 260 InX::Interp = nullptr; 261 } 262 263 if (Config->Strip != StripPolicy::All) { 264 InX::StrTab = make<StringTableSection>(".strtab", false); 265 InX::SymTab = make<SymbolTableSection<ELFT>>(*InX::StrTab); 266 } 267 268 if (Config->BuildId != BuildIdKind::None) { 269 InX::BuildId = make<BuildIdSection>(); 270 Add(InX::BuildId); 271 } 272 273 InX::Bss = make<BssSection>(".bss", 0, 1); 274 Add(InX::Bss); 275 276 // If there is a SECTIONS command and a .data.rel.ro section name use name 277 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 278 // This makes sure our relro is contiguous. 279 bool HasDataRelRo = 280 Script->HasSectionsCommand && findSection(".data.rel.ro"); 281 InX::BssRelRo = make<BssSection>( 282 HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 283 Add(InX::BssRelRo); 284 285 // Add MIPS-specific sections. 286 if (Config->EMachine == EM_MIPS) { 287 if (!Config->Shared && Config->HasDynSymTab) { 288 InX::MipsRldMap = make<MipsRldMapSection>(); 289 Add(InX::MipsRldMap); 290 } 291 if (auto *Sec = MipsAbiFlagsSection<ELFT>::create()) 292 Add(Sec); 293 if (auto *Sec = MipsOptionsSection<ELFT>::create()) 294 Add(Sec); 295 if (auto *Sec = MipsReginfoSection<ELFT>::create()) 296 Add(Sec); 297 } 298 299 if (Config->HasDynSymTab) { 300 InX::DynSymTab = make<SymbolTableSection<ELFT>>(*InX::DynStrTab); 301 Add(InX::DynSymTab); 302 303 In<ELFT>::VerSym = make<VersionTableSection<ELFT>>(); 304 Add(In<ELFT>::VerSym); 305 306 if (!Config->VersionDefinitions.empty()) { 307 In<ELFT>::VerDef = make<VersionDefinitionSection<ELFT>>(); 308 Add(In<ELFT>::VerDef); 309 } 310 311 In<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>(); 312 Add(In<ELFT>::VerNeed); 313 314 if (Config->GnuHash) { 315 InX::GnuHashTab = make<GnuHashTableSection>(); 316 Add(InX::GnuHashTab); 317 } 318 319 if (Config->SysvHash) { 320 InX::HashTab = make<HashTableSection>(); 321 Add(InX::HashTab); 322 } 323 324 Add(InX::Dynamic); 325 Add(InX::DynStrTab); 326 Add(InX::RelaDyn); 327 } 328 329 // Add .got. MIPS' .got is so different from the other archs, 330 // it has its own class. 331 if (Config->EMachine == EM_MIPS) { 332 InX::MipsGot = make<MipsGotSection>(); 333 Add(InX::MipsGot); 334 } else { 335 InX::Got = make<GotSection>(); 336 Add(InX::Got); 337 } 338 339 InX::GotPlt = make<GotPltSection>(); 340 Add(InX::GotPlt); 341 InX::IgotPlt = make<IgotPltSection>(); 342 Add(InX::IgotPlt); 343 344 if (Config->GdbIndex) { 345 InX::GdbIndex = createGdbIndex<ELFT>(); 346 Add(InX::GdbIndex); 347 } 348 349 // We always need to add rel[a].plt to output if it has entries. 350 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 351 InX::RelaPlt = make<RelocationSection<ELFT>>( 352 Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); 353 Add(InX::RelaPlt); 354 355 // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure 356 // that the IRelative relocations are processed last by the dynamic loader. 357 // We cannot place the iplt section in .rel.dyn when Android relocation 358 // packing is enabled because that would cause a section type mismatch. 359 // However, because the Android dynamic loader reads .rel.plt after .rel.dyn, 360 // we can get the desired behaviour by placing the iplt section in .rel.plt. 361 InX::RelaIplt = make<RelocationSection<ELFT>>( 362 (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs) 363 ? ".rel.dyn" 364 : InX::RelaPlt->Name, 365 false /*Sort*/); 366 Add(InX::RelaIplt); 367 368 InX::Plt = make<PltSection>(false); 369 Add(InX::Plt); 370 InX::Iplt = make<PltSection>(true); 371 Add(InX::Iplt); 372 373 if (!Config->Relocatable) { 374 if (Config->EhFrameHdr) { 375 InX::EhFrameHdr = make<EhFrameHeader>(); 376 Add(InX::EhFrameHdr); 377 } 378 InX::EhFrame = make<EhFrameSection>(); 379 Add(InX::EhFrame); 380 } 381 382 if (InX::SymTab) 383 Add(InX::SymTab); 384 Add(InX::ShStrTab); 385 if (InX::StrTab) 386 Add(InX::StrTab); 387 388 if (Config->EMachine == EM_ARM && !Config->Relocatable) 389 // Add a sentinel to terminate .ARM.exidx. It helps an unwinder 390 // to find the exact address range of the last entry. 391 Add(make<ARMExidxSentinelSection>()); 392 } 393 394 // The main function of the writer. 395 template <class ELFT> void Writer<ELFT>::run() { 396 // Create linker-synthesized sections such as .got or .plt. 397 // Such sections are of type input section. 398 createSyntheticSections<ELFT>(); 399 400 if (!Config->Relocatable) 401 combineEhFrameSections<ELFT>(); 402 403 // We want to process linker script commands. When SECTIONS command 404 // is given we let it create sections. 405 Script->processSectionCommands(); 406 407 // Linker scripts controls how input sections are assigned to output sections. 408 // Input sections that were not handled by scripts are called "orphans", and 409 // they are assigned to output sections by the default rule. Process that. 410 Script->addOrphanSections(); 411 412 if (Config->Discard != DiscardPolicy::All) 413 copyLocalSymbols(); 414 415 if (Config->CopyRelocs) 416 addSectionSymbols(); 417 418 // Now that we have a complete set of output sections. This function 419 // completes section contents. For example, we need to add strings 420 // to the string table, and add entries to .got and .plt. 421 // finalizeSections does that. 422 finalizeSections(); 423 if (errorCount()) 424 return; 425 426 Script->assignAddresses(); 427 428 // If -compressed-debug-sections is specified, we need to compress 429 // .debug_* sections. Do it right now because it changes the size of 430 // output sections. 431 for (OutputSection *Sec : OutputSections) 432 Sec->maybeCompress<ELFT>(); 433 434 Script->allocateHeaders(Phdrs); 435 436 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 437 // 0 sized region. This has to be done late since only after assignAddresses 438 // we know the size of the sections. 439 removeEmptyPTLoad(); 440 441 if (!Config->OFormatBinary) 442 assignFileOffsets(); 443 else 444 assignFileOffsetsBinary(); 445 446 setPhdrs(); 447 448 if (Config->Relocatable) { 449 for (OutputSection *Sec : OutputSections) 450 Sec->Addr = 0; 451 } 452 453 if (Config->CheckSections) 454 checkNoOverlappingSections(); 455 456 // It does not make sense try to open the file if we have error already. 457 if (errorCount()) 458 return; 459 // Write the result down to a file. 460 openFile(); 461 if (errorCount()) 462 return; 463 464 if (!Config->OFormatBinary) { 465 writeTrapInstr(); 466 writeHeader(); 467 writeSections(); 468 } else { 469 writeSectionsBinary(); 470 } 471 472 // Backfill .note.gnu.build-id section content. This is done at last 473 // because the content is usually a hash value of the entire output file. 474 writeBuildId(); 475 if (errorCount()) 476 return; 477 478 // Handle -Map option. 479 writeMapFile(); 480 if (errorCount()) 481 return; 482 483 if (auto E = Buffer->commit()) 484 error("failed to write to the output file: " + toString(std::move(E))); 485 } 486 487 static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName, 488 const Symbol &B) { 489 if (B.isFile() || B.isSection()) 490 return false; 491 492 // If sym references a section in a discarded group, don't keep it. 493 if (Sec == &InputSection::Discarded) 494 return false; 495 496 if (Config->Discard == DiscardPolicy::None) 497 return true; 498 499 // In ELF assembly .L symbols are normally discarded by the assembler. 500 // If the assembler fails to do so, the linker discards them if 501 // * --discard-locals is used. 502 // * The symbol is in a SHF_MERGE section, which is normally the reason for 503 // the assembler keeping the .L symbol. 504 if (!SymName.startswith(".L") && !SymName.empty()) 505 return true; 506 507 if (Config->Discard == DiscardPolicy::Locals) 508 return false; 509 510 return !Sec || !(Sec->Flags & SHF_MERGE); 511 } 512 513 static bool includeInSymtab(const Symbol &B) { 514 if (!B.isLocal() && !B.IsUsedInRegularObj) 515 return false; 516 517 if (auto *D = dyn_cast<Defined>(&B)) { 518 // Always include absolute symbols. 519 SectionBase *Sec = D->Section; 520 if (!Sec) 521 return true; 522 Sec = Sec->Repl; 523 // Exclude symbols pointing to garbage-collected sections. 524 if (isa<InputSectionBase>(Sec) && !Sec->Live) 525 return false; 526 if (auto *S = dyn_cast<MergeInputSection>(Sec)) 527 if (!S->getSectionPiece(D->Value)->Live) 528 return false; 529 return true; 530 } 531 return B.Used; 532 } 533 534 // Local symbols are not in the linker's symbol table. This function scans 535 // each object file's symbol table to copy local symbols to the output. 536 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 537 if (!InX::SymTab) 538 return; 539 for (InputFile *File : ObjectFiles) { 540 ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File); 541 for (Symbol *B : F->getLocalSymbols()) { 542 if (!B->isLocal()) 543 fatal(toString(F) + 544 ": broken object: getLocalSymbols returns a non-local symbol"); 545 auto *DR = dyn_cast<Defined>(B); 546 547 // No reason to keep local undefined symbol in symtab. 548 if (!DR) 549 continue; 550 if (!includeInSymtab(*B)) 551 continue; 552 553 SectionBase *Sec = DR->Section; 554 if (!shouldKeepInSymtab(Sec, B->getName(), *B)) 555 continue; 556 InX::SymTab->addSymbol(B); 557 } 558 } 559 } 560 561 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 562 // Create a section symbol for each output section so that we can represent 563 // relocations that point to the section. If we know that no relocation is 564 // referring to a section (that happens if the section is a synthetic one), we 565 // don't create a section symbol for that section. 