1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Arrays.h" 23 #include "lld/Common/Filesystem.h" 24 #include "lld/Common/Memory.h" 25 #include "lld/Common/Strings.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/Support/Parallel.h" 29 #include "llvm/Support/RandomNumberGenerator.h" 30 #include "llvm/Support/SHA1.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include "llvm/Support/xxhash.h" 33 #include <climits> 34 35 #define DEBUG_TYPE "lld" 36 37 using namespace llvm; 38 using namespace llvm::ELF; 39 using namespace llvm::object; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::elf; 44 45 namespace { 46 // The writer writes a SymbolTable result to a file. 47 template <class ELFT> class Writer { 48 public: 49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 50 51 Writer() : buffer(errorHandler().outputBuffer) {} 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn); 59 void sortSections(); 60 void resolveShfLinkOrder(); 61 void finalizeAddressDependentContent(); 62 void optimizeBasicBlockJumps(); 63 void sortInputSections(); 64 void finalizeSections(); 65 void checkExecuteOnly(); 66 void setReservedSymbolSections(); 67 68 std::vector<PhdrEntry *> createPhdrs(Partition &part); 69 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 70 unsigned pFlags); 71 void assignFileOffsets(); 72 void assignFileOffsetsBinary(); 73 void setPhdrs(Partition &part); 74 void checkSections(); 75 void fixSectionAlignments(); 76 void openFile(); 77 void writeTrapInstr(); 78 void writeHeader(); 79 void writeSections(); 80 void writeSectionsBinary(); 81 void writeBuildId(); 82 83 std::unique_ptr<FileOutputBuffer> &buffer; 84 85 void addRelIpltSymbols(); 86 void addStartEndSymbols(); 87 void addStartStopSymbols(OutputSection *sec); 88 89 uint64_t fileSize; 90 uint64_t sectionHeaderOff; 91 }; 92 } // anonymous namespace 93 94 static bool isSectionPrefix(StringRef prefix, StringRef name) { 95 return name.startswith(prefix) || name == prefix.drop_back(); 96 } 97 98 StringRef elf::getOutputSectionName(const InputSectionBase *s) { 99 if (config->relocatable) 100 return s->name; 101 102 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want 103 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not 104 // technically required, but not doing it is odd). This code guarantees that. 105 if (auto *isec = dyn_cast<InputSection>(s)) { 106 if (InputSectionBase *rel = isec->getRelocatedSection()) { 107 OutputSection *out = rel->getOutputSection(); 108 if (s->type == SHT_RELA) 109 return saver.save(".rela" + out->name); 110 return saver.save(".rel" + out->name); 111 } 112 } 113 114 // A BssSection created for a common symbol is identified as "COMMON" in 115 // linker scripts. It should go to .bss section. 116 if (s->name == "COMMON") 117 return ".bss"; 118 119 if (script->hasSectionsCommand) 120 return s->name; 121 122 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 123 // by grouping sections with certain prefixes. 124 125 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 126 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 127 // We provide an option -z keep-text-section-prefix to group such sections 128 // into separate output sections. This is more flexible. See also 129 // sortISDBySectionOrder(). 130 // ".text.unknown" means the hotness of the section is unknown. When 131 // SampleFDO is used, if a function doesn't have sample, it could be very 132 // cold or it could be a new function never being sampled. Those functions 133 // will be kept in the ".text.unknown" section. 134 // ".text.split." holds symbols which are split out from functions in other 135 // input sections. For example, with -fsplit-machine-functions, placing the 136 // cold parts in .text.split instead of .text.unlikely mitigates against poor 137 // profile inaccuracy. Techniques such as hugepage remapping can make 138 // conservative decisions at the section granularity. 139 if (config->zKeepTextSectionPrefix) 140 for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", 141 ".text.startup.", ".text.exit.", ".text.split."}) 142 if (isSectionPrefix(v, s->name)) 143 return v.drop_back(); 144 145 for (StringRef v : 146 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", 147 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", 148 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) 149 if (isSectionPrefix(v, s->name)) 150 return v.drop_back(); 151 152 return s->name; 153 } 154 155 static bool needsInterpSection() { 156 return !config->relocatable && !config->shared && 157 !config->dynamicLinker.empty() && script->needsInterpSection(); 158 } 159 160 template <class ELFT> void elf::writeResult() { 161 Writer<ELFT>().run(); 162 } 163 164 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) { 165 auto it = std::stable_partition( 166 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 167 if (p->p_type != PT_LOAD) 168 return true; 169 if (!p->firstSec) 170 return false; 171 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 172 return size != 0; 173 }); 174 175 // Clear OutputSection::ptLoad for sections contained in removed 176 // segments. 