1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Filesystem.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/Parallel.h" 28 #include "llvm/Support/RandomNumberGenerator.h" 29 #include "llvm/Support/SHA1.h" 30 #include "llvm/Support/TimeProfiler.h" 31 #include "llvm/Support/xxhash.h" 32 #include <climits> 33 34 #define DEBUG_TYPE "lld" 35 36 using namespace llvm; 37 using namespace llvm::ELF; 38 using namespace llvm::object; 39 using namespace llvm::support; 40 using namespace llvm::support::endian; 41 42 namespace lld { 43 namespace elf { 44 namespace { 45 // The writer writes a SymbolTable result to a file. 46 template <class ELFT> class Writer { 47 public: 48 Writer() : buffer(errorHandler().outputBuffer) {} 49 using Elf_Shdr = typename ELFT::Shdr; 50 using Elf_Ehdr = typename ELFT::Ehdr; 51 using Elf_Phdr = typename ELFT::Phdr; 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 59 void sortSections(); 60 void resolveShfLinkOrder(); 61 void finalizeAddressDependentContent(); 62 void optimizeBasicBlockJumps(); 63 void sortInputSections(); 64 void finalizeSections(); 65 void checkExecuteOnly(); 66 void setReservedSymbolSections(); 67 68 std::vector<PhdrEntry *> createPhdrs(Partition &part); 69 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 70 unsigned pFlags); 71 void assignFileOffsets(); 72 void assignFileOffsetsBinary(); 73 void setPhdrs(Partition &part); 74 void checkSections(); 75 void fixSectionAlignments(); 76 void openFile(); 77 void writeTrapInstr(); 78 void writeHeader(); 79 void writeSections(); 80 void writeSectionsBinary(); 81 void writeBuildId(); 82 83 std::unique_ptr<FileOutputBuffer> &buffer; 84 85 void addRelIpltSymbols(); 86 void addStartEndSymbols(); 87 void addStartStopSymbols(OutputSection *sec); 88 89 uint64_t fileSize; 90 uint64_t sectionHeaderOff; 91 }; 92 } // anonymous namespace 93 94 static bool isSectionPrefix(StringRef prefix, StringRef name) { 95 return name.startswith(prefix) || name == prefix.drop_back(); 96 } 97 98 StringRef getOutputSectionName(const InputSectionBase *s) { 99 if (config->relocatable) 100 return s->name; 101 102 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 103 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 104 // technically required, but not doing it is odd). This code guarantees that. 105 if (auto *isec = dyn_cast<InputSection>(s)) { 106 if (InputSectionBase *rel = isec->getRelocatedSection()) { 107 OutputSection *out = rel->getOutputSection(); 108 if (s->type == SHT_RELA) 109 return saver.save(".rela" + out->name); 110 return saver.save(".rel" + out->name); 111 } 112 } 113 114 // A BssSection created for a common symbol is identified as "COMMON" in 115 // linker scripts. It should go to .bss section. 116 if (s->name == "COMMON") 117 return ".bss"; 118 119 if (script->hasSectionsCommand) 120 return s->name; 121 122 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 123 // by grouping sections with certain prefixes. 124 125 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 126 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 127 // We provide an option -z keep-text-section-prefix to group such sections 128 // into separate output sections. This is more flexible. See also 129 // sortISDBySectionOrder(). 130 // ".text.unknown" means the hotness of the section is unknown. When 131 // SampleFDO is used, if a function doesn't have sample, it could be very 132 // cold or it could be a new function never being sampled. Those functions 133 // will be kept in the ".text.unknown" section. 134 if (config->zKeepTextSectionPrefix) 135 for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", 136 ".text.startup.", ".text.exit."}) 137 if (isSectionPrefix(v, s->name)) 138 return v.drop_back(); 139 140 for (StringRef v : 141 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 142 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 143 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 144 if (isSectionPrefix(v, s->name)) 145 return v.drop_back(); 146 147 return s->name; 148 } 149 150 static bool needsInterpSection() { 151 return !config->relocatable && !config->shared && 152 !config->dynamicLinker.empty() && script->needsInterpSection(); 153 } 154 155 template <class ELFT> void writeResult() { 156 llvm::TimeTraceScope timeScope("Write output file"); 157 Writer<ELFT>().run(); 158 } 159 160 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 161 auto it = std::stable_partition( 162 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 163 if (p->p_type != PT_LOAD) 164 return true; 165 if (!p->firstSec) 166 return false; 167 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 168 return size != 0; 169 }); 170 171 // Clear OutputSection::ptLoad for sections contained in removed 172 // segments. 173 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 174 for (OutputSection *sec : outputSections) 175 if (removed.count(sec->ptLoad)) 176 sec->ptLoad = nullptr; 177 phdrs.erase(it, phdrs.end()); 178 } 179 180 void copySectionsIntoPartitions() { 181 std::vector<InputSectionBase *> newSections; 182 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 183 for (InputSectionBase *s : inputSections) { 184 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 185 continue; 186 InputSectionBase *copy; 187 if (s->type == SHT_NOTE) 188 copy = make<InputSection>(cast<InputSection>(*s)); 189 else if (auto *es = dyn_cast<EhInputSection>(s)) 190 copy = make<EhInputSection>(*es); 191 else 192 continue; 193 copy->partition = part; 194 newSections.push_back(copy); 195 } 196 } 197 198 inputSections.insert(inputSections.end(), newSections.begin(), 199 newSections.end()); 200 } 201 202 void combineEhSections() { 203 for (InputSectionBase *&s : inputSections) { 204 // Ignore dead sections and the partition end marker (.part.end), 205 // whose partition number is out of bounds. 206 if (!s->isLive() || s->partition == 255) 207 continue; 208 209 Partition &part = s->getPartition(); 210 if (auto *es = dyn_cast<EhInputSection>(s)) { 211 part.ehFrame->addSection(es); 212 s = nullptr; 213 } else if (s->kind() == SectionBase::Regular && part.armExidx && 214 part.armExidx->addSection(cast<InputSection>(s))) { 215 s = nullptr; 216 } 217 } 218 219 std::vector<InputSectionBase *> &v = inputSections; 220 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end()); 221 } 222 223 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 224 uint64_t val, uint8_t stOther = STV_HIDDEN, 225 uint8_t binding = STB_GLOBAL) { 226 Symbol *s = symtab->find(name); 227 if (!s || s->isDefined()) 228 return nullptr; 229 230 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val, 231 /*size=*/0, sec}); 232 return cast<Defined>(s); 233 } 234 235 static Defined *addAbsolute(StringRef name) { 236 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 237 STT_NOTYPE, 0, 0, nullptr}); 238 return cast<Defined>(sym); 239 } 240 241 // The linker is expected to define some symbols depending on 242 // the linking result. This function defines such symbols. 243 void addReservedSymbols() { 244 if (config->emachine == EM_MIPS) { 245 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 246 // so that it points to an absolute address which by default is relative 247 // to GOT. Default offset is 0x7ff0. 248 // See "Global Data Symbols" in Chapter 6 in the following document: 249 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 250 ElfSym::mipsGp = addAbsolute("_gp"); 251 252 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 253 // start of function and 'gp' pointer into GOT. 254 if (symtab->find("_gp_disp")) 255 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 256 257 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 258 // pointer. This symbol is used in the code generated by .cpload pseudo-op 259 // in case of using -mno-shared option. 260 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 261 if (symtab->find("__gnu_local_gp")) 262 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 263 } else if (config->emachine == EM_PPC) { 264 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 265 // support Small Data Area, define it arbitrarily as 0. 266 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 267 } 268 269 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 270 // combines the typical ELF GOT with the small data sections. It commonly 271 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 272 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 273 // represent the TOC base which is offset by 0x8000 bytes from the start of 274 // the .got section. 275 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 276 // correctness of some relocations depends on its value. 277 StringRef gotSymName = 278 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 279 280 if (Symbol *s = symtab->find(gotSymName)) { 281 if (s->isDefined()) { 282 error(toString(s->file) + " cannot redefine linker defined symbol '" + 283 gotSymName + "'"); 284 return; 285 } 286 287 uint64_t gotOff = 0; 288 if (config->emachine == EM_PPC64) 289 gotOff = 0x8000; 290 291 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 292 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 293 ElfSym::globalOffsetTable = cast<Defined>(s); 294 } 295 296 // __ehdr_start is the location of ELF file headers. Note that we define 297 // this symbol unconditionally even when using a linker script, which 298 // differs from the behavior implemented by GNU linker which only define 299 // this symbol if ELF headers are in the memory mapped segment. 300 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 301 302 // __executable_start is not documented, but the expectation of at 303 // least the Android libc is that it points to the ELF header. 304 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 305 306 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 307 // each DSO. The address of the symbol doesn't matter as long as they are 308 // different in different DSOs, so we chose the start address of the DSO. 309 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 310 311 // If linker script do layout we do not need to create any standard symbols. 312 if (script->hasSectionsCommand) 313 return; 314 315 auto add = [](StringRef s, int64_t pos) { 316 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 317 }; 318 319 ElfSym::bss = add("__bss_start", 0); 320 ElfSym::end1 = add("end", -1); 321 ElfSym::end2 = add("_end", -1); 322 ElfSym::etext1 = add("etext", -1); 323 ElfSym::etext2 = add("_etext", -1); 324 ElfSym::edata1 = add("edata", -1); 325 ElfSym::edata2 = add("_edata", -1); 326 } 327 328 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 329 for (BaseCommand *base : script->sectionCommands) 330 if (auto *sec = dyn_cast<OutputSection>(base)) 331 if (sec->name == name && sec->partition == partition) 332 return sec; 333 return nullptr; 334 } 335 336 template <class ELFT> void createSyntheticSections() { 337 // Initialize all pointers with NULL. This is needed because 338 // you can call lld::elf::main more than once as a library. 339 memset(&Out::first, 0, sizeof(Out)); 340 341 // Add the .interp section first because it is not a SyntheticSection. 342 // The removeUnusedSyntheticSections() function relies on the 343 // SyntheticSections coming last. 344 if (needsInterpSection()) { 345 for (size_t i = 1; i <= partitions.size(); ++i) { 346 InputSection *sec = createInterpSection(); 347 sec->partition = i; 348 inputSections.push_back(sec); 349 } 350 } 351 352 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 353 354 in.shStrTab = make<StringTableSection>(".shstrtab", false); 355 356 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 357 Out::programHeaders->alignment = config->wordsize; 358 359 if (config->strip != StripPolicy::All) { 360 in.strTab = make<StringTableSection>(".strtab", false); 361 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 362 in.symTabShndx = make<SymtabShndxSection>(); 363 } 364 365 in.bss = make<BssSection>(".bss", 0, 1); 366 add(in.bss); 367 368 // If there is a SECTIONS command and a .data.rel.ro section name use name 369 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 370 // This makes sure our relro is contiguous. 371 bool hasDataRelRo = 372 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 373 in.bssRelRo = 374 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 375 add(in.bssRelRo); 376 377 // Add MIPS-specific sections. 378 if (config->emachine == EM_MIPS) { 379 if (!config->shared && config->hasDynSymTab) { 380 in.mipsRldMap = make<MipsRldMapSection>(); 381 add(in.mipsRldMap); 382 } 383 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 384 add(sec); 385 if (auto *sec = MipsOptionsSection<ELFT>::create()) 386 add(sec); 387 if (auto *sec = MipsReginfoSection<ELFT>::create()) 388 add(sec); 389 } 390 391 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 392 393 for (Partition &part : partitions) { 394 auto add = [&](SyntheticSection *sec) { 395 sec->partition = part.getNumber(); 396 inputSections.push_back(sec); 397 }; 398 399 if (!part.name.empty()) { 400 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 401 part.elfHeader->name = part.name; 402 add(part.elfHeader); 403 404 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 405 add(part.programHeaders); 406 } 407 408 if (config->buildId != BuildIdKind::None) { 409 part.buildId = make<BuildIdSection>(); 410 add(part.buildId); 411 } 412 413 part.dynStrTab = make<StringTableSection>(".dynstr", true); 414 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 415 part.dynamic = make<DynamicSection<ELFT>>(); 416 if (config->androidPackDynRelocs) 417 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 418 else 419 part.relaDyn = 420 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 421 422 if (config->hasDynSymTab) { 423 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 424 add(part.dynSymTab); 425 426 part.verSym = make<VersionTableSection>(); 427 add(part.verSym); 428 429 if (!namedVersionDefs().empty()) { 430 part.verDef = make<VersionDefinitionSection>(); 431 add(part.verDef); 432 } 433 434 part.verNeed = make<VersionNeedSection<ELFT>>(); 435 add(part.verNeed); 436 437 if (config->gnuHash) { 438 part.gnuHashTab = make<GnuHashTableSection>(); 439 add(part.gnuHashTab); 440 } 441 442 if (config->sysvHash) { 443 part.hashTab = make<HashTableSection>(); 444 add(part.hashTab); 445 } 446 447 add(part.dynamic); 448 add(part.dynStrTab); 449 add(part.relaDyn); 450 } 451 452 if (config->relrPackDynRelocs) { 453 part.relrDyn = make<RelrSection<ELFT>>(); 454 add(part.relrDyn); 455 } 456 457 if (!config->relocatable) { 458 if (config->ehFrameHdr) { 459 part.ehFrameHdr = make<EhFrameHeader>(); 460 add(part.ehFrameHdr); 461 } 462 part.ehFrame = make<EhFrameSection>(); 463 add(part.ehFrame); 464 } 465 466 if (config->emachine == EM_ARM && !config->relocatable) { 467 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 468 // InputSections. 