566 for (BaseCommand *Base : Script->SectionCommands) { 567 auto *Sec = dyn_cast<OutputSection>(Base); 568 if (!Sec) 569 continue; 570 auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) { 571 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 572 return !ISD->Sections.empty(); 573 return false; 574 }); 575 if (I == Sec->SectionCommands.end()) 576 continue; 577 InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0]; 578 579 // Relocations are not using REL[A] section symbols. 580 if (IS->Type == SHT_REL || IS->Type == SHT_RELA) 581 continue; 582 583 // Unlike other synthetic sections, mergeable output sections contain data 584 // copied from input sections, and there may be a relocation pointing to its 585 // contents if -r or -emit-reloc are given. 586 if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE)) 587 continue; 588 589 auto *Sym = 590 make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION, 591 /*Value=*/0, /*Size=*/0, IS); 592 InX::SymTab->addSymbol(Sym); 593 } 594 } 595 596 // Today's loaders have a feature to make segments read-only after 597 // processing dynamic relocations to enhance security. PT_GNU_RELRO 598 // is defined for that. 599 // 600 // This function returns true if a section needs to be put into a 601 // PT_GNU_RELRO segment. 602 static bool isRelroSection(const OutputSection *Sec) { 603 if (!Config->ZRelro) 604 return false; 605 606 uint64_t Flags = Sec->Flags; 607 608 // Non-allocatable or non-writable sections don't need RELRO because 609 // they are not writable or not even mapped to memory in the first place. 610 // RELRO is for sections that are essentially read-only but need to 611 // be writable only at process startup to allow dynamic linker to 612 // apply relocations. 613 if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) 614 return false; 615 616 // Once initialized, TLS data segments are used as data templates 617 // for a thread-local storage. For each new thread, runtime 618 // allocates memory for a TLS and copy templates there. No thread 619 // are supposed to use templates directly. Thus, it can be in RELRO. 620 if (Flags & SHF_TLS) 621 return true; 622 623 // .init_array, .preinit_array and .fini_array contain pointers to 624 // functions that are executed on process startup or exit. These 625 // pointers are set by the static linker, and they are not expected 626 // to change at runtime. But if you are an attacker, you could do 627 // interesting things by manipulating pointers in .fini_array, for 628 // example. So they are put into RELRO. 629 uint32_t Type = Sec->Type; 630 if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || 631 Type == SHT_PREINIT_ARRAY) 632 return true; 633 634 // .got contains pointers to external symbols. They are resolved by 635 // the dynamic linker when a module is loaded into memory, and after 636 // that they are not expected to change. So, it can be in RELRO. 637 if (InX::Got && Sec == InX::Got->getParent()) 638 return true; 639 640 // .got.plt contains pointers to external function symbols. They are 641 // by default resolved lazily, so we usually cannot put it into RELRO. 642 // However, if "-z now" is given, the lazy symbol resolution is 643 // disabled, which enables us to put it into RELRO. 644 if (Sec == InX::GotPlt->getParent()) 645 return Config->ZNow; 646 647 // .dynamic section contains data for the dynamic linker, and 648 // there's no need to write to it at runtime, so it's better to put 649 // it into RELRO. 650 if (Sec == InX::Dynamic->getParent()) 651 return true; 652 653 // Sections with some special names are put into RELRO. This is a 654 // bit unfortunate because section names shouldn't be significant in 655 // ELF in spirit. But in reality many linker features depend on 656 // magic section names. 657 StringRef S = Sec->Name; 658 return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" || 659 S == ".dtors" || S == ".jcr" || S == ".eh_frame" || 660 S == ".openbsd.randomdata"; 661 } 662 663 // We compute a rank for each section. The rank indicates where the 664 // section should be placed in the file. Instead of using simple 665 // numbers (0,1,2...), we use a series of flags. One for each decision 666 // point when placing the section. 667 // Using flags has two key properties: 668 // * It is easy to check if a give branch was taken. 669 // * It is easy two see how similar two ranks are (see getRankProximity). 670 enum RankFlags { 671 RF_NOT_ADDR_SET = 1 << 18, 672 RF_NOT_INTERP = 1 << 17, 673 RF_NOT_ALLOC = 1 << 16, 674 RF_WRITE = 1 << 15, 675 RF_EXEC_WRITE = 1 << 13, 676 RF_EXEC = 1 << 12, 677 RF_NON_TLS_BSS = 1 << 11, 678 RF_NON_TLS_BSS_RO = 1 << 10, 679 RF_NOT_TLS = 1 << 9, 680 RF_BSS = 1 << 8, 681 RF_NOTE = 1 << 7, 682 RF_PPC_NOT_TOCBSS = 1 << 6, 683 RF_PPC_OPD = 1 << 5, 684 RF_PPC_TOCL = 1 << 4, 685 RF_PPC_TOC = 1 << 3, 686 RF_PPC_BRANCH_LT = 1 << 2, 687 RF_MIPS_GPREL = 1 << 1, 688 RF_MIPS_NOT_GOT = 1 << 0 689 }; 690 691 static unsigned getSectionRank(const OutputSection *Sec) { 692 unsigned Rank = 0; 693 694 // We want to put section specified by -T option first, so we 695 // can start assigning VA starting from them later. 696 if (Config->SectionStartMap.count(Sec->Name)) 697 return Rank; 698 Rank |= RF_NOT_ADDR_SET; 699 700 // Put .interp first because some loaders want to see that section 701 // on the first page of the executable file when loaded into memory. 702 if (Sec->Name == ".interp") 703 return Rank; 704 Rank |= RF_NOT_INTERP; 705 706 // Allocatable sections go first to reduce the total PT_LOAD size and 707 // so debug info doesn't change addresses in actual code. 708 if (!(Sec->Flags & SHF_ALLOC)) 709 return Rank | RF_NOT_ALLOC; 710 711 // Sort sections based on their access permission in the following 712 // order: R, RX, RWX, RW. This order is based on the following 713 // considerations: 714 // * Read-only sections come first such that they go in the 715 // PT_LOAD covering the program headers at the start of the file. 716 // * Read-only, executable sections come next, unless the 717 // -no-rosegment option is used. 718 // * Writable, executable sections follow such that .plt on 719 // architectures where it needs to be writable will be placed 720 // between .text and .data. 721 // * Writable sections come last, such that .bss lands at the very 722 // end of the last PT_LOAD. 723 bool IsExec = Sec->Flags & SHF_EXECINSTR; 724 bool IsWrite = Sec->Flags & SHF_WRITE; 725 726 if (IsExec) { 727 if (IsWrite) 728 Rank |= RF_EXEC_WRITE; 729 else if (!Config->SingleRoRx) 730 Rank |= RF_EXEC; 731 } else { 732 if (IsWrite) 733 Rank |= RF_WRITE; 734 } 735 736 // If we got here we know that both A and B are in the same PT_LOAD. 737 738 bool IsTls = Sec->Flags & SHF_TLS; 739 bool IsNoBits = Sec->Type == SHT_NOBITS; 740 741 // The first requirement we have is to put (non-TLS) nobits sections last. The 742 // reason is that the only thing the dynamic linker will see about them is a 743 // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the 744 // PT_LOAD, so that has to correspond to the nobits sections. 745 bool IsNonTlsNoBits = IsNoBits && !IsTls; 746 if (IsNonTlsNoBits) 747 Rank |= RF_NON_TLS_BSS; 748 749 // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo 750 // sections after r/w ones, so that the RelRo sections are contiguous. 751 bool IsRelRo = isRelroSection(Sec); 752 if (IsNonTlsNoBits && !IsRelRo) 753 Rank |= RF_NON_TLS_BSS_RO; 754 if (!IsNonTlsNoBits && IsRelRo) 755 Rank |= RF_NON_TLS_BSS_RO; 756 757 // The TLS initialization block needs to be a single contiguous block in a R/W 758 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 759 // sections. The TLS NOBITS sections are placed here as they don't take up 760 // virtual address space in the PT_LOAD. 761 if (!IsTls) 762 Rank |= RF_NOT_TLS; 763 764 // Within the TLS initialization block, the non-nobits sections need to appear 765 // first. 766 if (IsNoBits) 767 Rank |= RF_BSS; 768 769 // We create a NOTE segment for contiguous .note sections, so make 770 // them contigous if there are more than one .note section with the 771 // same attributes. 772 if (Sec->Type == SHT_NOTE) 773 Rank |= RF_NOTE; 774 775 // Some architectures have additional ordering restrictions for sections 776 // within the same PT_LOAD. 777 if (Config->EMachine == EM_PPC64) { 778 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 779 // that we would like to make sure appear is a specific order to maximize 780 // their coverage by a single signed 16-bit offset from the TOC base 781 // pointer. Conversely, the special .tocbss section should be first among 782 // all SHT_NOBITS sections. This will put it next to the loaded special 783 // PPC64 sections (and, thus, within reach of the TOC base pointer). 784 StringRef Name = Sec->Name; 785 if (Name != ".tocbss") 786 Rank |= RF_PPC_NOT_TOCBSS; 787 788 if (Name == ".opd") 789 Rank |= RF_PPC_OPD; 790 791 if (Name == ".toc1") 792 Rank |= RF_PPC_TOCL; 793 794 if (Name == ".toc") 795 Rank |= RF_PPC_TOC; 796 797 if (Name == ".branch_lt") 798 Rank |= RF_PPC_BRANCH_LT; 799 } 800 801 if (Config->EMachine == EM_MIPS) { 802 // All sections with SHF_MIPS_GPREL flag should be grouped together 803 // because data in these sections is addressable with a gp relative address. 