177 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 178 for (OutputSection *sec : outputSections) 179 if (removed.count(sec->ptLoad)) 180 sec->ptLoad = nullptr; 181 phdrs.erase(it, phdrs.end()); 182 } 183 184 void elf::copySectionsIntoPartitions() { 185 std::vector<InputSectionBase *> newSections; 186 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 187 for (InputSectionBase *s : inputSections) { 188 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 189 continue; 190 InputSectionBase *copy; 191 if (s->type == SHT_NOTE) 192 copy = make<InputSection>(cast<InputSection>(*s)); 193 else if (auto *es = dyn_cast<EhInputSection>(s)) 194 copy = make<EhInputSection>(*es); 195 else 196 continue; 197 copy->partition = part; 198 newSections.push_back(copy); 199 } 200 } 201 202 inputSections.insert(inputSections.end(), newSections.begin(), 203 newSections.end()); 204 } 205 206 void elf::combineEhSections() { 207 llvm::TimeTraceScope timeScope("Combine EH sections"); 208 for (InputSectionBase *&s : inputSections) { 209 // Ignore dead sections and the partition end marker (.part.end), 210 // whose partition number is out of bounds. 211 if (!s->isLive() || s->partition == 255) 212 continue; 213 214 Partition &part = s->getPartition(); 215 if (auto *es = dyn_cast<EhInputSection>(s)) { 216 part.ehFrame->addSection(es); 217 s = nullptr; 218 } else if (s->kind() == SectionBase::Regular && part.armExidx && 219 part.armExidx->addSection(cast<InputSection>(s))) { 220 s = nullptr; 221 } 222 } 223 224 llvm::erase_value(inputSections, nullptr); 225 } 226 227 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 228 uint64_t val, uint8_t stOther = STV_HIDDEN) { 229 Symbol *s = symtab->find(name); 230 if (!s || s->isDefined()) 231 return nullptr; 232 233 s->resolve(Defined{/*file=*/nullptr, name, STB_GLOBAL, stOther, STT_NOTYPE, 234 val, 235 /*size=*/0, sec}); 236 return cast<Defined>(s); 237 } 238 239 static Defined *addAbsolute(StringRef name) { 240 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 241 STT_NOTYPE, 0, 0, nullptr}); 242 return cast<Defined>(sym); 243 } 244 245 // The linker is expected to define some symbols depending on 246 // the linking result. This function defines such symbols. 247 void elf::addReservedSymbols() { 248 if (config->emachine == EM_MIPS) { 249 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 250 // so that it points to an absolute address which by default is relative 251 // to GOT. Default offset is 0x7ff0. 252 // See "Global Data Symbols" in Chapter 6 in the following document: 253 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 254 ElfSym::mipsGp = addAbsolute("_gp"); 255 256 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 257 // start of function and 'gp' pointer into GOT. 258 if (symtab->find("_gp_disp")) 259 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 260 261 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 262 // pointer. This symbol is used in the code generated by .cpload pseudo-op 263 // in case of using -mno-shared option. 264 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 265 if (symtab->find("__gnu_local_gp")) 266 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 267 } else if (config->emachine == EM_PPC) { 268 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 269 // support Small Data Area, define it arbitrarily as 0. 270 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 271 } else if (config->emachine == EM_PPC64) { 272 addPPC64SaveRestore(); 273 } 274 275 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 276 // combines the typical ELF GOT with the small data sections. It commonly 277 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 278 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 279 // represent the TOC base which is offset by 0x8000 bytes from the start of 280 // the .got section. 281 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 282 // correctness of some relocations depends on its value. 