1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Filesystem.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "lld/Common/Threads.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/TimeProfiler.h" 31 #include "llvm/Support/xxhash.h" 32 #include <climits> 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::support; 38 using namespace llvm::support::endian; 39 40 namespace lld { 41 namespace elf { 42 namespace { 43 // The writer writes a SymbolTable result to a file. 44 template <class ELFT> class Writer { 45 public: 46 Writer() : buffer(errorHandler().outputBuffer) {} 47 using Elf_Shdr = typename ELFT::Shdr; 48 using Elf_Ehdr = typename ELFT::Ehdr; 49 using Elf_Phdr = typename ELFT::Phdr; 50 51 void run(); 52 53 private: 54 void copyLocalSymbols(); 55 void addSectionSymbols(); 56 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 57 void sortSections(); 58 void resolveShfLinkOrder(); 59 void finalizeAddressDependentContent(); 60 void sortInputSections(); 61 void finalizeSections(); 62 void checkExecuteOnly(); 63 void setReservedSymbolSections(); 64 65 std::vector<PhdrEntry *> createPhdrs(Partition &part); 66 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 67 unsigned pFlags); 68 void assignFileOffsets(); 69 void assignFileOffsetsBinary(); 70 void setPhdrs(Partition &part); 71 void checkSections(); 72 void fixSectionAlignments(); 73 void openFile(); 74 void writeTrapInstr(); 75 void writeHeader(); 76 void writeSections(); 77 void writeSectionsBinary(); 78 void writeBuildId(); 79 80 std::unique_ptr<FileOutputBuffer> &buffer; 81 82 void addRelIpltSymbols(); 83 void addStartEndSymbols(); 84 void addStartStopSymbols(OutputSection *sec); 85 86 uint64_t fileSize; 87 uint64_t sectionHeaderOff; 88 }; 89 } // anonymous namespace 90 91 static bool isSectionPrefix(StringRef prefix, StringRef name) { 92 return name.startswith(prefix) || name == prefix.drop_back(); 93 } 94 95 StringRef getOutputSectionName(const InputSectionBase *s) { 96 if (config->relocatable) 97 return s->name; 98 99 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 100 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 101 // technically required, but not doing it is odd). This code guarantees that. 102 if (auto *isec = dyn_cast<InputSection>(s)) { 103 if (InputSectionBase *rel = isec->getRelocatedSection()) { 104 OutputSection *out = rel->getOutputSection(); 105 if (s->type == SHT_RELA) 106 return saver.save(".rela" + out->name); 107 return saver.save(".rel" + out->name); 108 } 109 } 110 111 // This check is for -z keep-text-section-prefix. This option separates text 112 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or 113 // ".text.exit". 114 // When enabled, this allows identifying the hot code region (.text.hot) in 115 // the final binary which can be selectively mapped to huge pages or mlocked, 116 // for instance. 117 if (config->zKeepTextSectionPrefix) 118 for (StringRef v : 119 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."}) 120 if (isSectionPrefix(v, s->name)) 121 return v.drop_back(); 122 123 for (StringRef v : 124 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 125 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 126 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 127 if (isSectionPrefix(v, s->name)) 128 return v.drop_back(); 129 130 // CommonSection is identified as "COMMON" in linker scripts. 131 // By default, it should go to .bss section. 132 if (s->name == "COMMON") 133 return ".bss"; 134 135 return s->name; 136 } 137 138 static bool needsInterpSection() { 139 return !config->relocatable && !config->shared && 140 !config->dynamicLinker.empty() && script->needsInterpSection(); 141 } 142 143 template <class ELFT> void writeResult() { 144 llvm::TimeTraceScope timeScope("Write output file"); 145 Writer<ELFT>().run(); 146 } 147 148 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 149 llvm::erase_if(phdrs, [&](const PhdrEntry *p) { 150 if (p->p_type != PT_LOAD) 151 return false; 152 if (!p->firstSec) 153 return true; 154 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 155 return size == 0; 156 }); 157 } 158 159 void copySectionsIntoPartitions() { 160 std::vector<InputSectionBase *> newSections; 161 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 162 for (InputSectionBase *s : inputSections) { 163 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 164 continue; 165 InputSectionBase *copy; 166 if (s->type == SHT_NOTE) 167 copy = make<InputSection>(cast<InputSection>(*s)); 168 else if (auto *es = dyn_cast<EhInputSection>(s)) 169 copy = make<EhInputSection>(*es); 170 else 171 continue; 172 copy->partition = part; 173 newSections.push_back(copy); 174 } 175 } 176 177 inputSections.insert(inputSections.end(), newSections.begin(), 178 newSections.end()); 179 } 180 181 void combineEhSections() { 182 for (InputSectionBase *&s : inputSections) { 183 // Ignore dead sections and the partition end marker (.part.end), 184 // whose partition number is out of bounds. 185 if (!s->isLive() || s->partition == 255) 186 continue; 187 188 Partition &part = s->getPartition(); 189 if (auto *es = dyn_cast<EhInputSection>(s)) { 190 part.ehFrame->addSection(es); 191 s = nullptr; 192 } else if (s->kind() == SectionBase::Regular && part.armExidx && 193 part.armExidx->addSection(cast<InputSection>(s))) { 194 s = nullptr; 195 } 196 } 197 198 std::vector<InputSectionBase *> &v = inputSections; 199 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 200 } 201 202 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 203 uint64_t val, uint8_t stOther = STV_HIDDEN, 204 uint8_t binding = STB_GLOBAL) { 205 Symbol *s = symtab->find(name); 206 if (!s || s->isDefined()) 207 return nullptr; 208 209 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 210 /*size=*/0, sec}); 211 return cast<Defined>(s); 212 } 213 214 static Defined *addAbsolute(StringRef name) { 215 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 216 STT_NOTYPE, 0, 0, nullptr}); 217 return cast<Defined>(sym); 218 } 219 220 // The linker is expected to define some symbols depending on 221 // the linking result. This function defines such symbols. 222 void addReservedSymbols() { 223 if (config->emachine == EM_MIPS) { 224 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 225 // so that it points to an absolute address which by default is relative 226 // to GOT. Default offset is 0x7ff0. 227 // See "Global Data Symbols" in Chapter 6 in the following document: 228 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 229 ElfSym::mipsGp = addAbsolute("_gp"); 230 231 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 232 // start of function and 'gp' pointer into GOT. 233 if (symtab->find("_gp_disp")) 234 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 235 236 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 237 // pointer. This symbol is used in the code generated by .cpload pseudo-op 238 // in case of using -mno-shared option. 239 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 240 if (symtab->find("__gnu_local_gp")) 241 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 242 } else if (config->emachine == EM_PPC) { 243 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 244 // support Small Data Area, define it arbitrarily as 0. 245 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 246 } 247 248 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 249 // combines the typical ELF GOT with the small data sections. It commonly 250 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 251 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 252 // represent the TOC base which is offset by 0x8000 bytes from the start of 253 // the .got section. 254 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 255 // correctness of some relocations depends on its value. 256 StringRef gotSymName = 257 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 258 259 if (Symbol *s = symtab->find(gotSymName)) { 260 if (s->isDefined()) { 261 error(toString(s->file) + " cannot redefine linker defined symbol '" + 262 gotSymName + "'"); 263 return; 264 } 265 266 uint64_t gotOff = 0; 267 if (config->emachine == EM_PPC64) 268 gotOff = 0x8000; 269 270 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 271 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 272 ElfSym::globalOffsetTable = cast<Defined>(s); 273 } 274 275 // __ehdr_start is the location of ELF file headers. Note that we define 276 // this symbol unconditionally even when using a linker script, which 277 // differs from the behavior implemented by GNU linker which only define 278 // this symbol if ELF headers are in the memory mapped segment. 279 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 280 281 // __executable_start is not documented, but the expectation of at 282 // least the Android libc is that it points to the ELF header. 283 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 284 285 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 286 // each DSO. The address of the symbol doesn't matter as long as they are 287 // different in different DSOs, so we chose the start address of the DSO. 288 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 289 290 // If linker script do layout we do not need to create any standard symbols. 291 if (script->hasSectionsCommand) 292 return; 293 294 auto add = [](StringRef s, int64_t pos) { 295 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 296 }; 297 298 ElfSym::bss = add("__bss_start", 0); 299 ElfSym::end1 = add("end", -1); 300 ElfSym::end2 = add("_end", -1); 301 ElfSym::etext1 = add("etext", -1); 302 ElfSym::etext2 = add("_etext", -1); 303 ElfSym::edata1 = add("edata", -1); 304 ElfSym::edata2 = add("_edata", -1); 305 } 306 307 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 308 for (BaseCommand *base : script->sectionCommands) 309 if (auto *sec = dyn_cast<OutputSection>(base)) 310 if (sec->name == name && sec->partition == partition) 311 return sec; 312 return nullptr; 313 } 314 315 template <class ELFT> void createSyntheticSections() { 316 // Initialize all pointers with NULL. This is needed because 317 // you can call lld::elf::main more than once as a library. 318 memset(&Out::first, 0, sizeof(Out)); 319 320 // Add the .interp section first because it is not a SyntheticSection. 321 // The removeUnusedSyntheticSections() function relies on the 322 // SyntheticSections coming last. 323 if (needsInterpSection()) { 324 for (size_t i = 1; i <= partitions.size(); ++i) { 325 InputSection *sec = createInterpSection(); 326 sec->partition = i; 327 inputSections.push_back(sec); 328 } 329 } 330 331 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 332 333 in.shStrTab = make<StringTableSection>(".shstrtab", false); 334 335 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 336 Out::programHeaders->alignment = config->wordsize; 337 338 if (config->strip != StripPolicy::All) { 339 in.strTab = make<StringTableSection>(".strtab", false); 340 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 341 in.symTabShndx = make<SymtabShndxSection>(); 342 } 343 344 in.bss = make<BssSection>(".bss", 0, 1); 345 add(in.bss); 346 347 // If there is a SECTIONS command and a .data.rel.ro section name use name 348 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 349 // This makes sure our relro is contiguous. 350 bool hasDataRelRo = 351 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 352 in.bssRelRo = 353 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 354 add(in.bssRelRo); 355 356 // Add MIPS-specific sections. 