469 part.armExidx = make<ARMExidxSyntheticSection>(); 470 add(part.armExidx); 471 } 472 } 473 474 if (partitions.size() != 1) { 475 // Create the partition end marker. This needs to be in partition number 255 476 // so that it is sorted after all other partitions. It also has other 477 // special handling (see createPhdrs() and combineEhSections()). 478 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 479 in.partEnd->partition = 255; 480 add(in.partEnd); 481 482 in.partIndex = make<PartitionIndexSection>(); 483 addOptionalRegular("__part_index_begin", in.partIndex, 0); 484 addOptionalRegular("__part_index_end", in.partIndex, 485 in.partIndex->getSize()); 486 add(in.partIndex); 487 } 488 489 // Add .got. MIPS' .got is so different from the other archs, 490 // it has its own class. 491 if (config->emachine == EM_MIPS) { 492 in.mipsGot = make<MipsGotSection>(); 493 add(in.mipsGot); 494 } else { 495 in.got = make<GotSection>(); 496 add(in.got); 497 } 498 499 if (config->emachine == EM_PPC) { 500 in.ppc32Got2 = make<PPC32Got2Section>(); 501 add(in.ppc32Got2); 502 } 503 504 if (config->emachine == EM_PPC64) { 505 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 506 add(in.ppc64LongBranchTarget); 507 } 508 509 in.gotPlt = make<GotPltSection>(); 510 add(in.gotPlt); 511 in.igotPlt = make<IgotPltSection>(); 512 add(in.igotPlt); 513 514 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 515 // it as a relocation and ensure the referenced section is created. 516 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 517 if (target->gotBaseSymInGotPlt) 518 in.gotPlt->hasGotPltOffRel = true; 519 else 520 in.got->hasGotOffRel = true; 521 } 522 523 if (config->gdbIndex) 524 add(GdbIndexSection::create<ELFT>()); 525 526 // We always need to add rel[a].plt to output if it has entries. 527 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 528 in.relaPlt = make<RelocationSection<ELFT>>( 529 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 530 add(in.relaPlt); 531 532 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 533 // relocations are processed last by the dynamic loader. We cannot place the 534 // iplt section in .rel.dyn when Android relocation packing is enabled because 535 // that would cause a section type mismatch. However, because the Android 536 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 537 // behaviour by placing the iplt section in .rel.plt. 538 in.relaIplt = make<RelocationSection<ELFT>>( 539 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 540 /*sort=*/false); 541 add(in.relaIplt); 542 543 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 544 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 545 in.ibtPlt = make<IBTPltSection>(); 546 add(in.ibtPlt); 547 } 548 549 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 550 : make<PltSection>(); 551 add(in.plt); 552 in.iplt = make<IpltSection>(); 553 add(in.iplt); 554 555 if (config->andFeatures) 556 add(make<GnuPropertySection>()); 557 558 // .note.GNU-stack is always added when we are creating a re-linkable 559 // object file. Other linkers are using the presence of this marker 560 // section to control the executable-ness of the stack area, but that 561 // is irrelevant these days. Stack area should always be non-executable 562 // by default. So we emit this section unconditionally. 563 if (config->relocatable) 564 add(make<GnuStackSection>()); 565 566 if (in.symTab) 567 add(in.symTab); 568 if (in.symTabShndx) 569 add(in.symTabShndx); 570 add(in.shStrTab); 571 if (in.strTab) 572 add(in.strTab); 573 } 574 575 // The main function of the writer. 576 template <class ELFT> void Writer<ELFT>::run() { 577 copyLocalSymbols(); 578 579 if (config->copyRelocs) 580 addSectionSymbols(); 581 582 // Now that we have a complete set of output sections. This function 583 // completes section contents. For example, we need to add strings 584 // to the string table, and add entries to .got and .plt. 585 // finalizeSections does that. 586 finalizeSections(); 587 checkExecuteOnly(); 588 if (errorCount()) 589 return; 590 591 // If -compressed-debug-sections is specified, we need to compress 592 // .debug_* sections. Do it right now because it changes the size of 593 // output sections. 594 for (OutputSection *sec : outputSections) 595 sec->maybeCompress<ELFT>(); 596 597 if (script->hasSectionsCommand) 598 script->allocateHeaders(mainPart->phdrs); 599 600 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 601 // 0 sized region. This has to be done late since only after assignAddresses 602 // we know the size of the sections. 603 for (Partition &part : partitions) 604 removeEmptyPTLoad(part.phdrs); 605 606 if (!config->oFormatBinary) 607 assignFileOffsets(); 608 else 609 assignFileOffsetsBinary(); 610 611 for (Partition &part : partitions) 612 setPhdrs(part); 613 614 if (config->relocatable) 615 for (OutputSection *sec : outputSections) 616 sec->addr = 0; 617 618 // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them 619 // before checkSections() because the files may be useful in case 620 // checkSections() or openFile() fails, for example, due to an erroneous file 621 // size. 622 writeMapFile(); 623 writeCrossReferenceTable(); 624 writeArchiveStats(); 625 626 if (config->checkSections) 627 checkSections(); 628 629 // It does not make sense try to open the file if we have error already. 630 if (errorCount()) 631 return; 632 // Write the result down to a file. 633 openFile(); 634 if (errorCount()) 635 return; 636 637 if (!config->oFormatBinary) { 638 if (config->zSeparate != SeparateSegmentKind::None) 639 writeTrapInstr(); 640 writeHeader(); 641 writeSections(); 642 } else { 643 writeSectionsBinary(); 644 } 645 646 // Backfill .note.gnu.build-id section content. This is done at last 647 // because the content is usually a hash value of the entire output file. 648 writeBuildId(); 649 if (errorCount()) 650 return; 651 652 if (auto e = buffer->commit()) 653 error("failed to write to the output file: " + toString(std::move(e))); 654 } 655 656 template <class ELFT, class RelTy> 657 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 658 llvm::ArrayRef<RelTy> rels) { 659 for (const RelTy &rel : rels) { 660 Symbol &sym = file->getRelocTargetSym(rel); 661 if (sym.isLocal()) 662 sym.used = true; 663 } 664 } 665 666 // The function ensures that the "used" field of local symbols reflects the fact 667 // that the symbol is used in a relocation from a live section. 668 template <class ELFT> static void markUsedLocalSymbols() { 669 // With --gc-sections, the field is already filled. 670 // See MarkLive<ELFT>::resolveReloc(). 671 if (config->gcSections) 672 return; 673 // Without --gc-sections, the field is initialized with "true". 674 // Drop the flag first and then rise for symbols referenced in relocations. 675 for (InputFile *file : objectFiles) { 676 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 677 for (Symbol *b : f->getLocalSymbols()) 678 b->used = false; 679 for (InputSectionBase *s : f->getSections()) { 680 InputSection *isec = dyn_cast_or_null<InputSection>(s); 681 if (!isec) 682 continue; 683 if (isec->type == SHT_REL) 684 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 685 else if (isec->type == SHT_RELA) 686 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 687 } 688 } 689 } 690 691 static bool shouldKeepInSymtab(const Defined &sym) { 692 if (sym.isSection()) 693 return false; 694 695 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 696 // from live sections. 697 if (config->copyRelocs && sym.used) 698 return true; 699 700 // Exclude local symbols pointing to .ARM.exidx sections. 701 // They are probably mapping symbols "$d", which are optional for these 702 // sections. After merging the .ARM.exidx sections, some of these symbols 703 // may become dangling. The easiest way to avoid the issue is not to add 704 // them to the symbol table from the beginning. 705 if (config->emachine == EM_ARM && sym.section && 706 sym.section->type == SHT_ARM_EXIDX) 707 return false; 708 709 if (config->discard == DiscardPolicy::None) 710 return true; 711 if (config->discard == DiscardPolicy::All) 712 return false; 713 714 // In ELF assembly .L symbols are normally discarded by the assembler. 715 // If the assembler fails to do so, the linker discards them if 716 // * --discard-locals is used. 717 // * The symbol is in a SHF_MERGE section, which is normally the reason for 718 // the assembler keeping the .L symbol. 719 StringRef name = sym.getName(); 720 bool isLocal = name.startswith(".L") || name.empty(); 721 if (!isLocal) 722 return true; 723 724 if (config->discard == DiscardPolicy::Locals) 725 return false; 726 727 SectionBase *sec = sym.section; 728 return !sec || !(sec->flags & SHF_MERGE); 729 } 730 731 static bool includeInSymtab(const Symbol &b) { 732 if (!b.isLocal() && !b.isUsedInRegularObj) 733 return false; 734 735 if (auto *d = dyn_cast<Defined>(&b)) { 736 // Always include absolute symbols. 737 SectionBase *sec = d->section; 738 if (!sec) 739 return true; 740 sec = sec->repl; 741 742 // Exclude symbols pointing to garbage-collected sections. 743 if (isa<InputSectionBase>(sec) && !sec->isLive()) 744 return false; 745 746 if (auto *s = dyn_cast<MergeInputSection>(sec)) 747 if (!s->getSectionPiece(d->value)->live) 748 return false; 749 return true; 750 } 751 return b.used; 752 } 753 754 // Local symbols are not in the linker's symbol table. This function scans 755 // each object file's symbol table to copy local symbols to the output. 756 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 757 if (!in.symTab) 758 return; 759 if (config->copyRelocs && config->discard != DiscardPolicy::None) 760 markUsedLocalSymbols<ELFT>(); 761 for (InputFile *file : objectFiles) { 762 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 763 for (Symbol *b : f->getLocalSymbols()) { 764 if (!b->isLocal()) 765 fatal(toString(f) + 766 ": broken object: getLocalSymbols returns a non-local symbol"); 767 auto *dr = dyn_cast<Defined>(b); 768 769 // No reason to keep local undefined symbol in symtab. 770 if (!dr) 771 continue; 772 if (!includeInSymtab(*b)) 773 continue; 774 if (!shouldKeepInSymtab(*dr)) 775 continue; 776 in.symTab->addSymbol(b); 777 } 778 } 779 } 780 781 // Create a section symbol for each output section so that we can represent 782 // relocations that point to the section. If we know that no relocation is 783 // referring to a section (that happens if the section is a synthetic one), we 784 // don't create a section symbol for that section. 785 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 786 for (BaseCommand *base : script->sectionCommands) { 787 auto *sec = dyn_cast<OutputSection>(base); 788 if (!sec) 789 continue; 790 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 791 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 792 return !isd->sections.empty(); 793 return false; 794 }); 795 if (i == sec->sectionCommands.end()) 796 continue; 797 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 798 799 // Relocations are not using REL[A] section symbols. 800 if (isec->type == SHT_REL || isec->type == SHT_RELA) 801 continue; 802 803 // Unlike other synthetic sections, mergeable output sections contain data 804 // copied from input sections, and there may be a relocation pointing to its 805 // contents if -r or -emit-reloc are given. 806 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 807 continue; 808 809 auto *sym = 810 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 811 /*value=*/0, /*size=*/0, isec); 812 in.symTab->addSymbol(sym); 813 } 814 } 815 816 // Today's loaders have a feature to make segments read-only after 817 // processing dynamic relocations to enhance security. PT_GNU_RELRO 818 // is defined for that. 819 // 820 // This function returns true if a section needs to be put into a 821 // PT_GNU_RELRO segment. 822 static bool isRelroSection(const OutputSection *sec) { 823 if (!config->zRelro) 824 return false; 825 826 uint64_t flags = sec->flags; 827 828 // Non-allocatable or non-writable sections don't need RELRO because 829 // they are not writable or not even mapped to memory in the first place. 830 // RELRO is for sections that are essentially read-only but need to 831 // be writable only at process startup to allow dynamic linker to 832 // apply relocations. 833 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 834 return false; 835 836 // Once initialized, TLS data segments are used as data templates 837 // for a thread-local storage. For each new thread, runtime 838 // allocates memory for a TLS and copy templates there. No thread 839 // are supposed to use templates directly. Thus, it can be in RELRO. 