283 StringRef gotSymName = 284 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 285 286 if (Symbol *s = symtab->find(gotSymName)) { 287 if (s->isDefined()) { 288 error(toString(s->file) + " cannot redefine linker defined symbol '" + 289 gotSymName + "'"); 290 return; 291 } 292 293 uint64_t gotOff = 0; 294 if (config->emachine == EM_PPC64) 295 gotOff = 0x8000; 296 297 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 298 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 299 ElfSym::globalOffsetTable = cast<Defined>(s); 300 } 301 302 // __ehdr_start is the location of ELF file headers. Note that we define 303 // this symbol unconditionally even when using a linker script, which 304 // differs from the behavior implemented by GNU linker which only define 305 // this symbol if ELF headers are in the memory mapped segment. 306 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 307 308 // __executable_start is not documented, but the expectation of at 309 // least the Android libc is that it points to the ELF header. 310 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 311 312 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 313 // each DSO. The address of the symbol doesn't matter as long as they are 314 // different in different DSOs, so we chose the start address of the DSO. 315 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 316 317 // If linker script do layout we do not need to create any standard symbols. 318 if (script->hasSectionsCommand) 319 return; 320 321 auto add = [](StringRef s, int64_t pos) { 322 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 323 }; 324 325 ElfSym::bss = add("__bss_start", 0); 326 ElfSym::end1 = add("end", -1); 327 ElfSym::end2 = add("_end", -1); 328 ElfSym::etext1 = add("etext", -1); 329 ElfSym::etext2 = add("_etext", -1); 330 ElfSym::edata1 = add("edata", -1); 331 ElfSym::edata2 = add("_edata", -1); 332 } 333 334 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 335 for (BaseCommand *base : script->sectionCommands) 336 if (auto *sec = dyn_cast<OutputSection>(base)) 337 if (sec->name == name && sec->partition == partition) 338 return sec; 339 return nullptr; 340 } 341 342 template <class ELFT> void elf::createSyntheticSections() { 343 // Initialize all pointers with NULL. This is needed because 344 // you can call lld::elf::main more than once as a library. 345 memset(&Out::first, 0, sizeof(Out)); 346 347 // Add the .interp section first because it is not a SyntheticSection. 348 // The removeUnusedSyntheticSections() function relies on the 349 // SyntheticSections coming last. 350 if (needsInterpSection()) { 351 for (size_t i = 1; i <= partitions.size(); ++i) { 352 InputSection *sec = createInterpSection(); 353 sec->partition = i; 354 inputSections.push_back(sec); 355 } 356 } 357 358 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); }; 359 360 in.shStrTab = make<StringTableSection>(".shstrtab", false); 361 362 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 363 Out::programHeaders->alignment = config->wordsize; 364 365 if (config->strip != StripPolicy::All) { 366 in.strTab = make<StringTableSection>(".strtab", false); 367 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab); 368 in.symTabShndx = make<SymtabShndxSection>(); 369 } 370 371 in.bss = make<BssSection>(".bss", 0, 1); 372 add(in.bss); 373 374 // If there is a SECTIONS command and a .data.rel.ro section name use name 375 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 376 // This makes sure our relro is contiguous. 377 bool hasDataRelRo = 378 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 379 in.bssRelRo = 380 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 381 add(in.bssRelRo); 382 383 // Add MIPS-specific sections. 384 if (config->emachine == EM_MIPS) { 385 if (!config->shared && config->hasDynSymTab) { 386 in.mipsRldMap = make<MipsRldMapSection>(); 387 add(in.mipsRldMap); 388 } 389 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 390 add(sec); 391 if (auto *sec = MipsOptionsSection<ELFT>::create()) 392 add(sec); 393 if (auto *sec = MipsReginfoSection<ELFT>::create()) 394 add(sec); 395 } 396 397 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 398 399 for (Partition &part : partitions) { 400 auto add = [&](SyntheticSection *sec) { 401 sec->partition = part.getNumber(); 402 inputSections.push_back(sec); 403 }; 404 405 if (!part.name.empty()) { 406 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>(); 407 part.elfHeader->name = part.name; 408 add(part.elfHeader); 409 410 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>(); 411 add(part.programHeaders); 412 } 413 414 if (config->buildId != BuildIdKind::None) { 415 part.buildId = make<BuildIdSection>(); 416 add(part.buildId); 417 } 418 419 part.dynStrTab = make<StringTableSection>(".dynstr", true); 420 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 421 part.dynamic = make<DynamicSection<ELFT>>(); 422 if (config->androidPackDynRelocs) 423 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName); 