357 if (config->emachine == EM_MIPS) { 358 if (!config->shared && config->hasDynSymTab) { 359 in.mipsRldMap = make<MipsRldMapSection>(); 360 add(in.mipsRldMap); 361 } 362 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 363 add(sec); 364 if (auto *sec = MipsOptionsSection<ELFT>::create()) 365 add(sec); 366 if (auto *sec = MipsReginfoSection<ELFT>::create()) 367 add(sec); 368 } 369 370 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 371 372 for (Partition &part : partitions) { 373 auto add = [&](SyntheticSection *sec) { 374 sec->partition = part.getNumber(); 375 inputSections.push_back(sec); 376 }; 377 378 if (!part.name.empty()) { 379 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 380 part.elfHeader->name = part.name; 381 add(part.elfHeader); 382 383 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 384 add(part.programHeaders); 385 } 386 387 if (config->buildId != BuildIdKind::None) { 388 part.buildId = make<BuildIdSection>(); 389 add(part.buildId); 390 } 391 392 part.dynStrTab = make<StringTableSection>(".dynstr", true); 393 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 394 part.dynamic = make<DynamicSection<ELFT>>(); 395 if (config->androidPackDynRelocs) 396 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 397 else 398 part.relaDyn = 399 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 400 401 if (config->hasDynSymTab) { 402 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 403 add(part.dynSymTab); 404 405 part.verSym = make<VersionTableSection>(); 406 add(part.verSym); 407 408 if (!namedVersionDefs().empty()) { 409 part.verDef = make<VersionDefinitionSection>(); 410 add(part.verDef); 411 } 412 413 part.verNeed = make<VersionNeedSection<ELFT>>(); 414 add(part.verNeed); 415 416 if (config->gnuHash) { 417 part.gnuHashTab = make<GnuHashTableSection>(); 418 add(part.gnuHashTab); 419 } 420 421 if (config->sysvHash) { 422 part.hashTab = make<HashTableSection>(); 423 add(part.hashTab); 424 } 425 426 add(part.dynamic); 427 add(part.dynStrTab); 428 add(part.relaDyn); 429 } 430 431 if (config->relrPackDynRelocs) { 432 part.relrDyn = make<RelrSection<ELFT>>(); 433 add(part.relrDyn); 434 } 435 436 if (!config->relocatable) { 437 if (config->ehFrameHdr) { 438 part.ehFrameHdr = make<EhFrameHeader>(); 439 add(part.ehFrameHdr); 440 } 441 part.ehFrame = make<EhFrameSection>(); 442 add(part.ehFrame); 443 } 444 445 if (config->emachine == EM_ARM && !config->relocatable) { 446 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 447 // InputSections. 448 part.armExidx = make<ARMExidxSyntheticSection>(); 449 add(part.armExidx); 450 } 451 } 452 453 if (partitions.size() != 1) { 454 // Create the partition end marker. This needs to be in partition number 255 455 // so that it is sorted after all other partitions. It also has other 456 // special handling (see createPhdrs() and combineEhSections()). 457 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 458 in.partEnd->partition = 255; 459 add(in.partEnd); 460 461 in.partIndex = make<PartitionIndexSection>(); 462 addOptionalRegular("__part_index_begin", in.partIndex, 0); 463 addOptionalRegular("__part_index_end", in.partIndex, 464 in.partIndex->getSize()); 465 add(in.partIndex); 466 } 467 468 // Add .got. MIPS' .got is so different from the other archs, 469 // it has its own class. 470 if (config->emachine == EM_MIPS) { 471 in.mipsGot = make<MipsGotSection>(); 472 add(in.mipsGot); 473 } else { 474 in.got = make<GotSection>(); 475 add(in.got); 476 } 477 478 if (config->emachine == EM_PPC) { 479 in.ppc32Got2 = make<PPC32Got2Section>(); 480 add(in.ppc32Got2); 481 } 482 483 if (config->emachine == EM_PPC64) { 484 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 485 add(in.ppc64LongBranchTarget); 486 } 487 488 in.gotPlt = make<GotPltSection>(); 489 add(in.gotPlt); 490 in.igotPlt = make<IgotPltSection>(); 491 add(in.igotPlt); 492 493 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 494 // it as a relocation and ensure the referenced section is created. 495 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 496 if (target->gotBaseSymInGotPlt) 497 in.gotPlt->hasGotPltOffRel = true; 498 else 499 in.got->hasGotOffRel = true; 500 } 501 502 if (config->gdbIndex) 503 add(GdbIndexSection::create<ELFT>()); 504 505 // We always need to add rel[a].plt to output if it has entries. 506 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 507 in.relaPlt = make<RelocationSection<ELFT>>( 508 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 509 add(in.relaPlt); 510 511 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 512 // relocations are processed last by the dynamic loader. We cannot place the 513 // iplt section in .rel.dyn when Android relocation packing is enabled because 514 // that would cause a section type mismatch. However, because the Android 515 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 516 // behaviour by placing the iplt section in .rel.plt. 517 in.relaIplt = make<RelocationSection<ELFT>>( 518 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 519 /*sort=*/false); 520 add(in.relaIplt); 521 522 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 523 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 524 in.ibtPlt = make<IBTPltSection>(); 525 add(in.ibtPlt); 526 } 527 528 in.plt = make<PltSection>(); 529 add(in.plt); 530 in.iplt = make<IpltSection>(); 531 add(in.iplt); 532 533 if (config->andFeatures) 534 add(make<GnuPropertySection>()); 535 536 // .note.GNU-stack is always added when we are creating a re-linkable 537 // object file. Other linkers are using the presence of this marker 538 // section to control the executable-ness of the stack area, but that 539 // is irrelevant these days. Stack area should always be non-executable 540 // by default. So we emit this section unconditionally. 541 if (config->relocatable) 542 add(make<GnuStackSection>()); 543 544 if (in.symTab) 545 add(in.symTab); 546 if (in.symTabShndx) 547 add(in.symTabShndx); 548 add(in.shStrTab); 549 if (in.strTab) 550 add(in.strTab); 551 } 552 553 // The main function of the writer. 554 template <class ELFT> void Writer<ELFT>::run() { 555 if (config->discard != DiscardPolicy::All) 556 copyLocalSymbols(); 557 558 if (config->copyRelocs) 559 addSectionSymbols(); 560 561 // Now that we have a complete set of output sections. This function 562 // completes section contents. For example, we need to add strings 563 // to the string table, and add entries to .got and .plt. 564 // finalizeSections does that. 565 finalizeSections(); 566 checkExecuteOnly(); 567 if (errorCount()) 568 return; 569 570 // If -compressed-debug-sections is specified, we need to compress 571 // .debug_* sections. Do it right now because it changes the size of 572 // output sections. 573 for (OutputSection *sec : outputSections) 574 sec->maybeCompress<ELFT>(); 575 576 if (script->hasSectionsCommand) 577 script->allocateHeaders(mainPart->phdrs); 578 579 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 580 // 0 sized region. This has to be done late since only after assignAddresses 581 // we know the size of the sections. 582 for (Partition &part : partitions) 583 removeEmptyPTLoad(part.phdrs); 584 585 if (!config->oFormatBinary) 586 assignFileOffsets(); 587 else 588 assignFileOffsetsBinary(); 589 590 for (Partition &part : partitions) 591 setPhdrs(part); 592 593 if (config->relocatable) 594 for (OutputSection *sec : outputSections) 595 sec->addr = 0; 596 597 if (config->checkSections) 598 checkSections(); 599 600 // It does not make sense try to open the file if we have error already. 601 if (errorCount()) 602 return; 603 // Write the result down to a file. 604 openFile(); 605 if (errorCount()) 606 return; 607 608 if (!config->oFormatBinary) { 609 if (config->zSeparate != SeparateSegmentKind::None) 610 writeTrapInstr(); 611 writeHeader(); 612 writeSections(); 613 } else { 614 writeSectionsBinary(); 615 } 616 617 // Backfill .note.gnu.build-id section content. This is done at last 618 // because the content is usually a hash value of the entire output file. 619 writeBuildId(); 620 if (errorCount()) 621 return; 622 623 // Handle -Map and -cref options. 624 writeMapFile(); 625 writeCrossReferenceTable(); 626 if (errorCount()) 627 return; 628 629 if (auto e = buffer->commit()) 630 error("failed to write to the output file: " + toString(std::move(e))); 631 } 632 633 static bool shouldKeepInSymtab(const Defined &sym) { 634 if (sym.isSection()) 635 return false; 636 637 if (config->discard == DiscardPolicy::None) 638 return true; 639 640 // If -emit-reloc is given, all symbols including local ones need to be 641 // copied because they may be referenced by relocations. 642 if (config->emitRelocs) 643 return true; 644 645 // In ELF assembly .L symbols are normally discarded by the assembler. 646 // If the assembler fails to do so, the linker discards them if 647 // * --discard-locals is used. 648 // * The symbol is in a SHF_MERGE section, which is normally the reason for 649 // the assembler keeping the .L symbol. 650 StringRef name = sym.getName(); 651 bool isLocal = name.startswith(".L") || name.empty(); 652 if (!isLocal) 653 return true; 654 655 if (config->discard == DiscardPolicy::Locals) 656 return false; 657 658 SectionBase *sec = sym.section; 659 return !sec || !(sec->flags & SHF_MERGE); 660 } 661 662 static bool includeInSymtab(const Symbol &b) { 663 if (!b.isLocal() && !b.isUsedInRegularObj) 664 return false; 665 666 if (auto *d = dyn_cast<Defined>(&b)) { 667 // Always include absolute symbols. 668 SectionBase *sec = d->section; 669 if (!sec) 670 return true; 671 sec = sec->repl; 672 673 // Exclude symbols pointing to garbage-collected sections. 674 if (isa<InputSectionBase>(sec) && !sec->isLive()) 675 return false; 676 677 if (auto *s = dyn_cast<MergeInputSection>(sec)) 678 if (!s->getSectionPiece(d->value)->live) 679 return false; 680 return true; 681 } 682 return b.used; 683 } 684 685 // Local symbols are not in the linker's symbol table. This function scans 686 // each object file's symbol table to copy local symbols to the output. 687 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 688 if (!in.symTab) 689 return; 690 for (InputFile *file : objectFiles) { 691 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 692 for (Symbol *b : f->getLocalSymbols()) { 693 if (!b->isLocal()) 694 fatal(toString(f) + 695 ": broken object: getLocalSymbols returns a non-local symbol"); 696 auto *dr = dyn_cast<Defined>(b); 697 698 // No reason to keep local undefined symbol in symtab. 699 if (!dr) 700 continue; 701 if (!includeInSymtab(*b)) 702 continue; 703 if (!shouldKeepInSymtab(*dr)) 704 continue; 705 in.symTab->addSymbol(b); 706 } 707 } 708 } 709 710 // Create a section symbol for each output section so that we can represent 711 // relocations that point to the section. If we know that no relocation is 712 // referring to a section (that happens if the section is a synthetic one), we 713 // don't create a section symbol for that section. 714 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 715 for (BaseCommand *base : script->sectionCommands) { 716 auto *sec = dyn_cast<OutputSection>(base); 717 if (!sec) 718 continue; 719 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 720 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 721 return !isd->sections.empty(); 722 return false; 723 }); 724 if (i == sec->sectionCommands.end()) 725 continue; 726 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 727 728 // Relocations are not using REL[A] section symbols. 729 if (isec->type == SHT_REL || isec->type == SHT_RELA) 730 continue; 731 732 // Unlike other synthetic sections, mergeable output sections contain data 733 // copied from input sections, and there may be a relocation pointing to its 734 // contents if -r or -emit-reloc are given. 735 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 736 continue; 737 738 auto *sym = 739 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 740 /*value=*/0, /*size=*/0, isec); 741 in.symTab->addSymbol(sym); 742 } 743 } 744 745 // Today's loaders have a feature to make segments read-only after 746 // processing dynamic relocations to enhance security. PT_GNU_RELRO 747 // is defined for that. 748 // 749 // This function returns true if a section needs to be put into a 750 // PT_GNU_RELRO segment. 751 static bool isRelroSection(const OutputSection *sec) { 752 if (!config->zRelro) 753 return false; 754 755 uint64_t flags = sec->flags; 756 757 // Non-allocatable or non-writable sections don't need RELRO because 758 // they are not writable or not even mapped to memory in the first place. 759 // RELRO is for sections that are essentially read-only but need to 760 // be writable only at process startup to allow dynamic linker to 761 // apply relocations. 762 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 763 return false; 764 765 // Once initialized, TLS data segments are used as data templates 766 // for a thread-local storage. For each new thread, runtime 767 // allocates memory for a TLS and copy templates there. No thread 768 // are supposed to use templates directly. Thus, it can be in RELRO. 769 if (flags & SHF_TLS) 770 return true; 771 772 // .init_array, .preinit_array and .fini_array contain pointers to 773 // functions that are executed on process startup or exit. These 774 // pointers are set by the static linker, and they are not expected 775 // to change at runtime. But if you are an attacker, you could do 776 // interesting things by manipulating pointers in .fini_array, for 777 // example. So they are put into RELRO. 