840 if (flags & SHF_TLS) 841 return true; 842 843 // .init_array, .preinit_array and .fini_array contain pointers to 844 // functions that are executed on process startup or exit. These 845 // pointers are set by the static linker, and they are not expected 846 // to change at runtime. But if you are an attacker, you could do 847 // interesting things by manipulating pointers in .fini_array, for 848 // example. So they are put into RELRO. 849 uint32_t type = sec->type; 850 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 851 type == SHT_PREINIT_ARRAY) 852 return true; 853 854 // .got contains pointers to external symbols. They are resolved by 855 // the dynamic linker when a module is loaded into memory, and after 856 // that they are not expected to change. So, it can be in RELRO. 857 if (in.got && sec == in.got->getParent()) 858 return true; 859 860 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 861 // through r2 register, which is reserved for that purpose. Since r2 is used 862 // for accessing .got as well, .got and .toc need to be close enough in the 863 // virtual address space. Usually, .toc comes just after .got. Since we place 864 // .got into RELRO, .toc needs to be placed into RELRO too. 865 if (sec->name.equals(".toc")) 866 return true; 867 868 // .got.plt contains pointers to external function symbols. They are 869 // by default resolved lazily, so we usually cannot put it into RELRO. 870 // However, if "-z now" is given, the lazy symbol resolution is 871 // disabled, which enables us to put it into RELRO. 872 if (sec == in.gotPlt->getParent()) 873 return config->zNow; 874 875 // .dynamic section contains data for the dynamic linker, and 876 // there's no need to write to it at runtime, so it's better to put 877 // it into RELRO. 878 if (sec->name == ".dynamic") 879 return true; 880 881 // Sections with some special names are put into RELRO. This is a 882 // bit unfortunate because section names shouldn't be significant in 883 // ELF in spirit. But in reality many linker features depend on 884 // magic section names. 885 StringRef s = sec->name; 886 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 887 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 888 s == ".fini_array" || s == ".init_array" || 889 s == ".openbsd.randomdata" || s == ".preinit_array"; 890 } 891 892 // We compute a rank for each section. The rank indicates where the 893 // section should be placed in the file. Instead of using simple 894 // numbers (0,1,2...), we use a series of flags. One for each decision 895 // point when placing the section. 896 // Using flags has two key properties: 897 // * It is easy to check if a give branch was taken. 898 // * It is easy two see how similar two ranks are (see getRankProximity). 899 enum RankFlags { 900 RF_NOT_ADDR_SET = 1 << 27, 901 RF_NOT_ALLOC = 1 << 26, 902 RF_PARTITION = 1 << 18, // Partition number (8 bits) 903 RF_NOT_PART_EHDR = 1 << 17, 904 RF_NOT_PART_PHDR = 1 << 16, 905 RF_NOT_INTERP = 1 << 15, 906 RF_NOT_NOTE = 1 << 14, 907 RF_WRITE = 1 << 13, 908 RF_EXEC_WRITE = 1 << 12, 909 RF_EXEC = 1 << 11, 910 RF_RODATA = 1 << 10, 911 RF_NOT_RELRO = 1 << 9, 912 RF_NOT_TLS = 1 << 8, 913 RF_BSS = 1 << 7, 914 RF_PPC_NOT_TOCBSS = 1 << 6, 915 RF_PPC_TOCL = 1 << 5, 916 RF_PPC_TOC = 1 << 4, 917 RF_PPC_GOT = 1 << 3, 918 RF_PPC_BRANCH_LT = 1 << 2, 919 RF_MIPS_GPREL = 1 << 1, 920 RF_MIPS_NOT_GOT = 1 << 0 921 }; 922 923 static unsigned getSectionRank(const OutputSection *sec) { 924 unsigned rank = sec->partition * RF_PARTITION; 925 926 // We want to put section specified by -T option first, so we 927 // can start assigning VA starting from them later. 928 if (config->sectionStartMap.count(sec->name)) 929 return rank; 930 rank |= RF_NOT_ADDR_SET; 931 932 // Allocatable sections go first to reduce the total PT_LOAD size and 933 // so debug info doesn't change addresses in actual code. 934 if (!(sec->flags & SHF_ALLOC)) 935 return rank | RF_NOT_ALLOC; 936 937 if (sec->type == SHT_LLVM_PART_EHDR) 938 return rank; 939 rank |= RF_NOT_PART_EHDR; 940 941 if (sec->type == SHT_LLVM_PART_PHDR) 942 return rank; 943 rank |= RF_NOT_PART_PHDR; 944 945 // Put .interp first because some loaders want to see that section 946 // on the first page of the executable file when loaded into memory. 947 if (sec->name == ".interp") 948 return rank; 949 rank |= RF_NOT_INTERP; 950 951 // Put .note sections (which make up one PT_NOTE) at the beginning so that 952 // they are likely to be included in a core file even if core file size is 953 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 954 // included in a core to match core files with executables. 955 if (sec->type == SHT_NOTE) 956 return rank; 957 rank |= RF_NOT_NOTE; 958 959 // Sort sections based on their access permission in the following 960 // order: R, RX, RWX, RW. This order is based on the following 961 // considerations: 962 // * Read-only sections come first such that they go in the 963 // PT_LOAD covering the program headers at the start of the file. 964 // * Read-only, executable sections come next. 965 // * Writable, executable sections follow such that .plt on 966 // architectures where it needs to be writable will be placed 967 // between .text and .data. 968 // * Writable sections come last, such that .bss lands at the very 969 // end of the last PT_LOAD. 970 bool isExec = sec->flags & SHF_EXECINSTR; 971 bool isWrite = sec->flags & SHF_WRITE; 972 973 if (isExec) { 974 if (isWrite) 975 rank |= RF_EXEC_WRITE; 976 else 977 rank |= RF_EXEC; 978 } else if (isWrite) { 979 rank |= RF_WRITE; 980 } else if (sec->type == SHT_PROGBITS) { 981 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 982 // .eh_frame) closer to .text. They likely contain PC or GOT relative 983 // relocations and there could be relocation overflow if other huge sections 984 // (.dynstr .dynsym) were placed in between. 985 rank |= RF_RODATA; 986 } 987 988 // Place RelRo sections first. After considering SHT_NOBITS below, the 989 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 990 // where | marks where page alignment happens. An alternative ordering is 991 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 992 // waste more bytes due to 2 alignment places. 993 if (!isRelroSection(sec)) 994 rank |= RF_NOT_RELRO; 995 996 // If we got here we know that both A and B are in the same PT_LOAD. 997 998 // The TLS initialization block needs to be a single contiguous block in a R/W 999 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 1000 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 1001 // after PROGBITS. 1002 if (!(sec->flags & SHF_TLS)) 1003 rank |= RF_NOT_TLS; 1004 1005 // Within TLS sections, or within other RelRo sections, or within non-RelRo 1006 // sections, place non-NOBITS sections first. 1007 if (sec->type == SHT_NOBITS) 1008 rank |= RF_BSS; 1009 1010 // Some architectures have additional ordering restrictions for sections 1011 // within the same PT_LOAD. 1012 if (config->emachine == EM_PPC64) { 1013 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 1014 // that we would like to make sure appear is a specific order to maximize 1015 // their coverage by a single signed 16-bit offset from the TOC base 1016 // pointer. Conversely, the special .tocbss section should be first among 1017 // all SHT_NOBITS sections. This will put it next to the loaded special 1018 // PPC64 sections (and, thus, within reach of the TOC base pointer). 1019 StringRef name = sec->name; 1020 if (name != ".tocbss") 1021 rank |= RF_PPC_NOT_TOCBSS; 1022 1023 if (name == ".toc1") 1024 rank |= RF_PPC_TOCL; 1025 1026 if (name == ".toc") 1027 rank |= RF_PPC_TOC; 1028 1029 if (name == ".got") 1030 rank |= RF_PPC_GOT; 1031 1032 if (name == ".branch_lt") 1033 rank |= RF_PPC_BRANCH_LT; 1034 } 1035 1036 if (config->emachine == EM_MIPS) { 1037 // All sections with SHF_MIPS_GPREL flag should be grouped together 1038 // because data in these sections is addressable with a gp relative address. 1039 if (sec->flags & SHF_MIPS_GPREL) 1040 rank |= RF_MIPS_GPREL; 1041 1042 if (sec->name != ".got") 1043 rank |= RF_MIPS_NOT_GOT; 1044 } 1045 1046 return rank; 1047 } 1048 1049 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 1050 const OutputSection *a = cast<OutputSection>(aCmd); 1051 const OutputSection *b = cast<OutputSection>(bCmd); 1052 1053 if (a->sortRank != b->sortRank) 1054 return a->sortRank < b->sortRank; 1055 1056 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1057 return config->sectionStartMap.lookup(a->name) < 1058 config->sectionStartMap.lookup(b->name); 1059 return false; 1060 } 1061 1062 void PhdrEntry::add(OutputSection *sec) { 1063 lastSec = sec; 1064 if (!firstSec) 1065 firstSec = sec; 1066 p_align = std::max(p_align, sec->alignment); 1067 if (p_type == PT_LOAD) 1068 sec->ptLoad = this; 1069 } 1070 1071 // The beginning and the ending of .rel[a].plt section are marked 1072 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1073 // executable. The runtime needs these symbols in order to resolve 1074 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1075 // need these symbols, since IRELATIVE relocs are resolved through GOT 1076 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1077 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1078 if (config->relocatable || needsInterpSection()) 1079 return; 1080 1081 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1082 // because .rela.plt might be empty and thus removed from output. 1083 // We'll override Out::elfHeader with In.relaIplt later when we are 1084 // sure that .rela.plt exists in output. 1085 ElfSym::relaIpltStart = addOptionalRegular( 1086 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1087 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1088 1089 ElfSym::relaIpltEnd = addOptionalRegular( 1090 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1091 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK); 1092 } 1093 1094 template <class ELFT> 1095 void Writer<ELFT>::forEachRelSec( 1096 llvm::function_ref<void(InputSectionBase &)> fn) { 1097 // Scan all relocations. Each relocation goes through a series 1098 // of tests to determine if it needs special treatment, such as 1099 // creating GOT, PLT, copy relocations, etc. 1100 // Note that relocations for non-alloc sections are directly 1101 // processed by InputSection::relocateNonAlloc. 1102 for (InputSectionBase *isec : inputSections) 1103 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1104 fn(*isec); 1105 for (Partition &part : partitions) { 1106 for (EhInputSection *es : part.ehFrame->sections) 1107 fn(*es); 1108 if (part.armExidx && part.armExidx->isLive()) 1109 for (InputSection *ex : part.armExidx->exidxSections) 1110 fn(*ex); 1111 } 1112 } 1113 1114 // This function generates assignments for predefined symbols (e.g. _end or 1115 // _etext) and inserts them into the commands sequence to be processed at the 1116 // appropriate time. This ensures that the value is going to be correct by the 1117 // time any references to these symbols are processed and is equivalent to 1118 // defining these symbols explicitly in the linker script. 1119 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1120 if (ElfSym::globalOffsetTable) { 1121 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1122 // to the start of the .got or .got.plt section. 1123 InputSection *gotSection = in.gotPlt; 1124 if (!target->gotBaseSymInGotPlt) 1125 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1126 : cast<InputSection>(in.got); 1127 ElfSym::globalOffsetTable->section = gotSection; 1128 } 1129 1130 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1131 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1132 ElfSym::relaIpltStart->section = in.relaIplt; 1133 ElfSym::relaIpltEnd->section = in.relaIplt; 1134 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1135 } 1136 1137 PhdrEntry *last = nullptr; 1138 PhdrEntry *lastRO = nullptr; 1139 1140 for (Partition &part : partitions) { 1141 for (PhdrEntry *p : part.phdrs) { 1142 if (p->p_type != PT_LOAD) 1143 continue; 1144 last = p; 1145 if (!(p->p_flags & PF_W)) 1146 lastRO = p; 1147 } 1148 } 1149 1150 if (lastRO) { 1151 // _etext is the first location after the last read-only loadable segment. 1152 if (ElfSym::etext1) 1153 ElfSym::etext1->section = lastRO->lastSec; 1154 if (ElfSym::etext2) 1155 ElfSym::etext2->section = lastRO->lastSec; 1156 } 1157 1158 if (last) { 1159 // _edata points to the end of the last mapped initialized section. 1160 OutputSection *edata = nullptr; 1161 for (OutputSection *os : outputSections) { 1162 if (os->type != SHT_NOBITS) 1163 edata = os; 1164 if (os == last->lastSec) 1165 break; 1166 } 1167 1168 if (ElfSym::edata1) 1169 ElfSym::edata1->section = edata; 1170 if (ElfSym::edata2) 1171 ElfSym::edata2->section = edata; 1172 1173 // _end is the first location after the uninitialized data region. 1174 if (ElfSym::end1) 1175 ElfSym::end1->section = last->lastSec; 1176 if (ElfSym::end2) 1177 ElfSym::end2->section = last->lastSec; 1178 } 1179 1180 if (ElfSym::bss) 1181 ElfSym::bss->section = findSection(".bss"); 1182 1183 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1184 // be equal to the _gp symbol's value. 1185 if (ElfSym::mipsGp) { 1186 // Find GP-relative section with the lowest address 1187 // and use this address to calculate default _gp value. 1188 for (OutputSection *os : outputSections) { 1189 if (os->flags & SHF_MIPS_GPREL) { 1190 ElfSym::mipsGp->section = os; 1191 ElfSym::mipsGp->value = 0x7ff0; 1192 break; 1193 } 1194 } 1195 } 1196 } 1197 1198 // We want to find how similar two ranks are. 1199 // The more branches in getSectionRank that match, the more similar they are. 1200 // Since each branch corresponds to a bit flag, we can just use 1201 // countLeadingZeros. 