424 else 425 part.relaDyn = 426 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc); 427 428 if (config->hasDynSymTab) { 429 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab); 430 add(part.dynSymTab); 431 432 part.verSym = make<VersionTableSection>(); 433 add(part.verSym); 434 435 if (!namedVersionDefs().empty()) { 436 part.verDef = make<VersionDefinitionSection>(); 437 add(part.verDef); 438 } 439 440 part.verNeed = make<VersionNeedSection<ELFT>>(); 441 add(part.verNeed); 442 443 if (config->gnuHash) { 444 part.gnuHashTab = make<GnuHashTableSection>(); 445 add(part.gnuHashTab); 446 } 447 448 if (config->sysvHash) { 449 part.hashTab = make<HashTableSection>(); 450 add(part.hashTab); 451 } 452 453 add(part.dynamic); 454 add(part.dynStrTab); 455 add(part.relaDyn); 456 } 457 458 if (config->relrPackDynRelocs) { 459 part.relrDyn = make<RelrSection<ELFT>>(); 460 add(part.relrDyn); 461 } 462 463 if (!config->relocatable) { 464 if (config->ehFrameHdr) { 465 part.ehFrameHdr = make<EhFrameHeader>(); 466 add(part.ehFrameHdr); 467 } 468 part.ehFrame = make<EhFrameSection>(); 469 add(part.ehFrame); 470 } 471 472 if (config->emachine == EM_ARM && !config->relocatable) { 473 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 474 // InputSections. 475 part.armExidx = make<ARMExidxSyntheticSection>(); 476 add(part.armExidx); 477 } 478 } 479 480 if (partitions.size() != 1) { 481 // Create the partition end marker. This needs to be in partition number 255 482 // so that it is sorted after all other partitions. It also has other 483 // special handling (see createPhdrs() and combineEhSections()). 484 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1); 485 in.partEnd->partition = 255; 486 add(in.partEnd); 487 488 in.partIndex = make<PartitionIndexSection>(); 489 addOptionalRegular("__part_index_begin", in.partIndex, 0); 490 addOptionalRegular("__part_index_end", in.partIndex, 491 in.partIndex->getSize()); 492 add(in.partIndex); 493 } 494 495 // Add .got. MIPS' .got is so different from the other archs, 496 // it has its own class. 497 if (config->emachine == EM_MIPS) { 498 in.mipsGot = make<MipsGotSection>(); 499 add(in.mipsGot); 500 } else { 501 in.got = make<GotSection>(); 502 add(in.got); 503 } 504 505 if (config->emachine == EM_PPC) { 506 in.ppc32Got2 = make<PPC32Got2Section>(); 507 add(in.ppc32Got2); 508 } 509 510 if (config->emachine == EM_PPC64) { 511 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>(); 512 add(in.ppc64LongBranchTarget); 513 } 514 515 in.gotPlt = make<GotPltSection>(); 516 add(in.gotPlt); 517 in.igotPlt = make<IgotPltSection>(); 518 add(in.igotPlt); 519 520 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 521 // it as a relocation and ensure the referenced section is created. 522 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 523 if (target->gotBaseSymInGotPlt) 524 in.gotPlt->hasGotPltOffRel = true; 525 else 526 in.got->hasGotOffRel = true; 527 } 528 529 if (config->gdbIndex) 530 add(GdbIndexSection::create<ELFT>()); 531 532 // We always need to add rel[a].plt to output if it has entries. 533 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 534 in.relaPlt = make<RelocationSection<ELFT>>( 535 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 536 add(in.relaPlt); 537 538 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 539 // relocations are processed last by the dynamic loader. We cannot place the 540 // iplt section in .rel.dyn when Android relocation packing is enabled because 541 // that would cause a section type mismatch. However, because the Android 542 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 543 // behaviour by placing the iplt section in .rel.plt. 544 in.relaIplt = make<RelocationSection<ELFT>>( 545 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 546 /*sort=*/false); 547 add(in.relaIplt); 548 549 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 550 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 551 in.ibtPlt = make<IBTPltSection>(); 552 add(in.ibtPlt); 553 } 554 555 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>() 556 : make<PltSection>(); 557 add(in.plt); 558 in.iplt = make<IpltSection>(); 559 add(in.iplt); 560 561 if (config->andFeatures) 562 add(make<GnuPropertySection>()); 563 564 // .note.GNU-stack is always added when we are creating a re-linkable 565 // object file. Other linkers are using the presence of this marker 566 // section to control the executable-ness of the stack area, but that 567 // is irrelevant these days. Stack area should always be non-executable 568 // by default. So we emit this section unconditionally. 