778 uint32_t type = sec->type; 779 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 780 type == SHT_PREINIT_ARRAY) 781 return true; 782 783 // .got contains pointers to external symbols. They are resolved by 784 // the dynamic linker when a module is loaded into memory, and after 785 // that they are not expected to change. So, it can be in RELRO. 786 if (in.got && sec == in.got->getParent()) 787 return true; 788 789 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 790 // through r2 register, which is reserved for that purpose. Since r2 is used 791 // for accessing .got as well, .got and .toc need to be close enough in the 792 // virtual address space. Usually, .toc comes just after .got. Since we place 793 // .got into RELRO, .toc needs to be placed into RELRO too. 794 if (sec->name.equals(".toc")) 795 return true; 796 797 // .got.plt contains pointers to external function symbols. They are 798 // by default resolved lazily, so we usually cannot put it into RELRO. 799 // However, if "-z now" is given, the lazy symbol resolution is 800 // disabled, which enables us to put it into RELRO. 801 if (sec == in.gotPlt->getParent()) 802 return config->zNow; 803 804 // .dynamic section contains data for the dynamic linker, and 805 // there's no need to write to it at runtime, so it's better to put 806 // it into RELRO. 807 if (sec->name == ".dynamic") 808 return true; 809 810 // Sections with some special names are put into RELRO. This is a 811 // bit unfortunate because section names shouldn't be significant in 812 // ELF in spirit. But in reality many linker features depend on 813 // magic section names. 814 StringRef s = sec->name; 815 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 816 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 817 s == ".openbsd.randomdata"; 818 } 819 820 // We compute a rank for each section. The rank indicates where the 821 // section should be placed in the file. Instead of using simple 822 // numbers (0,1,2...), we use a series of flags. One for each decision 823 // point when placing the section. 824 // Using flags has two key properties: 825 // * It is easy to check if a give branch was taken. 826 // * It is easy two see how similar two ranks are (see getRankProximity). 827 enum RankFlags { 828 RF_NOT_ADDR_SET = 1 << 27, 829 RF_NOT_ALLOC = 1 << 26, 830 RF_PARTITION = 1 << 18, // Partition number (8 bits) 831 RF_NOT_PART_EHDR = 1 << 17, 832 RF_NOT_PART_PHDR = 1 << 16, 833 RF_NOT_INTERP = 1 << 15, 834 RF_NOT_NOTE = 1 << 14, 835 RF_WRITE = 1 << 13, 836 RF_EXEC_WRITE = 1 << 12, 837 RF_EXEC = 1 << 11, 838 RF_RODATA = 1 << 10, 839 RF_NOT_RELRO = 1 << 9, 840 RF_NOT_TLS = 1 << 8, 841 RF_BSS = 1 << 7, 842 RF_PPC_NOT_TOCBSS = 1 << 6, 843 RF_PPC_TOCL = 1 << 5, 844 RF_PPC_TOC = 1 << 4, 845 RF_PPC_GOT = 1 << 3, 846 RF_PPC_BRANCH_LT = 1 << 2, 847 RF_MIPS_GPREL = 1 << 1, 848 RF_MIPS_NOT_GOT = 1 << 0 849 }; 850 851 static unsigned getSectionRank(const OutputSection *sec) { 852 unsigned rank = sec->partition * RF_PARTITION; 853 854 // We want to put section specified by -T option first, so we 855 // can start assigning VA starting from them later. 856 if (config->sectionStartMap.count(sec->name)) 857 return rank; 858 rank |= RF_NOT_ADDR_SET; 859 860 // Allocatable sections go first to reduce the total PT_LOAD size and 861 // so debug info doesn't change addresses in actual code. 862 if (!(sec->flags & SHF_ALLOC)) 863 return rank | RF_NOT_ALLOC; 864 865 if (sec->type == SHT_LLVM_PART_EHDR) 866 return rank; 867 rank |= RF_NOT_PART_EHDR; 868 869 if (sec->type == SHT_LLVM_PART_PHDR) 870 return rank; 871 rank |= RF_NOT_PART_PHDR; 872 873 // Put .interp first because some loaders want to see that section 874 // on the first page of the executable file when loaded into memory. 875 if (sec->name == ".interp") 876 return rank; 877 rank |= RF_NOT_INTERP; 878 879 // Put .note sections (which make up one PT_NOTE) at the beginning so that 880 // they are likely to be included in a core file even if core file size is 881 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 882 // included in a core to match core files with executables. 883 if (sec->type == SHT_NOTE) 884 return rank; 885 rank |= RF_NOT_NOTE; 886 887 // Sort sections based on their access permission in the following 888 // order: R, RX, RWX, RW. This order is based on the following 889 // considerations: 890 // * Read-only sections come first such that they go in the 891 // PT_LOAD covering the program headers at the start of the file. 892 // * Read-only, executable sections come next. 893 // * Writable, executable sections follow such that .plt on 894 // architectures where it needs to be writable will be placed 895 // between .text and .data. 896 // * Writable sections come last, such that .bss lands at the very 897 // end of the last PT_LOAD. 898 bool isExec = sec->flags & SHF_EXECINSTR; 899 bool isWrite = sec->flags & SHF_WRITE; 900 901 if (isExec) { 902 if (isWrite) 903 rank |= RF_EXEC_WRITE; 904 else 905 rank |= RF_EXEC; 906 } else if (isWrite) { 907 rank |= RF_WRITE; 908 } else if (sec->type == SHT_PROGBITS) { 909 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 910 // .eh_frame) closer to .text. They likely contain PC or GOT relative 911 // relocations and there could be relocation overflow if other huge sections 912 // (.dynstr .dynsym) were placed in between. 913 rank |= RF_RODATA; 914 } 915 916 // Place RelRo sections first. After considering SHT_NOBITS below, the 917 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 918 // where | marks where page alignment happens. An alternative ordering is 919 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 920 // waste more bytes due to 2 alignment places. 921 if (!isRelroSection(sec)) 922 rank |= RF_NOT_RELRO; 923 924 // If we got here we know that both A and B are in the same PT_LOAD. 925 926 // The TLS initialization block needs to be a single contiguous block in a R/W 927 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 928 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 929 // after PROGBITS. 930 if (!(sec->flags & SHF_TLS)) 931 rank |= RF_NOT_TLS; 932 933 // Within TLS sections, or within other RelRo sections, or within non-RelRo 934 // sections, place non-NOBITS sections first. 935 if (sec->type == SHT_NOBITS) 936 rank |= RF_BSS; 937 938 // Some architectures have additional ordering restrictions for sections 939 // within the same PT_LOAD. 940 if (config->emachine == EM_PPC64) { 941 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 942 // that we would like to make sure appear is a specific order to maximize 943 // their coverage by a single signed 16-bit offset from the TOC base 944 // pointer. Conversely, the special .tocbss section should be first among 945 // all SHT_NOBITS sections. This will put it next to the loaded special 946 // PPC64 sections (and, thus, within reach of the TOC base pointer). 947 StringRef name = sec->name; 948 if (name != ".tocbss") 949 rank |= RF_PPC_NOT_TOCBSS; 950 951 if (name == ".toc1") 952 rank |= RF_PPC_TOCL; 953 954 if (name == ".toc") 955 rank |= RF_PPC_TOC; 956 957 if (name == ".got") 958 rank |= RF_PPC_GOT; 959 960 if (name == ".branch_lt") 961 rank |= RF_PPC_BRANCH_LT; 962 } 963 964 if (config->emachine == EM_MIPS) { 965 // All sections with SHF_MIPS_GPREL flag should be grouped together 966 // because data in these sections is addressable with a gp relative address. 967 if (sec->flags & SHF_MIPS_GPREL) 968 rank |= RF_MIPS_GPREL; 969 970 if (sec->name != ".got") 971 rank |= RF_MIPS_NOT_GOT; 972 } 973 974 return rank; 975 } 976 977 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 978 const OutputSection *a = cast<OutputSection>(aCmd); 979 const OutputSection *b = cast<OutputSection>(bCmd); 980 981 if (a->sortRank != b->sortRank) 982 return a->sortRank < b->sortRank; 983 984 if (!(a->sortRank & RF_NOT_ADDR_SET)) 985 return config->sectionStartMap.lookup(a->name) < 986 config->sectionStartMap.lookup(b->name); 987 return false; 988 } 989 990 void PhdrEntry::add(OutputSection *sec) { 991 lastSec = sec; 992 if (!firstSec) 993 firstSec = sec; 994 p_align = std::max(p_align, sec->alignment); 995 if (p_type == PT_LOAD) 996 sec->ptLoad = this; 997 } 998 999 // The beginning and the ending of .rel[a].plt section are marked 1000 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1001 // executable. The runtime needs these symbols in order to resolve 1002 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1003 // need these symbols, since IRELATIVE relocs are resolved through GOT 1004 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1005 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1006 if (config->relocatable || needsInterpSection()) 1007 return; 1008 1009 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1010 // because .rela.plt might be empty and thus removed from output. 1011 // We'll override Out::elfHeader with In.relaIplt later when we are 1012 // sure that .rela.plt exists in output. 1013 ElfSym::relaIpltStart = addOptionalRegular( 1014 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1015 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1016 1017 ElfSym::relaIpltEnd = addOptionalRegular( 1018 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1019 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1020 } 1021 1022 template <class ELFT> 1023 void Writer<ELFT>::forEachRelSec( 1024 llvm::function_ref<void(InputSectionBase &)> fn) { 1025 // Scan all relocations. Each relocation goes through a series 1026 // of tests to determine if it needs special treatment, such as 1027 // creating GOT, PLT, copy relocations, etc. 1028 // Note that relocations for non-alloc sections are directly 1029 // processed by InputSection::relocateNonAlloc. 1030 for (InputSectionBase *isec : inputSections) 1031 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1032 fn(*isec); 1033 for (Partition &part : partitions) { 1034 for (EhInputSection *es : part.ehFrame->sections) 1035 fn(*es); 1036 if (part.armExidx && part.armExidx->isLive()) 1037 for (InputSection *ex : part.armExidx->exidxSections) 1038 fn(*ex); 1039 } 1040 } 1041 1042 // This function generates assignments for predefined symbols (e.g. _end or 1043 // _etext) and inserts them into the commands sequence to be processed at the 1044 // appropriate time. This ensures that the value is going to be correct by the 1045 // time any references to these symbols are processed and is equivalent to 1046 // defining these symbols explicitly in the linker script. 1047 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1048 if (ElfSym::globalOffsetTable) { 1049 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1050 // to the start of the .got or .got.plt section. 1051 InputSection *gotSection = in.gotPlt; 1052 if (!target->gotBaseSymInGotPlt) 1053 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1054 : cast<InputSection>(in.got); 1055 ElfSym::globalOffsetTable->section = gotSection; 1056 } 1057 1058 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1059 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1060 ElfSym::relaIpltStart->section = in.relaIplt; 1061 ElfSym::relaIpltEnd->section = in.relaIplt; 1062 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1063 } 1064 1065 PhdrEntry *last = nullptr; 1066 PhdrEntry *lastRO = nullptr; 1067 1068 for (Partition &part : partitions) { 1069 for (PhdrEntry *p : part.phdrs) { 1070 if (p->p_type != PT_LOAD) 1071 continue; 1072 last = p; 1073 if (!(p->p_flags & PF_W)) 1074 lastRO = p; 1075 } 1076 } 1077 1078 if (lastRO) { 1079 // _etext is the first location after the last read-only loadable segment. 1080 if (ElfSym::etext1) 1081 ElfSym::etext1->section = lastRO->lastSec; 1082 if (ElfSym::etext2) 1083 ElfSym::etext2->section = lastRO->lastSec; 1084 } 1085 1086 if (last) { 1087 // _edata points to the end of the last mapped initialized section. 1088 OutputSection *edata = nullptr; 1089 for (OutputSection *os : outputSections) { 1090 if (os->type != SHT_NOBITS) 1091 edata = os; 1092 if (os == last->lastSec) 1093 break; 1094 } 1095 1096 if (ElfSym::edata1) 1097 ElfSym::edata1->section = edata; 1098 if (ElfSym::edata2) 1099 ElfSym::edata2->section = edata; 1100 1101 // _end is the first location after the uninitialized data region. 1102 if (ElfSym::end1) 1103 ElfSym::end1->section = last->lastSec; 1104 if (ElfSym::end2) 1105 ElfSym::end2->section = last->lastSec; 1106 } 1107 1108 if (ElfSym::bss) 1109 ElfSym::bss->section = findSection(".bss"); 1110 1111 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1112 // be equal to the _gp symbol's value. 1113 if (ElfSym::mipsGp) { 1114 // Find GP-relative section with the lowest address 1115 // and use this address to calculate default _gp value. 