1202 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1203 return countLeadingZeros(a->sortRank ^ b->sortRank); 1204 } 1205 1206 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1207 auto *sec = dyn_cast<OutputSection>(b); 1208 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1209 } 1210 1211 // When placing orphan sections, we want to place them after symbol assignments 1212 // so that an orphan after 1213 // begin_foo = .; 1214 // foo : { *(foo) } 1215 // end_foo = .; 1216 // doesn't break the intended meaning of the begin/end symbols. 1217 // We don't want to go over sections since findOrphanPos is the 1218 // one in charge of deciding the order of the sections. 1219 // We don't want to go over changes to '.', since doing so in 1220 // rx_sec : { *(rx_sec) } 1221 // . = ALIGN(0x1000); 1222 // /* The RW PT_LOAD starts here*/ 1223 // rw_sec : { *(rw_sec) } 1224 // would mean that the RW PT_LOAD would become unaligned. 1225 static bool shouldSkip(BaseCommand *cmd) { 1226 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1227 return assign->name != "."; 1228 return false; 1229 } 1230 1231 // We want to place orphan sections so that they share as much 1232 // characteristics with their neighbors as possible. For example, if 1233 // both are rw, or both are tls. 1234 static std::vector<BaseCommand *>::iterator 1235 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1236 std::vector<BaseCommand *>::iterator e) { 1237 OutputSection *sec = cast<OutputSection>(*e); 1238 1239 // Find the first element that has as close a rank as possible. 1240 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1241 return getRankProximity(sec, a) < getRankProximity(sec, b); 1242 }); 1243 if (i == e) 1244 return e; 1245 1246 // Consider all existing sections with the same proximity. 1247 int proximity = getRankProximity(sec, *i); 1248 for (; i != e; ++i) { 1249 auto *curSec = dyn_cast<OutputSection>(*i); 1250 if (!curSec || !curSec->hasInputSections) 1251 continue; 1252 if (getRankProximity(sec, curSec) != proximity || 1253 sec->sortRank < curSec->sortRank) 1254 break; 1255 } 1256 1257 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1258 auto *os = dyn_cast<OutputSection>(cmd); 1259 return os && os->hasInputSections; 1260 }; 1261 auto j = std::find_if(llvm::make_reverse_iterator(i), 1262 llvm::make_reverse_iterator(b), 1263 isOutputSecWithInputSections); 1264 i = j.base(); 1265 1266 // As a special case, if the orphan section is the last section, put 1267 // it at the very end, past any other commands. 1268 // This matches bfd's behavior and is convenient when the linker script fully 1269 // specifies the start of the file, but doesn't care about the end (the non 1270 // alloc sections for example). 1271 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1272 if (nextSec == e) 1273 return e; 1274 1275 while (i != e && shouldSkip(*i)) 1276 ++i; 1277 return i; 1278 } 1279 1280 // Adds random priorities to sections not already in the map. 1281 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1282 if (!config->shuffleSectionSeed) 1283 return; 1284 1285 std::vector<int> priorities(inputSections.size() - order.size()); 1286 // Existing priorities are < 0, so use priorities >= 0 for the missing 1287 // sections. 1288 int curPrio = 0; 1289 for (int &prio : priorities) 1290 prio = curPrio++; 1291 uint32_t seed = *config->shuffleSectionSeed; 1292 std::mt19937 g(seed ? seed : std::random_device()()); 1293 llvm::shuffle(priorities.begin(), priorities.end(), g); 1294 int prioIndex = 0; 1295 for (InputSectionBase *sec : inputSections) { 1296 if (order.try_emplace(sec, priorities[prioIndex]).second) 1297 ++prioIndex; 1298 } 1299 } 1300 1301 // Builds section order for handling --symbol-ordering-file. 1302 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1303 DenseMap<const InputSectionBase *, int> sectionOrder; 1304 // Use the rarely used option -call-graph-ordering-file to sort sections. 1305 if (!config->callGraphProfile.empty()) 1306 return computeCallGraphProfileOrder(); 1307 1308 if (config->symbolOrderingFile.empty()) 1309 return sectionOrder; 1310 1311 struct SymbolOrderEntry { 1312 int priority; 1313 bool present; 1314 }; 1315 1316 // Build a map from symbols to their priorities. Symbols that didn't 1317 // appear in the symbol ordering file have the lowest priority 0. 1318 // All explicitly mentioned symbols have negative (higher) priorities. 1319 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1320 int priority = -config->symbolOrderingFile.size(); 1321 for (StringRef s : config->symbolOrderingFile) 1322 symbolOrder.insert({s, {priority++, false}}); 1323 1324 // Build a map from sections to their priorities. 1325 auto addSym = [&](Symbol &sym) { 1326 auto it = symbolOrder.find(sym.getName()); 1327 if (it == symbolOrder.end()) 1328 return; 1329 SymbolOrderEntry &ent = it->second; 1330 ent.present = true; 1331 1332 maybeWarnUnorderableSymbol(&sym); 1333 1334 if (auto *d = dyn_cast<Defined>(&sym)) { 1335 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1336 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1337 priority = std::min(priority, ent.priority); 1338 } 1339 } 1340 }; 1341 1342 // We want both global and local symbols. We get the global ones from the 1343 // symbol table and iterate the object files for the local ones. 1344 for (Symbol *sym : symtab->symbols()) 1345 if (!sym->isLazy()) 1346 addSym(*sym); 1347 1348 for (InputFile *file : objectFiles) 1349 for (Symbol *sym : file->getSymbols()) 1350 if (sym->isLocal()) 1351 addSym(*sym); 1352 1353 if (config->warnSymbolOrdering) 1354 for (auto orderEntry : symbolOrder) 1355 if (!orderEntry.second.present) 1356 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1357 1358 return sectionOrder; 1359 } 1360 1361 // Sorts the sections in ISD according to the provided section order. 1362 static void 1363 sortISDBySectionOrder(InputSectionDescription *isd, 1364 const DenseMap<const InputSectionBase *, int> &order) { 1365 std::vector<InputSection *> unorderedSections; 1366 std::vector<std::pair<InputSection *, int>> orderedSections; 1367 uint64_t unorderedSize = 0; 1368 1369 for (InputSection *isec : isd->sections) { 1370 auto i = order.find(isec); 1371 if (i == order.end()) { 1372 unorderedSections.push_back(isec); 1373 unorderedSize += isec->getSize(); 1374 continue; 1375 } 1376 orderedSections.push_back({isec, i->second}); 1377 } 1378 llvm::sort(orderedSections, llvm::less_second()); 1379 1380 // Find an insertion point for the ordered section list in the unordered 1381 // section list. On targets with limited-range branches, this is the mid-point 1382 // of the unordered section list. This decreases the likelihood that a range 1383 // extension thunk will be needed to enter or exit the ordered region. If the 1384 // ordered section list is a list of hot functions, we can generally expect 1385 // the ordered functions to be called more often than the unordered functions, 1386 // making it more likely that any particular call will be within range, and 1387 // therefore reducing the number of thunks required. 1388 // 1389 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1390 // If the layout is: 1391 // 1392 // 8MB hot 1393 // 32MB cold 1394 // 1395 // only the first 8-16MB of the cold code (depending on which hot function it 1396 // is actually calling) can call the hot code without a range extension thunk. 1397 // However, if we use this layout: 1398 // 1399 // 16MB cold 1400 // 8MB hot 1401 // 16MB cold 1402 // 1403 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1404 // of the second block of cold code can call the hot code without a thunk. So 1405 // we effectively double the amount of code that could potentially call into 1406 // the hot code without a thunk. 1407 size_t insPt = 0; 1408 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1409 uint64_t unorderedPos = 0; 1410 for (; insPt != unorderedSections.size(); ++insPt) { 1411 unorderedPos += unorderedSections[insPt]->getSize(); 1412 if (unorderedPos > unorderedSize / 2) 1413 break; 1414 } 1415 } 1416 1417 isd->sections.clear(); 1418 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1419 isd->sections.push_back(isec); 1420 for (std::pair<InputSection *, int> p : orderedSections) 1421 isd->sections.push_back(p.first); 1422 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1423 isd->sections.push_back(isec); 1424 } 1425 1426 static void sortSection(OutputSection *sec, 1427 const DenseMap<const InputSectionBase *, int> &order) { 1428 StringRef name = sec->name; 1429 1430 // Never sort these. 1431 if (name == ".init" || name == ".fini") 1432 return; 1433 1434 // Sort input sections by priority using the list provided by 1435 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1436 // digit radix sort. The sections may be sorted stably again by a more 1437 // significant key. 1438 if (!order.empty()) 1439 for (BaseCommand *b : sec->sectionCommands) 1440 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1441 sortISDBySectionOrder(isd, order); 1442 1443 // Sort input sections by section name suffixes for 1444 // __attribute__((init_priority(N))). 1445 if (name == ".init_array" || name == ".fini_array") { 1446 if (!script->hasSectionsCommand) 1447 sec->sortInitFini(); 1448 return; 1449 } 1450 1451 // Sort input sections by the special rule for .ctors and .dtors. 1452 if (name == ".ctors" || name == ".dtors") { 1453 if (!script->hasSectionsCommand) 1454 sec->sortCtorsDtors(); 1455 return; 1456 } 1457 1458 // .toc is allocated just after .got and is accessed using GOT-relative 1459 // relocations. Object files compiled with small code model have an 1460 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1461 // To reduce the risk of relocation overflow, .toc contents are sorted so that 1462 // sections having smaller relocation offsets are at beginning of .toc 1463 if (config->emachine == EM_PPC64 && name == ".toc") { 1464 if (script->hasSectionsCommand) 1465 return; 1466 assert(sec->sectionCommands.size() == 1); 1467 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1468 llvm::stable_sort(isd->sections, 1469 [](const InputSection *a, const InputSection *b) -> bool { 1470 return a->file->ppc64SmallCodeModelTocRelocs && 1471 !b->file->ppc64SmallCodeModelTocRelocs; 1472 }); 1473 return; 1474 } 1475 } 1476 1477 // If no layout was provided by linker script, we want to apply default 1478 // sorting for special input sections. This also handles --symbol-ordering-file. 1479 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1480 // Build the order once since it is expensive. 1481 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1482 maybeShuffle(order); 1483 for (BaseCommand *base : script->sectionCommands) 1484 if (auto *sec = dyn_cast<OutputSection>(base)) 1485 sortSection(sec, order); 1486 } 1487 1488 template <class ELFT> void Writer<ELFT>::sortSections() { 1489 script->adjustSectionsBeforeSorting(); 1490 1491 // Don't sort if using -r. It is not necessary and we want to preserve the 1492 // relative order for SHF_LINK_ORDER sections. 1493 if (config->relocatable) 1494 return; 1495 1496 sortInputSections(); 1497 1498 for (BaseCommand *base : script->sectionCommands) { 1499 auto *os = dyn_cast<OutputSection>(base); 1500 if (!os) 1501 continue; 1502 os->sortRank = getSectionRank(os); 1503 1504 // We want to assign rude approximation values to outSecOff fields 1505 // to know the relative order of the input sections. We use it for 1506 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1507 uint64_t i = 0; 1508 for (InputSection *sec : getInputSections(os)) 1509 sec->outSecOff = i++; 1510 } 1511 1512 if (!script->hasSectionsCommand) { 1513 // We know that all the OutputSections are contiguous in this case. 1514 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1515 std::stable_sort( 1516 llvm::find_if(script->sectionCommands, isSection), 1517 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1518 compareSections); 1519 1520 // Process INSERT commands. From this point onwards the order of 1521 // script->sectionCommands is fixed. 1522 script->processInsertCommands(); 1523 return; 1524 } 1525 1526 script->processInsertCommands(); 1527 1528 // Orphan sections are sections present in the input files which are 1529 // not explicitly placed into the output file by the linker script. 1530 // 1531 // The sections in the linker script are already in the correct 1532 // order. We have to figuere out where to insert the orphan 1533 // sections. 1534 // 1535 // The order of the sections in the script is arbitrary and may not agree with 1536 // compareSections. This means that we cannot easily define a strict weak 1537 // ordering. To see why, consider a comparison of a section in the script and 1538 // one not in the script. We have a two simple options: 1539 // * Make them equivalent (a is not less than b, and b is not less than a). 1540 // The problem is then that equivalence has to be transitive and we can 1541 // have sections a, b and c with only b in a script and a less than c 1542 // which breaks this property. 1543 // * Use compareSectionsNonScript. Given that the script order doesn't have 1544 // to match, we can end up with sections a, b, c, d where b and c are in the 1545 // script and c is compareSectionsNonScript less than b. In which case d 1546 // can be equivalent to c, a to b and d < a. As a concrete example: 1547 // .a (rx) # not in script 1548 // .b (rx) # in script 1549 // .c (ro) # in script 1550 // .d (ro) # not in script 1551 // 1552 // The way we define an order then is: 1553 // * Sort only the orphan sections. They are in the end right now. 1554 // * Move each orphan section to its preferred position. We try 1555 // to put each section in the last position where it can share 1556 // a PT_LOAD. 1557 // 1558 // There is some ambiguity as to where exactly a new entry should be 1559 // inserted, because Commands contains not only output section 1560 // commands but also other types of commands such as symbol assignment 1561 // expressions. There's no correct answer here due to the lack of the 1562 // formal specification of the linker script. We use heuristics to 1563 // determine whether a new output command should be added before or 1564 // after another commands. For the details, look at shouldSkip 1565 // function. 