804 if (Sec->Flags & SHF_MIPS_GPREL) 805 Rank |= RF_MIPS_GPREL; 806 807 if (Sec->Name != ".got") 808 Rank |= RF_MIPS_NOT_GOT; 809 } 810 811 return Rank; 812 } 813 814 static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) { 815 const OutputSection *A = cast<OutputSection>(ACmd); 816 const OutputSection *B = cast<OutputSection>(BCmd); 817 if (A->SortRank != B->SortRank) 818 return A->SortRank < B->SortRank; 819 if (!(A->SortRank & RF_NOT_ADDR_SET)) 820 return Config->SectionStartMap.lookup(A->Name) < 821 Config->SectionStartMap.lookup(B->Name); 822 return false; 823 } 824 825 void PhdrEntry::add(OutputSection *Sec) { 826 LastSec = Sec; 827 if (!FirstSec) 828 FirstSec = Sec; 829 p_align = std::max(p_align, Sec->Alignment); 830 if (p_type == PT_LOAD) 831 Sec->PtLoad = this; 832 } 833 834 // The beginning and the ending of .rel[a].plt section are marked 835 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 836 // executable. The runtime needs these symbols in order to resolve 837 // all IRELATIVE relocs on startup. For dynamic executables, we don't 838 // need these symbols, since IRELATIVE relocs are resolved through GOT 839 // and PLT. For details, see http://www.airs.com/blog/archives/403. 840 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 841 if (needsInterpSection()) 842 return; 843 StringRef S = Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start"; 844 addOptionalRegular(S, InX::RelaIplt, 0, STV_HIDDEN, STB_WEAK); 845 846 S = Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end"; 847 addOptionalRegular(S, InX::RelaIplt, -1, STV_HIDDEN, STB_WEAK); 848 } 849 850 template <class ELFT> 851 void Writer<ELFT>::forEachRelSec(std::function<void(InputSectionBase &)> Fn) { 852 // Scan all relocations. Each relocation goes through a series 853 // of tests to determine if it needs special treatment, such as 854 // creating GOT, PLT, copy relocations, etc. 855 // Note that relocations for non-alloc sections are directly 856 // processed by InputSection::relocateNonAlloc. 857 for (InputSectionBase *IS : InputSections) 858 if (IS->Live && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC)) 859 Fn(*IS); 860 for (EhInputSection *ES : InX::EhFrame->Sections) 861 Fn(*ES); 862 } 863 864 // This function generates assignments for predefined symbols (e.g. _end or 865 // _etext) and inserts them into the commands sequence to be processed at the 866 // appropriate time. This ensures that the value is going to be correct by the 867 // time any references to these symbols are processed and is equivalent to 868 // defining these symbols explicitly in the linker script. 869 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 870 if (ElfSym::GlobalOffsetTable) { 871 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to 872 // be at some offset from the base of the .got section, usually 0 or the end 873 // of the .got 874 InputSection *GotSection = InX::MipsGot ? cast<InputSection>(InX::MipsGot) 875 : cast<InputSection>(InX::Got); 876 ElfSym::GlobalOffsetTable->Section = GotSection; 877 } 878 879 PhdrEntry *Last = nullptr; 880 PhdrEntry *LastRO = nullptr; 881 882 for (PhdrEntry *P : Phdrs) { 883 if (P->p_type != PT_LOAD) 884 continue; 885 Last = P; 886 if (!(P->p_flags & PF_W)) 887 LastRO = P; 888 } 889 890 if (LastRO) { 891 // _etext is the first location after the last read-only loadable segment. 892 if (ElfSym::Etext1) 893 ElfSym::Etext1->Section = LastRO->LastSec; 894 if (ElfSym::Etext2) 895 ElfSym::Etext2->Section = LastRO->LastSec; 896 } 897 898 if (Last) { 899 // _edata points to the end of the last mapped initialized section. 900 OutputSection *Edata = nullptr; 901 for (OutputSection *OS : OutputSections) { 902 if (OS->Type != SHT_NOBITS) 903 Edata = OS; 904 if (OS == Last->LastSec) 905 break; 906 } 907 908 if (ElfSym::Edata1) 909 ElfSym::Edata1->Section = Edata; 910 if (ElfSym::Edata2) 911 ElfSym::Edata2->Section = Edata; 912 913 // _end is the first location after the uninitialized data region. 914 if (ElfSym::End1) 915 ElfSym::End1->Section = Last->LastSec; 916 if (ElfSym::End2) 917 ElfSym::End2->Section = Last->LastSec; 918 } 919 920 if (ElfSym::Bss) 921 ElfSym::Bss->Section = findSection(".bss"); 922 923 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 924 // be equal to the _gp symbol's value. 925 if (ElfSym::MipsGp) { 926 // Find GP-relative section with the lowest address 927 // and use this address to calculate default _gp value. 928 for (OutputSection *OS : OutputSections) { 929 if (OS->Flags & SHF_MIPS_GPREL) { 930 ElfSym::MipsGp->Section = OS; 931 ElfSym::MipsGp->Value = 0x7ff0; 932 break; 933 } 934 } 935 } 936 } 937 938 // We want to find how similar two ranks are. 939 // The more branches in getSectionRank that match, the more similar they are. 940 // Since each branch corresponds to a bit flag, we can just use 941 // countLeadingZeros. 942 static int getRankProximityAux(OutputSection *A, OutputSection *B) { 943 return countLeadingZeros(A->SortRank ^ B->SortRank); 944 } 945 946 static int getRankProximity(OutputSection *A, BaseCommand *B) { 947 if (auto *Sec = dyn_cast<OutputSection>(B)) 948 return getRankProximityAux(A, Sec); 949 return -1; 950 } 951 952 // When placing orphan sections, we want to place them after symbol assignments 953 // so that an orphan after 954 // begin_foo = .; 955 // foo : { *(foo) } 956 // end_foo = .; 957 // doesn't break the intended meaning of the begin/end symbols. 958 // We don't want to go over sections since findOrphanPos is the 959 // one in charge of deciding the order of the sections. 960 // We don't want to go over changes to '.', since doing so in 961 // rx_sec : { *(rx_sec) } 962 // . = ALIGN(0x1000); 963 // /* The RW PT_LOAD starts here*/ 964 // rw_sec : { *(rw_sec) } 965 // would mean that the RW PT_LOAD would become unaligned. 966 static bool shouldSkip(BaseCommand *Cmd) { 967 if (isa<OutputSection>(Cmd)) 968 return false; 969 if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd)) 970 return Assign->Name != "."; 971 return true; 972 } 973 974 // We want to place orphan sections so that they share as much 975 // characteristics with their neighbors as possible. For example, if 976 // both are rw, or both are tls. 977 template <typename ELFT> 978 static std::vector<BaseCommand *>::iterator 979 findOrphanPos(std::vector<BaseCommand *>::iterator B, 980 std::vector<BaseCommand *>::iterator E) { 981 OutputSection *Sec = cast<OutputSection>(*E); 982 983 // Find the first element that has as close a rank as possible. 984 auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) { 985 return getRankProximity(Sec, A) < getRankProximity(Sec, B); 986 }); 987 if (I == E) 988 return E; 989 990 // Consider all existing sections with the same proximity. 991 int Proximity = getRankProximity(Sec, *I); 992 for (; I != E; ++I) { 993 auto *CurSec = dyn_cast<OutputSection>(*I); 994 if (!CurSec) 995 continue; 996 if (getRankProximity(Sec, CurSec) != Proximity || 997 Sec->SortRank < CurSec->SortRank) 998 break; 999 } 1000 1001 auto IsOutputSec = [](BaseCommand *Cmd) { return isa<OutputSection>(Cmd); }; 1002 auto J = std::find_if(llvm::make_reverse_iterator(I), 1003 llvm::make_reverse_iterator(B), IsOutputSec); 1004 I = J.base(); 1005 1006 // As a special case, if the orphan section is the last section, put 1007 // it at the very end, past any other commands. 1008 // This matches bfd's behavior and is convenient when the linker script fully 1009 // specifies the start of the file, but doesn't care about the end (the non 1010 // alloc sections for example). 1011 auto NextSec = std::find_if(I, E, IsOutputSec); 1012 if (NextSec == E) 1013 return E; 1014 1015 while (I != E && shouldSkip(*I)) 1016 ++I; 1017 return I; 1018 } 1019 1020 // Builds section order for handling --symbol-ordering-file. 1021 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1022 DenseMap<const InputSectionBase *, int> SectionOrder; 1023 if (Config->SymbolOrderingFile.empty()) 1024 return SectionOrder; 1025 1026 struct SymbolOrderEntry { 1027 int Priority; 1028 bool Present; 1029 }; 1030 1031 // Build a map from symbols to their priorities. Symbols that didn't 1032 // appear in the symbol ordering file have the lowest priority 0. 1033 // All explicitly mentioned symbols have negative (higher) priorities. 1034 DenseMap<StringRef, SymbolOrderEntry> SymbolOrder; 1035 int Priority = -Config->SymbolOrderingFile.size(); 1036 for (StringRef S : Config->SymbolOrderingFile) 1037 SymbolOrder.insert({S, {Priority++, false}}); 1038 1039 // Build a map from sections to their priorities. 