1116 for (OutputSection *os : outputSections) { 1117 if (os->flags & SHF_MIPS_GPREL) { 1118 ElfSym::mipsGp->section = os; 1119 ElfSym::mipsGp->value = 0x7ff0; 1120 break; 1121 } 1122 } 1123 } 1124 } 1125 1126 // We want to find how similar two ranks are. 1127 // The more branches in getSectionRank that match, the more similar they are. 1128 // Since each branch corresponds to a bit flag, we can just use 1129 // countLeadingZeros. 1130 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1131 return countLeadingZeros(a->sortRank ^ b->sortRank); 1132 } 1133 1134 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1135 auto *sec = dyn_cast<OutputSection>(b); 1136 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1137 } 1138 1139 // When placing orphan sections, we want to place them after symbol assignments 1140 // so that an orphan after 1141 // begin_foo = .; 1142 // foo : { *(foo) } 1143 // end_foo = .; 1144 // doesn't break the intended meaning of the begin/end symbols. 1145 // We don't want to go over sections since findOrphanPos is the 1146 // one in charge of deciding the order of the sections. 1147 // We don't want to go over changes to '.', since doing so in 1148 // rx_sec : { *(rx_sec) } 1149 // . = ALIGN(0x1000); 1150 // /* The RW PT_LOAD starts here*/ 1151 // rw_sec : { *(rw_sec) } 1152 // would mean that the RW PT_LOAD would become unaligned. 1153 static bool shouldSkip(BaseCommand *cmd) { 1154 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1155 return assign->name != "."; 1156 return false; 1157 } 1158 1159 // We want to place orphan sections so that they share as much 1160 // characteristics with their neighbors as possible. For example, if 1161 // both are rw, or both are tls. 1162 static std::vector<BaseCommand *>::iterator 1163 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1164 std::vector<BaseCommand *>::iterator e) { 1165 OutputSection *sec = cast<OutputSection>(*e); 1166 1167 // Find the first element that has as close a rank as possible. 1168 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1169 return getRankProximity(sec, a) < getRankProximity(sec, b); 1170 }); 1171 if (i == e) 1172 return e; 1173 1174 // Consider all existing sections with the same proximity. 1175 int proximity = getRankProximity(sec, *i); 1176 for (; i != e; ++i) { 1177 auto *curSec = dyn_cast<OutputSection>(*i); 1178 if (!curSec || !curSec->hasInputSections) 1179 continue; 1180 if (getRankProximity(sec, curSec) != proximity || 1181 sec->sortRank < curSec->sortRank) 1182 break; 1183 } 1184 1185 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1186 auto *os = dyn_cast<OutputSection>(cmd); 1187 return os && os->hasInputSections; 1188 }; 1189 auto j = std::find_if(llvm::make_reverse_iterator(i), 1190 llvm::make_reverse_iterator(b), 1191 isOutputSecWithInputSections); 1192 i = j.base(); 1193 1194 // As a special case, if the orphan section is the last section, put 1195 // it at the very end, past any other commands. 1196 // This matches bfd's behavior and is convenient when the linker script fully 1197 // specifies the start of the file, but doesn't care about the end (the non 1198 // alloc sections for example). 1199 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1200 if (nextSec == e) 1201 return e; 1202 1203 while (i != e && shouldSkip(*i)) 1204 ++i; 1205 return i; 1206 } 1207 1208 // Builds section order for handling --symbol-ordering-file. 1209 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1210 DenseMap<const InputSectionBase *, int> sectionOrder; 1211 // Use the rarely used option -call-graph-ordering-file to sort sections. 1212 if (!config->callGraphProfile.empty()) 1213 return computeCallGraphProfileOrder(); 1214 1215 if (config->symbolOrderingFile.empty()) 1216 return sectionOrder; 1217 1218 struct SymbolOrderEntry { 1219 int priority; 1220 bool present; 1221 }; 1222 1223 // Build a map from symbols to their priorities. Symbols that didn't 1224 // appear in the symbol ordering file have the lowest priority 0. 1225 // All explicitly mentioned symbols have negative (higher) priorities. 1226 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1227 int priority = -config->symbolOrderingFile.size(); 1228 for (StringRef s : config->symbolOrderingFile) 1229 symbolOrder.insert({s, {priority++, false}}); 1230 1231 // Build a map from sections to their priorities. 1232 auto addSym = [&](Symbol &sym) { 1233 auto it = symbolOrder.find(sym.getName()); 1234 if (it == symbolOrder.end()) 1235 return; 1236 SymbolOrderEntry &ent = it->second; 1237 ent.present = true; 1238 1239 maybeWarnUnorderableSymbol(&sym); 1240 1241 if (auto *d = dyn_cast<Defined>(&sym)) { 1242 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1243 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1244 priority = std::min(priority, ent.priority); 1245 } 1246 } 1247 }; 1248 1249 // We want both global and local symbols. We get the global ones from the 1250 // symbol table and iterate the object files for the local ones. 1251 for (Symbol *sym : symtab->symbols()) 1252 if (!sym->isLazy()) 1253 addSym(*sym); 1254 1255 for (InputFile *file : objectFiles) 1256 for (Symbol *sym : file->getSymbols()) 1257 if (sym->isLocal()) 1258 addSym(*sym); 1259 1260 if (config->warnSymbolOrdering) 1261 for (auto orderEntry : symbolOrder) 1262 if (!orderEntry.second.present) 1263 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1264 1265 return sectionOrder; 1266 } 1267 1268 // Sorts the sections in ISD according to the provided section order. 1269 static void 1270 sortISDBySectionOrder(InputSectionDescription *isd, 1271 const DenseMap<const InputSectionBase *, int> &order) { 1272 std::vector<InputSection *> unorderedSections; 1273 std::vector<std::pair<InputSection *, int>> orderedSections; 1274 uint64_t unorderedSize = 0; 1275 1276 for (InputSection *isec : isd->sections) { 1277 auto i = order.find(isec); 1278 if (i == order.end()) { 1279 unorderedSections.push_back(isec); 1280 unorderedSize += isec->getSize(); 1281 continue; 1282 } 1283 orderedSections.push_back({isec, i->second}); 1284 } 1285 llvm::sort(orderedSections, llvm::less_second()); 1286 1287 // Find an insertion point for the ordered section list in the unordered 1288 // section list. On targets with limited-range branches, this is the mid-point 1289 // of the unordered section list. This decreases the likelihood that a range 1290 // extension thunk will be needed to enter or exit the ordered region. If the 1291 // ordered section list is a list of hot functions, we can generally expect 1292 // the ordered functions to be called more often than the unordered functions, 1293 // making it more likely that any particular call will be within range, and 1294 // therefore reducing the number of thunks required. 1295 // 1296 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1297 // If the layout is: 1298 // 1299 // 8MB hot 1300 // 32MB cold 1301 // 1302 // only the first 8-16MB of the cold code (depending on which hot function it 1303 // is actually calling) can call the hot code without a range extension thunk. 1304 // However, if we use this layout: 1305 // 1306 // 16MB cold 1307 // 8MB hot 1308 // 16MB cold 1309 // 1310 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1311 // of the second block of cold code can call the hot code without a thunk. So 1312 // we effectively double the amount of code that could potentially call into 1313 // the hot code without a thunk. 1314 size_t insPt = 0; 1315 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1316 uint64_t unorderedPos = 0; 1317 for (; insPt != unorderedSections.size(); ++insPt) { 1318 unorderedPos += unorderedSections[insPt]->getSize(); 1319 if (unorderedPos > unorderedSize / 2) 1320 break; 1321 } 1322 } 1323 1324 isd->sections.clear(); 1325 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1326 isd->sections.push_back(isec); 1327 for (std::pair<InputSection *, int> p : orderedSections) 1328 isd->sections.push_back(p.first); 1329 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1330 isd->sections.push_back(isec); 1331 } 1332 1333 static void sortSection(OutputSection *sec, 1334 const DenseMap<const InputSectionBase *, int> &order) { 1335 StringRef name = sec->name; 1336 1337 // Sort input sections by section name suffixes for 1338 // __attribute__((init_priority(N))). 1339 if (name == ".init_array" || name == ".fini_array") { 1340 if (!script->hasSectionsCommand) 1341 sec->sortInitFini(); 1342 return; 1343 } 1344 1345 // Sort input sections by the special rule for .ctors and .dtors. 1346 if (name == ".ctors" || name == ".dtors") { 1347 if (!script->hasSectionsCommand) 1348 sec->sortCtorsDtors(); 1349 return; 1350 } 1351 1352 // Never sort these. 1353 if (name == ".init" || name == ".fini") 1354 return; 1355 1356 // .toc is allocated just after .got and is accessed using GOT-relative 1357 // relocations. Object files compiled with small code model have an 1358 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1359 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1360 // sections having smaller relocation offsets are at beginning of .toc 1361 if (config->emachine == EM_PPC64 && name == ".toc") { 1362 if (script->hasSectionsCommand) 1363 return; 1364 assert(sec->sectionCommands.size() == 1); 1365 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1366 llvm::stable_sort(isd->sections, 1367 [](const InputSection *a, const InputSection *b) -> bool { 1368 return a->file->ppc64SmallCodeModelTocRelocs && 1369 !b->file->ppc64SmallCodeModelTocRelocs; 1370 }); 1371 return; 1372 } 1373 1374 // Sort input sections by priority using the list provided 1375 // by --symbol-ordering-file. 1376 if (!order.empty()) 1377 for (BaseCommand *b : sec->sectionCommands) 1378 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1379 sortISDBySectionOrder(isd, order); 1380 } 1381 1382 // If no layout was provided by linker script, we want to apply default 1383 // sorting for special input sections. This also handles --symbol-ordering-file. 1384 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1385 // Build the order once since it is expensive. 1386 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1387 for (BaseCommand *base : script->sectionCommands) 1388 if (auto *sec = dyn_cast<OutputSection>(base)) 1389 sortSection(sec, order); 1390 } 1391 1392 template <class ELFT> void Writer<ELFT>::sortSections() { 1393 script->adjustSectionsBeforeSorting(); 1394 1395 // Don't sort if using -r. It is not necessary and we want to preserve the 1396 // relative order for SHF_LINK_ORDER sections. 1397 if (config->relocatable) 1398 return; 1399 1400 sortInputSections(); 1401 1402 for (BaseCommand *base : script->sectionCommands) { 1403 auto *os = dyn_cast<OutputSection>(base); 1404 if (!os) 1405 continue; 1406 os->sortRank = getSectionRank(os); 1407 1408 // We want to assign rude approximation values to outSecOff fields 1409 // to know the relative order of the input sections. We use it for 1410 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1411 uint64_t i = 0; 1412 for (InputSection *sec : getInputSections(os)) 1413 sec->outSecOff = i++; 1414 } 1415 1416 if (!script->hasSectionsCommand) { 1417 // We know that all the OutputSections are contiguous in this case. 1418 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1419 std::stable_sort( 1420 llvm::find_if(script->sectionCommands, isSection), 1421 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1422 compareSections); 1423 1424 // Process INSERT commands. From this point onwards the order of 1425 // script->sectionCommands is fixed. 1426 script->processInsertCommands(); 1427 return; 1428 } 1429 1430 script->processInsertCommands(); 1431 1432 // Orphan sections are sections present in the input files which are 1433 // not explicitly placed into the output file by the linker script. 1434 // 1435 // The sections in the linker script are already in the correct 1436 // order. We have to figuere out where to insert the orphan 1437 // sections. 1438 // 1439 // The order of the sections in the script is arbitrary and may not agree with 1440 // compareSections. This means that we cannot easily define a strict weak 1441 // ordering. To see why, consider a comparison of a section in the script and 1442 // one not in the script. We have a two simple options: 1443 // * Make them equivalent (a is not less than b, and b is not less than a). 1444 // The problem is then that equivalence has to be transitive and we can 1445 // have sections a, b and c with only b in a script and a less than c 1446 // which breaks this property. 