1566 1567 auto i = script->sectionCommands.begin(); 1568 auto e = script->sectionCommands.end(); 1569 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1570 if (auto *sec = dyn_cast<OutputSection>(base)) 1571 return sec->sectionIndex == UINT32_MAX; 1572 return false; 1573 }); 1574 1575 // Sort the orphan sections. 1576 std::stable_sort(nonScriptI, e, compareSections); 1577 1578 // As a horrible special case, skip the first . assignment if it is before any 1579 // section. We do this because it is common to set a load address by starting 1580 // the script with ". = 0xabcd" and the expectation is that every section is 1581 // after that. 1582 auto firstSectionOrDotAssignment = 1583 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1584 if (firstSectionOrDotAssignment != e && 1585 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1586 ++firstSectionOrDotAssignment; 1587 i = firstSectionOrDotAssignment; 1588 1589 while (nonScriptI != e) { 1590 auto pos = findOrphanPos(i, nonScriptI); 1591 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1592 1593 // As an optimization, find all sections with the same sort rank 1594 // and insert them with one rotate. 1595 unsigned rank = orphan->sortRank; 1596 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1597 return cast<OutputSection>(cmd)->sortRank != rank; 1598 }); 1599 std::rotate(pos, nonScriptI, end); 1600 nonScriptI = end; 1601 } 1602 1603 script->adjustSectionsAfterSorting(); 1604 } 1605 1606 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1607 InputSection *la = a->getLinkOrderDep(); 1608 InputSection *lb = b->getLinkOrderDep(); 1609 OutputSection *aOut = la->getParent(); 1610 OutputSection *bOut = lb->getParent(); 1611 1612 if (aOut != bOut) 1613 return aOut->addr < bOut->addr; 1614 return la->outSecOff < lb->outSecOff; 1615 } 1616 1617 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1618 for (OutputSection *sec : outputSections) { 1619 if (!(sec->flags & SHF_LINK_ORDER)) 1620 continue; 1621 1622 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1623 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1624 if (!config->relocatable && config->emachine == EM_ARM && 1625 sec->type == SHT_ARM_EXIDX) 1626 continue; 1627 1628 // Link order may be distributed across several InputSectionDescriptions 1629 // but sort must consider them all at once. 1630 std::vector<InputSection **> scriptSections; 1631 std::vector<InputSection *> sections; 1632 bool started = false, stopped = false; 1633 for (BaseCommand *base : sec->sectionCommands) { 1634 if (auto *isd = dyn_cast<InputSectionDescription>(base)) { 1635 for (InputSection *&isec : isd->sections) { 1636 if (!(isec->flags & SHF_LINK_ORDER)) { 1637 if (started) 1638 stopped = true; 1639 } else if (stopped) { 1640 error(toString(isec) + ": SHF_LINK_ORDER sections in " + sec->name + 1641 " are not contiguous"); 1642 } else { 1643 started = true; 1644 1645 scriptSections.push_back(&isec); 1646 sections.push_back(isec); 1647 1648 InputSection *link = isec->getLinkOrderDep(); 1649 if (!link->getParent()) 1650 error(toString(isec) + ": sh_link points to discarded section " + 1651 toString(link)); 1652 } 1653 } 1654 } else if (started) { 1655 stopped = true; 1656 } 1657 } 1658 1659 if (errorCount()) 1660 continue; 1661 1662 llvm::stable_sort(sections, compareByFilePosition); 1663 1664 for (int i = 0, n = sections.size(); i < n; ++i) 1665 *scriptSections[i] = sections[i]; 1666 } 1667 } 1668 1669 static void finalizeSynthetic(SyntheticSection *sec) { 1670 if (sec && sec->isNeeded() && sec->getParent()) 1671 sec->finalizeContents(); 1672 } 1673 1674 // We need to generate and finalize the content that depends on the address of 1675 // InputSections. As the generation of the content may also alter InputSection 1676 // addresses we must converge to a fixed point. We do that here. See the comment 1677 // in Writer<ELFT>::finalizeSections(). 1678 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1679 ThunkCreator tc; 1680 AArch64Err843419Patcher a64p; 1681 ARMErr657417Patcher a32p; 1682 script->assignAddresses(); 1683 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1684 // do require the relative addresses of OutputSections because linker scripts 1685 // can assign Virtual Addresses to OutputSections that are not monotonically 1686 // increasing. 1687 for (Partition &part : partitions) 1688 finalizeSynthetic(part.armExidx); 1689 resolveShfLinkOrder(); 1690 1691 // Converts call x@GDPLT to call __tls_get_addr 1692 if (config->emachine == EM_HEXAGON) 1693 hexagonTLSSymbolUpdate(outputSections); 1694 1695 int assignPasses = 0; 1696 for (;;) { 1697 bool changed = target->needsThunks && tc.createThunks(outputSections); 1698 1699 // With Thunk Size much smaller than branch range we expect to 1700 // converge quickly; if we get to 10 something has gone wrong. 1701 if (changed && tc.pass >= 10) { 1702 error("thunk creation not converged"); 1703 break; 1704 } 1705 1706 if (config->fixCortexA53Errata843419) { 1707 if (changed) 1708 script->assignAddresses(); 1709 changed |= a64p.createFixes(); 1710 } 1711 if (config->fixCortexA8) { 1712 if (changed) 1713 script->assignAddresses(); 1714 changed |= a32p.createFixes(); 1715 } 1716 1717 if (in.mipsGot) 1718 in.mipsGot->updateAllocSize(); 1719 1720 for (Partition &part : partitions) { 1721 changed |= part.relaDyn->updateAllocSize(); 1722 if (part.relrDyn) 1723 changed |= part.relrDyn->updateAllocSize(); 1724 } 1725 1726 const Defined *changedSym = script->assignAddresses(); 1727 if (!changed) { 1728 // Some symbols may be dependent on section addresses. When we break the 1729 // loop, the symbol values are finalized because a previous 1730 // assignAddresses() finalized section addresses. 1731 if (!changedSym) 1732 break; 1733 if (++assignPasses == 5) { 1734 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1735 " does not converge"); 1736 break; 1737 } 1738 } 1739 } 1740 1741 // If addrExpr is set, the address may not be a multiple of the alignment. 1742 // Warn because this is error-prone. 1743 for (BaseCommand *cmd : script->sectionCommands) 1744 if (auto *os = dyn_cast<OutputSection>(cmd)) 1745 if (os->addr % os->alignment != 0) 1746 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1747 os->name + " is not a multiple of alignment (" + 1748 Twine(os->alignment) + ")"); 1749 } 1750 1751 // If Input Sections have been shrinked (basic block sections) then 1752 // update symbol values and sizes associated with these sections. With basic 1753 // block sections, input sections can shrink when the jump instructions at 1754 // the end of the section are relaxed. 1755 static void fixSymbolsAfterShrinking() { 1756 for (InputFile *File : objectFiles) { 1757 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1758 auto *def = dyn_cast<Defined>(Sym); 1759 if (!def) 1760 return; 1761 1762 const SectionBase *sec = def->section; 1763 if (!sec) 1764 return; 1765 1766 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl); 1767 if (!inputSec || !inputSec->bytesDropped) 1768 return; 1769 1770 const size_t OldSize = inputSec->data().size(); 1771 const size_t NewSize = OldSize - inputSec->bytesDropped; 1772 1773 if (def->value > NewSize && def->value <= OldSize) { 1774 LLVM_DEBUG(llvm::dbgs() 1775 << "Moving symbol " << Sym->getName() << " from " 1776 << def->value << " to " 1777 << def->value - inputSec->bytesDropped << " bytes\n"); 1778 def->value -= inputSec->bytesDropped; 1779 return; 1780 } 1781 1782 if (def->value + def->size > NewSize && def->value <= OldSize && 1783 def->value + def->size <= OldSize) { 1784 LLVM_DEBUG(llvm::dbgs() 1785 << "Shrinking symbol " << Sym->getName() << " from " 1786 << def->size << " to " << def->size - inputSec->bytesDropped 1787 << " bytes\n"); 1788 def->size -= inputSec->bytesDropped; 1789 } 1790 }); 1791 } 1792 } 1793 1794 // If basic block sections exist, there are opportunities to delete fall thru 1795 // jumps and shrink jump instructions after basic block reordering. This 1796 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1797 // option is used. 1798 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1799 assert(config->optimizeBBJumps); 1800 1801 script->assignAddresses(); 1802 // For every output section that has executable input sections, this 1803 // does the following: 1804 // 1. Deletes all direct jump instructions in input sections that 1805 // jump to the following section as it is not required. 1806 // 2. If there are two consecutive jump instructions, it checks 1807 // if they can be flipped and one can be deleted. 1808 for (OutputSection *os : outputSections) { 1809 if (!(os->flags & SHF_EXECINSTR)) 1810 continue; 1811 std::vector<InputSection *> sections = getInputSections(os); 1812 std::vector<unsigned> result(sections.size()); 1813 // Delete all fall through jump instructions. Also, check if two 1814 // consecutive jump instructions can be flipped so that a fall 1815 // through jmp instruction can be deleted. 1816 parallelForEachN(0, sections.size(), [&](size_t i) { 1817 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1818 InputSection &is = *sections[i]; 1819 result[i] = 1820 target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0; 1821 }); 1822 size_t numDeleted = std::count(result.begin(), result.end(), 1); 1823 if (numDeleted > 0) { 1824 script->assignAddresses(); 1825 LLVM_DEBUG(llvm::dbgs() 1826 << "Removing " << numDeleted << " fall through jumps\n"); 1827 } 1828 } 1829 1830 fixSymbolsAfterShrinking(); 1831 1832 for (OutputSection *os : outputSections) { 1833 std::vector<InputSection *> sections = getInputSections(os); 1834 for (InputSection *is : sections) 1835 is->trim(); 1836 } 1837 } 1838 1839 // In order to allow users to manipulate linker-synthesized sections, 1840 // we had to add synthetic sections to the input section list early, 1841 // even before we make decisions whether they are needed. This allows 1842 // users to write scripts like this: ".mygot : { .got }". 1843 // 1844 // Doing it has an unintended side effects. If it turns out that we 1845 // don't need a .got (for example) at all because there's no 1846 // relocation that needs a .got, we don't want to emit .got. 1847 // 1848 // To deal with the above problem, this function is called after 1849 // scanRelocations is called to remove synthetic sections that turn 1850 // out to be empty. 1851 static void removeUnusedSyntheticSections() { 1852 // All input synthetic sections that can be empty are placed after 1853 // all regular ones. We iterate over them all and exit at first 1854 // non-synthetic. 1855 for (InputSectionBase *s : llvm::reverse(inputSections)) { 1856 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1857 if (!ss) 1858 return; 1859 OutputSection *os = ss->getParent(); 1860 if (!os || ss->isNeeded()) 1861 continue; 1862 1863 // If we reach here, then ss is an unused synthetic section and we want to 1864 // remove it from the corresponding input section description, and 1865 // orphanSections. 1866 for (BaseCommand *b : os->sectionCommands) 1867 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1868 llvm::erase_if(isd->sections, 1869 [=](InputSection *isec) { return isec == ss; }); 1870 llvm::erase_if(script->orphanSections, 1871 [=](const InputSectionBase *isec) { return isec == ss; }); 1872 } 1873 } 1874 1875 // Create output section objects and add them to OutputSections. 1876 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1877 Out::preinitArray = findSection(".preinit_array"); 1878 Out::initArray = findSection(".init_array"); 1879 Out::finiArray = findSection(".fini_array"); 1880 1881 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1882 // symbols for sections, so that the runtime can get the start and end 1883 // addresses of each section by section name. Add such symbols. 1884 if (!config->relocatable) { 1885 addStartEndSymbols(); 1886 for (BaseCommand *base : script->sectionCommands) 1887 if (auto *sec = dyn_cast<OutputSection>(base)) 1888 addStartStopSymbols(sec); 1889 } 1890 1891 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1892 // It should be okay as no one seems to care about the type. 1893 // Even the author of gold doesn't remember why gold behaves that way. 1894 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1895 if (mainPart->dynamic->parent) 1896 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1897 STV_HIDDEN, STT_NOTYPE, 1898 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1899 1900 // Define __rel[a]_iplt_{start,end} symbols if needed. 1901 addRelIpltSymbols(); 1902 1903 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1904 // should only be defined in an executable. If .sdata does not exist, its 1905 // value/section does not matter but it has to be relative, so set its 1906 // st_shndx arbitrarily to 1 (Out::elfHeader). 1907 if (config->emachine == EM_RISCV && !config->shared) { 1908 OutputSection *sec = findSection(".sdata"); 1909 ElfSym::riscvGlobalPointer = 1910 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1911 0x800, STV_DEFAULT, STB_GLOBAL); 1912 } 1913 1914 if (config->emachine == EM_X86_64) { 1915 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1916 // way that: 1917 // 1918 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1919 // computes 0. 