1040 for (InputFile *File : ObjectFiles) { 1041 for (Symbol *Sym : File->getSymbols()) { 1042 auto It = SymbolOrder.find(Sym->getName()); 1043 if (It == SymbolOrder.end()) 1044 continue; 1045 SymbolOrderEntry &Ent = It->second; 1046 Ent.Present = true; 1047 1048 auto *D = dyn_cast<Defined>(Sym); 1049 if (Config->WarnSymbolOrdering) { 1050 if (Sym->isUndefined()) 1051 warn(File->getName() + 1052 ": unable to order undefined symbol: " + Sym->getName()); 1053 else if (Sym->isShared()) 1054 warn(File->getName() + 1055 ": unable to order shared symbol: " + Sym->getName()); 1056 else if (D && !D->Section) 1057 warn(File->getName() + 1058 ": unable to order absolute symbol: " + Sym->getName()); 1059 else if (D && !D->Section->Live) 1060 warn(File->getName() + 1061 ": unable to order discarded symbol: " + Sym->getName()); 1062 } 1063 if (!D) 1064 continue; 1065 1066 if (auto *Sec = dyn_cast_or_null<InputSectionBase>(D->Section)) { 1067 int &Priority = SectionOrder[cast<InputSectionBase>(Sec->Repl)]; 1068 Priority = std::min(Priority, Ent.Priority); 1069 } 1070 } 1071 } 1072 1073 if (Config->WarnSymbolOrdering) 1074 for (auto OrderEntry : SymbolOrder) 1075 if (!OrderEntry.second.Present) 1076 warn("symbol ordering file: no such symbol: " + OrderEntry.first); 1077 1078 return SectionOrder; 1079 } 1080 1081 static void sortSection(OutputSection *Sec, 1082 const DenseMap<const InputSectionBase *, int> &Order) { 1083 StringRef Name = Sec->Name; 1084 1085 // Sort input sections by section name suffixes for 1086 // __attribute__((init_priority(N))). 1087 if (Name == ".init_array" || Name == ".fini_array") { 1088 if (!Script->HasSectionsCommand) 1089 Sec->sortInitFini(); 1090 return; 1091 } 1092 1093 // Sort input sections by the special rule for .ctors and .dtors. 1094 if (Name == ".ctors" || Name == ".dtors") { 1095 if (!Script->HasSectionsCommand) 1096 Sec->sortCtorsDtors(); 1097 return; 1098 } 1099 1100 // Never sort these. 1101 if (Name == ".init" || Name == ".fini") 1102 return; 1103 1104 // Sort input sections by priority using the list provided 1105 // by --symbol-ordering-file. 1106 if (!Order.empty()) 1107 Sec->sort([&](InputSectionBase *S) { return Order.lookup(S); }); 1108 } 1109 1110 // If no layout was provided by linker script, we want to apply default 1111 // sorting for special input sections. This also handles --symbol-ordering-file. 1112 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1113 // Build the order once since it is expensive. 1114 DenseMap<const InputSectionBase *, int> Order = buildSectionOrder(); 1115 for (BaseCommand *Base : Script->SectionCommands) 1116 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1117 sortSection(Sec, Order); 1118 } 1119 1120 template <class ELFT> void Writer<ELFT>::sortSections() { 1121 Script->adjustSectionsBeforeSorting(); 1122 1123 // Don't sort if using -r. It is not necessary and we want to preserve the 1124 // relative order for SHF_LINK_ORDER sections. 1125 if (Config->Relocatable) 1126 return; 1127 1128 for (BaseCommand *Base : Script->SectionCommands) 1129 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1130 Sec->SortRank = getSectionRank(Sec); 1131 1132 sortInputSections(); 1133 1134 if (!Script->HasSectionsCommand) { 1135 // We know that all the OutputSections are contiguous in this case. 1136 auto E = Script->SectionCommands.end(); 1137 auto I = Script->SectionCommands.begin(); 1138 auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); }; 1139 I = std::find_if(I, E, IsSection); 1140 E = std::find_if(llvm::make_reverse_iterator(E), 1141 llvm::make_reverse_iterator(I), IsSection) 1142 .base(); 1143 std::stable_sort(I, E, compareSections); 1144 return; 1145 } 1146 1147 // Orphan sections are sections present in the input files which are 1148 // not explicitly placed into the output file by the linker script. 1149 // 1150 // The sections in the linker script are already in the correct 1151 // order. We have to figuere out where to insert the orphan 1152 // sections. 1153 // 1154 // The order of the sections in the script is arbitrary and may not agree with 1155 // compareSections. This means that we cannot easily define a strict weak 1156 // ordering. To see why, consider a comparison of a section in the script and 1157 // one not in the script. We have a two simple options: 1158 // * Make them equivalent (a is not less than b, and b is not less than a). 1159 // The problem is then that equivalence has to be transitive and we can 1160 // have sections a, b and c with only b in a script and a less than c 1161 // which breaks this property. 1162 // * Use compareSectionsNonScript. Given that the script order doesn't have 1163 // to match, we can end up with sections a, b, c, d where b and c are in the 1164 // script and c is compareSectionsNonScript less than b. In which case d 1165 // can be equivalent to c, a to b and d < a. As a concrete example: 1166 // .a (rx) # not in script 1167 // .b (rx) # in script 1168 // .c (ro) # in script 1169 // .d (ro) # not in script 1170 // 1171 // The way we define an order then is: 1172 // * Sort only the orphan sections. They are in the end right now. 1173 // * Move each orphan section to its preferred position. We try 1174 // to put each section in the last position where it can share 1175 // a PT_LOAD. 1176 // 1177 // There is some ambiguity as to where exactly a new entry should be 1178 // inserted, because Commands contains not only output section 1179 // commands but also other types of commands such as symbol assignment 1180 // expressions. There's no correct answer here due to the lack of the 1181 // formal specification of the linker script. We use heuristics to 1182 // determine whether a new output command should be added before or 1183 // after another commands. For the details, look at shouldSkip 1184 // function. 1185 1186 auto I = Script->SectionCommands.begin(); 1187 auto E = Script->SectionCommands.end(); 1188 auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) { 1189 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1190 return Sec->SectionIndex == INT_MAX; 1191 return false; 1192 }); 1193 1194 // Sort the orphan sections. 1195 std::stable_sort(NonScriptI, E, compareSections); 1196 1197 // As a horrible special case, skip the first . assignment if it is before any 1198 // section. We do this because it is common to set a load address by starting 1199 // the script with ". = 0xabcd" and the expectation is that every section is 1200 // after that. 1201 auto FirstSectionOrDotAssignment = 1202 std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); 1203 if (FirstSectionOrDotAssignment != E && 1204 isa<SymbolAssignment>(**FirstSectionOrDotAssignment)) 1205 ++FirstSectionOrDotAssignment; 1206 I = FirstSectionOrDotAssignment; 1207 1208 while (NonScriptI != E) { 1209 auto Pos = findOrphanPos<ELFT>(I, NonScriptI); 1210 OutputSection *Orphan = cast<OutputSection>(*NonScriptI); 1211 1212 // As an optimization, find all sections with the same sort rank 1213 // and insert them with one rotate. 1214 unsigned Rank = Orphan->SortRank; 1215 auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) { 1216 return cast<OutputSection>(Cmd)->SortRank != Rank; 1217 }); 1218 std::rotate(Pos, NonScriptI, End); 1219 NonScriptI = End; 1220 } 1221 1222 Script->adjustSectionsAfterSorting(); 1223 } 1224 1225 static bool compareByFilePosition(InputSection *A, InputSection *B) { 1226 // Synthetic, i. e. a sentinel section, should go last. 1227 if (A->kind() == InputSectionBase::Synthetic || 1228 B->kind() == InputSectionBase::Synthetic) 1229 return A->kind() != InputSectionBase::Synthetic; 1230 InputSection *LA = A->getLinkOrderDep(); 1231 InputSection *LB = B->getLinkOrderDep(); 1232 OutputSection *AOut = LA->getParent(); 1233 OutputSection *BOut = LB->getParent(); 1234 if (AOut != BOut) 1235 return AOut->SectionIndex < BOut->SectionIndex; 1236 return LA->OutSecOff < LB->OutSecOff; 1237 } 1238 1239 // This function is used by the --merge-exidx-entries to detect duplicate 1240 // .ARM.exidx sections. It is Arm only. 1241 // 1242 // The .ARM.exidx section is of the form: 1243 // | PREL31 offset to function | Unwind instructions for function | 1244 // where the unwind instructions are either a small number of unwind 1245 // instructions inlined into the table entry, the special CANT_UNWIND value of 1246 // 0x1 or a PREL31 offset into a .ARM.extab Section that contains unwind 1247 // instructions. 1248 // 1249 // We return true if all the unwind instructions in the .ARM.exidx entries of 1250 // Cur can be merged into the last entry of Prev. 1251 static bool isDuplicateArmExidxSec(InputSection *Prev, InputSection *Cur) { 1252 1253 // References to .ARM.Extab Sections have bit 31 clear and are not the 1254 // special EXIDX_CANTUNWIND bit-pattern. 1255 auto IsExtabRef = [](uint32_t Unwind) { 1256 return (Unwind & 0x80000000) == 0 && Unwind != 0x1; 1257 }; 1258 1259 struct ExidxEntry { 1260 ulittle32_t Fn; 1261 ulittle32_t Unwind; 1262 }; 1263 1264 // Get the last table Entry from the previous .ARM.exidx section. 1265 const ExidxEntry &PrevEntry = *reinterpret_cast<const ExidxEntry *>( 1266 Prev->Data.data() + Prev->getSize() - sizeof(ExidxEntry)); 1267 if (IsExtabRef(PrevEntry.Unwind)) 1268 return false; 1269 1270 // We consider the unwind instructions of an .ARM.exidx table entry 1271 // a duplicate if the previous unwind instructions if: 1272 // - Both are the special EXIDX_CANTUNWIND. 1273 // - Both are the same inline unwind instructions. 1274 // We do not attempt to follow and check links into .ARM.extab tables as 1275 // consecutive identical entries are rare and the effort to check that they 1276 // are identical is high. 1277 1278 if (isa<SyntheticSection>(Cur)) 1279 // Exidx sentinel section has implicit EXIDX_CANTUNWIND; 1280 return PrevEntry.Unwind == 0x1; 1281 1282 ArrayRef<const ExidxEntry> Entries( 1283 reinterpret_cast<const ExidxEntry *>(Cur->Data.data()), 1284 Cur->getSize() / sizeof(ExidxEntry)); 1285 for (const ExidxEntry &Entry : Entries) 1286 if (IsExtabRef(Entry.Unwind) || Entry.Unwind != PrevEntry.Unwind) 1287 return false; 1288 // All table entries in this .ARM.exidx Section can be merged into the 1289 // previous Section. 