1447 // * Use compareSectionsNonScript. Given that the script order doesn't have 1448 // to match, we can end up with sections a, b, c, d where b and c are in the 1449 // script and c is compareSectionsNonScript less than b. In which case d 1450 // can be equivalent to c, a to b and d < a. As a concrete example: 1451 // .a (rx) # not in script 1452 // .b (rx) # in script 1453 // .c (ro) # in script 1454 // .d (ro) # not in script 1455 // 1456 // The way we define an order then is: 1457 // * Sort only the orphan sections. They are in the end right now. 1458 // * Move each orphan section to its preferred position. We try 1459 // to put each section in the last position where it can share 1460 // a PT_LOAD. 1461 // 1462 // There is some ambiguity as to where exactly a new entry should be 1463 // inserted, because Commands contains not only output section 1464 // commands but also other types of commands such as symbol assignment 1465 // expressions. There's no correct answer here due to the lack of the 1466 // formal specification of the linker script. We use heuristics to 1467 // determine whether a new output command should be added before or 1468 // after another commands. For the details, look at shouldSkip 1469 // function. 1470 1471 auto i = script->sectionCommands.begin(); 1472 auto e = script->sectionCommands.end(); 1473 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1474 if (auto *sec = dyn_cast<OutputSection>(base)) 1475 return sec->sectionIndex == UINT32_MAX; 1476 return false; 1477 }); 1478 1479 // Sort the orphan sections. 1480 std::stable_sort(nonScriptI, e, compareSections); 1481 1482 // As a horrible special case, skip the first . assignment if it is before any 1483 // section. We do this because it is common to set a load address by starting 1484 // the script with ". = 0xabcd" and the expectation is that every section is 1485 // after that. 1486 auto firstSectionOrDotAssignment = 1487 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1488 if (firstSectionOrDotAssignment != e && 1489 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1490 ++firstSectionOrDotAssignment; 1491 i = firstSectionOrDotAssignment; 1492 1493 while (nonScriptI != e) { 1494 auto pos = findOrphanPos(i, nonScriptI); 1495 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1496 1497 // As an optimization, find all sections with the same sort rank 1498 // and insert them with one rotate. 1499 unsigned rank = orphan->sortRank; 1500 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1501 return cast<OutputSection>(cmd)->sortRank != rank; 1502 }); 1503 std::rotate(pos, nonScriptI, end); 1504 nonScriptI = end; 1505 } 1506 1507 script->adjustSectionsAfterSorting(); 1508 } 1509 1510 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1511 InputSection *la = a->getLinkOrderDep(); 1512 InputSection *lb = b->getLinkOrderDep(); 1513 OutputSection *aOut = la->getParent(); 1514 OutputSection *bOut = lb->getParent(); 1515 1516 if (aOut != bOut) 1517 return aOut->sectionIndex < bOut->sectionIndex; 1518 return la->outSecOff < lb->outSecOff; 1519 } 1520 1521 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1522 for (OutputSection *sec : outputSections) { 1523 if (!(sec->flags & SHF_LINK_ORDER)) 1524 continue; 1525 1526 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1527 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1528 if (!config->relocatable && config->emachine == EM_ARM && 1529 sec->type == SHT_ARM_EXIDX) 1530 continue; 1531 1532 // Link order may be distributed across several InputSectionDescriptions 1533 // but sort must consider them all at once. 1534 std::vector<InputSection **> scriptSections; 1535 std::vector<InputSection *> sections; 1536 for (BaseCommand *base : sec->sectionCommands) { 1537 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 1538 for (InputSection *&isec : isd->sections) { 1539 scriptSections.push_back(&isec); 1540 sections.push_back(isec); 1541 1542 InputSection *link = isec->getLinkOrderDep(); 1543 if (!link->getParent()) 1544 error(toString(isec) + ": sh_link points to discarded section " + 1545 toString(link)); 1546 } 1547 } 1548 } 1549 1550 if (errorCount()) 1551 continue; 1552 1553 llvm::stable_sort(sections, compareByFilePosition); 1554 1555 for (int i = 0, n = sections.size(); i < n; ++i) 1556 *scriptSections[i] = sections[i]; 1557 } 1558 } 1559 1560 // We need to generate and finalize the content that depends on the address of 1561 // InputSections. As the generation of the content may also alter InputSection 1562 // addresses we must converge to a fixed point. We do that here. See the comment 1563 // in Writer<ELFT>::finalizeSections(). 1564 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1565 ThunkCreator tc; 1566 AArch64Err843419Patcher a64p; 1567 ARMErr657417Patcher a32p; 1568 script->assignAddresses(); 1569 1570 int assignPasses = 0; 1571 for (;;) { 1572 bool changed = target->needsThunks && tc.createThunks(outputSections); 1573 1574 // With Thunk Size much smaller than branch range we expect to 1575 // converge quickly; if we get to 10 something has gone wrong. 1576 if (changed && tc.pass >= 10) { 1577 error("thunk creation not converged"); 1578 break; 1579 } 1580 1581 if (config->fixCortexA53Errata843419) { 1582 if (changed) 1583 script->assignAddresses(); 1584 changed |= a64p.createFixes(); 1585 } 1586 if (config->fixCortexA8) { 1587 if (changed) 1588 script->assignAddresses(); 1589 changed |= a32p.createFixes(); 1590 } 1591 1592 if (in.mipsGot) 1593 in.mipsGot->updateAllocSize(); 1594 1595 for (Partition &part : partitions) { 1596 changed |= part.relaDyn->updateAllocSize(); 1597 if (part.relrDyn) 1598 changed |= part.relrDyn->updateAllocSize(); 1599 } 1600 1601 const Defined *changedSym = script->assignAddresses(); 1602 if (!changed) { 1603 // Some symbols may be dependent on section addresses. When we break the 1604 // loop, the symbol values are finalized because a previous 1605 // assignAddresses() finalized section addresses. 1606 if (!changedSym) 1607 break; 1608 if (++assignPasses == 5) { 1609 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1610 " does not converge"); 1611 break; 1612 } 1613 } 1614 } 1615 } 1616 1617 static void finalizeSynthetic(SyntheticSection *sec) { 1618 if (sec && sec->isNeeded() && sec->getParent()) 1619 sec->finalizeContents(); 1620 } 1621 1622 // In order to allow users to manipulate linker-synthesized sections, 1623 // we had to add synthetic sections to the input section list early, 1624 // even before we make decisions whether they are needed. This allows 1625 // users to write scripts like this: ".mygot : { .got }". 1626 // 1627 // Doing it has an unintended side effects. If it turns out that we 1628 // don't need a .got (for example) at all because there's no 1629 // relocation that needs a .got, we don't want to emit .got. 1630 // 1631 // To deal with the above problem, this function is called after 1632 // scanRelocations is called to remove synthetic sections that turn 1633 // out to be empty. 1634 static void removeUnusedSyntheticSections() { 1635 // All input synthetic sections that can be empty are placed after 1636 // all regular ones. We iterate over them all and exit at first 1637 // non-synthetic. 1638 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1639 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1640 if (!ss) 1641 return; 1642 OutputSection *os = ss->getParent(); 1643 if (!os || ss->isNeeded()) 1644 continue; 1645 1646 // If we reach here, then SS is an unused synthetic section and we want to 1647 // remove it from corresponding input section description of output section. 1648 for (BaseCommand *b : os->sectionCommands) 1649 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1650 llvm::erase_if(isd->sections, 1651 [=](InputSection *isec) { return isec == ss; }); 1652 } 1653 } 1654 1655 // Create output section objects and add them to OutputSections. 1656 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1657 Out::preinitArray = findSection(".preinit_array"); 1658 Out::initArray = findSection(".init_array"); 1659 Out::finiArray = findSection(".fini_array"); 1660 1661 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1662 // symbols for sections, so that the runtime can get the start and end 1663 // addresses of each section by section name. Add such symbols. 1664 if (!config->relocatable) { 1665 addStartEndSymbols(); 1666 for (BaseCommand *base : script->sectionCommands) 1667 if (auto *sec = dyn_cast<OutputSection>(base)) 1668 addStartStopSymbols(sec); 1669 } 1670 1671 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1672 // It should be okay as no one seems to care about the type. 1673 // Even the author of gold doesn't remember why gold behaves that way. 1674 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1675 if (mainPart->dynamic->parent) 1676 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1677 STV_HIDDEN, STT_NOTYPE, 1678 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1679 1680 // Define __rel[a]_iplt_{start,end} symbols if needed. 1681 addRelIpltSymbols(); 1682 1683 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1684 // should only be defined in an executable. If .sdata does not exist, its 1685 // value/section does not matter but it has to be relative, so set its 1686 // st_shndx arbitrarily to 1 (Out::elfHeader). 1687 if (config->emachine == EM_RISCV && !config->shared) { 1688 OutputSection *sec = findSection(".sdata"); 1689 ElfSym::riscvGlobalPointer = 1690 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1691 0x800, STV_DEFAULT, STB_GLOBAL); 1692 } 1693 1694 if (config->emachine == EM_X86_64) { 1695 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1696 // way that: 1697 // 1698 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1699 // computes 0. 1700 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1701 // the TLS block). 1702 // 1703 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1704 // an absolute symbol of zero. This is different from GNU linkers which 1705 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1706 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1707 if (s && s->isUndefined()) { 1708 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1709 STT_TLS, /*value=*/0, 0, 1710 /*section=*/nullptr}); 1711 ElfSym::tlsModuleBase = cast<Defined>(s); 1712 } 1713 } 1714 1715 // This responsible for splitting up .eh_frame section into 1716 // pieces. The relocation scan uses those pieces, so this has to be 1717 // earlier. 1718 for (Partition &part : partitions) 1719 finalizeSynthetic(part.ehFrame); 1720 1721 for (Symbol *sym : symtab->symbols()) 1722 sym->isPreemptible = computeIsPreemptible(*sym); 1723 1724 // Change values of linker-script-defined symbols from placeholders (assigned 1725 // by declareSymbols) to actual definitions. 1726 script->processSymbolAssignments(); 1727 1728 // Scan relocations. This must be done after every symbol is declared so that 1729 // we can correctly decide if a dynamic relocation is needed. This is called 1730 // after processSymbolAssignments() because it needs to know whether a 1731 // linker-script-defined symbol is absolute. 1732 if (!config->relocatable) { 1733 forEachRelSec(scanRelocations<ELFT>); 1734 reportUndefinedSymbols<ELFT>(); 1735 } 1736 1737 if (in.plt && in.plt->isNeeded()) 1738 in.plt->addSymbols(); 1739 if (in.iplt && in.iplt->isNeeded()) 1740 in.iplt->addSymbols(); 1741 1742 if (!config->allowShlibUndefined) { 1743 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1744 // entries are seen. These cases would otherwise lead to runtime errors 1745 // reported by the dynamic linker. 1746 // 1747 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1748 // catch more cases. That is too much for us. Our approach resembles the one 1749 // used in ld.gold, achieves a good balance to be useful but not too smart. 1750 for (SharedFile *file : sharedFiles) 1751 file->allNeededIsKnown = 1752 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1753 return symtab->soNames.count(needed); 1754 }); 1755 1756 for (Symbol *sym : symtab->symbols()) 1757 if (sym->isUndefined() && !sym->isWeak()) 1758 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 1759 if (f->allNeededIsKnown) 1760 error(toString(f) + ": undefined reference to " + toString(*sym)); 1761 } 1762 1763 // Now that we have defined all possible global symbols including linker- 1764 // synthesized ones. Visit all symbols to give the finishing touches. 