1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "MapFile.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SymbolTable.h" 20 #include "Symbols.h" 21 #include "SyntheticSections.h" 22 #include "Target.h" 23 #include "lld/Common/Arrays.h" 24 #include "lld/Common/CommonLinkerContext.h" 25 #include "lld/Common/Filesystem.h" 26 #include "lld/Common/Strings.h" 27 #include "llvm/ADT/StringMap.h" 28 #include "llvm/Support/MD5.h" 29 #include "llvm/Support/Parallel.h" 30 #include "llvm/Support/RandomNumberGenerator.h" 31 #include "llvm/Support/SHA1.h" 32 #include "llvm/Support/TimeProfiler.h" 33 #include "llvm/Support/xxhash.h" 34 #include <climits> 35 36 #define DEBUG_TYPE "lld" 37 38 using namespace llvm; 39 using namespace llvm::ELF; 40 using namespace llvm::object; 41 using namespace llvm::support; 42 using namespace llvm::support::endian; 43 using namespace lld; 44 using namespace lld::elf; 45 46 namespace { 47 // The writer writes a SymbolTable result to a file. 48 template <class ELFT> class Writer { 49 public: 50 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 51 52 Writer() : buffer(errorHandler().outputBuffer) {} 53 54 void run(); 55 56 private: 57 void copyLocalSymbols(); 58 void addSectionSymbols(); 59 void sortSections(); 60 void resolveShfLinkOrder(); 61 void finalizeAddressDependentContent(); 62 void optimizeBasicBlockJumps(); 63 void sortInputSections(); 64 void finalizeSections(); 65 void checkExecuteOnly(); 66 void setReservedSymbolSections(); 67 68 SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part); 69 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 70 unsigned pFlags); 71 void assignFileOffsets(); 72 void assignFileOffsetsBinary(); 73 void setPhdrs(Partition &part); 74 void checkSections(); 75 void fixSectionAlignments(); 76 void openFile(); 77 void writeTrapInstr(); 78 void writeHeader(); 79 void writeSections(); 80 void writeSectionsBinary(); 81 void writeBuildId(); 82 83 std::unique_ptr<FileOutputBuffer> &buffer; 84 85 void addRelIpltSymbols(); 86 void addStartEndSymbols(); 87 void addStartStopSymbols(OutputSection *sec); 88 89 uint64_t fileSize; 90 uint64_t sectionHeaderOff; 91 }; 92 } // anonymous namespace 93 94 static bool needsInterpSection() { 95 return !config->relocatable && !config->shared && 96 !config->dynamicLinker.empty() && script->needsInterpSection(); 97 } 98 99 template <class ELFT> void elf::writeResult() { 100 Writer<ELFT>().run(); 101 } 102 103 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) { 104 auto it = std::stable_partition( 105 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 106 if (p->p_type != PT_LOAD) 107 return true; 108 if (!p->firstSec) 109 return false; 110 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 111 return size != 0; 112 }); 113 114 // Clear OutputSection::ptLoad for sections contained in removed 115 // segments. 116 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 117 for (OutputSection *sec : outputSections) 118 if (removed.count(sec->ptLoad)) 119 sec->ptLoad = nullptr; 120 phdrs.erase(it, phdrs.end()); 121 } 122 123 void elf::copySectionsIntoPartitions() { 124 SmallVector<InputSectionBase *, 0> newSections; 125 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 126 for (InputSectionBase *s : inputSections) { 127 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 128 continue; 129 InputSectionBase *copy; 130 if (s->type == SHT_NOTE) 131 copy = make<InputSection>(cast<InputSection>(*s)); 132 else if (auto *es = dyn_cast<EhInputSection>(s)) 133 copy = make<EhInputSection>(*es); 134 else 135 continue; 136 copy->partition = part; 137 newSections.push_back(copy); 138 } 139 } 140 141 inputSections.insert(inputSections.end(), newSections.begin(), 142 newSections.end()); 143 } 144 145 void elf::combineEhSections() { 146 llvm::TimeTraceScope timeScope("Combine EH sections"); 147 for (InputSectionBase *&s : inputSections) { 148 // Ignore dead sections and the partition end marker (.part.end), 149 // whose partition number is out of bounds. 150 if (!s->isLive() || s->partition == 255) 151 continue; 152 153 Partition &part = s->getPartition(); 154 if (auto *es = dyn_cast<EhInputSection>(s)) { 155 part.ehFrame->addSection(es); 156 s = nullptr; 157 } else if (s->kind() == SectionBase::Regular && part.armExidx && 158 part.armExidx->addSection(cast<InputSection>(s))) { 159 s = nullptr; 160 } 161 } 162 163 llvm::erase_value(inputSections, nullptr); 164 } 165 166 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 167 uint64_t val, uint8_t stOther = STV_HIDDEN) { 168 Symbol *s = symtab->find(name); 169 if (!s || s->isDefined() || s->isCommon()) 170 return nullptr; 171 172 s->resolve(Defined{nullptr, StringRef(), STB_GLOBAL, stOther, STT_NOTYPE, val, 173 /*size=*/0, sec}); 174 s->isUsedInRegularObj = true; 175 return cast<Defined>(s); 176 } 177 178 static Defined *addAbsolute(StringRef name) { 179 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 180 STT_NOTYPE, 0, 0, nullptr}); 181 sym->isUsedInRegularObj = true; 182 return cast<Defined>(sym); 183 } 184 185 // The linker is expected to define some symbols depending on 186 // the linking result. This function defines such symbols. 187 void elf::addReservedSymbols() { 188 if (config->emachine == EM_MIPS) { 189 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 190 // so that it points to an absolute address which by default is relative 191 // to GOT. Default offset is 0x7ff0. 192 // See "Global Data Symbols" in Chapter 6 in the following document: 193 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 194 ElfSym::mipsGp = addAbsolute("_gp"); 195 196 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 197 // start of function and 'gp' pointer into GOT. 198 if (symtab->find("_gp_disp")) 199 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 200 201 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 202 // pointer. This symbol is used in the code generated by .cpload pseudo-op 203 // in case of using -mno-shared option. 204 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 205 if (symtab->find("__gnu_local_gp")) 206 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 207 } else if (config->emachine == EM_PPC) { 208 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 209 // support Small Data Area, define it arbitrarily as 0. 210 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 211 } else if (config->emachine == EM_PPC64) { 212 addPPC64SaveRestore(); 213 } 214 215 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 216 // combines the typical ELF GOT with the small data sections. It commonly 217 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 218 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 219 // represent the TOC base which is offset by 0x8000 bytes from the start of 220 // the .got section. 221 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 222 // correctness of some relocations depends on its value. 223 StringRef gotSymName = 224 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 225 226 if (Symbol *s = symtab->find(gotSymName)) { 227 if (s->isDefined()) { 228 error(toString(s->file) + " cannot redefine linker defined symbol '" + 229 gotSymName + "'"); 230 return; 231 } 232 233 uint64_t gotOff = 0; 234 if (config->emachine == EM_PPC64) 235 gotOff = 0x8000; 236 237 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN, 238 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 239 ElfSym::globalOffsetTable = cast<Defined>(s); 240 } 241 242 // __ehdr_start is the location of ELF file headers. Note that we define 243 // this symbol unconditionally even when using a linker script, which 244 // differs from the behavior implemented by GNU linker which only define 245 // this symbol if ELF headers are in the memory mapped segment. 246 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 247 248 // __executable_start is not documented, but the expectation of at 249 // least the Android libc is that it points to the ELF header. 250 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 251 252 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 253 // each DSO. The address of the symbol doesn't matter as long as they are 254 // different in different DSOs, so we chose the start address of the DSO. 255 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 256 257 // If linker script do layout we do not need to create any standard symbols. 258 if (script->hasSectionsCommand) 259 return; 260 261 auto add = [](StringRef s, int64_t pos) { 262 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 263 }; 264 265 ElfSym::bss = add("__bss_start", 0); 266 ElfSym::end1 = add("end", -1); 267 ElfSym::end2 = add("_end", -1); 268 ElfSym::etext1 = add("etext", -1); 269 ElfSym::etext2 = add("_etext", -1); 270 ElfSym::edata1 = add("edata", -1); 271 ElfSym::edata2 = add("_edata", -1); 272 } 273 274 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 275 for (SectionCommand *cmd : script->sectionCommands) 276 if (auto *sec = dyn_cast<OutputSection>(cmd)) 277 if (sec->name == name && sec->partition == partition) 278 return sec; 279 return nullptr; 280 } 281 282 template <class ELFT> void elf::createSyntheticSections() { 283 // Initialize all pointers with NULL. This is needed because 284 // you can call lld::elf::main more than once as a library. 285 Out::tlsPhdr = nullptr; 286 Out::preinitArray = nullptr; 287 Out::initArray = nullptr; 288 Out::finiArray = nullptr; 289 290 // Add the .interp section first because it is not a SyntheticSection. 291 // The removeUnusedSyntheticSections() function relies on the 292 // SyntheticSections coming last. 293 if (needsInterpSection()) { 294 for (size_t i = 1; i <= partitions.size(); ++i) { 295 InputSection *sec = createInterpSection(); 296 sec->partition = i; 297 inputSections.push_back(sec); 298 } 299 } 300 301 auto add = [](SyntheticSection &sec) { inputSections.push_back(&sec); }; 302 303 in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false); 304 305 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 306 Out::programHeaders->alignment = config->wordsize; 307 308 if (config->strip != StripPolicy::All) { 309 in.strTab = std::make_unique<StringTableSection>(".strtab", false); 310 in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab); 311 in.symTabShndx = std::make_unique<SymtabShndxSection>(); 312 } 313 314 in.bss = std::make_unique<BssSection>(".bss", 0, 1); 315 add(*in.bss); 316 317 // If there is a SECTIONS command and a .data.rel.ro section name use name 318 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 319 // This makes sure our relro is contiguous. 320 bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro"); 321 in.bssRelRo = std::make_unique<BssSection>( 322 hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 323 add(*in.bssRelRo); 324 325 // Add MIPS-specific sections. 326 if (config->emachine == EM_MIPS) { 327 if (!config->shared && config->hasDynSymTab) { 328 in.mipsRldMap = std::make_unique<MipsRldMapSection>(); 329 add(*in.mipsRldMap); 330 } 331 if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create())) 332 add(*in.mipsAbiFlags); 333 if ((in.mipsOptions = MipsOptionsSection<ELFT>::create())) 334 add(*in.mipsOptions); 335 if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create())) 336 add(*in.mipsReginfo); 337 } 338 339 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 340 341 for (Partition &part : partitions) { 342 auto add = [&](SyntheticSection &sec) { 343 sec.partition = part.getNumber(); 344 inputSections.push_back(&sec); 345 }; 346 347 if (!part.name.empty()) { 348 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(); 349 part.elfHeader->name = part.name; 350 add(*part.elfHeader); 351 352 part.programHeaders = 353 std::make_unique<PartitionProgramHeadersSection<ELFT>>(); 354 add(*part.programHeaders); 355 } 356 357 if (config->buildId != BuildIdKind::None) { 358 part.buildId = std::make_unique<BuildIdSection>(); 359 add(*part.buildId); 360 } 361 362 part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true); 363 part.dynSymTab = 364 std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab); 365 part.dynamic = std::make_unique<DynamicSection<ELFT>>(); 366 if (config->androidPackDynRelocs) 367 part.relaDyn = 368 std::make_unique<AndroidPackedRelocationSection<ELFT>>(relaDynName); 369 else 370 part.relaDyn = std::make_unique<RelocationSection<ELFT>>( 371 relaDynName, config->zCombreloc); 372 373 if (config->hasDynSymTab) { 374 add(*part.dynSymTab); 375 376 part.verSym = std::make_unique<VersionTableSection>(); 377 add(*part.verSym); 378 379 if (!namedVersionDefs().empty()) { 380 part.verDef = std::make_unique<VersionDefinitionSection>(); 381 add(*part.verDef); 382 } 383 384 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(); 385 add(*part.verNeed); 386 387 if (config->gnuHash) { 388 part.gnuHashTab = std::make_unique<GnuHashTableSection>(); 389 add(*part.gnuHashTab); 390 } 391 392 if (config->sysvHash) { 393 part.hashTab = std::make_unique<HashTableSection>(); 394 add(*part.hashTab); 395 } 396 397 add(*part.dynamic); 398 add(*part.dynStrTab); 399 add(*part.relaDyn); 400 } 401 402 if (config->relrPackDynRelocs) { 403 part.relrDyn = std::make_unique<RelrSection<ELFT>>(); 404 add(*part.relrDyn); 405 } 406 407 if (!config->relocatable) { 408 if (config->ehFrameHdr) { 409 part.ehFrameHdr = std::make_unique<EhFrameHeader>(); 410 add(*part.ehFrameHdr); 411 } 412 part.ehFrame = std::make_unique<EhFrameSection>(); 413 add(*part.ehFrame); 414 } 415 416 if (config->emachine == EM_ARM && !config->relocatable) { 417 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 418 // InputSections. 419 part.armExidx = std::make_unique<ARMExidxSyntheticSection>(); 420 add(*part.armExidx); 421 } 422 } 423 424 if (partitions.size() != 1) { 425 // Create the partition end marker. This needs to be in partition number 255 426 // so that it is sorted after all other partitions. It also has other 427 // special handling (see createPhdrs() and combineEhSections()). 