1290 return true; 1291 } 1292 1293 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1294 for (OutputSection *Sec : OutputSections) { 1295 if (!(Sec->Flags & SHF_LINK_ORDER)) 1296 continue; 1297 1298 // Link order may be distributed across several InputSectionDescriptions 1299 // but sort must consider them all at once. 1300 std::vector<InputSection **> ScriptSections; 1301 std::vector<InputSection *> Sections; 1302 for (BaseCommand *Base : Sec->SectionCommands) { 1303 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) { 1304 for (InputSection *&IS : ISD->Sections) { 1305 ScriptSections.push_back(&IS); 1306 Sections.push_back(IS); 1307 } 1308 } 1309 } 1310 std::stable_sort(Sections.begin(), Sections.end(), compareByFilePosition); 1311 1312 if (!Config->Relocatable && Config->EMachine == EM_ARM && 1313 Sec->Type == SHT_ARM_EXIDX) { 1314 1315 if (!Sections.empty() && isa<ARMExidxSentinelSection>(Sections.back())) { 1316 assert(Sections.size() >= 2 && 1317 "We should create a sentinel section only if there are " 1318 "alive regular exidx sections."); 1319 // The last executable section is required to fill the sentinel. 1320 // Remember it here so that we don't have to find it again. 1321 auto *Sentinel = cast<ARMExidxSentinelSection>(Sections.back()); 1322 Sentinel->Highest = Sections[Sections.size() - 2]->getLinkOrderDep(); 1323 } 1324 1325 if (Config->MergeArmExidx) { 1326 // The EHABI for the Arm Architecture permits consecutive identical 1327 // table entries to be merged. We use a simple implementation that 1328 // removes a .ARM.exidx Input Section if it can be merged into the 1329 // previous one. This does not require any rewriting of InputSection 1330 // contents but misses opportunities for fine grained deduplication 1331 // where only a subset of the InputSection contents can be merged. 1332 int Cur = 1; 1333 int Prev = 0; 1334 // The last one is a sentinel entry which should not be removed. 1335 int N = Sections.size() - 1; 1336 while (Cur < N) { 1337 if (isDuplicateArmExidxSec(Sections[Prev], Sections[Cur])) 1338 Sections[Cur] = nullptr; 1339 else 1340 Prev = Cur; 1341 ++Cur; 1342 } 1343 } 1344 } 1345 1346 for (int I = 0, N = Sections.size(); I < N; ++I) 1347 *ScriptSections[I] = Sections[I]; 1348 1349 // Remove the Sections we marked as duplicate earlier. 1350 for (BaseCommand *Base : Sec->SectionCommands) 1351 if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) 1352 llvm::erase_if(ISD->Sections, [](InputSection *IS) { return !IS; }); 1353 } 1354 } 1355 1356 static void applySynthetic(const std::vector<SyntheticSection *> &Sections, 1357 std::function<void(SyntheticSection *)> Fn) { 1358 for (SyntheticSection *SS : Sections) 1359 if (SS && SS->getParent() && !SS->empty()) 1360 Fn(SS); 1361 } 1362 1363 // In order to allow users to manipulate linker-synthesized sections, 1364 // we had to add synthetic sections to the input section list early, 1365 // even before we make decisions whether they are needed. This allows 1366 // users to write scripts like this: ".mygot : { .got }". 1367 // 1368 // Doing it has an unintended side effects. If it turns out that we 1369 // don't need a .got (for example) at all because there's no 1370 // relocation that needs a .got, we don't want to emit .got. 1371 // 1372 // To deal with the above problem, this function is called after 1373 // scanRelocations is called to remove synthetic sections that turn 1374 // out to be empty. 1375 static void removeUnusedSyntheticSections() { 1376 // All input synthetic sections that can be empty are placed after 1377 // all regular ones. We iterate over them all and exit at first 1378 // non-synthetic. 1379 for (InputSectionBase *S : llvm::reverse(InputSections)) { 1380 SyntheticSection *SS = dyn_cast<SyntheticSection>(S); 1381 if (!SS) 1382 return; 1383 OutputSection *OS = SS->getParent(); 1384 if (!OS || !SS->empty()) 1385 continue; 1386 1387 // If we reach here, then SS is an unused synthetic section and we want to 1388 // remove it from corresponding input section description of output section. 1389 for (BaseCommand *B : OS->SectionCommands) 1390 if (auto *ISD = dyn_cast<InputSectionDescription>(B)) 1391 llvm::erase_if(ISD->Sections, 1392 [=](InputSection *IS) { return IS == SS; }); 1393 } 1394 } 1395 1396 // Returns true if a symbol can be replaced at load-time by a symbol 1397 // with the same name defined in other ELF executable or DSO. 1398 static bool computeIsPreemptible(const Symbol &B) { 1399 assert(!B.isLocal()); 1400 // Only symbols that appear in dynsym can be preempted. 1401 if (!B.includeInDynsym()) 1402 return false; 1403 1404 // Only default visibility symbols can be preempted. 1405 if (B.Visibility != STV_DEFAULT) 1406 return false; 1407 1408 // At this point copy relocations have not been created yet, so any 1409 // symbol that is not defined locally is preemptible. 1410 if (!B.isDefined()) 1411 return true; 1412 1413 // If we have a dynamic list it specifies which local symbols are preemptible. 1414 if (Config->HasDynamicList) 1415 return false; 1416 1417 if (!Config->Shared) 1418 return false; 1419 1420 // -Bsymbolic means that definitions are not preempted. 1421 if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc())) 1422 return false; 1423 return true; 1424 } 1425 1426 // Create output section objects and add them to OutputSections. 1427 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1428 Out::DebugInfo = findSection(".debug_info"); 1429 Out::PreinitArray = findSection(".preinit_array"); 1430 Out::InitArray = findSection(".init_array"); 1431 Out::FiniArray = findSection(".fini_array"); 1432 1433 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1434 // symbols for sections, so that the runtime can get the start and end 1435 // addresses of each section by section name. Add such symbols. 1436 if (!Config->Relocatable) { 1437 addStartEndSymbols(); 1438 for (BaseCommand *Base : Script->SectionCommands) 1439 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1440 addStartStopSymbols(Sec); 1441 } 1442 1443 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1444 // It should be okay as no one seems to care about the type. 1445 // Even the author of gold doesn't remember why gold behaves that way. 1446 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1447 if (InX::DynSymTab) 1448 Symtab->addRegular("_DYNAMIC", STV_HIDDEN, STT_NOTYPE, 0 /*Value*/, 1449 /*Size=*/0, STB_WEAK, InX::Dynamic, 1450 /*File=*/nullptr); 1451 1452 // Define __rel[a]_iplt_{start,end} symbols if needed. 1453 addRelIpltSymbols(); 1454 1455 // This responsible for splitting up .eh_frame section into 1456 // pieces. The relocation scan uses those pieces, so this has to be 1457 // earlier. 1458 applySynthetic({InX::EhFrame}, 1459 [](SyntheticSection *SS) { SS->finalizeContents(); }); 1460 1461 for (Symbol *S : Symtab->getSymbols()) 1462 S->IsPreemptible |= computeIsPreemptible(*S); 1463 1464 // Scan relocations. This must be done after every symbol is declared so that 1465 // we can correctly decide if a dynamic relocation is needed. 1466 if (!Config->Relocatable) 1467 forEachRelSec(scanRelocations<ELFT>); 1468 1469 if (InX::Plt && !InX::Plt->empty()) 1470 InX::Plt->addSymbols(); 1471 if (InX::Iplt && !InX::Iplt->empty()) 1472 InX::Iplt->addSymbols(); 1473 1474 // Now that we have defined all possible global symbols including linker- 1475 // synthesized ones. Visit all symbols to give the finishing touches. 1476 for (Symbol *Sym : Symtab->getSymbols()) { 1477 if (!includeInSymtab(*Sym)) 1478 continue; 1479 if (InX::SymTab) 1480 InX::SymTab->addSymbol(Sym); 1481 1482 if (InX::DynSymTab && Sym->includeInDynsym()) { 1483 InX::DynSymTab->addSymbol(Sym); 1484 if (auto *SS = dyn_cast<SharedSymbol>(Sym)) 1485 if (cast<SharedFile<ELFT>>(Sym->File)->IsNeeded) 1486 In<ELFT>::VerNeed->addSymbol(SS); 1487 } 1488 } 1489 1490 // Do not proceed if there was an undefined symbol. 1491 if (errorCount()) 1492 return; 1493 1494 removeUnusedSyntheticSections(); 1495 1496 sortSections(); 1497 1498 // Now that we have the final list, create a list of all the 1499 // OutputSections for convenience. 1500 for (BaseCommand *Base : Script->SectionCommands) 1501 if (auto *Sec = dyn_cast<OutputSection>(Base)) 1502 OutputSections.push_back(Sec); 1503 1504 // Prefer command line supplied address over other constraints. 1505 for (OutputSection *Sec : OutputSections) { 1506 auto I = Config->SectionStartMap.find(Sec->Name); 1507 if (I != Config->SectionStartMap.end()) 1508 Sec->AddrExpr = [=] { return I->second; }; 1509 } 1510 1511 // This is a bit of a hack. A value of 0 means undef, so we set it 1512 // to 1 t make __ehdr_start defined. The section number is not 1513 // particularly relevant. 1514 Out::ElfHeader->SectionIndex = 1; 1515 1516 unsigned I = 1; 1517 for (OutputSection *Sec : OutputSections) { 1518 Sec->SectionIndex = I++; 1519 Sec->ShName = InX::ShStrTab->addString(Sec->Name); 1520 } 1521 1522 // Binary and relocatable output does not have PHDRS. 