1920 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1921 // the TLS block). 1922 // 1923 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1924 // an absolute symbol of zero. This is different from GNU linkers which 1925 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1926 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1927 if (s && s->isUndefined()) { 1928 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1929 STT_TLS, /*value=*/0, 0, 1930 /*section=*/nullptr}); 1931 ElfSym::tlsModuleBase = cast<Defined>(s); 1932 } 1933 } 1934 1935 // This responsible for splitting up .eh_frame section into 1936 // pieces. The relocation scan uses those pieces, so this has to be 1937 // earlier. 1938 for (Partition &part : partitions) 1939 finalizeSynthetic(part.ehFrame); 1940 1941 for (Symbol *sym : symtab->symbols()) 1942 sym->isPreemptible = computeIsPreemptible(*sym); 1943 1944 // Change values of linker-script-defined symbols from placeholders (assigned 1945 // by declareSymbols) to actual definitions. 1946 script->processSymbolAssignments(); 1947 1948 // Scan relocations. This must be done after every symbol is declared so that 1949 // we can correctly decide if a dynamic relocation is needed. This is called 1950 // after processSymbolAssignments() because it needs to know whether a 1951 // linker-script-defined symbol is absolute. 1952 ppc64noTocRelax.clear(); 1953 if (!config->relocatable) { 1954 forEachRelSec(scanRelocations<ELFT>); 1955 reportUndefinedSymbols<ELFT>(); 1956 } 1957 1958 if (in.plt && in.plt->isNeeded()) 1959 in.plt->addSymbols(); 1960 if (in.iplt && in.iplt->isNeeded()) 1961 in.iplt->addSymbols(); 1962 1963 if (!config->allowShlibUndefined) { 1964 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1965 // entries are seen. These cases would otherwise lead to runtime errors 1966 // reported by the dynamic linker. 1967 // 1968 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1969 // catch more cases. That is too much for us. Our approach resembles the one 1970 // used in ld.gold, achieves a good balance to be useful but not too smart. 1971 for (SharedFile *file : sharedFiles) 1972 file->allNeededIsKnown = 1973 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1974 return symtab->soNames.count(needed); 1975 }); 1976 1977 for (Symbol *sym : symtab->symbols()) 1978 if (sym->isUndefined() && !sym->isWeak()) 1979 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file)) 1980 if (f->allNeededIsKnown) 1981 error(toString(f) + ": undefined reference to " + toString(*sym)); 1982 } 1983 1984 // Now that we have defined all possible global symbols including linker- 1985 // synthesized ones. Visit all symbols to give the finishing touches. 1986 for (Symbol *sym : symtab->symbols()) { 1987 if (!includeInSymtab(*sym)) 1988 continue; 1989 if (in.symTab) 1990 in.symTab->addSymbol(sym); 1991 1992 if (sym->includeInDynsym()) { 1993 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1994 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1995 if (file->isNeeded && !sym->isUndefined()) 1996 addVerneed(sym); 1997 } 1998 } 1999 2000 // We also need to scan the dynamic relocation tables of the other partitions 2001 // and add any referenced symbols to the partition's dynsym. 2002 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2003 DenseSet<Symbol *> syms; 2004 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2005 syms.insert(e.sym); 2006 for (DynamicReloc &reloc : part.relaDyn->relocs) 2007 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second) 2008 part.dynSymTab->addSymbol(reloc.sym); 2009 } 2010 2011 // Do not proceed if there was an undefined symbol. 2012 if (errorCount()) 2013 return; 2014 2015 if (in.mipsGot) 2016 in.mipsGot->build(); 2017 2018 removeUnusedSyntheticSections(); 2019 script->diagnoseOrphanHandling(); 2020 2021 sortSections(); 2022 2023 // Now that we have the final list, create a list of all the 2024 // OutputSections for convenience. 2025 for (BaseCommand *base : script->sectionCommands) 2026 if (auto *sec = dyn_cast<OutputSection>(base)) 2027 outputSections.push_back(sec); 2028 2029 // Prefer command line supplied address over other constraints. 2030 for (OutputSection *sec : outputSections) { 2031 auto i = config->sectionStartMap.find(sec->name); 2032 if (i != config->sectionStartMap.end()) 2033 sec->addrExpr = [=] { return i->second; }; 2034 } 2035 2036 // With the outputSections available check for GDPLT relocations 2037 // and add __tls_get_addr symbol if needed. 2038 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2039 Symbol *sym = symtab->addSymbol(Undefined{ 2040 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2041 sym->isPreemptible = true; 2042 partitions[0].dynSymTab->addSymbol(sym); 2043 } 2044 2045 // This is a bit of a hack. A value of 0 means undef, so we set it 2046 // to 1 to make __ehdr_start defined. The section number is not 2047 // particularly relevant. 2048 Out::elfHeader->sectionIndex = 1; 2049 2050 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 2051 OutputSection *sec = outputSections[i]; 2052 sec->sectionIndex = i + 1; 2053 sec->shName = in.shStrTab->addString(sec->name); 2054 } 2055 2056 // Binary and relocatable output does not have PHDRS. 2057 // The headers have to be created before finalize as that can influence the 2058 // image base and the dynamic section on mips includes the image base. 2059 if (!config->relocatable && !config->oFormatBinary) { 2060 for (Partition &part : partitions) { 2061 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2062 : createPhdrs(part); 2063 if (config->emachine == EM_ARM) { 2064 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2065 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2066 } 2067 if (config->emachine == EM_MIPS) { 2068 // Add separate segments for MIPS-specific sections. 2069 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2070 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2071 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2072 } 2073 } 2074 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2075 2076 // Find the TLS segment. This happens before the section layout loop so that 2077 // Android relocation packing can look up TLS symbol addresses. We only need 2078 // to care about the main partition here because all TLS symbols were moved 2079 // to the main partition (see MarkLive.cpp). 2080 for (PhdrEntry *p : mainPart->phdrs) 2081 if (p->p_type == PT_TLS) 2082 Out::tlsPhdr = p; 2083 } 2084 2085 // Some symbols are defined in term of program headers. Now that we 2086 // have the headers, we can find out which sections they point to. 2087 setReservedSymbolSections(); 2088 2089 finalizeSynthetic(in.bss); 2090 finalizeSynthetic(in.bssRelRo); 2091 finalizeSynthetic(in.symTabShndx); 2092 finalizeSynthetic(in.shStrTab); 2093 finalizeSynthetic(in.strTab); 2094 finalizeSynthetic(in.got); 2095 finalizeSynthetic(in.mipsGot); 2096 finalizeSynthetic(in.igotPlt); 2097 finalizeSynthetic(in.gotPlt); 2098 finalizeSynthetic(in.relaIplt); 2099 finalizeSynthetic(in.relaPlt); 2100 finalizeSynthetic(in.plt); 2101 finalizeSynthetic(in.iplt); 2102 finalizeSynthetic(in.ppc32Got2); 2103 finalizeSynthetic(in.partIndex); 2104 2105 // Dynamic section must be the last one in this list and dynamic 2106 // symbol table section (dynSymTab) must be the first one. 2107 for (Partition &part : partitions) { 2108 finalizeSynthetic(part.dynSymTab); 2109 finalizeSynthetic(part.gnuHashTab); 2110 finalizeSynthetic(part.hashTab); 2111 finalizeSynthetic(part.verDef); 2112 finalizeSynthetic(part.relaDyn); 2113 finalizeSynthetic(part.relrDyn); 2114 finalizeSynthetic(part.ehFrameHdr); 2115 finalizeSynthetic(part.verSym); 2116 finalizeSynthetic(part.verNeed); 2117 finalizeSynthetic(part.dynamic); 2118 } 2119 2120 if (!script->hasSectionsCommand && !config->relocatable) 2121 fixSectionAlignments(); 2122 2123 // This is used to: 2124 // 1) Create "thunks": 2125 // Jump instructions in many ISAs have small displacements, and therefore 2126 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2127 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2128 // responsibility to create and insert small pieces of code between 2129 // sections to extend the ranges if jump targets are out of range. Such 2130 // code pieces are called "thunks". 2131 // 2132 // We add thunks at this stage. We couldn't do this before this point 2133 // because this is the earliest point where we know sizes of sections and 2134 // their layouts (that are needed to determine if jump targets are in 2135 // range). 2136 // 2137 // 2) Update the sections. We need to generate content that depends on the 2138 // address of InputSections. For example, MIPS GOT section content or 2139 // android packed relocations sections content. 2140 // 2141 // 3) Assign the final values for the linker script symbols. Linker scripts 2142 // sometimes using forward symbol declarations. We want to set the correct 2143 // values. They also might change after adding the thunks. 2144 finalizeAddressDependentContent(); 2145 if (errorCount()) 2146 return; 2147 2148 // finalizeAddressDependentContent may have added local symbols to the static symbol table. 2149 finalizeSynthetic(in.symTab); 2150 finalizeSynthetic(in.ppc64LongBranchTarget); 2151 2152 // Relaxation to delete inter-basic block jumps created by basic block 2153 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2154 // can relax jump instructions based on symbol offset. 2155 if (config->optimizeBBJumps) 2156 optimizeBasicBlockJumps(); 2157 2158 // Fill other section headers. The dynamic table is finalized 2159 // at the end because some tags like RELSZ depend on result 2160 // of finalizing other sections. 2161 for (OutputSection *sec : outputSections) 2162 sec->finalize(); 2163 } 2164 2165 // Ensure data sections are not mixed with executable sections when 2166 // -execute-only is used. -execute-only is a feature to make pages executable 2167 // but not readable, and the feature is currently supported only on AArch64. 2168 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2169 if (!config->executeOnly) 2170 return; 2171 2172 for (OutputSection *os : outputSections) 2173 if (os->flags & SHF_EXECINSTR) 2174 for (InputSection *isec : getInputSections(os)) 2175 if (!(isec->flags & SHF_EXECINSTR)) 2176 error("cannot place " + toString(isec) + " into " + toString(os->name) + 2177 ": -execute-only does not support intermingling data and code"); 2178 } 2179 2180 // The linker is expected to define SECNAME_start and SECNAME_end 2181 // symbols for a few sections. This function defines them. 2182 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2183 // If a section does not exist, there's ambiguity as to how we 2184 // define _start and _end symbols for an init/fini section. Since 2185 // the loader assume that the symbols are always defined, we need to 2186 // always define them. But what value? The loader iterates over all 2187 // pointers between _start and _end to run global ctors/dtors, so if 2188 // the section is empty, their symbol values don't actually matter 2189 // as long as _start and _end point to the same location. 2190 // 2191 // That said, we don't want to set the symbols to 0 (which is 2192 // probably the simplest value) because that could cause some 2193 // program to fail to link due to relocation overflow, if their 2194 // program text is above 2 GiB. We use the address of the .text 2195 // section instead to prevent that failure. 2196 // 2197 // In rare situations, the .text section may not exist. If that's the 2198 // case, use the image base address as a last resort. 2199 OutputSection *Default = findSection(".text"); 2200 if (!Default) 2201 Default = Out::elfHeader; 2202 2203 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2204 if (os) { 2205 addOptionalRegular(start, os, 0); 2206 addOptionalRegular(end, os, -1); 2207 } else { 2208 addOptionalRegular(start, Default, 0); 2209 addOptionalRegular(end, Default, 0); 2210 } 2211 }; 2212 2213 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2214 define("__init_array_start", "__init_array_end", Out::initArray); 2215 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2216 2217 if (OutputSection *sec = findSection(".ARM.exidx")) 2218 define("__exidx_start", "__exidx_end", sec); 2219 } 2220 2221 // If a section name is valid as a C identifier (which is rare because of 2222 // the leading '.'), linkers are expected to define __start_<secname> and 2223 // __stop_<secname> symbols. They are at beginning and end of the section, 2224 // respectively. This is not requested by the ELF standard, but GNU ld and 2225 // gold provide the feature, and used by many programs. 2226 template <class ELFT> 2227 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2228 StringRef s = sec->name; 2229 if (!isValidCIdentifier(s)) 2230 return; 2231 addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED); 2232 addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED); 2233 } 2234 2235 static bool needsPtLoad(OutputSection *sec) { 2236 if (!(sec->flags & SHF_ALLOC) || sec->noload) 2237 return false; 2238 2239 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2240 // responsible for allocating space for them, not the PT_LOAD that 2241 // contains the TLS initialization image. 2242 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2243 return false; 2244 return true; 2245 } 2246 2247 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2248 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2249 // RW. This means that there is no alignment in the RO to RX transition and we 2250 // cannot create a PT_LOAD there. 