428 in.partEnd = 429 std::make_unique<BssSection>(".part.end", config->maxPageSize, 1); 430 in.partEnd->partition = 255; 431 add(*in.partEnd); 432 433 in.partIndex = std::make_unique<PartitionIndexSection>(); 434 addOptionalRegular("__part_index_begin", in.partIndex.get(), 0); 435 addOptionalRegular("__part_index_end", in.partIndex.get(), 436 in.partIndex->getSize()); 437 add(*in.partIndex); 438 } 439 440 // Add .got. MIPS' .got is so different from the other archs, 441 // it has its own class. 442 if (config->emachine == EM_MIPS) { 443 in.mipsGot = std::make_unique<MipsGotSection>(); 444 add(*in.mipsGot); 445 } else { 446 in.got = std::make_unique<GotSection>(); 447 add(*in.got); 448 } 449 450 if (config->emachine == EM_PPC) { 451 in.ppc32Got2 = std::make_unique<PPC32Got2Section>(); 452 add(*in.ppc32Got2); 453 } 454 455 if (config->emachine == EM_PPC64) { 456 in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>(); 457 add(*in.ppc64LongBranchTarget); 458 } 459 460 in.gotPlt = std::make_unique<GotPltSection>(); 461 add(*in.gotPlt); 462 in.igotPlt = std::make_unique<IgotPltSection>(); 463 add(*in.igotPlt); 464 465 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 466 // it as a relocation and ensure the referenced section is created. 467 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 468 if (target->gotBaseSymInGotPlt) 469 in.gotPlt->hasGotPltOffRel = true; 470 else 471 in.got->hasGotOffRel = true; 472 } 473 474 if (config->gdbIndex) 475 add(*GdbIndexSection::create<ELFT>()); 476 477 // We always need to add rel[a].plt to output if it has entries. 478 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 479 in.relaPlt = std::make_unique<RelocationSection<ELFT>>( 480 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 481 add(*in.relaPlt); 482 483 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 484 // relocations are processed last by the dynamic loader. We cannot place the 485 // iplt section in .rel.dyn when Android relocation packing is enabled because 486 // that would cause a section type mismatch. However, because the Android 487 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 488 // behaviour by placing the iplt section in .rel.plt. 489 in.relaIplt = std::make_unique<RelocationSection<ELFT>>( 490 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 491 /*sort=*/false); 492 add(*in.relaIplt); 493 494 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 495 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 496 in.ibtPlt = std::make_unique<IBTPltSection>(); 497 add(*in.ibtPlt); 498 } 499 500 if (config->emachine == EM_PPC) 501 in.plt = std::make_unique<PPC32GlinkSection>(); 502 else 503 in.plt = std::make_unique<PltSection>(); 504 add(*in.plt); 505 in.iplt = std::make_unique<IpltSection>(); 506 add(*in.iplt); 507 508 if (config->andFeatures) 509 add(*make<GnuPropertySection>()); 510 511 // .note.GNU-stack is always added when we are creating a re-linkable 512 // object file. Other linkers are using the presence of this marker 513 // section to control the executable-ness of the stack area, but that 514 // is irrelevant these days. Stack area should always be non-executable 515 // by default. So we emit this section unconditionally. 516 if (config->relocatable) 517 add(*make<GnuStackSection>()); 518 519 if (in.symTab) 520 add(*in.symTab); 521 if (in.symTabShndx) 522 add(*in.symTabShndx); 523 add(*in.shStrTab); 524 if (in.strTab) 525 add(*in.strTab); 526 } 527 528 // The main function of the writer. 529 template <class ELFT> void Writer<ELFT>::run() { 530 copyLocalSymbols(); 531 532 if (config->copyRelocs) 533 addSectionSymbols(); 534 535 // Now that we have a complete set of output sections. This function 536 // completes section contents. For example, we need to add strings 537 // to the string table, and add entries to .got and .plt. 538 // finalizeSections does that. 539 finalizeSections(); 540 checkExecuteOnly(); 541 542 // If --compressed-debug-sections is specified, compress .debug_* sections. 543 // Do it right now because it changes the size of output sections. 544 for (OutputSection *sec : outputSections) 545 sec->maybeCompress<ELFT>(); 546 547 if (script->hasSectionsCommand) 548 script->allocateHeaders(mainPart->phdrs); 549 550 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 551 // 0 sized region. This has to be done late since only after assignAddresses 552 // we know the size of the sections. 553 for (Partition &part : partitions) 554 removeEmptyPTLoad(part.phdrs); 555 556 if (!config->oFormatBinary) 557 assignFileOffsets(); 558 else 559 assignFileOffsetsBinary(); 560 561 for (Partition &part : partitions) 562 setPhdrs(part); 563 564 565 // Handle --print-map(-M)/--Map, --why-extract=, --cref and 566 // --print-archive-stats=. Dump them before checkSections() because the files 567 // may be useful in case checkSections() or openFile() fails, for example, due 568 // to an erroneous file size. 569 writeMapAndCref(); 570 writeWhyExtract(); 571 writeArchiveStats(); 572 573 if (config->checkSections) 574 checkSections(); 575 576 // It does not make sense try to open the file if we have error already. 577 if (errorCount()) 578 return; 579 580 { 581 llvm::TimeTraceScope timeScope("Write output file"); 582 // Write the result down to a file. 583 openFile(); 584 if (errorCount()) 585 return; 586 587 if (!config->oFormatBinary) { 588 if (config->zSeparate != SeparateSegmentKind::None) 589 writeTrapInstr(); 590 writeHeader(); 591 writeSections(); 592 } else { 593 writeSectionsBinary(); 594 } 595 596 // Backfill .note.gnu.build-id section content. This is done at last 597 // because the content is usually a hash value of the entire output file. 598 writeBuildId(); 599 if (errorCount()) 600 return; 601 602 if (auto e = buffer->commit()) 603 error("failed to write to the output file: " + toString(std::move(e))); 604 } 605 } 606 607 template <class ELFT, class RelTy> 608 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 609 llvm::ArrayRef<RelTy> rels) { 610 for (const RelTy &rel : rels) { 611 Symbol &sym = file->getRelocTargetSym(rel); 612 if (sym.isLocal()) 613 sym.used = true; 614 } 615 } 616 617 // The function ensures that the "used" field of local symbols reflects the fact 618 // that the symbol is used in a relocation from a live section. 619 template <class ELFT> static void markUsedLocalSymbols() { 620 // With --gc-sections, the field is already filled. 621 // See MarkLive<ELFT>::resolveReloc(). 622 if (config->gcSections) 623 return; 624 for (ELFFileBase *file : objectFiles) { 625 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 626 for (InputSectionBase *s : f->getSections()) { 627 InputSection *isec = dyn_cast_or_null<InputSection>(s); 628 if (!isec) 629 continue; 630 if (isec->type == SHT_REL) 631 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 632 else if (isec->type == SHT_RELA) 633 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 634 } 635 } 636 } 637 638 static bool shouldKeepInSymtab(const Defined &sym) { 639 if (sym.isSection()) 640 return false; 641 642 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 643 // from live sections. 644 if (sym.used) 645 return true; 646 647 // Exclude local symbols pointing to .ARM.exidx sections. 648 // They are probably mapping symbols "$d", which are optional for these 649 // sections. After merging the .ARM.exidx sections, some of these symbols 650 // may become dangling. The easiest way to avoid the issue is not to add 651 // them to the symbol table from the beginning. 652 if (config->emachine == EM_ARM && sym.section && 653 sym.section->type == SHT_ARM_EXIDX) 654 return false; 655 656 if (config->discard == DiscardPolicy::None) 657 return true; 658 if (config->discard == DiscardPolicy::All) 659 return false; 660 661 // In ELF assembly .L symbols are normally discarded by the assembler. 662 // If the assembler fails to do so, the linker discards them if 663 // * --discard-locals is used. 664 // * The symbol is in a SHF_MERGE section, which is normally the reason for 665 // the assembler keeping the .L symbol. 666 if (sym.getName().startswith(".L") && 667 (config->discard == DiscardPolicy::Locals || 668 (sym.section && (sym.section->flags & SHF_MERGE)))) 669 return false; 670 return true; 671 } 672 673 static bool includeInSymtab(const Symbol &b) { 674 if (auto *d = dyn_cast<Defined>(&b)) { 675 // Always include absolute symbols. 676 SectionBase *sec = d->section; 677 if (!sec) 678 return true; 679 680 if (auto *s = dyn_cast<MergeInputSection>(sec)) 681 return s->getSectionPiece(d->value)->live; 682 return sec->isLive(); 683 } 684 return b.used || !config->gcSections; 685 } 686 687 // Local symbols are not in the linker's symbol table. This function scans 688 // each object file's symbol table to copy local symbols to the output. 689 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 690 if (!in.symTab) 691 return; 692 llvm::TimeTraceScope timeScope("Add local symbols"); 693 if (config->copyRelocs && config->discard != DiscardPolicy::None) 694 markUsedLocalSymbols<ELFT>(); 695 for (ELFFileBase *file : objectFiles) { 696 for (Symbol *b : file->getLocalSymbols()) { 697 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 698 auto *dr = dyn_cast<Defined>(b); 699 700 // No reason to keep local undefined symbol in symtab. 701 if (!dr) 702 continue; 703 if (includeInSymtab(*b) && shouldKeepInSymtab(*dr)) 704 in.symTab->addSymbol(b); 705 } 706 } 707 } 708 709 // Create a section symbol for each output section so that we can represent 710 // relocations that point to the section. If we know that no relocation is 711 // referring to a section (that happens if the section is a synthetic one), we 712 // don't create a section symbol for that section. 713 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 714 for (SectionCommand *cmd : script->sectionCommands) { 715 auto *sec = dyn_cast<OutputSection>(cmd); 716 if (!sec) 717 continue; 718 auto i = llvm::find_if(sec->commands, [](SectionCommand *cmd) { 719 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 720 return !isd->sections.empty(); 721 return false; 722 }); 723 if (i == sec->commands.end()) 724 continue; 725 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 726 727 // Relocations are not using REL[A] section symbols. 728 if (isec->type == SHT_REL || isec->type == SHT_RELA) 729 continue; 730 731 // Unlike other synthetic sections, mergeable output sections contain data 732 // copied from input sections, and there may be a relocation pointing to its 733 // contents if -r or --emit-reloc is given. 734 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 735 continue; 736 737 // Set the symbol to be relative to the output section so that its st_value 738 // equals the output section address. Note, there may be a gap between the 739 // start of the output section and isec. 740 in.symTab->addSymbol( 741 makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 742 /*value=*/0, /*size=*/0, isec->getOutputSection())); 743 } 744 } 745 746 // Today's loaders have a feature to make segments read-only after 747 // processing dynamic relocations to enhance security. PT_GNU_RELRO 748 // is defined for that. 749 // 750 // This function returns true if a section needs to be put into a 751 // PT_GNU_RELRO segment. 752 static bool isRelroSection(const OutputSection *sec) { 753 if (!config->zRelro) 754 return false; 755 756 uint64_t flags = sec->flags; 757 758 // Non-allocatable or non-writable sections don't need RELRO because 759 // they are not writable or not even mapped to memory in the first place. 760 // RELRO is for sections that are essentially read-only but need to 761 // be writable only at process startup to allow dynamic linker to 762 // apply relocations. 763 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 764 return false; 765 766 // Once initialized, TLS data segments are used as data templates 767 // for a thread-local storage. For each new thread, runtime 768 // allocates memory for a TLS and copy templates there. No thread 769 // are supposed to use templates directly. Thus, it can be in RELRO. 770 if (flags & SHF_TLS) 771 return true; 772 773 // .init_array, .preinit_array and .fini_array contain pointers to 774 // functions that are executed on process startup or exit. These 775 // pointers are set by the static linker, and they are not expected 776 // to change at runtime. But if you are an attacker, you could do 777 // interesting things by manipulating pointers in .fini_array, for 778 // example. So they are put into RELRO. 779 uint32_t type = sec->type; 780 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 781 type == SHT_PREINIT_ARRAY) 782 return true; 783 784 // .got contains pointers to external symbols. They are resolved by 785 // the dynamic linker when a module is loaded into memory, and after 786 // that they are not expected to change. So, it can be in RELRO. 787 if (in.got && sec == in.got->getParent()) 788 return true; 789 790 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 791 // through r2 register, which is reserved for that purpose. Since r2 is used 792 // for accessing .got as well, .got and .toc need to be close enough in the 793 // virtual address space. Usually, .toc comes just after .got. Since we place 794 // .got into RELRO, .toc needs to be placed into RELRO too. 795 if (sec->name.equals(".toc")) 796 return true; 797 798 // .got.plt contains pointers to external function symbols. They are 799 // by default resolved lazily, so we usually cannot put it into RELRO. 800 // However, if "-z now" is given, the lazy symbol resolution is 801 // disabled, which enables us to put it into RELRO. 802 if (sec == in.gotPlt->getParent()) 803 return config->zNow; 804 805 // .dynamic section contains data for the dynamic linker, and 806 // there's no need to write to it at runtime, so it's better to put 807 // it into RELRO. 808 if (sec->name == ".dynamic") 809 return true; 810 811 // Sections with some special names are put into RELRO. This is a 812 // bit unfortunate because section names shouldn't be significant in 813 // ELF in spirit. But in reality many linker features depend on 814 // magic section names. 