1523 // The headers have to be created before finalize as that can influence the 1524 // image base and the dynamic section on mips includes the image base. 1525 if (!Config->Relocatable && !Config->OFormatBinary) { 1526 Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs(); 1527 addPtArmExid(Phdrs); 1528 Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); 1529 } 1530 1531 // Some symbols are defined in term of program headers. Now that we 1532 // have the headers, we can find out which sections they point to. 1533 setReservedSymbolSections(); 1534 1535 // Dynamic section must be the last one in this list and dynamic 1536 // symbol table section (DynSymTab) must be the first one. 1537 applySynthetic( 1538 {InX::DynSymTab, InX::Bss, InX::BssRelRo, InX::GnuHashTab, 1539 InX::HashTab, InX::SymTab, InX::ShStrTab, InX::StrTab, 1540 In<ELFT>::VerDef, InX::DynStrTab, InX::Got, InX::MipsGot, 1541 InX::IgotPlt, InX::GotPlt, InX::RelaDyn, InX::RelaIplt, 1542 InX::RelaPlt, InX::Plt, InX::Iplt, InX::EhFrameHdr, 1543 In<ELFT>::VerSym, In<ELFT>::VerNeed, InX::Dynamic}, 1544 [](SyntheticSection *SS) { SS->finalizeContents(); }); 1545 1546 if (!Script->HasSectionsCommand && !Config->Relocatable) 1547 fixSectionAlignments(); 1548 1549 // After link order processing .ARM.exidx sections can be deduplicated, which 1550 // needs to be resolved before any other address dependent operation. 1551 resolveShfLinkOrder(); 1552 1553 // Some architectures need to generate content that depends on the address 1554 // of InputSections. For example some architectures use small displacements 1555 // for jump instructions that is the linker's responsibility for creating 1556 // range extension thunks for. As the generation of the content may also 1557 // alter InputSection addresses we must converge to a fixed point. 1558 if (Target->NeedsThunks || Config->AndroidPackDynRelocs) { 1559 ThunkCreator TC; 1560 AArch64Err843419Patcher A64P; 1561 bool Changed; 1562 do { 1563 Script->assignAddresses(); 1564 Changed = false; 1565 if (Target->NeedsThunks) 1566 Changed |= TC.createThunks(OutputSections); 1567 if (Config->FixCortexA53Errata843419) { 1568 if (Changed) 1569 Script->assignAddresses(); 1570 Changed |= A64P.createFixes(); 1571 } 1572 if (InX::MipsGot) 1573 InX::MipsGot->updateAllocSize(); 1574 Changed |= InX::RelaDyn->updateAllocSize(); 1575 } while (Changed); 1576 } 1577 1578 // Fill other section headers. The dynamic table is finalized 1579 // at the end because some tags like RELSZ depend on result 1580 // of finalizing other sections. 1581 for (OutputSection *Sec : OutputSections) 1582 Sec->finalize<ELFT>(); 1583 1584 // createThunks may have added local symbols to the static symbol table 1585 applySynthetic({InX::SymTab}, 1586 [](SyntheticSection *SS) { SS->postThunkContents(); }); 1587 } 1588 1589 // The linker is expected to define SECNAME_start and SECNAME_end 1590 // symbols for a few sections. This function defines them. 1591 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1592 auto Define = [&](StringRef Start, StringRef End, OutputSection *OS) { 1593 // These symbols resolve to the image base if the section does not exist. 1594 // A special value -1 indicates end of the section. 1595 if (OS) { 1596 addOptionalRegular(Start, OS, 0); 1597 addOptionalRegular(End, OS, -1); 1598 } else { 1599 if (Config->Pic) 1600 OS = Out::ElfHeader; 1601 addOptionalRegular(Start, OS, 0); 1602 addOptionalRegular(End, OS, 0); 1603 } 1604 }; 1605 1606 Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); 1607 Define("__init_array_start", "__init_array_end", Out::InitArray); 1608 Define("__fini_array_start", "__fini_array_end", Out::FiniArray); 1609 1610 if (OutputSection *Sec = findSection(".ARM.exidx")) 1611 Define("__exidx_start", "__exidx_end", Sec); 1612 } 1613 1614 // If a section name is valid as a C identifier (which is rare because of 1615 // the leading '.'), linkers are expected to define __start_<secname> and 1616 // __stop_<secname> symbols. They are at beginning and end of the section, 1617 // respectively. This is not requested by the ELF standard, but GNU ld and 1618 // gold provide the feature, and used by many programs. 1619 template <class ELFT> 1620 void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) { 1621 StringRef S = Sec->Name; 1622 if (!isValidCIdentifier(S)) 1623 return; 1624 addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_DEFAULT); 1625 addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_DEFAULT); 1626 } 1627 1628 static bool needsPtLoad(OutputSection *Sec) { 1629 if (!(Sec->Flags & SHF_ALLOC)) 1630 return false; 1631 1632 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 1633 // responsible for allocating space for them, not the PT_LOAD that 1634 // contains the TLS initialization image. 1635 if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) 1636 return false; 1637 return true; 1638 } 1639 1640 // Linker scripts are responsible for aligning addresses. Unfortunately, most 1641 // linker scripts are designed for creating two PT_LOADs only, one RX and one 1642 // RW. This means that there is no alignment in the RO to RX transition and we 1643 // cannot create a PT_LOAD there. 1644 static uint64_t computeFlags(uint64_t Flags) { 1645 if (Config->Omagic) 1646 return PF_R | PF_W | PF_X; 1647 if (Config->SingleRoRx && !(Flags & PF_W)) 1648 return Flags | PF_X; 1649 return Flags; 1650 } 1651 1652 // Decide which program headers to create and which sections to include in each 1653 // one. 1654 template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() { 1655 std::vector<PhdrEntry *> Ret; 1656 auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { 1657 Ret.push_back(make<PhdrEntry>(Type, Flags)); 1658 return Ret.back(); 1659 }; 1660 1661 // The first phdr entry is PT_PHDR which describes the program header itself. 1662 AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); 1663 1664 // PT_INTERP must be the second entry if exists. 1665 if (OutputSection *Cmd = findSection(".interp")) 1666 AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd); 1667 1668 // Add the first PT_LOAD segment for regular output sections. 1669 uint64_t Flags = computeFlags(PF_R); 1670 PhdrEntry *Load = AddHdr(PT_LOAD, Flags); 1671 1672 // Add the headers. We will remove them if they don't fit. 1673 Load->add(Out::ElfHeader); 1674 Load->add(Out::ProgramHeaders); 1675 1676 for (OutputSection *Sec : OutputSections) { 1677 if (!(Sec->Flags & SHF_ALLOC)) 1678 break; 1679 if (!needsPtLoad(Sec)) 1680 continue; 1681 1682 // Segments are contiguous memory regions that has the same attributes 1683 // (e.g. executable or writable). There is one phdr for each segment. 1684 // Therefore, we need to create a new phdr when the next section has 1685 // different flags or is loaded at a discontiguous address using AT linker 1686 // script command. At the same time, we don't want to create a separate 1687 // load segment for the headers, even if the first output section has 1688 // an AT attribute. 1689 uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); 1690 if ((Sec->LMAExpr && Load->LastSec != Out::ProgramHeaders) || 1691 Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags) { 1692 1693 Load = AddHdr(PT_LOAD, NewFlags); 1694 Flags = NewFlags; 1695 } 1696 1697 Load->add(Sec); 1698 } 1699 1700 // Add a TLS segment if any. 1701 PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 1702 for (OutputSection *Sec : OutputSections) 1703 if (Sec->Flags & SHF_TLS) 1704 TlsHdr->add(Sec); 1705 if (TlsHdr->FirstSec) 1706 Ret.push_back(TlsHdr); 1707 1708 // Add an entry for .dynamic. 1709 if (InX::DynSymTab) 1710 AddHdr(PT_DYNAMIC, InX::Dynamic->getParent()->getPhdrFlags()) 1711 ->add(InX::Dynamic->getParent()); 1712 1713 // PT_GNU_RELRO includes all sections that should be marked as 1714 // read-only by dynamic linker after proccessing relocations. 1715 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 1716 // an error message if more than one PT_GNU_RELRO PHDR is required. 1717 PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 1718 bool InRelroPhdr = false; 1719 bool IsRelroFinished = false; 1720 for (OutputSection *Sec : OutputSections) { 1721 if (!needsPtLoad(Sec)) 1722 continue; 1723 if (isRelroSection(Sec)) { 1724 InRelroPhdr = true; 1725 if (!IsRelroFinished) 1726 RelRo->add(Sec); 1727 else 1728 error("section: " + Sec->Name + " is not contiguous with other relro" + 1729 " sections"); 1730 } else if (InRelroPhdr) { 1731 InRelroPhdr = false; 1732 IsRelroFinished = true; 1733 } 1734 } 1735 if (RelRo->FirstSec) 1736 Ret.push_back(RelRo); 1737 1738 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 1739 if (!InX::EhFrame->empty() && InX::EhFrameHdr && InX::EhFrame->getParent() && 1740 InX::EhFrameHdr->getParent()) 1741 AddHdr(PT_GNU_EH_FRAME, InX::EhFrameHdr->getParent()->getPhdrFlags()) 1742 ->add(InX::EhFrameHdr->getParent()); 1743 1744 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 1745 // the dynamic linker fill the segment with random data. 1746 if (OutputSection *Cmd = findSection(".openbsd.randomdata")) 1747 AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd); 1748 1749 // PT_GNU_STACK is a special section to tell the loader to make the 1750 // pages for the stack non-executable. If you really want an executable 1751 // stack, you can pass -z execstack, but that's not recommended for 1752 // security reasons. 