1765 for (Symbol *sym : symtab->symbols()) { 1766 if (!includeInSymtab(*sym)) 1767 continue; 1768 if (in.symTab) 1769 in.symTab->addSymbol(sym); 1770 1771 if (sym->includeInDynsym()) { 1772 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1773 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1774 if (file->isNeeded && !sym->isUndefined()) 1775 addVerneed(sym); 1776 } 1777 } 1778 1779 // We also need to scan the dynamic relocation tables of the other partitions 1780 // and add any referenced symbols to the partition's dynsym. 1781 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 1782 DenseSet<Symbol *> syms; 1783 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 1784 syms.insert(e.sym); 1785 for (DynamicReloc &reloc : part.relaDyn->relocs) 1786 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 1787 part.dynSymTab->addSymbol(reloc.sym); 1788 } 1789 1790 // Do not proceed if there was an undefined symbol. 1791 if (errorCount()) 1792 return; 1793 1794 if (in.mipsGot) 1795 in.mipsGot->build(); 1796 1797 removeUnusedSyntheticSections(); 1798 1799 sortSections(); 1800 1801 // Now that we have the final list, create a list of all the 1802 // OutputSections for convenience. 1803 for (BaseCommand *base : script->sectionCommands) 1804 if (auto *sec = dyn_cast<OutputSection>(base)) 1805 outputSections.push_back(sec); 1806 1807 // Prefer command line supplied address over other constraints. 1808 for (OutputSection *sec : outputSections) { 1809 auto i = config->sectionStartMap.find(sec->name); 1810 if (i != config->sectionStartMap.end()) 1811 sec->addrExpr = [=] { return i->second; }; 1812 } 1813 1814 // This is a bit of a hack. A value of 0 means undef, so we set it 1815 // to 1 to make __ehdr_start defined. The section number is not 1816 // particularly relevant. 1817 Out::elfHeader->sectionIndex = 1; 1818 1819 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 1820 OutputSection *sec = outputSections[i]; 1821 sec->sectionIndex = i + 1; 1822 sec->shName = in.shStrTab->addString(sec->name); 1823 } 1824 1825 // Binary and relocatable output does not have PHDRS. 1826 // The headers have to be created before finalize as that can influence the 1827 // image base and the dynamic section on mips includes the image base. 1828 if (!config->relocatable && !config->oFormatBinary) { 1829 for (Partition &part : partitions) { 1830 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 1831 : createPhdrs(part); 1832 if (config->emachine == EM_ARM) { 1833 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 1834 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 1835 } 1836 if (config->emachine == EM_MIPS) { 1837 // Add separate segments for MIPS-specific sections. 1838 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 1839 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 1840 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 1841 } 1842 } 1843 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 1844 1845 // Find the TLS segment. This happens before the section layout loop so that 1846 // Android relocation packing can look up TLS symbol addresses. We only need 1847 // to care about the main partition here because all TLS symbols were moved 1848 // to the main partition (see MarkLive.cpp). 1849 for (PhdrEntry *p : mainPart->phdrs) 1850 if (p->p_type == PT_TLS) 1851 Out::tlsPhdr = p; 1852 } 1853 1854 // Some symbols are defined in term of program headers. Now that we 1855 // have the headers, we can find out which sections they point to. 1856 setReservedSymbolSections(); 1857 1858 finalizeSynthetic(in.bss); 1859 finalizeSynthetic(in.bssRelRo); 1860 finalizeSynthetic(in.symTabShndx); 1861 finalizeSynthetic(in.shStrTab); 1862 finalizeSynthetic(in.strTab); 1863 finalizeSynthetic(in.got); 1864 finalizeSynthetic(in.mipsGot); 1865 finalizeSynthetic(in.igotPlt); 1866 finalizeSynthetic(in.gotPlt); 1867 finalizeSynthetic(in.relaIplt); 1868 finalizeSynthetic(in.relaPlt); 1869 finalizeSynthetic(in.plt); 1870 finalizeSynthetic(in.iplt); 1871 finalizeSynthetic(in.ppc32Got2); 1872 finalizeSynthetic(in.partIndex); 1873 1874 // Dynamic section must be the last one in this list and dynamic 1875 // symbol table section (dynSymTab) must be the first one. 1876 for (Partition &part : partitions) { 1877 finalizeSynthetic(part.armExidx); 1878 finalizeSynthetic(part.dynSymTab); 1879 finalizeSynthetic(part.gnuHashTab); 1880 finalizeSynthetic(part.hashTab); 1881 finalizeSynthetic(part.verDef); 1882 finalizeSynthetic(part.relaDyn); 1883 finalizeSynthetic(part.relrDyn); 1884 finalizeSynthetic(part.ehFrameHdr); 1885 finalizeSynthetic(part.verSym); 1886 finalizeSynthetic(part.verNeed); 1887 finalizeSynthetic(part.dynamic); 1888 } 1889 1890 if (!script->hasSectionsCommand && !config->relocatable) 1891 fixSectionAlignments(); 1892 1893 // SHFLinkOrder processing must be processed after relative section placements are 1894 // known but before addresses are allocated. 1895 resolveShfLinkOrder(); 1896 if (errorCount()) 1897 return; 1898 1899 // This is used to: 1900 // 1) Create "thunks": 1901 // Jump instructions in many ISAs have small displacements, and therefore 1902 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 1903 // JAL instruction can target only +-1 MiB from PC. It is a linker's 1904 // responsibility to create and insert small pieces of code between 1905 // sections to extend the ranges if jump targets are out of range. Such 1906 // code pieces are called "thunks". 1907 // 1908 // We add thunks at this stage. We couldn't do this before this point 1909 // because this is the earliest point where we know sizes of sections and 1910 // their layouts (that are needed to determine if jump targets are in 1911 // range). 1912 // 1913 // 2) Update the sections. We need to generate content that depends on the 1914 // address of InputSections. For example, MIPS GOT section content or 1915 // android packed relocations sections content. 1916 // 1917 // 3) Assign the final values for the linker script symbols. Linker scripts 1918 // sometimes using forward symbol declarations. We want to set the correct 1919 // values. They also might change after adding the thunks. 1920 finalizeAddressDependentContent(); 1921 1922 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 1923 finalizeSynthetic(in.symTab); 1924 finalizeSynthetic(in.ppc64LongBranchTarget); 1925 1926 // Fill other section headers. The dynamic table is finalized 1927 // at the end because some tags like RELSZ depend on result 1928 // of finalizing other sections. 1929 for (OutputSection *sec : outputSections) 1930 sec->finalize(); 1931 } 1932 1933 // Ensure data sections are not mixed with executable sections when 1934 // -execute-only is used. -execute-only is a feature to make pages executable 1935 // but not readable, and the feature is currently supported only on AArch64. 1936 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 1937 if (!config->executeOnly) 1938 return; 1939 1940 for (OutputSection *os : outputSections) 1941 if (os->flags & SHF_EXECINSTR) 1942 for (InputSection *isec : getInputSections(os)) 1943 if (!(isec->flags & SHF_EXECINSTR)) 1944 error("cannot place " + toString(isec) + " into " + toString(os->name) + 1945 ": -execute-only does not support intermingling data and code"); 1946 } 1947 1948 // The linker is expected to define SECNAME_start and SECNAME_end 1949 // symbols for a few sections. This function defines them. 1950 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 1951 // If a section does not exist, there's ambiguity as to how we 1952 // define _start and _end symbols for an init/fini section. Since 1953 // the loader assume that the symbols are always defined, we need to 1954 // always define them. But what value? The loader iterates over all 1955 // pointers between _start and _end to run global ctors/dtors, so if 1956 // the section is empty, their symbol values don't actually matter 1957 // as long as _start and _end point to the same location. 1958 // 1959 // That said, we don't want to set the symbols to 0 (which is 1960 // probably the simplest value) because that could cause some 1961 // program to fail to link due to relocation overflow, if their 1962 // program text is above 2 GiB. We use the address of the .text 1963 // section instead to prevent that failure. 1964 // 1965 // In rare situations, the .text section may not exist. If that's the 1966 // case, use the image base address as a last resort. 1967 OutputSection *Default = findSection(".text"); 1968 if (!Default) 1969 Default = Out::elfHeader; 1970 1971 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 1972 if (os) { 1973 addOptionalRegular(start, os, 0); 1974 addOptionalRegular(end, os, -1); 1975 } else { 1976 addOptionalRegular(start, Default, 0); 1977 addOptionalRegular(end, Default, 0); 1978 } 1979 }; 1980 1981 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 1982 define("__init_array_start", "__init_array_end", Out::initArray); 1983 define("__fini_array_start", "__fini_array_end", Out::finiArray); 1984 1985 if (OutputSection *sec = findSection(".ARM.exidx")) 1986 define("__exidx_start", "__exidx_end", sec); 1987 } 1988 1989 // If a section name is valid as a C identifier (which is rare because of 1990 // the leading '.'), linkers are expected to define __start_<secname> and 1991 // __stop_<secname> symbols. They are at beginning and end of the section, 1992 // respectively. This is not requested by the ELF standard, but GNU ld and 1993 // gold provide the feature, and used by many programs. 1994 template <class ELFT> 1995 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 1996 StringRef s = sec->name; 1997 if (!isValidCIdentifier(s)) 1998 return; 1999 addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED); 2000 addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED); 2001 } 2002 2003 static bool needsPtLoad(OutputSection *sec) { 2004 if (!(sec->flags & SHF_ALLOC) || sec->noload) 2005 return false; 2006 2007 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2008 // responsible for allocating space for them, not the PT_LOAD that 2009 // contains the TLS initialization image. 2010 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2011 return false; 2012 return true; 2013 } 2014 2015 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2016 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2017 // RW. This means that there is no alignment in the RO to RX transition and we 2018 // cannot create a PT_LOAD there. 2019 static uint64_t computeFlags(uint64_t flags) { 2020 if (config->omagic) 2021 return PF_R | PF_W | PF_X; 2022 if (config->executeOnly && (flags & PF_X)) 2023 return flags & ~PF_R; 2024 if (config->singleRoRx && !(flags & PF_W)) 2025 return flags | PF_X; 2026 return flags; 2027 } 2028 2029 // Decide which program headers to create and which sections to include in each 2030 // one. 2031 template <class ELFT> 2032 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2033 std::vector<PhdrEntry *> ret; 2034 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2035 ret.push_back(make<PhdrEntry>(type, flags)); 2036 return ret.back(); 2037 }; 2038 2039 unsigned partNo = part.getNumber(); 2040 bool isMain = partNo == 1; 2041 2042 // Add the first PT_LOAD segment for regular output sections. 2043 uint64_t flags = computeFlags(PF_R); 2044 PhdrEntry *load = nullptr; 2045 2046 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2047 // PT_LOAD. 2048 if (!config->nmagic && !config->omagic) { 2049 // The first phdr entry is PT_PHDR which describes the program header 2050 // itself. 2051 if (isMain) 2052 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2053 else 2054 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2055 2056 // PT_INTERP must be the second entry if exists. 2057 if (OutputSection *cmd = findSection(".interp", partNo)) 2058 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2059 2060 // Add the headers. We will remove them if they don't fit. 2061 // In the other partitions the headers are ordinary sections, so they don't 2062 // need to be added here. 2063 if (isMain) { 2064 load = addHdr(PT_LOAD, flags); 2065 load->add(Out::elfHeader); 2066 load->add(Out::programHeaders); 2067 } 2068 } 2069 2070 // PT_GNU_RELRO includes all sections that should be marked as 2071 // read-only by dynamic linker after processing relocations. 2072 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2073 // an error message if more than one PT_GNU_RELRO PHDR is required. 