815 StringRef s = sec->name; 816 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 817 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 818 s == ".fini_array" || s == ".init_array" || 819 s == ".openbsd.randomdata" || s == ".preinit_array"; 820 } 821 822 // We compute a rank for each section. The rank indicates where the 823 // section should be placed in the file. Instead of using simple 824 // numbers (0,1,2...), we use a series of flags. One for each decision 825 // point when placing the section. 826 // Using flags has two key properties: 827 // * It is easy to check if a give branch was taken. 828 // * It is easy two see how similar two ranks are (see getRankProximity). 829 enum RankFlags { 830 RF_NOT_ADDR_SET = 1 << 27, 831 RF_NOT_ALLOC = 1 << 26, 832 RF_PARTITION = 1 << 18, // Partition number (8 bits) 833 RF_NOT_PART_EHDR = 1 << 17, 834 RF_NOT_PART_PHDR = 1 << 16, 835 RF_NOT_INTERP = 1 << 15, 836 RF_NOT_NOTE = 1 << 14, 837 RF_WRITE = 1 << 13, 838 RF_EXEC_WRITE = 1 << 12, 839 RF_EXEC = 1 << 11, 840 RF_RODATA = 1 << 10, 841 RF_NOT_RELRO = 1 << 9, 842 RF_NOT_TLS = 1 << 8, 843 RF_BSS = 1 << 7, 844 RF_PPC_NOT_TOCBSS = 1 << 6, 845 RF_PPC_TOCL = 1 << 5, 846 RF_PPC_TOC = 1 << 4, 847 RF_PPC_GOT = 1 << 3, 848 RF_PPC_BRANCH_LT = 1 << 2, 849 RF_MIPS_GPREL = 1 << 1, 850 RF_MIPS_NOT_GOT = 1 << 0 851 }; 852 853 static unsigned getSectionRank(const OutputSection *sec) { 854 unsigned rank = sec->partition * RF_PARTITION; 855 856 // We want to put section specified by -T option first, so we 857 // can start assigning VA starting from them later. 858 if (config->sectionStartMap.count(sec->name)) 859 return rank; 860 rank |= RF_NOT_ADDR_SET; 861 862 // Allocatable sections go first to reduce the total PT_LOAD size and 863 // so debug info doesn't change addresses in actual code. 864 if (!(sec->flags & SHF_ALLOC)) 865 return rank | RF_NOT_ALLOC; 866 867 if (sec->type == SHT_LLVM_PART_EHDR) 868 return rank; 869 rank |= RF_NOT_PART_EHDR; 870 871 if (sec->type == SHT_LLVM_PART_PHDR) 872 return rank; 873 rank |= RF_NOT_PART_PHDR; 874 875 // Put .interp first because some loaders want to see that section 876 // on the first page of the executable file when loaded into memory. 877 if (sec->name == ".interp") 878 return rank; 879 rank |= RF_NOT_INTERP; 880 881 // Put .note sections (which make up one PT_NOTE) at the beginning so that 882 // they are likely to be included in a core file even if core file size is 883 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 884 // included in a core to match core files with executables. 885 if (sec->type == SHT_NOTE) 886 return rank; 887 rank |= RF_NOT_NOTE; 888 889 // Sort sections based on their access permission in the following 890 // order: R, RX, RWX, RW. This order is based on the following 891 // considerations: 892 // * Read-only sections come first such that they go in the 893 // PT_LOAD covering the program headers at the start of the file. 894 // * Read-only, executable sections come next. 895 // * Writable, executable sections follow such that .plt on 896 // architectures where it needs to be writable will be placed 897 // between .text and .data. 898 // * Writable sections come last, such that .bss lands at the very 899 // end of the last PT_LOAD. 900 bool isExec = sec->flags & SHF_EXECINSTR; 901 bool isWrite = sec->flags & SHF_WRITE; 902 903 if (isExec) { 904 if (isWrite) 905 rank |= RF_EXEC_WRITE; 906 else 907 rank |= RF_EXEC; 908 } else if (isWrite) { 909 rank |= RF_WRITE; 910 } else if (sec->type == SHT_PROGBITS) { 911 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 912 // .eh_frame) closer to .text. They likely contain PC or GOT relative 913 // relocations and there could be relocation overflow if other huge sections 914 // (.dynstr .dynsym) were placed in between. 915 rank |= RF_RODATA; 916 } 917 918 // Place RelRo sections first. After considering SHT_NOBITS below, the 919 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 920 // where | marks where page alignment happens. An alternative ordering is 921 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 922 // waste more bytes due to 2 alignment places. 923 if (!isRelroSection(sec)) 924 rank |= RF_NOT_RELRO; 925 926 // If we got here we know that both A and B are in the same PT_LOAD. 927 928 // The TLS initialization block needs to be a single contiguous block in a R/W 929 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 930 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 931 // after PROGBITS. 932 if (!(sec->flags & SHF_TLS)) 933 rank |= RF_NOT_TLS; 934 935 // Within TLS sections, or within other RelRo sections, or within non-RelRo 936 // sections, place non-NOBITS sections first. 937 if (sec->type == SHT_NOBITS) 938 rank |= RF_BSS; 939 940 // Some architectures have additional ordering restrictions for sections 941 // within the same PT_LOAD. 942 if (config->emachine == EM_PPC64) { 943 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 944 // that we would like to make sure appear is a specific order to maximize 945 // their coverage by a single signed 16-bit offset from the TOC base 946 // pointer. Conversely, the special .tocbss section should be first among 947 // all SHT_NOBITS sections. This will put it next to the loaded special 948 // PPC64 sections (and, thus, within reach of the TOC base pointer). 949 StringRef name = sec->name; 950 if (name != ".tocbss") 951 rank |= RF_PPC_NOT_TOCBSS; 952 953 if (name == ".toc1") 954 rank |= RF_PPC_TOCL; 955 956 if (name == ".toc") 957 rank |= RF_PPC_TOC; 958 959 if (name == ".got") 960 rank |= RF_PPC_GOT; 961 962 if (name == ".branch_lt") 963 rank |= RF_PPC_BRANCH_LT; 964 } 965 966 if (config->emachine == EM_MIPS) { 967 // All sections with SHF_MIPS_GPREL flag should be grouped together 968 // because data in these sections is addressable with a gp relative address. 969 if (sec->flags & SHF_MIPS_GPREL) 970 rank |= RF_MIPS_GPREL; 971 972 if (sec->name != ".got") 973 rank |= RF_MIPS_NOT_GOT; 974 } 975 976 return rank; 977 } 978 979 static bool compareSections(const SectionCommand *aCmd, 980 const SectionCommand *bCmd) { 981 const OutputSection *a = cast<OutputSection>(aCmd); 982 const OutputSection *b = cast<OutputSection>(bCmd); 983 984 if (a->sortRank != b->sortRank) 985 return a->sortRank < b->sortRank; 986 987 if (!(a->sortRank & RF_NOT_ADDR_SET)) 988 return config->sectionStartMap.lookup(a->name) < 989 config->sectionStartMap.lookup(b->name); 990 return false; 991 } 992 993 void PhdrEntry::add(OutputSection *sec) { 994 lastSec = sec; 995 if (!firstSec) 996 firstSec = sec; 997 p_align = std::max(p_align, sec->alignment); 998 if (p_type == PT_LOAD) 999 sec->ptLoad = this; 1000 } 1001 1002 // The beginning and the ending of .rel[a].plt section are marked 1003 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1004 // executable. The runtime needs these symbols in order to resolve 1005 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1006 // need these symbols, since IRELATIVE relocs are resolved through GOT 1007 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1008 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1009 if (config->relocatable || config->isPic) 1010 return; 1011 1012 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1013 // because .rela.plt might be empty and thus removed from output. 1014 // We'll override Out::elfHeader with In.relaIplt later when we are 1015 // sure that .rela.plt exists in output. 1016 ElfSym::relaIpltStart = addOptionalRegular( 1017 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1018 Out::elfHeader, 0, STV_HIDDEN); 1019 1020 ElfSym::relaIpltEnd = addOptionalRegular( 1021 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1022 Out::elfHeader, 0, STV_HIDDEN); 1023 } 1024 1025 // This function generates assignments for predefined symbols (e.g. _end or 1026 // _etext) and inserts them into the commands sequence to be processed at the 1027 // appropriate time. This ensures that the value is going to be correct by the 1028 // time any references to these symbols are processed and is equivalent to 1029 // defining these symbols explicitly in the linker script. 1030 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1031 if (ElfSym::globalOffsetTable) { 1032 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1033 // to the start of the .got or .got.plt section. 1034 InputSection *sec = in.gotPlt.get(); 1035 if (!target->gotBaseSymInGotPlt) 1036 sec = in.mipsGot.get() ? cast<InputSection>(in.mipsGot.get()) 1037 : cast<InputSection>(in.got.get()); 1038 ElfSym::globalOffsetTable->section = sec; 1039 } 1040 1041 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1042 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1043 ElfSym::relaIpltStart->section = in.relaIplt.get(); 1044 ElfSym::relaIpltEnd->section = in.relaIplt.get(); 1045 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1046 } 1047 1048 PhdrEntry *last = nullptr; 1049 PhdrEntry *lastRO = nullptr; 1050 1051 for (Partition &part : partitions) { 1052 for (PhdrEntry *p : part.phdrs) { 1053 if (p->p_type != PT_LOAD) 1054 continue; 1055 last = p; 1056 if (!(p->p_flags & PF_W)) 1057 lastRO = p; 1058 } 1059 } 1060 1061 if (lastRO) { 1062 // _etext is the first location after the last read-only loadable segment. 1063 if (ElfSym::etext1) 1064 ElfSym::etext1->section = lastRO->lastSec; 1065 if (ElfSym::etext2) 1066 ElfSym::etext2->section = lastRO->lastSec; 1067 } 1068 1069 if (last) { 1070 // _edata points to the end of the last mapped initialized section. 1071 OutputSection *edata = nullptr; 1072 for (OutputSection *os : outputSections) { 1073 if (os->type != SHT_NOBITS) 1074 edata = os; 1075 if (os == last->lastSec) 1076 break; 1077 } 1078 1079 if (ElfSym::edata1) 1080 ElfSym::edata1->section = edata; 1081 if (ElfSym::edata2) 1082 ElfSym::edata2->section = edata; 1083 1084 // _end is the first location after the uninitialized data region. 1085 if (ElfSym::end1) 1086 ElfSym::end1->section = last->lastSec; 1087 if (ElfSym::end2) 1088 ElfSym::end2->section = last->lastSec; 1089 } 1090 1091 if (ElfSym::bss) 1092 ElfSym::bss->section = findSection(".bss"); 1093 1094 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1095 // be equal to the _gp symbol's value. 1096 if (ElfSym::mipsGp) { 1097 // Find GP-relative section with the lowest address 1098 // and use this address to calculate default _gp value. 1099 for (OutputSection *os : outputSections) { 1100 if (os->flags & SHF_MIPS_GPREL) { 1101 ElfSym::mipsGp->section = os; 1102 ElfSym::mipsGp->value = 0x7ff0; 1103 break; 1104 } 1105 } 1106 } 1107 } 1108 1109 // We want to find how similar two ranks are. 1110 // The more branches in getSectionRank that match, the more similar they are. 1111 // Since each branch corresponds to a bit flag, we can just use 1112 // countLeadingZeros. 1113 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1114 return countLeadingZeros(a->sortRank ^ b->sortRank); 1115 } 1116 1117 static int getRankProximity(OutputSection *a, SectionCommand *b) { 1118 auto *sec = dyn_cast<OutputSection>(b); 1119 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1120 } 1121 1122 // When placing orphan sections, we want to place them after symbol assignments 1123 // so that an orphan after 1124 // begin_foo = .; 1125 // foo : { *(foo) } 1126 // end_foo = .; 1127 // doesn't break the intended meaning of the begin/end symbols. 1128 // We don't want to go over sections since findOrphanPos is the 1129 // one in charge of deciding the order of the sections. 1130 // We don't want to go over changes to '.', since doing so in 1131 // rx_sec : { *(rx_sec) } 1132 // . = ALIGN(0x1000); 1133 // /* The RW PT_LOAD starts here*/ 1134 // rw_sec : { *(rw_sec) } 1135 // would mean that the RW PT_LOAD would become unaligned. 1136 static bool shouldSkip(SectionCommand *cmd) { 1137 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1138 return assign->name != "."; 1139 return false; 1140 } 1141 1142 // We want to place orphan sections so that they share as much 1143 // characteristics with their neighbors as possible. For example, if 1144 // both are rw, or both are tls. 1145 static SmallVectorImpl<SectionCommand *>::iterator 1146 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b, 1147 SmallVectorImpl<SectionCommand *>::iterator e) { 1148 OutputSection *sec = cast<OutputSection>(*e); 1149 1150 // Find the first element that has as close a rank as possible. 1151 auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) { 1152 return getRankProximity(sec, a) < getRankProximity(sec, b); 1153 }); 1154 if (i == e) 1155 return e; 1156 auto foundSec = dyn_cast<OutputSection>(*i); 1157 if (!foundSec) 1158 return e; 1159 1160 // Consider all existing sections with the same proximity. 1161 int proximity = getRankProximity(sec, *i); 1162 unsigned sortRank = sec->sortRank; 1163 if (script->hasPhdrsCommands() || !script->memoryRegions.empty()) 1164 // Prevent the orphan section to be placed before the found section. If 1165 // custom program headers are defined, that helps to avoid adding it to a 1166 // previous segment and changing flags of that segment, for example, making 1167 // a read-only segment writable. If memory regions are defined, an orphan 1168 // section should continue the same region as the found section to better 1169 // resemble the behavior of GNU ld. 1170 sortRank = std::max(sortRank, foundSec->sortRank); 1171 for (; i != e; ++i) { 1172 auto *curSec = dyn_cast<OutputSection>(*i); 1173 if (!curSec || !curSec->hasInputSections) 1174 continue; 1175 if (getRankProximity(sec, curSec) != proximity || 1176 sortRank < curSec->sortRank) 1177 break; 1178 } 1179 1180 auto isOutputSecWithInputSections = [](SectionCommand *cmd) { 1181 auto *os = dyn_cast<OutputSection>(cmd); 1182 return os && os->hasInputSections; 1183 }; 1184 auto j = 1185 std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b), 1186 isOutputSecWithInputSections); 1187 i = j.base(); 1188 1189 // As a special case, if the orphan section is the last section, put 1190 // it at the very end, past any other commands. 