1753 unsigned Perm; 1754 if (Config->ZExecstack) 1755 Perm = PF_R | PF_W | PF_X; 1756 else 1757 Perm = PF_R | PF_W; 1758 AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; 1759 1760 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 1761 // is expected to perform W^X violations, such as calling mprotect(2) or 1762 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 1763 // OpenBSD. 1764 if (Config->ZWxneeded) 1765 AddHdr(PT_OPENBSD_WXNEEDED, PF_X); 1766 1767 // Create one PT_NOTE per a group of contiguous .note sections. 1768 PhdrEntry *Note = nullptr; 1769 for (OutputSection *Sec : OutputSections) { 1770 if (Sec->Type == SHT_NOTE) { 1771 if (!Note || Sec->LMAExpr) 1772 Note = AddHdr(PT_NOTE, PF_R); 1773 Note->add(Sec); 1774 } else { 1775 Note = nullptr; 1776 } 1777 } 1778 return Ret; 1779 } 1780 1781 template <class ELFT> 1782 void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry *> &Phdrs) { 1783 if (Config->EMachine != EM_ARM) 1784 return; 1785 auto I = llvm::find_if(OutputSections, [](OutputSection *Cmd) { 1786 return Cmd->Type == SHT_ARM_EXIDX; 1787 }); 1788 if (I == OutputSections.end()) 1789 return; 1790 1791 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1792 PhdrEntry *ARMExidx = make<PhdrEntry>(PT_ARM_EXIDX, PF_R); 1793 ARMExidx->add(*I); 1794 Phdrs.push_back(ARMExidx); 1795 } 1796 1797 // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the 1798 // first section after PT_GNU_RELRO have to be page aligned so that the dynamic 1799 // linker can set the permissions. 1800 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 1801 auto PageAlign = [](OutputSection *Cmd) { 1802 if (Cmd && !Cmd->AddrExpr) 1803 Cmd->AddrExpr = [=] { 1804 return alignTo(Script->getDot(), Config->MaxPageSize); 1805 }; 1806 }; 1807 1808 for (const PhdrEntry *P : Phdrs) 1809 if (P->p_type == PT_LOAD && P->FirstSec) 1810 PageAlign(P->FirstSec); 1811 1812 for (const PhdrEntry *P : Phdrs) { 1813 if (P->p_type != PT_GNU_RELRO) 1814 continue; 1815 if (P->FirstSec) 1816 PageAlign(P->FirstSec); 1817 // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we 1818 // have to align it to a page. 1819 auto End = OutputSections.end(); 1820 auto I = std::find(OutputSections.begin(), End, P->LastSec); 1821 if (I == End || (I + 1) == End) 1822 continue; 1823 OutputSection *Cmd = (*(I + 1)); 1824 if (needsPtLoad(Cmd)) 1825 PageAlign(Cmd); 1826 } 1827 } 1828 1829 // Adjusts the file alignment for a given output section and returns 1830 // its new file offset. The file offset must be the same with its 1831 // virtual address (modulo the page size) so that the loader can load 1832 // executables without any address adjustment. 1833 static uint64_t getFileAlignment(uint64_t Off, OutputSection *Cmd) { 1834 OutputSection *First = Cmd->PtLoad ? Cmd->PtLoad->FirstSec : nullptr; 1835 // The first section in a PT_LOAD has to have congruent offset and address 1836 // module the page size. 1837 if (Cmd == First) 1838 return alignTo(Off, std::max<uint64_t>(Cmd->Alignment, Config->MaxPageSize), 1839 Cmd->Addr); 1840 1841 // For SHT_NOBITS we don't want the alignment of the section to impact the 1842 // offset of the sections that follow. Since nothing seems to care about the 1843 // sh_offset of the SHT_NOBITS section itself, just ignore it. 1844 if (Cmd->Type == SHT_NOBITS) 1845 return Off; 1846 1847 // If the section is not in a PT_LOAD, we just have to align it. 1848 if (!Cmd->PtLoad) 1849 return alignTo(Off, Cmd->Alignment); 1850 1851 // If two sections share the same PT_LOAD the file offset is calculated 1852 // using this formula: Off2 = Off1 + (VA2 - VA1). 1853 return First->Offset + Cmd->Addr - First->Addr; 1854 } 1855 1856 static uint64_t setOffset(OutputSection *Cmd, uint64_t Off) { 1857 Off = getFileAlignment(Off, Cmd); 1858 Cmd->Offset = Off; 1859 1860 // For SHT_NOBITS we should not count the size. 1861 if (Cmd->Type == SHT_NOBITS) 1862 return Off; 1863 1864 return Off + Cmd->Size; 1865 } 1866 1867 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 1868 uint64_t Off = 0; 1869 for (OutputSection *Sec : OutputSections) 1870 if (Sec->Flags & SHF_ALLOC) 1871 Off = setOffset(Sec, Off); 1872 FileSize = alignTo(Off, Config->Wordsize); 1873 } 1874 1875 // Assign file offsets to output sections. 1876 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 1877 uint64_t Off = 0; 1878 Off = setOffset(Out::ElfHeader, Off); 1879 Off = setOffset(Out::ProgramHeaders, Off); 1880 1881 PhdrEntry *LastRX = nullptr; 1882 for (PhdrEntry *P : Phdrs) 1883 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 1884 LastRX = P; 1885 1886 for (OutputSection *Sec : OutputSections) { 1887 Off = setOffset(Sec, Off); 1888 if (Script->HasSectionsCommand) 1889 continue; 1890 // If this is a last section of the last executable segment and that 1891 // segment is the last loadable segment, align the offset of the 1892 // following section to avoid loading non-segments parts of the file. 1893 if (LastRX && LastRX->LastSec == Sec) 1894 Off = alignTo(Off, Target->PageSize); 1895 } 1896 1897 SectionHeaderOff = alignTo(Off, Config->Wordsize); 1898 FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); 1899 } 1900 1901 // Finalize the program headers. We call this function after we assign 1902 // file offsets and VAs to all sections. 1903 template <class ELFT> void Writer<ELFT>::setPhdrs() { 1904 for (PhdrEntry *P : Phdrs) { 1905 OutputSection *First = P->FirstSec; 1906 OutputSection *Last = P->LastSec; 1907 if (First) { 1908 P->p_filesz = Last->Offset - First->Offset; 1909 if (Last->Type != SHT_NOBITS) 1910 P->p_filesz += Last->Size; 1911 P->p_memsz = Last->Addr + Last->Size - First->Addr; 1912 P->p_offset = First->Offset; 1913 P->p_vaddr = First->Addr; 1914 if (!P->HasLMA) 1915 P->p_paddr = First->getLMA(); 1916 } 1917 if (P->p_type == PT_LOAD) 1918 P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize); 1919 else if (P->p_type == PT_GNU_RELRO) { 1920 P->p_align = 1; 1921 // The glibc dynamic loader rounds the size down, so we need to round up 1922 // to protect the last page. This is a no-op on FreeBSD which always 1923 // rounds up. 1924 P->p_memsz = alignTo(P->p_memsz, Target->PageSize); 1925 } 1926 1927 // The TLS pointer goes after PT_TLS. At least glibc will align it, 1928 // so round up the size to make sure the offsets are correct. 1929 if (P->p_type == PT_TLS) { 1930 Out::TlsPhdr = P; 1931 if (P->p_memsz) 1932 P->p_memsz = alignTo(P->p_memsz, P->p_align); 1933 } 1934 } 1935 } 1936 1937 static std::string rangeToString(uint64_t Addr, uint64_t Len) { 1938 if (Len == 0) 1939 return "<empty range at 0x" + utohexstr(Addr) + ">"; 1940 return "[0x" + utohexstr(Addr) + " -> 0x" + utohexstr(Addr + Len - 1) + "]"; 1941 } 1942 1943 // Check whether sections overlap for a specific address range (file offsets, 1944 // load and virtual adresses). 1945 // 1946 // This is a helper function called by Writer::checkNoOverlappingSections(). 1947 template <typename Getter, typename Predicate> 1948 static void checkForSectionOverlap(ArrayRef<OutputSection *> AllSections, 1949 StringRef Kind, Getter GetStart, 1950 Predicate ShouldSkip) { 1951 std::vector<OutputSection *> Sections; 1952 // By removing all zero-size sections we can simplify the check for overlap to 1953 // just checking whether the section range contains the other section's start 1954 // address. Additionally, it also slightly speeds up the checking since we 1955 // don't bother checking for overlap with sections that can never overlap. 1956 for (OutputSection *Sec : AllSections) 1957 if (Sec->Size > 0 && !ShouldSkip(Sec)) 1958 Sections.push_back(Sec); 1959 1960 // Instead of comparing every OutputSection with every other output section 1961 // we sort the sections by address (file offset or load/virtual address). This 1962 // way we find all overlapping sections but only need one comparision with the 1963 // next section in the common non-overlapping case. The only time we end up 1964 // doing more than one iteration of the following nested loop is if there are 1965 // overlapping sections. 1966 std::sort(Sections.begin(), Sections.end(), 1967 [=](const OutputSection *A, const OutputSection *B) { 1968 return GetStart(A) < GetStart(B); 1969 }); 1970 for (size_t I = 0; I < Sections.size(); ++I) { 1971 OutputSection *Sec = Sections[I]; 1972 uint64_t Start = GetStart(Sec); 1973 for (auto *Other : ArrayRef<OutputSection *>(Sections).slice(I + 1)) { 1974 // Since the sections are sorted by start address we only need to check 1975 // whether the other sections starts before the end of Sec. If this is 1976 // not the case we can break out of this loop since all following sections 1977 // will also start after the end of Sec. 1978 if (Start + Sec->Size <= GetStart(Other)) 1979 break; 1980 errorOrWarn("section " + Sec->Name + " " + Kind + 1981 " range overlaps with " + Other->Name + "\n>>> " + Sec->Name + 1982 " range is " + rangeToString(Start, Sec->Size) + "\n>>> " + 1983 Other->Name + " range is " + 1984 rangeToString(GetStart(Other), Other->Size)); 1985 } 1986 } 1987 } 1988 1989 // Check for overlapping sections 1990 // 1991 // In this function we check that none of the output sections have overlapping 1992 // file offsets. For SHF_ALLOC sections we also check that the load address 1993 // ranges and the virtual address ranges don't overlap 1994 template <class ELFT> void Writer<ELFT>::checkNoOverlappingSections() { 1995 // First check for overlapping file offsets. In this case we need to skip 1996 // Any section marked as SHT_NOBITS. These sections don't actually occupy 1997 // space in the file so Sec->Offset + Sec->Size can overlap with others. 