2251 static uint64_t computeFlags(uint64_t flags) { 2252 if (config->omagic) 2253 return PF_R | PF_W | PF_X; 2254 if (config->executeOnly && (flags & PF_X)) 2255 return flags & ~PF_R; 2256 if (config->singleRoRx && !(flags & PF_W)) 2257 return flags | PF_X; 2258 return flags; 2259 } 2260 2261 // Decide which program headers to create and which sections to include in each 2262 // one. 2263 template <class ELFT> 2264 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2265 std::vector<PhdrEntry *> ret; 2266 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2267 ret.push_back(make<PhdrEntry>(type, flags)); 2268 return ret.back(); 2269 }; 2270 2271 unsigned partNo = part.getNumber(); 2272 bool isMain = partNo == 1; 2273 2274 // Add the first PT_LOAD segment for regular output sections. 2275 uint64_t flags = computeFlags(PF_R); 2276 PhdrEntry *load = nullptr; 2277 2278 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2279 // PT_LOAD. 2280 if (!config->nmagic && !config->omagic) { 2281 // The first phdr entry is PT_PHDR which describes the program header 2282 // itself. 2283 if (isMain) 2284 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2285 else 2286 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2287 2288 // PT_INTERP must be the second entry if exists. 2289 if (OutputSection *cmd = findSection(".interp", partNo)) 2290 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2291 2292 // Add the headers. We will remove them if they don't fit. 2293 // In the other partitions the headers are ordinary sections, so they don't 2294 // need to be added here. 2295 if (isMain) { 2296 load = addHdr(PT_LOAD, flags); 2297 load->add(Out::elfHeader); 2298 load->add(Out::programHeaders); 2299 } 2300 } 2301 2302 // PT_GNU_RELRO includes all sections that should be marked as 2303 // read-only by dynamic linker after processing relocations. 2304 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2305 // an error message if more than one PT_GNU_RELRO PHDR is required. 2306 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2307 bool inRelroPhdr = false; 2308 OutputSection *relroEnd = nullptr; 2309 for (OutputSection *sec : outputSections) { 2310 if (sec->partition != partNo || !needsPtLoad(sec)) 2311 continue; 2312 if (isRelroSection(sec)) { 2313 inRelroPhdr = true; 2314 if (!relroEnd) 2315 relRo->add(sec); 2316 else 2317 error("section: " + sec->name + " is not contiguous with other relro" + 2318 " sections"); 2319 } else if (inRelroPhdr) { 2320 inRelroPhdr = false; 2321 relroEnd = sec; 2322 } 2323 } 2324 2325 for (OutputSection *sec : outputSections) { 2326 if (!(sec->flags & SHF_ALLOC)) 2327 break; 2328 if (!needsPtLoad(sec)) 2329 continue; 2330 2331 // Normally, sections in partitions other than the current partition are 2332 // ignored. But partition number 255 is a special case: it contains the 2333 // partition end marker (.part.end). It needs to be added to the main 2334 // partition so that a segment is created for it in the main partition, 2335 // which will cause the dynamic loader to reserve space for the other 2336 // partitions. 2337 if (sec->partition != partNo) { 2338 if (isMain && sec->partition == 255) 2339 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2340 continue; 2341 } 2342 2343 // Segments are contiguous memory regions that has the same attributes 2344 // (e.g. executable or writable). There is one phdr for each segment. 2345 // Therefore, we need to create a new phdr when the next section has 2346 // different flags or is loaded at a discontiguous address or memory 2347 // region using AT or AT> linker script command, respectively. At the same 2348 // time, we don't want to create a separate load segment for the headers, 2349 // even if the first output section has an AT or AT> attribute. 2350 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2351 bool sameLMARegion = 2352 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2353 if (!(load && newFlags == flags && sec != relroEnd && 2354 sec->memRegion == load->firstSec->memRegion && 2355 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2356 load = addHdr(PT_LOAD, newFlags); 2357 flags = newFlags; 2358 } 2359 2360 load->add(sec); 2361 } 2362 2363 // Add a TLS segment if any. 2364 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2365 for (OutputSection *sec : outputSections) 2366 if (sec->partition == partNo && sec->flags & SHF_TLS) 2367 tlsHdr->add(sec); 2368 if (tlsHdr->firstSec) 2369 ret.push_back(tlsHdr); 2370 2371 // Add an entry for .dynamic. 2372 if (OutputSection *sec = part.dynamic->getParent()) 2373 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2374 2375 if (relRo->firstSec) 2376 ret.push_back(relRo); 2377 2378 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2379 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2380 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2381 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2382 ->add(part.ehFrameHdr->getParent()); 2383 2384 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2385 // the dynamic linker fill the segment with random data. 2386 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2387 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2388 2389 if (config->zGnustack != GnuStackKind::None) { 2390 // PT_GNU_STACK is a special section to tell the loader to make the 2391 // pages for the stack non-executable. If you really want an executable 2392 // stack, you can pass -z execstack, but that's not recommended for 2393 // security reasons. 2394 unsigned perm = PF_R | PF_W; 2395 if (config->zGnustack == GnuStackKind::Exec) 2396 perm |= PF_X; 2397 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2398 } 2399 2400 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2401 // is expected to perform W^X violations, such as calling mprotect(2) or 2402 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2403 // OpenBSD. 2404 if (config->zWxneeded) 2405 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2406 2407 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2408 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2409 2410 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2411 // same alignment. 2412 PhdrEntry *note = nullptr; 2413 for (OutputSection *sec : outputSections) { 2414 if (sec->partition != partNo) 2415 continue; 2416 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2417 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2418 note = addHdr(PT_NOTE, PF_R); 2419 note->add(sec); 2420 } else { 2421 note = nullptr; 2422 } 2423 } 2424 return ret; 2425 } 2426 2427 template <class ELFT> 2428 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2429 unsigned pType, unsigned pFlags) { 2430 unsigned partNo = part.getNumber(); 2431 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2432 return cmd->partition == partNo && cmd->type == shType; 2433 }); 2434 if (i == outputSections.end()) 2435 return; 2436 2437 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2438 entry->add(*i); 2439 part.phdrs.push_back(entry); 2440 } 2441 2442 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2443 // This is achieved by assigning an alignment expression to addrExpr of each 2444 // such section. 2445 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2446 const PhdrEntry *prev; 2447 auto pageAlign = [&](const PhdrEntry *p) { 2448 OutputSection *cmd = p->firstSec; 2449 if (!cmd) 2450 return; 2451 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2452 if (!cmd->addrExpr) { 2453 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2454 // padding in the file contents. 2455 // 2456 // When -z separate-code is used we must not have any overlap in pages 2457 // between an executable segment and a non-executable segment. We align to 2458 // the next maximum page size boundary on transitions between executable 2459 // and non-executable segments. 2460 // 2461 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2462 // sections will be extracted to a separate file. Align to the next 2463 // maximum page size boundary so that we can find the ELF header at the 2464 // start. We cannot benefit from overlapping p_offset ranges with the 2465 // previous segment anyway. 2466 if (config->zSeparate == SeparateSegmentKind::Loadable || 2467 (config->zSeparate == SeparateSegmentKind::Code && prev && 2468 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2469 cmd->type == SHT_LLVM_PART_EHDR) 2470 cmd->addrExpr = [] { 2471 return alignTo(script->getDot(), config->maxPageSize); 2472 }; 2473 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2474 // it must be the RW. Align to p_align(PT_TLS) to make sure 2475 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2476 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2477 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2478 // be congruent to 0 modulo p_align(PT_TLS). 2479 // 2480 // Technically this is not required, but as of 2019, some dynamic loaders 2481 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2482 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2483 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2484 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2485 // blocks correctly. We need to keep the workaround for a while. 2486 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2487 cmd->addrExpr = [] { 2488 return alignTo(script->getDot(), config->maxPageSize) + 2489 alignTo(script->getDot() % config->maxPageSize, 2490 Out::tlsPhdr->p_align); 2491 }; 2492 else 2493 cmd->addrExpr = [] { 2494 return alignTo(script->getDot(), config->maxPageSize) + 2495 script->getDot() % config->maxPageSize; 2496 }; 2497 } 2498 }; 2499 2500 for (Partition &part : partitions) { 2501 prev = nullptr; 2502 for (const PhdrEntry *p : part.phdrs) 2503 if (p->p_type == PT_LOAD && p->firstSec) { 2504 pageAlign(p); 2505 prev = p; 2506 } 2507 } 2508 } 2509 2510 // Compute an in-file position for a given section. The file offset must be the 2511 // same with its virtual address modulo the page size, so that the loader can 2512 // load executables without any address adjustment. 2513 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2514 // The first section in a PT_LOAD has to have congruent offset and address 2515 // modulo the maximum page size. 2516 if (os->ptLoad && os->ptLoad->firstSec == os) 2517 return alignTo(off, os->ptLoad->p_align, os->addr); 2518 2519 // File offsets are not significant for .bss sections other than the first one 2520 // in a PT_LOAD. By convention, we keep section offsets monotonically 2521 // increasing rather than setting to zero. 2522 if (os->type == SHT_NOBITS) 2523 return off; 2524 2525 // If the section is not in a PT_LOAD, we just have to align it. 2526 if (!os->ptLoad) 2527 return alignTo(off, os->alignment); 2528 2529 // If two sections share the same PT_LOAD the file offset is calculated 2530 // using this formula: Off2 = Off1 + (VA2 - VA1). 2531 OutputSection *first = os->ptLoad->firstSec; 2532 return first->offset + os->addr - first->addr; 2533 } 2534 2535 // Set an in-file position to a given section and returns the end position of 2536 // the section. 2537 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2538 off = computeFileOffset(os, off); 2539 os->offset = off; 2540 2541 if (os->type == SHT_NOBITS) 2542 return off; 2543 return off + os->size; 2544 } 2545 2546 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2547 uint64_t off = 0; 2548 for (OutputSection *sec : outputSections) 2549 if (sec->flags & SHF_ALLOC) 2550 off = setFileOffset(sec, off); 2551 fileSize = alignTo(off, config->wordsize); 2552 } 2553 2554 static std::string rangeToString(uint64_t addr, uint64_t len) { 2555 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2556 } 2557 2558 // Assign file offsets to output sections. 2559 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2560 uint64_t off = 0; 2561 off = setFileOffset(Out::elfHeader, off); 2562 off = setFileOffset(Out::programHeaders, off); 2563 2564 PhdrEntry *lastRX = nullptr; 2565 for (Partition &part : partitions) 2566 for (PhdrEntry *p : part.phdrs) 2567 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2568 lastRX = p; 2569 2570 for (OutputSection *sec : outputSections) { 2571 off = setFileOffset(sec, off); 2572 2573 // If this is a last section of the last executable segment and that 2574 // segment is the last loadable segment, align the offset of the 2575 // following section to avoid loading non-segments parts of the file. 2576 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2577 lastRX->lastSec == sec) 2578 off = alignTo(off, config->commonPageSize); 2579 } 2580 2581 sectionHeaderOff = alignTo(off, config->wordsize); 2582 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2583 2584 // Our logic assumes that sections have rising VA within the same segment. 2585 // With use of linker scripts it is possible to violate this rule and get file 2586 // offset overlaps or overflows. That should never happen with a valid script 2587 // which does not move the location counter backwards and usually scripts do 2588 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2589 // kernel, which control segment distribution explicitly and move the counter 2590 // backwards, so we have to allow doing that to support linking them. We 2591 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2592 // we want to prevent file size overflows because it would crash the linker. 2593 for (OutputSection *sec : outputSections) { 2594 if (sec->type == SHT_NOBITS) 2595 continue; 2596 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2597 error("unable to place section " + sec->name + " at file offset " + 2598 rangeToString(sec->offset, sec->size) + 2599 "; check your linker script for overflows"); 2600 } 2601 } 2602 2603 // Finalize the program headers. We call this function after we assign 2604 // file offsets and VAs to all sections. 