1191 // This matches bfd's behavior and is convenient when the linker script fully 1192 // specifies the start of the file, but doesn't care about the end (the non 1193 // alloc sections for example). 1194 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1195 if (nextSec == e) 1196 return e; 1197 1198 while (i != e && shouldSkip(*i)) 1199 ++i; 1200 return i; 1201 } 1202 1203 // Adds random priorities to sections not already in the map. 1204 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1205 if (config->shuffleSections.empty()) 1206 return; 1207 1208 SmallVector<InputSectionBase *, 0> matched, sections = inputSections; 1209 matched.reserve(sections.size()); 1210 for (const auto &patAndSeed : config->shuffleSections) { 1211 matched.clear(); 1212 for (InputSectionBase *sec : sections) 1213 if (patAndSeed.first.match(sec->name)) 1214 matched.push_back(sec); 1215 const uint32_t seed = patAndSeed.second; 1216 if (seed == UINT32_MAX) { 1217 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1218 // section order is stable even if the number of sections changes. This is 1219 // useful to catch issues like static initialization order fiasco 1220 // reliably. 1221 std::reverse(matched.begin(), matched.end()); 1222 } else { 1223 std::mt19937 g(seed ? seed : std::random_device()()); 1224 llvm::shuffle(matched.begin(), matched.end(), g); 1225 } 1226 size_t i = 0; 1227 for (InputSectionBase *&sec : sections) 1228 if (patAndSeed.first.match(sec->name)) 1229 sec = matched[i++]; 1230 } 1231 1232 // Existing priorities are < 0, so use priorities >= 0 for the missing 1233 // sections. 1234 int prio = 0; 1235 for (InputSectionBase *sec : sections) { 1236 if (order.try_emplace(sec, prio).second) 1237 ++prio; 1238 } 1239 } 1240 1241 // Builds section order for handling --symbol-ordering-file. 1242 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1243 DenseMap<const InputSectionBase *, int> sectionOrder; 1244 // Use the rarely used option --call-graph-ordering-file to sort sections. 1245 if (!config->callGraphProfile.empty()) 1246 return computeCallGraphProfileOrder(); 1247 1248 if (config->symbolOrderingFile.empty()) 1249 return sectionOrder; 1250 1251 struct SymbolOrderEntry { 1252 int priority; 1253 bool present; 1254 }; 1255 1256 // Build a map from symbols to their priorities. Symbols that didn't 1257 // appear in the symbol ordering file have the lowest priority 0. 1258 // All explicitly mentioned symbols have negative (higher) priorities. 1259 DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder; 1260 int priority = -config->symbolOrderingFile.size(); 1261 for (StringRef s : config->symbolOrderingFile) 1262 symbolOrder.insert({CachedHashStringRef(s), {priority++, false}}); 1263 1264 // Build a map from sections to their priorities. 1265 auto addSym = [&](Symbol &sym) { 1266 auto it = symbolOrder.find(CachedHashStringRef(sym.getName())); 1267 if (it == symbolOrder.end()) 1268 return; 1269 SymbolOrderEntry &ent = it->second; 1270 ent.present = true; 1271 1272 maybeWarnUnorderableSymbol(&sym); 1273 1274 if (auto *d = dyn_cast<Defined>(&sym)) { 1275 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1276 int &priority = sectionOrder[cast<InputSectionBase>(sec)]; 1277 priority = std::min(priority, ent.priority); 1278 } 1279 } 1280 }; 1281 1282 // We want both global and local symbols. We get the global ones from the 1283 // symbol table and iterate the object files for the local ones. 1284 for (Symbol *sym : symtab->symbols()) 1285 addSym(*sym); 1286 1287 for (ELFFileBase *file : objectFiles) 1288 for (Symbol *sym : file->getLocalSymbols()) 1289 addSym(*sym); 1290 1291 if (config->warnSymbolOrdering) 1292 for (auto orderEntry : symbolOrder) 1293 if (!orderEntry.second.present) 1294 warn("symbol ordering file: no such symbol: " + orderEntry.first.val()); 1295 1296 return sectionOrder; 1297 } 1298 1299 // Sorts the sections in ISD according to the provided section order. 1300 static void 1301 sortISDBySectionOrder(InputSectionDescription *isd, 1302 const DenseMap<const InputSectionBase *, int> &order) { 1303 SmallVector<InputSection *, 0> unorderedSections; 1304 SmallVector<std::pair<InputSection *, int>, 0> orderedSections; 1305 uint64_t unorderedSize = 0; 1306 1307 for (InputSection *isec : isd->sections) { 1308 auto i = order.find(isec); 1309 if (i == order.end()) { 1310 unorderedSections.push_back(isec); 1311 unorderedSize += isec->getSize(); 1312 continue; 1313 } 1314 orderedSections.push_back({isec, i->second}); 1315 } 1316 llvm::sort(orderedSections, llvm::less_second()); 1317 1318 // Find an insertion point for the ordered section list in the unordered 1319 // section list. On targets with limited-range branches, this is the mid-point 1320 // of the unordered section list. This decreases the likelihood that a range 1321 // extension thunk will be needed to enter or exit the ordered region. If the 1322 // ordered section list is a list of hot functions, we can generally expect 1323 // the ordered functions to be called more often than the unordered functions, 1324 // making it more likely that any particular call will be within range, and 1325 // therefore reducing the number of thunks required. 1326 // 1327 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1328 // If the layout is: 1329 // 1330 // 8MB hot 1331 // 32MB cold 1332 // 1333 // only the first 8-16MB of the cold code (depending on which hot function it 1334 // is actually calling) can call the hot code without a range extension thunk. 1335 // However, if we use this layout: 1336 // 1337 // 16MB cold 1338 // 8MB hot 1339 // 16MB cold 1340 // 1341 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1342 // of the second block of cold code can call the hot code without a thunk. So 1343 // we effectively double the amount of code that could potentially call into 1344 // the hot code without a thunk. 1345 size_t insPt = 0; 1346 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1347 uint64_t unorderedPos = 0; 1348 for (; insPt != unorderedSections.size(); ++insPt) { 1349 unorderedPos += unorderedSections[insPt]->getSize(); 1350 if (unorderedPos > unorderedSize / 2) 1351 break; 1352 } 1353 } 1354 1355 isd->sections.clear(); 1356 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1357 isd->sections.push_back(isec); 1358 for (std::pair<InputSection *, int> p : orderedSections) 1359 isd->sections.push_back(p.first); 1360 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1361 isd->sections.push_back(isec); 1362 } 1363 1364 static void sortSection(OutputSection *sec, 1365 const DenseMap<const InputSectionBase *, int> &order) { 1366 StringRef name = sec->name; 1367 1368 // Never sort these. 1369 if (name == ".init" || name == ".fini") 1370 return; 1371 1372 // IRelative relocations that usually live in the .rel[a].dyn section should 1373 // be processed last by the dynamic loader. To achieve that we add synthetic 1374 // sections in the required order from the beginning so that the in.relaIplt 1375 // section is placed last in an output section. Here we just do not apply 1376 // sorting for an output section which holds the in.relaIplt section. 1377 if (in.relaIplt->getParent() == sec) 1378 return; 1379 1380 // Sort input sections by priority using the list provided by 1381 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1382 // digit radix sort. The sections may be sorted stably again by a more 1383 // significant key. 1384 if (!order.empty()) 1385 for (SectionCommand *b : sec->commands) 1386 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1387 sortISDBySectionOrder(isd, order); 1388 1389 if (script->hasSectionsCommand) 1390 return; 1391 1392 if (name == ".init_array" || name == ".fini_array") { 1393 sec->sortInitFini(); 1394 } else if (name == ".ctors" || name == ".dtors") { 1395 sec->sortCtorsDtors(); 1396 } else if (config->emachine == EM_PPC64 && name == ".toc") { 1397 // .toc is allocated just after .got and is accessed using GOT-relative 1398 // relocations. Object files compiled with small code model have an 1399 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1400 // To reduce the risk of relocation overflow, .toc contents are sorted so 1401 // that sections having smaller relocation offsets are at beginning of .toc 1402 assert(sec->commands.size() == 1); 1403 auto *isd = cast<InputSectionDescription>(sec->commands[0]); 1404 llvm::stable_sort(isd->sections, 1405 [](const InputSection *a, const InputSection *b) -> bool { 1406 return a->file->ppc64SmallCodeModelTocRelocs && 1407 !b->file->ppc64SmallCodeModelTocRelocs; 1408 }); 1409 } 1410 } 1411 1412 // If no layout was provided by linker script, we want to apply default 1413 // sorting for special input sections. This also handles --symbol-ordering-file. 1414 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1415 // Build the order once since it is expensive. 1416 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1417 maybeShuffle(order); 1418 for (SectionCommand *cmd : script->sectionCommands) 1419 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1420 sortSection(sec, order); 1421 } 1422 1423 template <class ELFT> void Writer<ELFT>::sortSections() { 1424 llvm::TimeTraceScope timeScope("Sort sections"); 1425 1426 // Don't sort if using -r. It is not necessary and we want to preserve the 1427 // relative order for SHF_LINK_ORDER sections. 1428 if (config->relocatable) { 1429 script->adjustOutputSections(); 1430 return; 1431 } 1432 1433 sortInputSections(); 1434 1435 for (SectionCommand *cmd : script->sectionCommands) 1436 if (auto *osec = dyn_cast_or_null<OutputSection>(cmd)) 1437 osec->sortRank = getSectionRank(osec); 1438 if (!script->hasSectionsCommand) { 1439 // We know that all the OutputSections are contiguous in this case. 1440 auto isSection = [](SectionCommand *cmd) { 1441 return isa<OutputSection>(cmd); 1442 }; 1443 std::stable_sort( 1444 llvm::find_if(script->sectionCommands, isSection), 1445 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1446 compareSections); 1447 } 1448 1449 // Process INSERT commands and update output section attributes. From this 1450 // point onwards the order of script->sectionCommands is fixed. 1451 script->processInsertCommands(); 1452 script->adjustOutputSections(); 1453 1454 if (!script->hasSectionsCommand) 1455 return; 1456 1457 // Orphan sections are sections present in the input files which are 1458 // not explicitly placed into the output file by the linker script. 1459 // 1460 // The sections in the linker script are already in the correct 1461 // order. We have to figuere out where to insert the orphan 1462 // sections. 1463 // 1464 // The order of the sections in the script is arbitrary and may not agree with 1465 // compareSections. This means that we cannot easily define a strict weak 1466 // ordering. To see why, consider a comparison of a section in the script and 1467 // one not in the script. We have a two simple options: 1468 // * Make them equivalent (a is not less than b, and b is not less than a). 1469 // The problem is then that equivalence has to be transitive and we can 1470 // have sections a, b and c with only b in a script and a less than c 1471 // which breaks this property. 1472 // * Use compareSectionsNonScript. Given that the script order doesn't have 1473 // to match, we can end up with sections a, b, c, d where b and c are in the 1474 // script and c is compareSectionsNonScript less than b. In which case d 1475 // can be equivalent to c, a to b and d < a. As a concrete example: 1476 // .a (rx) # not in script 1477 // .b (rx) # in script 1478 // .c (ro) # in script 1479 // .d (ro) # not in script 1480 // 1481 // The way we define an order then is: 1482 // * Sort only the orphan sections. They are in the end right now. 1483 // * Move each orphan section to its preferred position. We try 1484 // to put each section in the last position where it can share 1485 // a PT_LOAD. 1486 // 1487 // There is some ambiguity as to where exactly a new entry should be 1488 // inserted, because Commands contains not only output section 1489 // commands but also other types of commands such as symbol assignment 1490 // expressions. There's no correct answer here due to the lack of the 1491 // formal specification of the linker script. We use heuristics to 1492 // determine whether a new output command should be added before or 1493 // after another commands. For the details, look at shouldSkip 1494 // function. 1495 1496 auto i = script->sectionCommands.begin(); 1497 auto e = script->sectionCommands.end(); 1498 auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) { 1499 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1500 return sec->sectionIndex == UINT32_MAX; 1501 return false; 1502 }); 1503 1504 // Sort the orphan sections. 1505 std::stable_sort(nonScriptI, e, compareSections); 1506 1507 // As a horrible special case, skip the first . assignment if it is before any 1508 // section. We do this because it is common to set a load address by starting 1509 // the script with ". = 0xabcd" and the expectation is that every section is 1510 // after that. 1511 auto firstSectionOrDotAssignment = 1512 std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); }); 1513 if (firstSectionOrDotAssignment != e && 1514 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1515 ++firstSectionOrDotAssignment; 1516 i = firstSectionOrDotAssignment; 1517 1518 while (nonScriptI != e) { 1519 auto pos = findOrphanPos(i, nonScriptI); 1520 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1521 1522 // As an optimization, find all sections with the same sort rank 1523 // and insert them with one rotate. 