1998 // If --oformat binary is specified only add SHF_ALLOC sections are added to 1999 // the output file so we skip any non-allocated sections in that case. 2000 checkForSectionOverlap( 2001 OutputSections, "file", [](const OutputSection *Sec) { return Sec->Offset; }, 2002 [](const OutputSection *Sec) { 2003 return Sec->Type == SHT_NOBITS || 2004 (Config->OFormatBinary && (Sec->Flags & SHF_ALLOC) == 0); 2005 }); 2006 2007 // When linking with -r there is no need to check for overlapping virtual/load 2008 // addresses since those addresses will only be assigned when the final 2009 // executable/shared object is created. 2010 if (Config->Relocatable) 2011 return; 2012 2013 // Checking for overlapping virtual and load addresses only needs to take 2014 // into account SHF_ALLOC sections since others will not be loaded. 2015 // Furthermore, we also need to skip SHF_TLS sections since these will be 2016 // mapped to other addresses at runtime and can therefore have overlapping 2017 // ranges in the file. 2018 auto SkipNonAllocSections = [](const OutputSection *Sec) { 2019 return (Sec->Flags & SHF_ALLOC) == 0 || (Sec->Flags & SHF_TLS); 2020 }; 2021 checkForSectionOverlap(OutputSections, "virtual address", 2022 [](const OutputSection *Sec) { return Sec->Addr; }, 2023 SkipNonAllocSections); 2024 2025 // Finally, check that the load addresses don't overlap. This will usually be 2026 // the same as the virtual addresses but can be different when using a linker 2027 // script with AT(). 2028 checkForSectionOverlap(OutputSections, "load address", 2029 [](const OutputSection *Sec) { return Sec->getLMA(); }, 2030 SkipNonAllocSections); 2031 } 2032 2033 // The entry point address is chosen in the following ways. 2034 // 2035 // 1. the '-e' entry command-line option; 2036 // 2. the ENTRY(symbol) command in a linker control script; 2037 // 3. the value of the symbol _start, if present; 2038 // 4. the number represented by the entry symbol, if it is a number; 2039 // 5. the address of the first byte of the .text section, if present; 2040 // 6. the address 0. 2041 template <class ELFT> uint64_t Writer<ELFT>::getEntryAddr() { 2042 // Case 1, 2 or 3 2043 if (Symbol *B = Symtab->find(Config->Entry)) 2044 return B->getVA(); 2045 2046 // Case 4 2047 uint64_t Addr; 2048 if (to_integer(Config->Entry, Addr)) 2049 return Addr; 2050 2051 // Case 5 2052 if (OutputSection *Sec = findSection(".text")) { 2053 if (Config->WarnMissingEntry) 2054 warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + 2055 utohexstr(Sec->Addr)); 2056 return Sec->Addr; 2057 } 2058 2059 // Case 6 2060 if (Config->WarnMissingEntry) 2061 warn("cannot find entry symbol " + Config->Entry + 2062 "; not setting start address"); 2063 return 0; 2064 } 2065 2066 static uint16_t getELFType() { 2067 if (Config->Pic) 2068 return ET_DYN; 2069 if (Config->Relocatable) 2070 return ET_REL; 2071 return ET_EXEC; 2072 } 2073 2074 static uint8_t getAbiVersion() { 2075 if (Config->EMachine == EM_MIPS) { 2076 // Increment the ABI version for non-PIC executable files. 2077 if (getELFType() == ET_EXEC && 2078 (Config->EFlags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC) 2079 return 1; 2080 } 2081 return 0; 2082 } 2083 2084 template <class ELFT> void Writer<ELFT>::writeHeader() { 2085 uint8_t *Buf = Buffer->getBufferStart(); 2086 memcpy(Buf, "\177ELF", 4); 2087 2088 // Write the ELF header. 2089 auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); 2090 EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32; 2091 EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB; 2092 EHdr->e_ident[EI_VERSION] = EV_CURRENT; 2093 EHdr->e_ident[EI_OSABI] = Config->OSABI; 2094 EHdr->e_ident[EI_ABIVERSION] = getAbiVersion(); 2095 EHdr->e_type = getELFType(); 2096 EHdr->e_machine = Config->EMachine; 2097 EHdr->e_version = EV_CURRENT; 2098 EHdr->e_entry = getEntryAddr(); 2099 EHdr->e_shoff = SectionHeaderOff; 2100 EHdr->e_flags = Config->EFlags; 2101 EHdr->e_ehsize = sizeof(Elf_Ehdr); 2102 EHdr->e_phnum = Phdrs.size(); 2103 EHdr->e_shentsize = sizeof(Elf_Shdr); 2104 EHdr->e_shnum = OutputSections.size() + 1; 2105 EHdr->e_shstrndx = InX::ShStrTab->getParent()->SectionIndex; 2106 2107 if (!Config->Relocatable) { 2108 EHdr->e_phoff = sizeof(Elf_Ehdr); 2109 EHdr->e_phentsize = sizeof(Elf_Phdr); 2110 } 2111 2112 // Write the program header table. 2113 auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); 2114 for (PhdrEntry *P : Phdrs) { 2115 HBuf->p_type = P->p_type; 2116 HBuf->p_flags = P->p_flags; 2117 HBuf->p_offset = P->p_offset; 2118 HBuf->p_vaddr = P->p_vaddr; 2119 HBuf->p_paddr = P->p_paddr; 2120 HBuf->p_filesz = P->p_filesz; 2121 HBuf->p_memsz = P->p_memsz; 2122 HBuf->p_align = P->p_align; 2123 ++HBuf; 2124 } 2125 2126 // Write the section header table. Note that the first table entry is null. 2127 auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); 2128 for (OutputSection *Sec : OutputSections) 2129 Sec->writeHeaderTo<ELFT>(++SHdrs); 2130 } 2131 2132 // Open a result file. 2133 template <class ELFT> void Writer<ELFT>::openFile() { 2134 if (!Config->Is64 && FileSize > UINT32_MAX) { 2135 error("output file too large: " + Twine(FileSize) + " bytes"); 2136 return; 2137 } 2138 2139 unlinkAsync(Config->OutputFile); 2140 unsigned Flags = 0; 2141 if (!Config->Relocatable) 2142 Flags = FileOutputBuffer::F_executable; 2143 Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr = 2144 FileOutputBuffer::create(Config->OutputFile, FileSize, Flags); 2145 2146 if (!BufferOrErr) 2147 error("failed to open " + Config->OutputFile + ": " + 2148 llvm::toString(BufferOrErr.takeError())); 2149 else 2150 Buffer = std::move(*BufferOrErr); 2151 } 2152 2153 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2154 uint8_t *Buf = Buffer->getBufferStart(); 2155 for (OutputSection *Sec : OutputSections) 2156 if (Sec->Flags & SHF_ALLOC) 2157 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2158 } 2159 2160 static void fillTrap(uint8_t *I, uint8_t *End) { 2161 for (; I + 4 <= End; I += 4) 2162 memcpy(I, &Target->TrapInstr, 4); 2163 } 2164 2165 // Fill the last page of executable segments with trap instructions 2166 // instead of leaving them as zero. Even though it is not required by any 2167 // standard, it is in general a good thing to do for security reasons. 2168 // 2169 // We'll leave other pages in segments as-is because the rest will be 2170 // overwritten by output sections. 2171 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2172 if (Script->HasSectionsCommand) 2173 return; 2174 2175 // Fill the last page. 2176 uint8_t *Buf = Buffer->getBufferStart(); 2177 for (PhdrEntry *P : Phdrs) 2178 if (P->p_type == PT_LOAD && (P->p_flags & PF_X)) 2179 fillTrap(Buf + alignDown(P->p_offset + P->p_filesz, Target->PageSize), 2180 Buf + alignTo(P->p_offset + P->p_filesz, Target->PageSize)); 2181 2182 // Round up the file size of the last segment to the page boundary iff it is 2183 // an executable segment to ensure that other tools don't accidentally 2184 // trim the instruction padding (e.g. when stripping the file). 2185 PhdrEntry *Last = nullptr; 2186 for (PhdrEntry *P : Phdrs) 2187 if (P->p_type == PT_LOAD) 2188 Last = P; 2189 2190 if (Last && (Last->p_flags & PF_X)) 2191 Last->p_memsz = Last->p_filesz = alignTo(Last->p_filesz, Target->PageSize); 2192 } 2193 2194 // Write section contents to a mmap'ed file. 2195 template <class ELFT> void Writer<ELFT>::writeSections() { 2196 uint8_t *Buf = Buffer->getBufferStart(); 2197 2198 // PPC64 needs to process relocations in the .opd section 2199 // before processing relocations in code-containing sections. 2200 if (auto *OpdCmd = findSection(".opd")) { 2201 Out::Opd = OpdCmd; 2202 Out::OpdBuf = Buf + Out::Opd->Offset; 2203 OpdCmd->template writeTo<ELFT>(Buf + Out::Opd->Offset); 2204 } 2205 2206 OutputSection *EhFrameHdr = nullptr; 2207 if (InX::EhFrameHdr && !InX::EhFrameHdr->empty()) 2208 EhFrameHdr = InX::EhFrameHdr->getParent(); 2209 2210 // In -r or -emit-relocs mode, write the relocation sections first as in 2211 // ELf_Rel targets we might find out that we need to modify the relocated 2212 // section while doing it. 2213 for (OutputSection *Sec : OutputSections) 2214 if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) 2215 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2216 2217 for (OutputSection *Sec : OutputSections) 2218 if (Sec != Out::Opd && Sec != EhFrameHdr && Sec->Type != SHT_REL && 2219 Sec->Type != SHT_RELA) 2220 Sec->writeTo<ELFT>(Buf + Sec->Offset); 2221 2222 // The .eh_frame_hdr depends on .eh_frame section contents, therefore 2223 // it should be written after .eh_frame is written. 2224 if (EhFrameHdr) 2225 EhFrameHdr->writeTo<ELFT>(Buf + EhFrameHdr->Offset); 2226 } 2227 2228 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2229 if (!InX::BuildId || !InX::BuildId->getParent()) 2230 return; 2231 2232 // Compute a hash of all sections of the output file. 2233 uint8_t *Start = Buffer->getBufferStart(); 2234 uint8_t *End = Start + FileSize; 2235 InX::BuildId->writeBuildId({Start, End}); 2236 } 2237 2238 template void elf::writeResult<ELF32LE>(); 2239 template void elf::writeResult<ELF32BE>(); 2240 template void elf::writeResult<ELF64LE>(); 2241 template void elf::writeResult<ELF64BE>(); 2242