2074 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2075 bool inRelroPhdr = false; 2076 OutputSection *relroEnd = nullptr; 2077 for (OutputSection *sec : outputSections) { 2078 if (sec->partition != partNo || !needsPtLoad(sec)) 2079 continue; 2080 if (isRelroSection(sec)) { 2081 inRelroPhdr = true; 2082 if (!relroEnd) 2083 relRo->add(sec); 2084 else 2085 error("section: " + sec->name + " is not contiguous with other relro" + 2086 " sections"); 2087 } else if (inRelroPhdr) { 2088 inRelroPhdr = false; 2089 relroEnd = sec; 2090 } 2091 } 2092 2093 for (OutputSection *sec : outputSections) { 2094 if (!(sec->flags & SHF_ALLOC)) 2095 break; 2096 if (!needsPtLoad(sec)) 2097 continue; 2098 2099 // Normally, sections in partitions other than the current partition are 2100 // ignored. But partition number 255 is a special case: it contains the 2101 // partition end marker (.part.end). It needs to be added to the main 2102 // partition so that a segment is created for it in the main partition, 2103 // which will cause the dynamic loader to reserve space for the other 2104 // partitions. 2105 if (sec->partition != partNo) { 2106 if (isMain && sec->partition == 255) 2107 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2108 continue; 2109 } 2110 2111 // Segments are contiguous memory regions that has the same attributes 2112 // (e.g. executable or writable). There is one phdr for each segment. 2113 // Therefore, we need to create a new phdr when the next section has 2114 // different flags or is loaded at a discontiguous address or memory 2115 // region using AT or AT> linker script command, respectively. At the same 2116 // time, we don't want to create a separate load segment for the headers, 2117 // even if the first output section has an AT or AT> attribute. 2118 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2119 bool sameLMARegion = 2120 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2121 if (!(load && newFlags == flags && sec != relroEnd && 2122 sec->memRegion == load->firstSec->memRegion && 2123 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2124 load = addHdr(PT_LOAD, newFlags); 2125 flags = newFlags; 2126 } 2127 2128 load->add(sec); 2129 } 2130 2131 // Add a TLS segment if any. 2132 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2133 for (OutputSection *sec : outputSections) 2134 if (sec->partition == partNo && sec->flags & SHF_TLS) 2135 tlsHdr->add(sec); 2136 if (tlsHdr->firstSec) 2137 ret.push_back(tlsHdr); 2138 2139 // Add an entry for .dynamic. 2140 if (OutputSection *sec = part.dynamic->getParent()) 2141 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2142 2143 if (relRo->firstSec) 2144 ret.push_back(relRo); 2145 2146 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2147 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2148 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2149 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2150 ->add(part.ehFrameHdr->getParent()); 2151 2152 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2153 // the dynamic linker fill the segment with random data. 2154 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2155 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2156 2157 if (config->zGnustack != GnuStackKind::None) { 2158 // PT_GNU_STACK is a special section to tell the loader to make the 2159 // pages for the stack non-executable. If you really want an executable 2160 // stack, you can pass -z execstack, but that's not recommended for 2161 // security reasons. 2162 unsigned perm = PF_R | PF_W; 2163 if (config->zGnustack == GnuStackKind::Exec) 2164 perm |= PF_X; 2165 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2166 } 2167 2168 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2169 // is expected to perform W^X violations, such as calling mprotect(2) or 2170 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2171 // OpenBSD. 2172 if (config->zWxneeded) 2173 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2174 2175 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2176 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2177 2178 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2179 // same alignment. 2180 PhdrEntry *note = nullptr; 2181 for (OutputSection *sec : outputSections) { 2182 if (sec->partition != partNo) 2183 continue; 2184 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2185 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2186 note = addHdr(PT_NOTE, PF_R); 2187 note->add(sec); 2188 } else { 2189 note = nullptr; 2190 } 2191 } 2192 return ret; 2193 } 2194 2195 template <class ELFT> 2196 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2197 unsigned pType, unsigned pFlags) { 2198 unsigned partNo = part.getNumber(); 2199 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2200 return cmd->partition == partNo && cmd->type == shType; 2201 }); 2202 if (i == outputSections.end()) 2203 return; 2204 2205 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2206 entry->add(*i); 2207 part.phdrs.push_back(entry); 2208 } 2209 2210 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2211 // This is achieved by assigning an alignment expression to addrExpr of each 2212 // such section. 2213 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2214 const PhdrEntry *prev; 2215 auto pageAlign = [&](const PhdrEntry *p) { 2216 OutputSection *cmd = p->firstSec; 2217 if (cmd && !cmd->addrExpr) { 2218 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2219 // padding in the file contents. 2220 // 2221 // When -z separate-code is used we must not have any overlap in pages 2222 // between an executable segment and a non-executable segment. We align to 2223 // the next maximum page size boundary on transitions between executable 2224 // and non-executable segments. 2225 // 2226 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2227 // sections will be extracted to a separate file. Align to the next 2228 // maximum page size boundary so that we can find the ELF header at the 2229 // start. We cannot benefit from overlapping p_offset ranges with the 2230 // previous segment anyway. 2231 if (config->zSeparate == SeparateSegmentKind::Loadable || 2232 (config->zSeparate == SeparateSegmentKind::Code && prev && 2233 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2234 cmd->type == SHT_LLVM_PART_EHDR) 2235 cmd->addrExpr = [] { 2236 return alignTo(script->getDot(), config->maxPageSize); 2237 }; 2238 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2239 // it must be the RW. Align to p_align(PT_TLS) to make sure 2240 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2241 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2242 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2243 // be congruent to 0 modulo p_align(PT_TLS). 2244 // 2245 // Technically this is not required, but as of 2019, some dynamic loaders 2246 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2247 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2248 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2249 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2250 // blocks correctly. We need to keep the workaround for a while. 2251 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2252 cmd->addrExpr = [] { 2253 return alignTo(script->getDot(), config->maxPageSize) + 2254 alignTo(script->getDot() % config->maxPageSize, 2255 Out::tlsPhdr->p_align); 2256 }; 2257 else 2258 cmd->addrExpr = [] { 2259 return alignTo(script->getDot(), config->maxPageSize) + 2260 script->getDot() % config->maxPageSize; 2261 }; 2262 } 2263 }; 2264 2265 for (Partition &part : partitions) { 2266 prev = nullptr; 2267 for (const PhdrEntry *p : part.phdrs) 2268 if (p->p_type == PT_LOAD && p->firstSec) { 2269 pageAlign(p); 2270 prev = p; 2271 } 2272 } 2273 } 2274 2275 // Compute an in-file position for a given section. The file offset must be the 2276 // same with its virtual address modulo the page size, so that the loader can 2277 // load executables without any address adjustment. 2278 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2279 // The first section in a PT_LOAD has to have congruent offset and address 2280 // modulo the maximum page size. 2281 if (os->ptLoad && os->ptLoad->firstSec == os) 2282 return alignTo(off, os->ptLoad->p_align, os->addr); 2283 2284 // File offsets are not significant for .bss sections other than the first one 2285 // in a PT_LOAD. By convention, we keep section offsets monotonically 2286 // increasing rather than setting to zero. 2287 if (os->type == SHT_NOBITS) 2288 return off; 2289 2290 // If the section is not in a PT_LOAD, we just have to align it. 2291 if (!os->ptLoad) 2292 return alignTo(off, os->alignment); 2293 2294 // If two sections share the same PT_LOAD the file offset is calculated 2295 // using this formula: Off2 = Off1 + (VA2 - VA1). 2296 OutputSection *first = os->ptLoad->firstSec; 2297 return first->offset + os->addr - first->addr; 2298 } 2299 2300 // Set an in-file position to a given section and returns the end position of 2301 // the section. 2302 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2303 off = computeFileOffset(os, off); 2304 os->offset = off; 2305 2306 if (os->type == SHT_NOBITS) 2307 return off; 2308 return off + os->size; 2309 } 2310 2311 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2312 uint64_t off = 0; 2313 for (OutputSection *sec : outputSections) 2314 if (sec->flags & SHF_ALLOC) 2315 off = setFileOffset(sec, off); 2316 fileSize = alignTo(off, config->wordsize); 2317 } 2318 2319 static std::string rangeToString(uint64_t addr, uint64_t len) { 2320 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2321 } 2322 2323 // Assign file offsets to output sections. 2324 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2325 uint64_t off = 0; 2326 off = setFileOffset(Out::elfHeader, off); 2327 off = setFileOffset(Out::programHeaders, off); 2328 2329 PhdrEntry *lastRX = nullptr; 2330 for (Partition &part : partitions) 2331 for (PhdrEntry *p : part.phdrs) 2332 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2333 lastRX = p; 2334 2335 for (OutputSection *sec : outputSections) { 2336 off = setFileOffset(sec, off); 2337 2338 // If this is a last section of the last executable segment and that 2339 // segment is the last loadable segment, align the offset of the 2340 // following section to avoid loading non-segments parts of the file. 2341 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2342 lastRX->lastSec == sec) 2343 off = alignTo(off, config->commonPageSize); 2344 } 2345 2346 sectionHeaderOff = alignTo(off, config->wordsize); 2347 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2348 2349 // Our logic assumes that sections have rising VA within the same segment. 2350 // With use of linker scripts it is possible to violate this rule and get file 2351 // offset overlaps or overflows. That should never happen with a valid script 2352 // which does not move the location counter backwards and usually scripts do 2353 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2354 // kernel, which control segment distribution explicitly and move the counter 2355 // backwards, so we have to allow doing that to support linking them. We 2356 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2357 // we want to prevent file size overflows because it would crash the linker. 2358 for (OutputSection *sec : outputSections) { 2359 if (sec->type == SHT_NOBITS) 2360 continue; 2361 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2362 error("unable to place section " + sec->name + " at file offset " + 2363 rangeToString(sec->offset, sec->size) + 2364 "; check your linker script for overflows"); 2365 } 2366 } 2367 2368 // Finalize the program headers. We call this function after we assign 2369 // file offsets and VAs to all sections. 2370 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2371 for (PhdrEntry *p : part.phdrs) { 2372 OutputSection *first = p->firstSec; 2373 OutputSection *last = p->lastSec; 2374 2375 if (first) { 2376 p->p_filesz = last->offset - first->offset; 2377 if (last->type != SHT_NOBITS) 2378 p->p_filesz += last->size; 2379 2380 p->p_memsz = last->addr + last->size - first->addr; 2381 p->p_offset = first->offset; 2382 p->p_vaddr = first->addr; 2383 2384 // File offsets in partitions other than the main partition are relative 2385 // to the offset of the ELF headers. Perform that adjustment now. 2386 if (part.elfHeader) 2387 p->p_offset -= part.elfHeader->getParent()->offset; 2388 2389 if (!p->hasLMA) 2390 p->p_paddr = first->getLMA(); 2391 } 2392 2393 if (p->p_type == PT_GNU_RELRO) { 2394 p->p_align = 1; 2395 // musl/glibc ld.so rounds the size down, so we need to round up 2396 // to protect the last page. This is a no-op on FreeBSD which always 2397 // rounds up. 2398 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2399 p->p_offset; 2400 } 2401 } 2402 } 2403 2404 // A helper struct for checkSectionOverlap. 