1524 unsigned rank = orphan->sortRank; 1525 auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) { 1526 return cast<OutputSection>(cmd)->sortRank != rank; 1527 }); 1528 std::rotate(pos, nonScriptI, end); 1529 nonScriptI = end; 1530 } 1531 1532 script->adjustSectionsAfterSorting(); 1533 } 1534 1535 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1536 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1537 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1538 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1539 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1540 if (!la || !lb) 1541 return la && !lb; 1542 OutputSection *aOut = la->getParent(); 1543 OutputSection *bOut = lb->getParent(); 1544 1545 if (aOut != bOut) 1546 return aOut->addr < bOut->addr; 1547 return la->outSecOff < lb->outSecOff; 1548 } 1549 1550 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1551 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1552 for (OutputSection *sec : outputSections) { 1553 if (!(sec->flags & SHF_LINK_ORDER)) 1554 continue; 1555 1556 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1557 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1558 if (!config->relocatable && config->emachine == EM_ARM && 1559 sec->type == SHT_ARM_EXIDX) 1560 continue; 1561 1562 // Link order may be distributed across several InputSectionDescriptions. 1563 // Sorting is performed separately. 1564 SmallVector<InputSection **, 0> scriptSections; 1565 SmallVector<InputSection *, 0> sections; 1566 for (SectionCommand *cmd : sec->commands) { 1567 auto *isd = dyn_cast<InputSectionDescription>(cmd); 1568 if (!isd) 1569 continue; 1570 bool hasLinkOrder = false; 1571 scriptSections.clear(); 1572 sections.clear(); 1573 for (InputSection *&isec : isd->sections) { 1574 if (isec->flags & SHF_LINK_ORDER) { 1575 InputSection *link = isec->getLinkOrderDep(); 1576 if (link && !link->getParent()) 1577 error(toString(isec) + ": sh_link points to discarded section " + 1578 toString(link)); 1579 hasLinkOrder = true; 1580 } 1581 scriptSections.push_back(&isec); 1582 sections.push_back(isec); 1583 } 1584 if (hasLinkOrder && errorCount() == 0) { 1585 llvm::stable_sort(sections, compareByFilePosition); 1586 for (int i = 0, n = sections.size(); i != n; ++i) 1587 *scriptSections[i] = sections[i]; 1588 } 1589 } 1590 } 1591 } 1592 1593 static void finalizeSynthetic(SyntheticSection *sec) { 1594 if (sec && sec->isNeeded() && sec->getParent()) { 1595 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1596 sec->finalizeContents(); 1597 } 1598 } 1599 1600 // We need to generate and finalize the content that depends on the address of 1601 // InputSections. As the generation of the content may also alter InputSection 1602 // addresses we must converge to a fixed point. We do that here. See the comment 1603 // in Writer<ELFT>::finalizeSections(). 1604 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1605 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1606 ThunkCreator tc; 1607 AArch64Err843419Patcher a64p; 1608 ARMErr657417Patcher a32p; 1609 script->assignAddresses(); 1610 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1611 // do require the relative addresses of OutputSections because linker scripts 1612 // can assign Virtual Addresses to OutputSections that are not monotonically 1613 // increasing. 1614 for (Partition &part : partitions) 1615 finalizeSynthetic(part.armExidx.get()); 1616 resolveShfLinkOrder(); 1617 1618 // Converts call x@GDPLT to call __tls_get_addr 1619 if (config->emachine == EM_HEXAGON) 1620 hexagonTLSSymbolUpdate(outputSections); 1621 1622 int assignPasses = 0; 1623 for (;;) { 1624 bool changed = target->needsThunks && tc.createThunks(outputSections); 1625 1626 // With Thunk Size much smaller than branch range we expect to 1627 // converge quickly; if we get to 15 something has gone wrong. 1628 if (changed && tc.pass >= 15) { 1629 error("thunk creation not converged"); 1630 break; 1631 } 1632 1633 if (config->fixCortexA53Errata843419) { 1634 if (changed) 1635 script->assignAddresses(); 1636 changed |= a64p.createFixes(); 1637 } 1638 if (config->fixCortexA8) { 1639 if (changed) 1640 script->assignAddresses(); 1641 changed |= a32p.createFixes(); 1642 } 1643 1644 if (in.mipsGot) 1645 in.mipsGot->updateAllocSize(); 1646 1647 for (Partition &part : partitions) { 1648 changed |= part.relaDyn->updateAllocSize(); 1649 if (part.relrDyn) 1650 changed |= part.relrDyn->updateAllocSize(); 1651 } 1652 1653 const Defined *changedSym = script->assignAddresses(); 1654 if (!changed) { 1655 // Some symbols may be dependent on section addresses. When we break the 1656 // loop, the symbol values are finalized because a previous 1657 // assignAddresses() finalized section addresses. 1658 if (!changedSym) 1659 break; 1660 if (++assignPasses == 5) { 1661 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1662 " does not converge"); 1663 break; 1664 } 1665 } 1666 } 1667 1668 if (config->relocatable) 1669 for (OutputSection *sec : outputSections) 1670 sec->addr = 0; 1671 1672 // If addrExpr is set, the address may not be a multiple of the alignment. 1673 // Warn because this is error-prone. 1674 for (SectionCommand *cmd : script->sectionCommands) 1675 if (auto *os = dyn_cast<OutputSection>(cmd)) 1676 if (os->addr % os->alignment != 0) 1677 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1678 os->name + " is not a multiple of alignment (" + 1679 Twine(os->alignment) + ")"); 1680 } 1681 1682 // If Input Sections have been shrunk (basic block sections) then 1683 // update symbol values and sizes associated with these sections. With basic 1684 // block sections, input sections can shrink when the jump instructions at 1685 // the end of the section are relaxed. 1686 static void fixSymbolsAfterShrinking() { 1687 for (InputFile *File : objectFiles) { 1688 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1689 auto *def = dyn_cast<Defined>(Sym); 1690 if (!def) 1691 return; 1692 1693 const SectionBase *sec = def->section; 1694 if (!sec) 1695 return; 1696 1697 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec); 1698 if (!inputSec || !inputSec->bytesDropped) 1699 return; 1700 1701 const size_t OldSize = inputSec->rawData.size(); 1702 const size_t NewSize = OldSize - inputSec->bytesDropped; 1703 1704 if (def->value > NewSize && def->value <= OldSize) { 1705 LLVM_DEBUG(llvm::dbgs() 1706 << "Moving symbol " << Sym->getName() << " from " 1707 << def->value << " to " 1708 << def->value - inputSec->bytesDropped << " bytes\n"); 1709 def->value -= inputSec->bytesDropped; 1710 return; 1711 } 1712 1713 if (def->value + def->size > NewSize && def->value <= OldSize && 1714 def->value + def->size <= OldSize) { 1715 LLVM_DEBUG(llvm::dbgs() 1716 << "Shrinking symbol " << Sym->getName() << " from " 1717 << def->size << " to " << def->size - inputSec->bytesDropped 1718 << " bytes\n"); 1719 def->size -= inputSec->bytesDropped; 1720 } 1721 }); 1722 } 1723 } 1724 1725 // If basic block sections exist, there are opportunities to delete fall thru 1726 // jumps and shrink jump instructions after basic block reordering. This 1727 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1728 // option is used. 1729 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1730 assert(config->optimizeBBJumps); 1731 1732 script->assignAddresses(); 1733 // For every output section that has executable input sections, this 1734 // does the following: 1735 // 1. Deletes all direct jump instructions in input sections that 1736 // jump to the following section as it is not required. 1737 // 2. If there are two consecutive jump instructions, it checks 1738 // if they can be flipped and one can be deleted. 1739 for (OutputSection *osec : outputSections) { 1740 if (!(osec->flags & SHF_EXECINSTR)) 1741 continue; 1742 SmallVector<InputSection *, 0> sections = getInputSections(*osec); 1743 size_t numDeleted = 0; 1744 // Delete all fall through jump instructions. Also, check if two 1745 // consecutive jump instructions can be flipped so that a fall 1746 // through jmp instruction can be deleted. 1747 for (size_t i = 0, e = sections.size(); i != e; ++i) { 1748 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1749 InputSection &sec = *sections[i]; 1750 numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next); 1751 } 1752 if (numDeleted > 0) { 1753 script->assignAddresses(); 1754 LLVM_DEBUG(llvm::dbgs() 1755 << "Removing " << numDeleted << " fall through jumps\n"); 1756 } 1757 } 1758 1759 fixSymbolsAfterShrinking(); 1760 1761 for (OutputSection *osec : outputSections) 1762 for (InputSection *is : getInputSections(*osec)) 1763 is->trim(); 1764 } 1765 1766 // In order to allow users to manipulate linker-synthesized sections, 1767 // we had to add synthetic sections to the input section list early, 1768 // even before we make decisions whether they are needed. This allows 1769 // users to write scripts like this: ".mygot : { .got }". 1770 // 1771 // Doing it has an unintended side effects. If it turns out that we 1772 // don't need a .got (for example) at all because there's no 1773 // relocation that needs a .got, we don't want to emit .got. 1774 // 1775 // To deal with the above problem, this function is called after 1776 // scanRelocations is called to remove synthetic sections that turn 1777 // out to be empty. 1778 static void removeUnusedSyntheticSections() { 1779 // All input synthetic sections that can be empty are placed after 1780 // all regular ones. Reverse iterate to find the first synthetic section 1781 // after a non-synthetic one which will be our starting point. 1782 auto start = std::find_if(inputSections.rbegin(), inputSections.rend(), 1783 [](InputSectionBase *s) { 1784 return !isa<SyntheticSection>(s); 1785 }) 1786 .base(); 1787 1788 // Remove unused synthetic sections from inputSections; 1789 DenseSet<InputSectionBase *> unused; 1790 auto end = 1791 std::remove_if(start, inputSections.end(), [&](InputSectionBase *s) { 1792 auto *sec = cast<SyntheticSection>(s); 1793 if (sec->getParent() && sec->isNeeded()) 1794 return false; 1795 unused.insert(sec); 1796 return true; 1797 }); 1798 inputSections.erase(end, inputSections.end()); 1799 1800 // Remove unused synthetic sections from the corresponding input section 1801 // description and orphanSections. 1802 for (auto *sec : unused) 1803 if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent()) 1804 for (SectionCommand *cmd : osec->commands) 1805 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 1806 llvm::erase_if(isd->sections, [&](InputSection *isec) { 1807 return unused.count(isec); 1808 }); 1809 llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) { 1810 return unused.count(sec); 1811 }); 1812 } 1813 1814 // Create output section objects and add them to OutputSections. 1815 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1816 Out::preinitArray = findSection(".preinit_array"); 1817 Out::initArray = findSection(".init_array"); 1818 Out::finiArray = findSection(".fini_array"); 1819 1820 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1821 // symbols for sections, so that the runtime can get the start and end 1822 // addresses of each section by section name. Add such symbols. 1823 if (!config->relocatable) { 1824 addStartEndSymbols(); 1825 for (SectionCommand *cmd : script->sectionCommands) 1826 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1827 addStartStopSymbols(sec); 1828 } 1829 1830 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1831 // It should be okay as no one seems to care about the type. 1832 // Even the author of gold doesn't remember why gold behaves that way. 1833 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1834 if (mainPart->dynamic->parent) 1835 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE, 1836 /*value=*/0, /*size=*/0, mainPart->dynamic.get()})->isUsedInRegularObj = true; 1837 1838 // Define __rel[a]_iplt_{start,end} symbols if needed. 1839 addRelIpltSymbols(); 1840 1841 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1842 // should only be defined in an executable. If .sdata does not exist, its 1843 // value/section does not matter but it has to be relative, so set its 1844 // st_shndx arbitrarily to 1 (Out::elfHeader). 1845 if (config->emachine == EM_RISCV && !config->shared) { 1846 OutputSection *sec = findSection(".sdata"); 1847 ElfSym::riscvGlobalPointer = 1848 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1849 0x800, STV_DEFAULT); 1850 } 1851 1852 if (config->emachine == EM_386 || config->emachine == EM_X86_64) { 1853 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1854 // way that: 1855 // 1856 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1857 // computes 0. 1858 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1859 // the TLS block). 1860 // 1861 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1862 // an absolute symbol of zero. This is different from GNU linkers which 1863 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1864 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1865 if (s && s->isUndefined()) { 1866 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN, 1867 STT_TLS, /*value=*/0, 0, 1868 /*section=*/nullptr}); 1869 ElfSym::tlsModuleBase = cast<Defined>(s); 1870 } 1871 } 1872 1873 { 1874 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1875 // This responsible for splitting up .eh_frame section into 1876 // pieces. The relocation scan uses those pieces, so this has to be 1877 // earlier. 1878 for (Partition &part : partitions) 1879 finalizeSynthetic(part.ehFrame.get()); 1880 } 1881 1882 if (config->hasDynSymTab) { 1883 parallelForEach(symtab->symbols(), [](Symbol *sym) { 1884 sym->isPreemptible = computeIsPreemptible(*sym); 1885 }); 1886 } 1887 1888 // Change values of linker-script-defined symbols from placeholders (assigned 1889 // by declareSymbols) to actual definitions. 1890 script->processSymbolAssignments(); 1891 1892 { 1893 llvm::TimeTraceScope timeScope("Scan relocations"); 1894 // Scan relocations. This must be done after every symbol is declared so 1895 // that we can correctly decide if a dynamic relocation is needed. This is 1896 // called after processSymbolAssignments() because it needs to know whether 1897 // a linker-script-defined symbol is absolute. 