2605 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2606 for (PhdrEntry *p : part.phdrs) { 2607 OutputSection *first = p->firstSec; 2608 OutputSection *last = p->lastSec; 2609 2610 if (first) { 2611 p->p_filesz = last->offset - first->offset; 2612 if (last->type != SHT_NOBITS) 2613 p->p_filesz += last->size; 2614 2615 p->p_memsz = last->addr + last->size - first->addr; 2616 p->p_offset = first->offset; 2617 p->p_vaddr = first->addr; 2618 2619 // File offsets in partitions other than the main partition are relative 2620 // to the offset of the ELF headers. Perform that adjustment now. 2621 if (part.elfHeader) 2622 p->p_offset -= part.elfHeader->getParent()->offset; 2623 2624 if (!p->hasLMA) 2625 p->p_paddr = first->getLMA(); 2626 } 2627 2628 if (p->p_type == PT_GNU_RELRO) { 2629 p->p_align = 1; 2630 // musl/glibc ld.so rounds the size down, so we need to round up 2631 // to protect the last page. This is a no-op on FreeBSD which always 2632 // rounds up. 2633 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2634 p->p_offset; 2635 } 2636 } 2637 } 2638 2639 // A helper struct for checkSectionOverlap. 2640 namespace { 2641 struct SectionOffset { 2642 OutputSection *sec; 2643 uint64_t offset; 2644 }; 2645 } // namespace 2646 2647 // Check whether sections overlap for a specific address range (file offsets, 2648 // load and virtual addresses). 2649 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2650 bool isVirtualAddr) { 2651 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2652 return a.offset < b.offset; 2653 }); 2654 2655 // Finding overlap is easy given a vector is sorted by start position. 2656 // If an element starts before the end of the previous element, they overlap. 2657 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2658 SectionOffset a = sections[i - 1]; 2659 SectionOffset b = sections[i]; 2660 if (b.offset >= a.offset + a.sec->size) 2661 continue; 2662 2663 // If both sections are in OVERLAY we allow the overlapping of virtual 2664 // addresses, because it is what OVERLAY was designed for. 2665 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2666 continue; 2667 2668 errorOrWarn("section " + a.sec->name + " " + name + 2669 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2670 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2671 b.sec->name + " range is " + 2672 rangeToString(b.offset, b.sec->size)); 2673 } 2674 } 2675 2676 // Check for overlapping sections and address overflows. 2677 // 2678 // In this function we check that none of the output sections have overlapping 2679 // file offsets. For SHF_ALLOC sections we also check that the load address 2680 // ranges and the virtual address ranges don't overlap 2681 template <class ELFT> void Writer<ELFT>::checkSections() { 2682 // First, check that section's VAs fit in available address space for target. 2683 for (OutputSection *os : outputSections) 2684 if ((os->addr + os->size < os->addr) || 2685 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2686 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2687 " of size 0x" + utohexstr(os->size) + 2688 " exceeds available address space"); 2689 2690 // Check for overlapping file offsets. In this case we need to skip any 2691 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2692 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2693 // binary is specified only add SHF_ALLOC sections are added to the output 2694 // file so we skip any non-allocated sections in that case. 2695 std::vector<SectionOffset> fileOffs; 2696 for (OutputSection *sec : outputSections) 2697 if (sec->size > 0 && sec->type != SHT_NOBITS && 2698 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2699 fileOffs.push_back({sec, sec->offset}); 2700 checkOverlap("file", fileOffs, false); 2701 2702 // When linking with -r there is no need to check for overlapping virtual/load 2703 // addresses since those addresses will only be assigned when the final 2704 // executable/shared object is created. 2705 if (config->relocatable) 2706 return; 2707 2708 // Checking for overlapping virtual and load addresses only needs to take 2709 // into account SHF_ALLOC sections since others will not be loaded. 2710 // Furthermore, we also need to skip SHF_TLS sections since these will be 2711 // mapped to other addresses at runtime and can therefore have overlapping 2712 // ranges in the file. 2713 std::vector<SectionOffset> vmas; 2714 for (OutputSection *sec : outputSections) 2715 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2716 vmas.push_back({sec, sec->addr}); 2717 checkOverlap("virtual address", vmas, true); 2718 2719 // Finally, check that the load addresses don't overlap. This will usually be 2720 // the same as the virtual addresses but can be different when using a linker 2721 // script with AT(). 2722 std::vector<SectionOffset> lmas; 2723 for (OutputSection *sec : outputSections) 2724 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2725 lmas.push_back({sec, sec->getLMA()}); 2726 checkOverlap("load address", lmas, false); 2727 } 2728 2729 // The entry point address is chosen in the following ways. 2730 // 2731 // 1. the '-e' entry command-line option; 2732 // 2. the ENTRY(symbol) command in a linker control script; 2733 // 3. the value of the symbol _start, if present; 2734 // 4. the number represented by the entry symbol, if it is a number; 2735 // 5. the address of the first byte of the .text section, if present; 2736 // 6. the address 0. 2737 static uint64_t getEntryAddr() { 2738 // Case 1, 2 or 3 2739 if (Symbol *b = symtab->find(config->entry)) 2740 return b->getVA(); 2741 2742 // Case 4 2743 uint64_t addr; 2744 if (to_integer(config->entry, addr)) 2745 return addr; 2746 2747 // Case 5 2748 if (OutputSection *sec = findSection(".text")) { 2749 if (config->warnMissingEntry) 2750 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" + 2751 utohexstr(sec->addr)); 2752 return sec->addr; 2753 } 2754 2755 // Case 6 2756 if (config->warnMissingEntry) 2757 warn("cannot find entry symbol " + config->entry + 2758 "; not setting start address"); 2759 return 0; 2760 } 2761 2762 static uint16_t getELFType() { 2763 if (config->isPic) 2764 return ET_DYN; 2765 if (config->relocatable) 2766 return ET_REL; 2767 return ET_EXEC; 2768 } 2769 2770 template <class ELFT> void Writer<ELFT>::writeHeader() { 2771 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2772 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2773 2774 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2775 eHdr->e_type = getELFType(); 2776 eHdr->e_entry = getEntryAddr(); 2777 eHdr->e_shoff = sectionHeaderOff; 2778 2779 // Write the section header table. 2780 // 2781 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2782 // and e_shstrndx fields. When the value of one of these fields exceeds 2783 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2784 // use fields in the section header at index 0 to store 2785 // the value. The sentinel values and fields are: 2786 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2787 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2788 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2789 size_t num = outputSections.size() + 1; 2790 if (num >= SHN_LORESERVE) 2791 sHdrs->sh_size = num; 2792 else 2793 eHdr->e_shnum = num; 2794 2795 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2796 if (strTabIndex >= SHN_LORESERVE) { 2797 sHdrs->sh_link = strTabIndex; 2798 eHdr->e_shstrndx = SHN_XINDEX; 2799 } else { 2800 eHdr->e_shstrndx = strTabIndex; 2801 } 2802 2803 for (OutputSection *sec : outputSections) 2804 sec->writeHeaderTo<ELFT>(++sHdrs); 2805 } 2806 2807 // Open a result file. 2808 template <class ELFT> void Writer<ELFT>::openFile() { 2809 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2810 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2811 error("output file too large: " + Twine(fileSize) + " bytes"); 2812 return; 2813 } 2814 2815 unlinkAsync(config->outputFile); 2816 unsigned flags = 0; 2817 if (!config->relocatable) 2818 flags |= FileOutputBuffer::F_executable; 2819 if (!config->mmapOutputFile) 2820 flags |= FileOutputBuffer::F_no_mmap; 2821 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2822 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2823 2824 if (!bufferOrErr) { 2825 error("failed to open " + config->outputFile + ": " + 2826 llvm::toString(bufferOrErr.takeError())); 2827 return; 2828 } 2829 buffer = std::move(*bufferOrErr); 2830 Out::bufferStart = buffer->getBufferStart(); 2831 } 2832 2833 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2834 for (OutputSection *sec : outputSections) 2835 if (sec->flags & SHF_ALLOC) 2836 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2837 } 2838 2839 static void fillTrap(uint8_t *i, uint8_t *end) { 2840 for (; i + 4 <= end; i += 4) 2841 memcpy(i, &target->trapInstr, 4); 2842 } 2843 2844 // Fill the last page of executable segments with trap instructions 2845 // instead of leaving them as zero. Even though it is not required by any 2846 // standard, it is in general a good thing to do for security reasons. 2847 // 2848 // We'll leave other pages in segments as-is because the rest will be 2849 // overwritten by output sections. 2850 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2851 for (Partition &part : partitions) { 2852 // Fill the last page. 2853 for (PhdrEntry *p : part.phdrs) 2854 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2855 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2856 config->commonPageSize), 2857 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2858 config->commonPageSize)); 2859 2860 // Round up the file size of the last segment to the page boundary iff it is 2861 // an executable segment to ensure that other tools don't accidentally 2862 // trim the instruction padding (e.g. when stripping the file). 2863 PhdrEntry *last = nullptr; 2864 for (PhdrEntry *p : part.phdrs) 2865 if (p->p_type == PT_LOAD) 2866 last = p; 2867 2868 if (last && (last->p_flags & PF_X)) 2869 last->p_memsz = last->p_filesz = 2870 alignTo(last->p_filesz, config->commonPageSize); 2871 } 2872 } 2873 2874 // Write section contents to a mmap'ed file. 2875 template <class ELFT> void Writer<ELFT>::writeSections() { 2876 // In -r or -emit-relocs mode, write the relocation sections first as in 2877 // ELf_Rel targets we might find out that we need to modify the relocated 2878 // section while doing it. 2879 for (OutputSection *sec : outputSections) 2880 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2881 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2882 2883 for (OutputSection *sec : outputSections) 2884 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2885 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2886 } 2887 2888 // Split one uint8 array into small pieces of uint8 arrays. 2889 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr, 2890 size_t chunkSize) { 2891 std::vector<ArrayRef<uint8_t>> ret; 2892 while (arr.size() > chunkSize) { 2893 ret.push_back(arr.take_front(chunkSize)); 2894 arr = arr.drop_front(chunkSize); 2895 } 2896 if (!arr.empty()) 2897 ret.push_back(arr); 2898 return ret; 2899 } 2900 2901 // Computes a hash value of Data using a given hash function. 2902 // In order to utilize multiple cores, we first split data into 1MB 2903 // chunks, compute a hash for each chunk, and then compute a hash value 2904 // of the hash values. 2905 static void 2906 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2907 llvm::ArrayRef<uint8_t> data, 2908 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2909 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2910 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2911 2912 // Compute hash values. 2913 parallelForEachN(0, chunks.size(), [&](size_t i) { 2914 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2915 }); 2916 2917 // Write to the final output buffer. 2918 hashFn(hashBuf.data(), hashes); 2919 } 2920 2921 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2922 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2923 return; 2924 2925 if (config->buildId == BuildIdKind::Hexstring) { 2926 for (Partition &part : partitions) 2927 part.buildId->writeBuildId(config->buildIdVector); 2928 return; 2929 } 2930 2931 // Compute a hash of all sections of the output file. 2932 size_t hashSize = mainPart->buildId->hashSize; 2933 std::vector<uint8_t> buildId(hashSize); 2934 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 2935 2936 switch (config->buildId) { 2937 case BuildIdKind::Fast: 2938 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2939 write64le(dest, xxHash64(arr)); 2940 }); 2941 break; 2942 case BuildIdKind::Md5: 2943 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2944 memcpy(dest, MD5::hash(arr).data(), hashSize); 2945 }); 2946 break; 2947 case BuildIdKind::Sha1: 2948 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2949 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2950 }); 2951 break; 2952 case BuildIdKind::Uuid: 2953 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 2954 error("entropy source failure: " + ec.message()); 2955 break; 2956 default: 2957 llvm_unreachable("unknown BuildIdKind"); 2958 } 2959 for (Partition &part : partitions) 2960 part.buildId->writeBuildId(buildId); 2961 } 2962 2963 template void createSyntheticSections<ELF32LE>(); 2964 template void createSyntheticSections<ELF32BE>(); 2965 template void createSyntheticSections<ELF64LE>(); 2966 template void createSyntheticSections<ELF64BE>(); 2967 2968 template void writeResult<ELF32LE>(); 2969 template void writeResult<ELF32BE>(); 2970 template void writeResult<ELF64LE>(); 2971 template void writeResult<ELF64BE>(); 2972 2973 } // namespace elf 2974 } // namespace lld 2975