2405 namespace { 2406 struct SectionOffset { 2407 OutputSection *sec; 2408 uint64_t offset; 2409 }; 2410 } // namespace 2411 2412 // Check whether sections overlap for a specific address range (file offsets, 2413 // load and virtual addresses). 2414 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2415 bool isVirtualAddr) { 2416 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2417 return a.offset < b.offset; 2418 }); 2419 2420 // Finding overlap is easy given a vector is sorted by start position. 2421 // If an element starts before the end of the previous element, they overlap. 2422 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2423 SectionOffset a = sections[i - 1]; 2424 SectionOffset b = sections[i]; 2425 if (b.offset >= a.offset + a.sec->size) 2426 continue; 2427 2428 // If both sections are in OVERLAY we allow the overlapping of virtual 2429 // addresses, because it is what OVERLAY was designed for. 2430 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2431 continue; 2432 2433 errorOrWarn("section " + a.sec->name + " " + name + 2434 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2435 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2436 b.sec->name + " range is " + 2437 rangeToString(b.offset, b.sec->size)); 2438 } 2439 } 2440 2441 // Check for overlapping sections and address overflows. 2442 // 2443 // In this function we check that none of the output sections have overlapping 2444 // file offsets. For SHF_ALLOC sections we also check that the load address 2445 // ranges and the virtual address ranges don't overlap 2446 template <class ELFT> void Writer<ELFT>::checkSections() { 2447 // First, check that section's VAs fit in available address space for target. 2448 for (OutputSection *os : outputSections) 2449 if ((os->addr + os->size < os->addr) || 2450 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2451 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2452 " of size 0x" + utohexstr(os->size) + 2453 " exceeds available address space"); 2454 2455 // Check for overlapping file offsets. In this case we need to skip any 2456 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2457 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2458 // binary is specified only add SHF_ALLOC sections are added to the output 2459 // file so we skip any non-allocated sections in that case. 2460 std::vector<SectionOffset> fileOffs; 2461 for (OutputSection *sec : outputSections) 2462 if (sec->size > 0 && sec->type != SHT_NOBITS && 2463 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2464 fileOffs.push_back({sec, sec->offset}); 2465 checkOverlap("file", fileOffs, false); 2466 2467 // When linking with -r there is no need to check for overlapping virtual/load 2468 // addresses since those addresses will only be assigned when the final 2469 // executable/shared object is created. 2470 if (config->relocatable) 2471 return; 2472 2473 // Checking for overlapping virtual and load addresses only needs to take 2474 // into account SHF_ALLOC sections since others will not be loaded. 2475 // Furthermore, we also need to skip SHF_TLS sections since these will be 2476 // mapped to other addresses at runtime and can therefore have overlapping 2477 // ranges in the file. 2478 std::vector<SectionOffset> vmas; 2479 for (OutputSection *sec : outputSections) 2480 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2481 vmas.push_back({sec, sec->addr}); 2482 checkOverlap("virtual address", vmas, true); 2483 2484 // Finally, check that the load addresses don't overlap. This will usually be 2485 // the same as the virtual addresses but can be different when using a linker 2486 // script with AT(). 2487 std::vector<SectionOffset> lmas; 2488 for (OutputSection *sec : outputSections) 2489 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2490 lmas.push_back({sec, sec->getLMA()}); 2491 checkOverlap("load address", lmas, false); 2492 } 2493 2494 // The entry point address is chosen in the following ways. 2495 // 2496 // 1. the '-e' entry command-line option; 2497 // 2. the ENTRY(symbol) command in a linker control script; 2498 // 3. the value of the symbol _start, if present; 2499 // 4. the number represented by the entry symbol, if it is a number; 2500 // 5. the address of the first byte of the .text section, if present; 2501 // 6. the address 0. 2502 static uint64_t getEntryAddr() { 2503 // Case 1, 2 or 3 2504 if (Symbol *b = symtab->find(config->entry)) 2505 return b->getVA(); 2506 2507 // Case 4 2508 uint64_t addr; 2509 if (to_integer(config->entry, addr)) 2510 return addr; 2511 2512 // Case 5 2513 if (OutputSection *sec = findSection(".text")) { 2514 if (config->warnMissingEntry) 2515 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2516 utohexstr(sec->addr)); 2517 return sec->addr; 2518 } 2519 2520 // Case 6 2521 if (config->warnMissingEntry) 2522 warn("cannot find entry symbol " + config->entry + 2523 "; not setting start address"); 2524 return 0; 2525 } 2526 2527 static uint16_t getELFType() { 2528 if (config->isPic) 2529 return ET_DYN; 2530 if (config->relocatable) 2531 return ET_REL; 2532 return ET_EXEC; 2533 } 2534 2535 template <class ELFT> void Writer<ELFT>::writeHeader() { 2536 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2537 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2538 2539 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2540 eHdr->e_type = getELFType(); 2541 eHdr->e_entry = getEntryAddr(); 2542 eHdr->e_shoff = sectionHeaderOff; 2543 2544 // Write the section header table. 2545 // 2546 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2547 // and e_shstrndx fields. When the value of one of these fields exceeds 2548 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2549 // use fields in the section header at index 0 to store 2550 // the value. The sentinel values and fields are: 2551 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2552 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2553 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2554 size_t num = outputSections.size() + 1; 2555 if (num >= SHN_LORESERVE) 2556 sHdrs->sh_size = num; 2557 else 2558 eHdr->e_shnum = num; 2559 2560 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2561 if (strTabIndex >= SHN_LORESERVE) { 2562 sHdrs->sh_link = strTabIndex; 2563 eHdr->e_shstrndx = SHN_XINDEX; 2564 } else { 2565 eHdr->e_shstrndx = strTabIndex; 2566 } 2567 2568 for (OutputSection *sec : outputSections) 2569 sec->writeHeaderTo<ELFT>(++sHdrs); 2570 } 2571 2572 // Open a result file. 2573 template <class ELFT> void Writer<ELFT>::openFile() { 2574 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2575 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2576 error("output file too large: " + Twine(fileSize) + " bytes"); 2577 return; 2578 } 2579 2580 unlinkAsync(config->outputFile); 2581 unsigned flags = 0; 2582 if (!config->relocatable) 2583 flags |= FileOutputBuffer::F_executable; 2584 if (!config->mmapOutputFile) 2585 flags |= FileOutputBuffer::F_no_mmap; 2586 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2587 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2588 2589 if (!bufferOrErr) { 2590 error("failed to open " + config->outputFile + ": " + 2591 llvm::toString(bufferOrErr.takeError())); 2592 return; 2593 } 2594 buffer = std::move(*bufferOrErr); 2595 Out::bufferStart = buffer->getBufferStart(); 2596 } 2597 2598 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2599 for (OutputSection *sec : outputSections) 2600 if (sec->flags & SHF_ALLOC) 2601 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2602 } 2603 2604 static void fillTrap(uint8_t *i, uint8_t *end) { 2605 for (; i + 4 <= end; i += 4) 2606 memcpy(i, &target->trapInstr, 4); 2607 } 2608 2609 // Fill the last page of executable segments with trap instructions 2610 // instead of leaving them as zero. Even though it is not required by any 2611 // standard, it is in general a good thing to do for security reasons. 2612 // 2613 // We'll leave other pages in segments as-is because the rest will be 2614 // overwritten by output sections. 2615 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2616 for (Partition &part : partitions) { 2617 // Fill the last page. 2618 for (PhdrEntry *p : part.phdrs) 2619 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2620 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2621 config->commonPageSize), 2622 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2623 config->commonPageSize)); 2624 2625 // Round up the file size of the last segment to the page boundary iff it is 2626 // an executable segment to ensure that other tools don't accidentally 2627 // trim the instruction padding (e.g. when stripping the file). 2628 PhdrEntry *last = nullptr; 2629 for (PhdrEntry *p : part.phdrs) 2630 if (p->p_type == PT_LOAD) 2631 last = p; 2632 2633 if (last && (last->p_flags & PF_X)) 2634 last->p_memsz = last->p_filesz = 2635 alignTo(last->p_filesz, config->commonPageSize); 2636 } 2637 } 2638 2639 // Write section contents to a mmap'ed file. 2640 template <class ELFT> void Writer<ELFT>::writeSections() { 2641 // In -r or -emit-relocs mode, write the relocation sections first as in 2642 // ELf_Rel targets we might find out that we need to modify the relocated 2643 // section while doing it. 2644 for (OutputSection *sec : outputSections) 2645 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2646 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2647 2648 for (OutputSection *sec : outputSections) 2649 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2650 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2651 } 2652 2653 // Split one uint8 array into small pieces of uint8 arrays. 2654 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2655 size_t chunkSize) { 2656 std::vector<ArrayRef<uint8_t>> ret; 2657 while (arr.size() > chunkSize) { 2658 ret.push_back(arr.take_front(chunkSize)); 2659 arr = arr.drop_front(chunkSize); 2660 } 2661 if (!arr.empty()) 2662 ret.push_back(arr); 2663 return ret; 2664 } 2665 2666 // Computes a hash value of Data using a given hash function. 2667 // In order to utilize multiple cores, we first split data into 1MB 2668 // chunks, compute a hash for each chunk, and then compute a hash value 2669 // of the hash values. 2670 static void 2671 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2672 llvm::ArrayRef<uint8_t> data, 2673 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2674 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2675 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2676 2677 // Compute hash values. 2678 parallelForEachN(0, chunks.size(), [&](size_t i) { 2679 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2680 }); 2681 2682 // Write to the final output buffer. 2683 hashFn(hashBuf.data(), hashes); 2684 } 2685 2686 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2687 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2688 return; 2689 2690 if (config->buildId == BuildIdKind::Hexstring) { 2691 for (Partition &part : partitions) 2692 part.buildId->writeBuildId(config->buildIdVector); 2693 return; 2694 } 2695 2696 // Compute a hash of all sections of the output file. 2697 size_t hashSize = mainPart->buildId->hashSize; 2698 std::vector<uint8_t> buildId(hashSize); 2699 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 2700 2701 switch (config->buildId) { 2702 case BuildIdKind::Fast: 2703 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2704 write64le(dest, xxHash64(arr)); 2705 }); 2706 break; 2707 case BuildIdKind::Md5: 2708 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2709 memcpy(dest, MD5::hash(arr).data(), hashSize); 2710 }); 2711 break; 2712 case BuildIdKind::Sha1: 2713 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2714 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2715 }); 2716 break; 2717 case BuildIdKind::Uuid: 2718 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 2719 error("entropy source failure: " + ec.message()); 2720 break; 2721 default: 2722 llvm_unreachable("unknown BuildIdKind"); 2723 } 2724 for (Partition &part : partitions) 2725 part.buildId->writeBuildId(buildId); 2726 } 2727 2728 template void createSyntheticSections<ELF32LE>(); 2729 template void createSyntheticSections<ELF32BE>(); 2730 template void createSyntheticSections<ELF64LE>(); 2731 template void createSyntheticSections<ELF64BE>(); 2732 2733 template void writeResult<ELF32LE>(); 2734 template void writeResult<ELF32BE>(); 2735 template void writeResult<ELF64LE>(); 2736 template void writeResult<ELF64BE>(); 2737 2738 } // namespace elf 2739 } // namespace lld 2740