1898 ppc64noTocRelax.clear(); 1899 if (!config->relocatable) { 1900 // Scan all relocations. Each relocation goes through a series of tests to 1901 // determine if it needs special treatment, such as creating GOT, PLT, 1902 // copy relocations, etc. Note that relocations for non-alloc sections are 1903 // directly processed by InputSection::relocateNonAlloc. 1904 for (InputSectionBase *sec : inputSections) 1905 if (sec->isLive() && isa<InputSection>(sec) && (sec->flags & SHF_ALLOC)) 1906 scanRelocations<ELFT>(*sec); 1907 for (Partition &part : partitions) { 1908 for (EhInputSection *sec : part.ehFrame->sections) 1909 scanRelocations<ELFT>(*sec); 1910 if (part.armExidx && part.armExidx->isLive()) 1911 for (InputSection *sec : part.armExidx->exidxSections) 1912 scanRelocations<ELFT>(*sec); 1913 } 1914 1915 reportUndefinedSymbols(); 1916 postScanRelocations(); 1917 } 1918 } 1919 1920 if (in.plt && in.plt->isNeeded()) 1921 in.plt->addSymbols(); 1922 if (in.iplt && in.iplt->isNeeded()) 1923 in.iplt->addSymbols(); 1924 1925 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 1926 auto diagnose = 1927 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 1928 ? errorOrWarn 1929 : warn; 1930 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1931 // entries are seen. These cases would otherwise lead to runtime errors 1932 // reported by the dynamic linker. 1933 // 1934 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1935 // catch more cases. That is too much for us. Our approach resembles the one 1936 // used in ld.gold, achieves a good balance to be useful but not too smart. 1937 for (SharedFile *file : sharedFiles) { 1938 bool allNeededIsKnown = 1939 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1940 return symtab->soNames.count(CachedHashStringRef(needed)); 1941 }); 1942 if (!allNeededIsKnown) 1943 continue; 1944 for (Symbol *sym : file->requiredSymbols) 1945 if (sym->isUndefined() && !sym->isWeak()) 1946 diagnose(toString(file) + ": undefined reference to " + 1947 toString(*sym) + " [--no-allow-shlib-undefined]"); 1948 } 1949 } 1950 1951 { 1952 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 1953 // Now that we have defined all possible global symbols including linker- 1954 // synthesized ones. Visit all symbols to give the finishing touches. 1955 for (Symbol *sym : symtab->symbols()) { 1956 if (!sym->isUsedInRegularObj || !includeInSymtab(*sym)) 1957 continue; 1958 if (!config->relocatable) 1959 sym->binding = sym->computeBinding(); 1960 if (in.symTab) 1961 in.symTab->addSymbol(sym); 1962 1963 if (sym->includeInDynsym()) { 1964 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1965 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1966 if (file->isNeeded && !sym->isUndefined()) 1967 addVerneed(sym); 1968 } 1969 } 1970 1971 // We also need to scan the dynamic relocation tables of the other 1972 // partitions and add any referenced symbols to the partition's dynsym. 1973 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 1974 DenseSet<Symbol *> syms; 1975 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 1976 syms.insert(e.sym); 1977 for (DynamicReloc &reloc : part.relaDyn->relocs) 1978 if (reloc.sym && reloc.needsDynSymIndex() && 1979 syms.insert(reloc.sym).second) 1980 part.dynSymTab->addSymbol(reloc.sym); 1981 } 1982 } 1983 1984 if (in.mipsGot) 1985 in.mipsGot->build(); 1986 1987 removeUnusedSyntheticSections(); 1988 script->diagnoseOrphanHandling(); 1989 1990 sortSections(); 1991 1992 // Create a list of OutputSections, assign sectionIndex, and populate 1993 // in.shStrTab. 1994 for (SectionCommand *cmd : script->sectionCommands) 1995 if (auto *osec = dyn_cast<OutputSection>(cmd)) { 1996 outputSections.push_back(osec); 1997 osec->sectionIndex = outputSections.size(); 1998 osec->shName = in.shStrTab->addString(osec->name); 1999 } 2000 2001 // Prefer command line supplied address over other constraints. 2002 for (OutputSection *sec : outputSections) { 2003 auto i = config->sectionStartMap.find(sec->name); 2004 if (i != config->sectionStartMap.end()) 2005 sec->addrExpr = [=] { return i->second; }; 2006 } 2007 2008 // With the outputSections available check for GDPLT relocations 2009 // and add __tls_get_addr symbol if needed. 2010 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2011 Symbol *sym = symtab->addSymbol(Undefined{ 2012 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2013 sym->isPreemptible = true; 2014 partitions[0].dynSymTab->addSymbol(sym); 2015 } 2016 2017 // This is a bit of a hack. A value of 0 means undef, so we set it 2018 // to 1 to make __ehdr_start defined. The section number is not 2019 // particularly relevant. 2020 Out::elfHeader->sectionIndex = 1; 2021 Out::elfHeader->size = sizeof(typename ELFT::Ehdr); 2022 2023 // Binary and relocatable output does not have PHDRS. 2024 // The headers have to be created before finalize as that can influence the 2025 // image base and the dynamic section on mips includes the image base. 2026 if (!config->relocatable && !config->oFormatBinary) { 2027 for (Partition &part : partitions) { 2028 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2029 : createPhdrs(part); 2030 if (config->emachine == EM_ARM) { 2031 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2032 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2033 } 2034 if (config->emachine == EM_MIPS) { 2035 // Add separate segments for MIPS-specific sections. 2036 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2037 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2038 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2039 } 2040 } 2041 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2042 2043 // Find the TLS segment. This happens before the section layout loop so that 2044 // Android relocation packing can look up TLS symbol addresses. We only need 2045 // to care about the main partition here because all TLS symbols were moved 2046 // to the main partition (see MarkLive.cpp). 2047 for (PhdrEntry *p : mainPart->phdrs) 2048 if (p->p_type == PT_TLS) 2049 Out::tlsPhdr = p; 2050 } 2051 2052 // Some symbols are defined in term of program headers. Now that we 2053 // have the headers, we can find out which sections they point to. 2054 setReservedSymbolSections(); 2055 2056 { 2057 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2058 2059 finalizeSynthetic(in.bss.get()); 2060 finalizeSynthetic(in.bssRelRo.get()); 2061 finalizeSynthetic(in.symTabShndx.get()); 2062 finalizeSynthetic(in.shStrTab.get()); 2063 finalizeSynthetic(in.strTab.get()); 2064 finalizeSynthetic(in.got.get()); 2065 finalizeSynthetic(in.mipsGot.get()); 2066 finalizeSynthetic(in.igotPlt.get()); 2067 finalizeSynthetic(in.gotPlt.get()); 2068 finalizeSynthetic(in.relaIplt.get()); 2069 finalizeSynthetic(in.relaPlt.get()); 2070 finalizeSynthetic(in.plt.get()); 2071 finalizeSynthetic(in.iplt.get()); 2072 finalizeSynthetic(in.ppc32Got2.get()); 2073 finalizeSynthetic(in.partIndex.get()); 2074 2075 // Dynamic section must be the last one in this list and dynamic 2076 // symbol table section (dynSymTab) must be the first one. 2077 for (Partition &part : partitions) { 2078 if (part.relaDyn) { 2079 // Compute DT_RELACOUNT to be used by part.dynamic. 2080 part.relaDyn->partitionRels(); 2081 finalizeSynthetic(part.relaDyn.get()); 2082 } 2083 2084 finalizeSynthetic(part.dynSymTab.get()); 2085 finalizeSynthetic(part.gnuHashTab.get()); 2086 finalizeSynthetic(part.hashTab.get()); 2087 finalizeSynthetic(part.verDef.get()); 2088 finalizeSynthetic(part.relrDyn.get()); 2089 finalizeSynthetic(part.ehFrameHdr.get()); 2090 finalizeSynthetic(part.verSym.get()); 2091 finalizeSynthetic(part.verNeed.get()); 2092 finalizeSynthetic(part.dynamic.get()); 2093 } 2094 } 2095 2096 if (!script->hasSectionsCommand && !config->relocatable) 2097 fixSectionAlignments(); 2098 2099 // This is used to: 2100 // 1) Create "thunks": 2101 // Jump instructions in many ISAs have small displacements, and therefore 2102 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2103 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2104 // responsibility to create and insert small pieces of code between 2105 // sections to extend the ranges if jump targets are out of range. Such 2106 // code pieces are called "thunks". 2107 // 2108 // We add thunks at this stage. We couldn't do this before this point 2109 // because this is the earliest point where we know sizes of sections and 2110 // their layouts (that are needed to determine if jump targets are in 2111 // range). 2112 // 2113 // 2) Update the sections. We need to generate content that depends on the 2114 // address of InputSections. For example, MIPS GOT section content or 2115 // android packed relocations sections content. 2116 // 2117 // 3) Assign the final values for the linker script symbols. Linker scripts 2118 // sometimes using forward symbol declarations. We want to set the correct 2119 // values. They also might change after adding the thunks. 2120 finalizeAddressDependentContent(); 2121 2122 // All information needed for OutputSection part of Map file is available. 2123 if (errorCount()) 2124 return; 2125 2126 { 2127 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2128 // finalizeAddressDependentContent may have added local symbols to the 2129 // static symbol table. 2130 finalizeSynthetic(in.symTab.get()); 2131 finalizeSynthetic(in.ppc64LongBranchTarget.get()); 2132 } 2133 2134 // Relaxation to delete inter-basic block jumps created by basic block 2135 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2136 // can relax jump instructions based on symbol offset. 2137 if (config->optimizeBBJumps) 2138 optimizeBasicBlockJumps(); 2139 2140 // Fill other section headers. The dynamic table is finalized 2141 // at the end because some tags like RELSZ depend on result 2142 // of finalizing other sections. 2143 for (OutputSection *sec : outputSections) 2144 sec->finalize(); 2145 } 2146 2147 // Ensure data sections are not mixed with executable sections when 2148 // --execute-only is used. --execute-only make pages executable but not 2149 // readable. 2150 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2151 if (!config->executeOnly) 2152 return; 2153 2154 for (OutputSection *osec : outputSections) 2155 if (osec->flags & SHF_EXECINSTR) 2156 for (InputSection *isec : getInputSections(*osec)) 2157 if (!(isec->flags & SHF_EXECINSTR)) 2158 error("cannot place " + toString(isec) + " into " + 2159 toString(osec->name) + 2160 ": --execute-only does not support intermingling data and code"); 2161 } 2162 2163 // The linker is expected to define SECNAME_start and SECNAME_end 2164 // symbols for a few sections. This function defines them. 2165 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2166 // If a section does not exist, there's ambiguity as to how we 2167 // define _start and _end symbols for an init/fini section. Since 2168 // the loader assume that the symbols are always defined, we need to 2169 // always define them. But what value? The loader iterates over all 2170 // pointers between _start and _end to run global ctors/dtors, so if 2171 // the section is empty, their symbol values don't actually matter 2172 // as long as _start and _end point to the same location. 2173 // 2174 // That said, we don't want to set the symbols to 0 (which is 2175 // probably the simplest value) because that could cause some 2176 // program to fail to link due to relocation overflow, if their 2177 // program text is above 2 GiB. We use the address of the .text 2178 // section instead to prevent that failure. 2179 // 2180 // In rare situations, the .text section may not exist. If that's the 2181 // case, use the image base address as a last resort. 2182 OutputSection *Default = findSection(".text"); 2183 if (!Default) 2184 Default = Out::elfHeader; 2185 2186 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2187 if (os && !script->isDiscarded(os)) { 2188 addOptionalRegular(start, os, 0); 2189 addOptionalRegular(end, os, -1); 2190 } else { 2191 addOptionalRegular(start, Default, 0); 2192 addOptionalRegular(end, Default, 0); 2193 } 2194 }; 2195 2196 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2197 define("__init_array_start", "__init_array_end", Out::initArray); 2198 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2199 2200 if (OutputSection *sec = findSection(".ARM.exidx")) 2201 define("__exidx_start", "__exidx_end", sec); 2202 } 2203 2204 // If a section name is valid as a C identifier (which is rare because of 2205 // the leading '.'), linkers are expected to define __start_<secname> and 2206 // __stop_<secname> symbols. They are at beginning and end of the section, 2207 // respectively. This is not requested by the ELF standard, but GNU ld and 2208 // gold provide the feature, and used by many programs. 2209 template <class ELFT> 2210 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2211 StringRef s = sec->name; 2212 if (!isValidCIdentifier(s)) 2213 return; 2214 addOptionalRegular(saver().save("__start_" + s), sec, 0, 2215 config->zStartStopVisibility); 2216 addOptionalRegular(saver().save("__stop_" + s), sec, -1, 2217 config->zStartStopVisibility); 2218 } 2219 2220 static bool needsPtLoad(OutputSection *sec) { 2221 if (!(sec->flags & SHF_ALLOC)) 2222 return false; 2223 2224 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2225 // responsible for allocating space for them, not the PT_LOAD that 2226 // contains the TLS initialization image. 2227 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2228 return false; 2229 return true; 2230 } 2231 2232 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2233 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2234 // RW. This means that there is no alignment in the RO to RX transition and we 2235 // cannot create a PT_LOAD there. 2236 static uint64_t computeFlags(uint64_t flags) { 2237 if (config->omagic) 2238 return PF_R | PF_W | PF_X; 2239 if (config->executeOnly && (flags & PF_X)) 2240 return flags & ~PF_R; 2241 if (config->singleRoRx && !(flags & PF_W)) 2242 return flags | PF_X; 2243 return flags; 2244 } 2245 2246 // Decide which program headers to create and which sections to include in each 2247 // one. 2248 template <class ELFT> 2249 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) { 2250 SmallVector<PhdrEntry *, 0> ret; 2251 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2252 ret.push_back(make<PhdrEntry>(type, flags)); 2253 return ret.back(); 2254 }; 2255 2256 unsigned partNo = part.getNumber(); 2257 bool isMain = partNo == 1; 2258 2259 // Add the first PT_LOAD segment for regular output sections. 2260 uint64_t flags = computeFlags(PF_R); 2261 PhdrEntry *load = nullptr; 2262 2263 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2264 // PT_LOAD. 2265 if (!config->nmagic && !config->omagic) { 2266 // The first phdr entry is PT_PHDR which describes the program header 2267 // itself. 2268 if (isMain) 2269 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2270 else 2271 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2272 2273 // PT_INTERP must be the second entry if exists. 2274 if (OutputSection *cmd = findSection(".interp", partNo)) 2275 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2276 2277 // Add the headers. We will remove them if they don't fit. 2278 // In the other partitions the headers are ordinary sections, so they don't 2279 // need to be added here. 2280 if (isMain) { 2281 load = addHdr(PT_LOAD, flags); 2282 load->add(Out::elfHeader); 2283 load->add(Out::programHeaders); 2284 } 2285 } 2286 2287 // PT_GNU_RELRO includes all sections that should be marked as 2288 // read-only by dynamic linker after processing relocations. 2289 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2290 // an error message if more than one PT_GNU_RELRO PHDR is required. 2291 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2292 bool inRelroPhdr = false; 2293 OutputSection *relroEnd = nullptr; 2294 for (OutputSection *sec : outputSections) { 2295 if (sec->partition != partNo || !needsPtLoad(sec)) 2296 continue; 2297 if (isRelroSection(sec)) { 2298 inRelroPhdr = true; 2299 if (!relroEnd) 2300 relRo->add(sec); 2301 else 2302 error("section: " + sec->name + " is not contiguous with other relro" + 2303 " sections"); 2304 } else if (inRelroPhdr) { 2305 inRelroPhdr = false; 2306 relroEnd = sec; 2307 } 2308 } 2309 2310 for (OutputSection *sec : outputSections) { 2311 if (!needsPtLoad(sec)) 2312 continue; 2313 2314 // Normally, sections in partitions other than the current partition are 2315 // ignored. But partition number 255 is a special case: it contains the 2316 // partition end marker (.part.end). It needs to be added to the main 2317 // partition so that a segment is created for it in the main partition, 2318 // which will cause the dynamic loader to reserve space for the other 2319 // partitions. 2320 if (sec->partition != partNo) { 2321 if (isMain && sec->partition == 255) 2322 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2323 continue; 2324 } 2325 2326 // Segments are contiguous memory regions that has the same attributes 2327 // (e.g. executable or writable). There is one phdr for each segment. 2328 // Therefore, we need to create a new phdr when the next section has 2329 // different flags or is loaded at a discontiguous address or memory 2330 // region using AT or AT> linker script command, respectively. At the same 2331 // time, we don't want to create a separate load segment for the headers, 2332 // even if the first output section has an AT or AT> attribute. 2333 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2334 bool sameLMARegion = 2335 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2336 if (!(load && newFlags == flags && sec != relroEnd && 2337 sec->memRegion == load->firstSec->memRegion && 2338 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2339 load = addHdr(PT_LOAD, newFlags); 2340 flags = newFlags; 2341 } 2342 2343 load->add(sec); 2344 } 2345 2346 // Add a TLS segment if any. 2347 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2348 for (OutputSection *sec : outputSections) 2349 if (sec->partition == partNo && sec->flags & SHF_TLS) 2350 tlsHdr->add(sec); 2351 if (tlsHdr->firstSec) 2352 ret.push_back(tlsHdr); 2353 2354 // Add an entry for .dynamic. 2355 if (OutputSection *sec = part.dynamic->getParent()) 2356 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2357 2358 if (relRo->firstSec) 2359 ret.push_back(relRo); 2360 2361 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2362 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2363 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2364 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2365 ->add(part.ehFrameHdr->getParent()); 2366 2367 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2368 // the dynamic linker fill the segment with random data. 2369 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2370 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2371 2372 if (config->zGnustack != GnuStackKind::None) { 2373 // PT_GNU_STACK is a special section to tell the loader to make the 2374 // pages for the stack non-executable. If you really want an executable 2375 // stack, you can pass -z execstack, but that's not recommended for 2376 // security reasons. 2377 unsigned perm = PF_R | PF_W; 2378 if (config->zGnustack == GnuStackKind::Exec) 2379 perm |= PF_X; 2380 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2381 } 2382 2383 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2384 // is expected to perform W^X violations, such as calling mprotect(2) or 2385 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2386 // OpenBSD. 2387 if (config->zWxneeded) 2388 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2389 2390 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2391 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2392 2393 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2394 // same alignment. 2395 PhdrEntry *note = nullptr; 2396 for (OutputSection *sec : outputSections) { 2397 if (sec->partition != partNo) 2398 continue; 2399 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2400 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2401 note = addHdr(PT_NOTE, PF_R); 2402 note->add(sec); 2403 } else { 2404 note = nullptr; 2405 } 2406 } 2407 return ret; 2408 } 2409 2410 template <class ELFT> 2411 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2412 unsigned pType, unsigned pFlags) { 2413 unsigned partNo = part.getNumber(); 2414 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2415 return cmd->partition == partNo && cmd->type == shType; 2416 }); 2417 if (i == outputSections.end()) 2418 return; 2419 2420 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2421 entry->add(*i); 2422 part.phdrs.push_back(entry); 2423 } 2424 2425 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2426 // This is achieved by assigning an alignment expression to addrExpr of each 2427 // such section. 2428 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2429 const PhdrEntry *prev; 2430 auto pageAlign = [&](const PhdrEntry *p) { 2431 OutputSection *cmd = p->firstSec; 2432 if (!cmd) 2433 return; 2434 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2435 if (!cmd->addrExpr) { 2436 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2437 // padding in the file contents. 2438 // 2439 // When -z separate-code is used we must not have any overlap in pages 2440 // between an executable segment and a non-executable segment. We align to 2441 // the next maximum page size boundary on transitions between executable 2442 // and non-executable segments. 2443 // 2444 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2445 // sections will be extracted to a separate file. Align to the next 2446 // maximum page size boundary so that we can find the ELF header at the 2447 // start. We cannot benefit from overlapping p_offset ranges with the 2448 // previous segment anyway. 2449 if (config->zSeparate == SeparateSegmentKind::Loadable || 2450 (config->zSeparate == SeparateSegmentKind::Code && prev && 2451 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2452 cmd->type == SHT_LLVM_PART_EHDR) 2453 cmd->addrExpr = [] { 2454 return alignTo(script->getDot(), config->maxPageSize); 2455 }; 2456 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2457 // it must be the RW. Align to p_align(PT_TLS) to make sure 2458 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2459 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2460 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2461 // be congruent to 0 modulo p_align(PT_TLS). 2462 // 2463 // Technically this is not required, but as of 2019, some dynamic loaders 2464 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2465 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2466 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2467 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2468 // blocks correctly. We need to keep the workaround for a while. 2469 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2470 cmd->addrExpr = [] { 2471 return alignTo(script->getDot(), config->maxPageSize) + 2472 alignTo(script->getDot() % config->maxPageSize, 2473 Out::tlsPhdr->p_align); 2474 }; 2475 else 2476 cmd->addrExpr = [] { 2477 return alignTo(script->getDot(), config->maxPageSize) + 2478 script->getDot() % config->maxPageSize; 2479 }; 2480 } 2481 }; 2482 2483 for (Partition &part : partitions) { 2484 prev = nullptr; 2485 for (const PhdrEntry *p : part.phdrs) 2486 if (p->p_type == PT_LOAD && p->firstSec) { 2487 pageAlign(p); 2488 prev = p; 2489 } 2490 } 2491 } 2492 2493 // Compute an in-file position for a given section. The file offset must be the 2494 // same with its virtual address modulo the page size, so that the loader can 2495 // load executables without any address adjustment. 2496 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2497 // The first section in a PT_LOAD has to have congruent offset and address 2498 // modulo the maximum page size. 2499 if (os->ptLoad && os->ptLoad->firstSec == os) 2500 return alignTo(off, os->ptLoad->p_align, os->addr); 2501 2502 // File offsets are not significant for .bss sections other than the first one 2503 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically 2504 // increasing rather than setting to zero. 2505 if (os->type == SHT_NOBITS && 2506 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) 2507 return off; 2508 2509 // If the section is not in a PT_LOAD, we just have to align it. 2510 if (!os->ptLoad) 2511 return alignTo(off, os->alignment); 2512 2513 // If two sections share the same PT_LOAD the file offset is calculated 2514 // using this formula: Off2 = Off1 + (VA2 - VA1). 2515 OutputSection *first = os->ptLoad->firstSec; 2516 return first->offset + os->addr - first->addr; 2517 } 2518 2519 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2520 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2521 auto needsOffset = [](OutputSection &sec) { 2522 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2523 }; 2524 uint64_t minAddr = UINT64_MAX; 2525 for (OutputSection *sec : outputSections) 2526 if (needsOffset(*sec)) { 2527 sec->offset = sec->getLMA(); 2528 minAddr = std::min(minAddr, sec->offset); 2529 } 2530 2531 // Sections are laid out at LMA minus minAddr. 2532 fileSize = 0; 2533 for (OutputSection *sec : outputSections) 2534 if (needsOffset(*sec)) { 2535 sec->offset -= minAddr; 2536 fileSize = std::max(fileSize, sec->offset + sec->size); 2537 } 2538 } 2539 2540 static std::string rangeToString(uint64_t addr, uint64_t len) { 2541 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2542 } 2543 2544 // Assign file offsets to output sections. 2545 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2546 Out::programHeaders->offset = Out::elfHeader->size; 2547 uint64_t off = Out::elfHeader->size + Out::programHeaders->size; 2548 2549 PhdrEntry *lastRX = nullptr; 2550 for (Partition &part : partitions) 2551 for (PhdrEntry *p : part.phdrs) 2552 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2553 lastRX = p; 2554 2555 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2556 // will not occupy file offsets contained by a PT_LOAD. 2557 for (OutputSection *sec : outputSections) { 2558 if (!(sec->flags & SHF_ALLOC)) 2559 continue; 2560 off = computeFileOffset(sec, off); 2561 sec->offset = off; 2562 if (sec->type != SHT_NOBITS) 2563 off += sec->size; 2564 2565 // If this is a last section of the last executable segment and that 2566 // segment is the last loadable segment, align the offset of the 2567 // following section to avoid loading non-segments parts of the file. 2568 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2569 lastRX->lastSec == sec) 2570 off = alignTo(off, config->maxPageSize); 2571 } 2572 for (OutputSection *osec : outputSections) 2573 if (!(osec->flags & SHF_ALLOC)) { 2574 osec->offset = alignTo(off, osec->alignment); 2575 off = osec->offset + osec->size; 2576 } 2577 2578 sectionHeaderOff = alignTo(off, config->wordsize); 2579 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2580 2581 // Our logic assumes that sections have rising VA within the same segment. 2582 // With use of linker scripts it is possible to violate this rule and get file 2583 // offset overlaps or overflows. That should never happen with a valid script 2584 // which does not move the location counter backwards and usually scripts do 2585 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2586 // kernel, which control segment distribution explicitly and move the counter 2587 // backwards, so we have to allow doing that to support linking them. We 2588 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2589 // we want to prevent file size overflows because it would crash the linker. 2590 for (OutputSection *sec : outputSections) { 2591 if (sec->type == SHT_NOBITS) 2592 continue; 2593 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2594 error("unable to place section " + sec->name + " at file offset " + 2595 rangeToString(sec->offset, sec->size) + 2596 "; check your linker script for overflows"); 2597 } 2598 } 2599 2600 // Finalize the program headers. We call this function after we assign 2601 // file offsets and VAs to all sections. 2602 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2603 for (PhdrEntry *p : part.phdrs) { 2604 OutputSection *first = p->firstSec; 2605 OutputSection *last = p->lastSec; 2606 2607 if (first) { 2608 p->p_filesz = last->offset - first->offset; 2609 if (last->type != SHT_NOBITS) 2610 p->p_filesz += last->size; 2611 2612 p->p_memsz = last->addr + last->size - first->addr; 2613 p->p_offset = first->offset; 2614 p->p_vaddr = first->addr; 2615 2616 // File offsets in partitions other than the main partition are relative 2617 // to the offset of the ELF headers. Perform that adjustment now. 2618 if (part.elfHeader) 2619 p->p_offset -= part.elfHeader->getParent()->offset; 2620 2621 if (!p->hasLMA) 2622 p->p_paddr = first->getLMA(); 2623 } 2624 2625 if (p->p_type == PT_GNU_RELRO) { 2626 p->p_align = 1; 2627 // musl/glibc ld.so rounds the size down, so we need to round up 2628 // to protect the last page. This is a no-op on FreeBSD which always 2629 // rounds up. 2630 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2631 p->p_offset; 2632 } 2633 } 2634 } 2635 2636 // A helper struct for checkSectionOverlap. 2637 namespace { 2638 struct SectionOffset { 2639 OutputSection *sec; 2640 uint64_t offset; 2641 }; 2642 } // namespace 2643 2644 // Check whether sections overlap for a specific address range (file offsets, 2645 // load and virtual addresses). 2646 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2647 bool isVirtualAddr) { 2648 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2649 return a.offset < b.offset; 2650 }); 2651 2652 // Finding overlap is easy given a vector is sorted by start position. 2653 // If an element starts before the end of the previous element, they overlap. 2654 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2655 SectionOffset a = sections[i - 1]; 2656 SectionOffset b = sections[i]; 2657 if (b.offset >= a.offset + a.sec->size) 2658 continue; 2659 2660 // If both sections are in OVERLAY we allow the overlapping of virtual 2661 // addresses, because it is what OVERLAY was designed for. 2662 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2663 continue; 2664 2665 errorOrWarn("section " + a.sec->name + " " + name + 2666 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2667 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2668 b.sec->name + " range is " + 2669 rangeToString(b.offset, b.sec->size)); 2670 } 2671 } 2672 2673 // Check for overlapping sections and address overflows. 2674 // 2675 // In this function we check that none of the output sections have overlapping 2676 // file offsets. For SHF_ALLOC sections we also check that the load address 2677 // ranges and the virtual address ranges don't overlap 2678 template <class ELFT> void Writer<ELFT>::checkSections() { 2679 // First, check that section's VAs fit in available address space for target. 2680 for (OutputSection *os : outputSections) 2681 if ((os->addr + os->size < os->addr) || 2682 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2683 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2684 " of size 0x" + utohexstr(os->size) + 2685 " exceeds available address space"); 2686 2687 // Check for overlapping file offsets. In this case we need to skip any 2688 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2689 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2690 // binary is specified only add SHF_ALLOC sections are added to the output 2691 // file so we skip any non-allocated sections in that case. 2692 std::vector<SectionOffset> fileOffs; 2693 for (OutputSection *sec : outputSections) 2694 if (sec->size > 0 && sec->type != SHT_NOBITS && 2695 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2696 fileOffs.push_back({sec, sec->offset}); 2697 checkOverlap("file", fileOffs, false); 2698 2699 // When linking with -r there is no need to check for overlapping virtual/load 2700 // addresses since those addresses will only be assigned when the final 2701 // executable/shared object is created. 2702 if (config->relocatable) 2703 return; 2704 2705 // Checking for overlapping virtual and load addresses only needs to take 2706 // into account SHF_ALLOC sections since others will not be loaded. 2707 // Furthermore, we also need to skip SHF_TLS sections since these will be 2708 // mapped to other addresses at runtime and can therefore have overlapping 2709 // ranges in the file. 2710 std::vector<SectionOffset> vmas; 2711 for (OutputSection *sec : outputSections) 2712 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2713 vmas.push_back({sec, sec->addr}); 2714 checkOverlap("virtual address", vmas, true); 2715 2716 // Finally, check that the load addresses don't overlap. This will usually be 2717 // the same as the virtual addresses but can be different when using a linker 2718 // script with AT(). 2719 std::vector<SectionOffset> lmas; 2720 for (OutputSection *sec : outputSections) 2721 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2722 lmas.push_back({sec, sec->getLMA()}); 2723 checkOverlap("load address", lmas, false); 2724 } 2725 2726 // The entry point address is chosen in the following ways. 2727 // 2728 // 1. the '-e' entry command-line option; 2729 // 2. the ENTRY(symbol) command in a linker control script; 2730 // 3. the value of the symbol _start, if present; 2731 // 4. the number represented by the entry symbol, if it is a number; 2732 // 5. the address 0. 2733 static uint64_t getEntryAddr() { 2734 // Case 1, 2 or 3 2735 if (Symbol *b = symtab->find(config->entry)) 2736 return b->getVA(); 2737 2738 // Case 4 2739 uint64_t addr; 2740 if (to_integer(config->entry, addr)) 2741 return addr; 2742 2743 // Case 5 2744 if (config->warnMissingEntry) 2745 warn("cannot find entry symbol " + config->entry + 2746 "; not setting start address"); 2747 return 0; 2748 } 2749 2750 static uint16_t getELFType() { 2751 if (config->isPic) 2752 return ET_DYN; 2753 if (config->relocatable) 2754 return ET_REL; 2755 return ET_EXEC; 2756 } 2757 2758 template <class ELFT> void Writer<ELFT>::writeHeader() { 2759 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2760 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2761 2762 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2763 eHdr->e_type = getELFType(); 2764 eHdr->e_entry = getEntryAddr(); 2765 eHdr->e_shoff = sectionHeaderOff; 2766 2767 // Write the section header table. 2768 // 2769 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2770 // and e_shstrndx fields. When the value of one of these fields exceeds 2771 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2772 // use fields in the section header at index 0 to store 2773 // the value. The sentinel values and fields are: 2774 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2775 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2776 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2777 size_t num = outputSections.size() + 1; 2778 if (num >= SHN_LORESERVE) 2779 sHdrs->sh_size = num; 2780 else 2781 eHdr->e_shnum = num; 2782 2783 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2784 if (strTabIndex >= SHN_LORESERVE) { 2785 sHdrs->sh_link = strTabIndex; 2786 eHdr->e_shstrndx = SHN_XINDEX; 2787 } else { 2788 eHdr->e_shstrndx = strTabIndex; 2789 } 2790 2791 for (OutputSection *sec : outputSections) 2792 sec->writeHeaderTo<ELFT>(++sHdrs); 2793 } 2794 2795 // Open a result file. 2796 template <class ELFT> void Writer<ELFT>::openFile() { 2797 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2798 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2799 std::string msg; 2800 raw_string_ostream s(msg); 2801 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2802 << "section sizes:\n"; 2803 for (OutputSection *os : outputSections) 2804 s << os->name << ' ' << os->size << "\n"; 2805 error(s.str()); 2806 return; 2807 } 2808 2809 unlinkAsync(config->outputFile); 2810 unsigned flags = 0; 2811 if (!config->relocatable) 2812 flags |= FileOutputBuffer::F_executable; 2813 if (!config->mmapOutputFile) 2814 flags |= FileOutputBuffer::F_no_mmap; 2815 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2816 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2817 2818 if (!bufferOrErr) { 2819 error("failed to open " + config->outputFile + ": " + 2820 llvm::toString(bufferOrErr.takeError())); 2821 return; 2822 } 2823 buffer = std::move(*bufferOrErr); 2824 Out::bufferStart = buffer->getBufferStart(); 2825 } 2826 2827 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2828 for (OutputSection *sec : outputSections) 2829 if (sec->flags & SHF_ALLOC) 2830 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2831 } 2832 2833 static void fillTrap(uint8_t *i, uint8_t *end) { 2834 for (; i + 4 <= end; i += 4) 2835 memcpy(i, &target->trapInstr, 4); 2836 } 2837 2838 // Fill the last page of executable segments with trap instructions 2839 // instead of leaving them as zero. Even though it is not required by any 2840 // standard, it is in general a good thing to do for security reasons. 2841 // 2842 // We'll leave other pages in segments as-is because the rest will be 2843 // overwritten by output sections. 2844 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2845 for (Partition &part : partitions) { 2846 // Fill the last page. 2847 for (PhdrEntry *p : part.phdrs) 2848 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2849 fillTrap(Out::bufferStart + 2850 alignDown(p->firstSec->offset + p->p_filesz, 4), 2851 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2852 config->maxPageSize)); 2853 2854 // Round up the file size of the last segment to the page boundary iff it is 2855 // an executable segment to ensure that other tools don't accidentally 2856 // trim the instruction padding (e.g. when stripping the file). 2857 PhdrEntry *last = nullptr; 2858 for (PhdrEntry *p : part.phdrs) 2859 if (p->p_type == PT_LOAD) 2860 last = p; 2861 2862 if (last && (last->p_flags & PF_X)) 2863 last->p_memsz = last->p_filesz = 2864 alignTo(last->p_filesz, config->maxPageSize); 2865 } 2866 } 2867 2868 // Write section contents to a mmap'ed file. 2869 template <class ELFT> void Writer<ELFT>::writeSections() { 2870 llvm::TimeTraceScope timeScope("Write sections"); 2871 2872 // In -r or --emit-relocs mode, write the relocation sections first as in 2873 // ELf_Rel targets we might find out that we need to modify the relocated 2874 // section while doing it. 2875 for (OutputSection *sec : outputSections) 2876 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2877 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2878 2879 for (OutputSection *sec : outputSections) 2880 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2881 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2882 2883 // Finally, check that all dynamic relocation addends were written correctly. 2884 if (config->checkDynamicRelocs && config->writeAddends) { 2885 for (OutputSection *sec : outputSections) 2886 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2887 sec->checkDynRelAddends(Out::bufferStart); 2888 } 2889 } 2890 2891 // Computes a hash value of Data using a given hash function. 2892 // In order to utilize multiple cores, we first split data into 1MB 2893 // chunks, compute a hash for each chunk, and then compute a hash value 2894 // of the hash values. 2895 static void 2896 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2897 llvm::ArrayRef<uint8_t> data, 2898 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2899 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2900 const size_t hashesSize = chunks.size() * hashBuf.size(); 2901 std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]); 2902 2903 // Compute hash values. 2904 parallelForEachN(0, chunks.size(), [&](size_t i) { 2905 hashFn(hashes.get() + i * hashBuf.size(), chunks[i]); 2906 }); 2907 2908 // Write to the final output buffer. 2909 hashFn(hashBuf.data(), makeArrayRef(hashes.get(), hashesSize)); 2910 } 2911 2912 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2913 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2914 return; 2915 2916 if (config->buildId == BuildIdKind::Hexstring) { 2917 for (Partition &part : partitions) 2918 part.buildId->writeBuildId(config->buildIdVector); 2919 return; 2920 } 2921 2922 // Compute a hash of all sections of the output file. 2923 size_t hashSize = mainPart->buildId->hashSize; 2924 std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]); 2925 MutableArrayRef<uint8_t> output(buildId.get(), hashSize); 2926 llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)}; 2927 2928 switch (config->buildId) { 2929 case BuildIdKind::Fast: 2930 computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2931 write64le(dest, xxHash64(arr)); 2932 }); 2933 break; 2934 case BuildIdKind::Md5: 2935 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2936 memcpy(dest, MD5::hash(arr).data(), hashSize); 2937 }); 2938 break; 2939 case BuildIdKind::Sha1: 2940 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2941 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2942 }); 2943 break; 2944 case BuildIdKind::Uuid: 2945 if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize)) 2946 error("entropy source failure: " + ec.message()); 2947 break; 2948 default: 2949 llvm_unreachable("unknown BuildIdKind"); 2950 } 2951 for (Partition &part : partitions) 2952 part.buildId->writeBuildId(output); 2953 } 2954 2955 template void elf::createSyntheticSections<ELF32LE>(); 2956 template void elf::createSyntheticSections<ELF32BE>(); 2957 template void elf::createSyntheticSections<ELF64LE>(); 2958 template void elf::createSyntheticSections<ELF64BE>(); 2959 2960 template void elf::writeResult<ELF32LE>(); 2961 template void elf::writeResult<ELF32BE>(); 2962 template void elf::writeResult<ELF64LE>(); 2963 template void elf::writeResult<ELF64BE>(); 2964