569 if (config->relocatable) 570 add(make<GnuStackSection>()); 571 572 if (in.symTab) 573 add(in.symTab); 574 if (in.symTabShndx) 575 add(in.symTabShndx); 576 add(in.shStrTab); 577 if (in.strTab) 578 add(in.strTab); 579 } 580 581 // The main function of the writer. 582 template <class ELFT> void Writer<ELFT>::run() { 583 copyLocalSymbols(); 584 585 if (config->copyRelocs) 586 addSectionSymbols(); 587 588 // Now that we have a complete set of output sections. This function 589 // completes section contents. For example, we need to add strings 590 // to the string table, and add entries to .got and .plt. 591 // finalizeSections does that. 592 finalizeSections(); 593 checkExecuteOnly(); 594 if (errorCount()) 595 return; 596 597 // If --compressed-debug-sections is specified, compress .debug_* sections. 598 // Do it right now because it changes the size of output sections. 599 for (OutputSection *sec : outputSections) 600 sec->maybeCompress<ELFT>(); 601 602 if (script->hasSectionsCommand) 603 script->allocateHeaders(mainPart->phdrs); 604 605 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 606 // 0 sized region. This has to be done late since only after assignAddresses 607 // we know the size of the sections. 608 for (Partition &part : partitions) 609 removeEmptyPTLoad(part.phdrs); 610 611 if (!config->oFormatBinary) 612 assignFileOffsets(); 613 else 614 assignFileOffsetsBinary(); 615 616 for (Partition &part : partitions) 617 setPhdrs(part); 618 619 if (config->relocatable) 620 for (OutputSection *sec : outputSections) 621 sec->addr = 0; 622 623 // Handle --print-map(-M)/--Map, --why-extract=, --cref and 624 // --print-archive-stats=. Dump them before checkSections() because the files 625 // may be useful in case checkSections() or openFile() fails, for example, due 626 // to an erroneous file size. 627 writeMapFile(); 628 writeWhyExtract(); 629 writeCrossReferenceTable(); 630 writeArchiveStats(); 631 632 if (config->checkSections) 633 checkSections(); 634 635 // It does not make sense try to open the file if we have error already. 636 if (errorCount()) 637 return; 638 639 { 640 llvm::TimeTraceScope timeScope("Write output file"); 641 // Write the result down to a file. 642 openFile(); 643 if (errorCount()) 644 return; 645 646 if (!config->oFormatBinary) { 647 if (config->zSeparate != SeparateSegmentKind::None) 648 writeTrapInstr(); 649 writeHeader(); 650 writeSections(); 651 } else { 652 writeSectionsBinary(); 653 } 654 655 // Backfill .note.gnu.build-id section content. This is done at last 656 // because the content is usually a hash value of the entire output file. 657 writeBuildId(); 658 if (errorCount()) 659 return; 660 661 if (auto e = buffer->commit()) 662 error("failed to write to the output file: " + toString(std::move(e))); 663 } 664 } 665 666 template <class ELFT, class RelTy> 667 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 668 llvm::ArrayRef<RelTy> rels) { 669 for (const RelTy &rel : rels) { 670 Symbol &sym = file->getRelocTargetSym(rel); 671 if (sym.isLocal()) 672 sym.used = true; 673 } 674 } 675 676 // The function ensures that the "used" field of local symbols reflects the fact 677 // that the symbol is used in a relocation from a live section. 678 template <class ELFT> static void markUsedLocalSymbols() { 679 // With --gc-sections, the field is already filled. 680 // See MarkLive<ELFT>::resolveReloc(). 681 if (config->gcSections) 682 return; 683 // Without --gc-sections, the field is initialized with "true". 684 // Drop the flag first and then rise for symbols referenced in relocations. 685 for (InputFile *file : objectFiles) { 686 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 687 for (Symbol *b : f->getLocalSymbols()) 688 b->used = false; 689 for (InputSectionBase *s : f->getSections()) { 690 InputSection *isec = dyn_cast_or_null<InputSection>(s); 691 if (!isec) 692 continue; 693 if (isec->type == SHT_REL) 694 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 695 else if (isec->type == SHT_RELA) 696 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 697 } 698 } 699 } 700 701 static bool shouldKeepInSymtab(const Defined &sym) { 702 if (sym.isSection()) 703 return false; 704 705 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 706 // from live sections. 707 if (config->copyRelocs && sym.used) 708 return true; 709 710 // Exclude local symbols pointing to .ARM.exidx sections. 711 // They are probably mapping symbols "$d", which are optional for these 712 // sections. After merging the .ARM.exidx sections, some of these symbols 713 // may become dangling. The easiest way to avoid the issue is not to add 714 // them to the symbol table from the beginning. 715 if (config->emachine == EM_ARM && sym.section && 716 sym.section->type == SHT_ARM_EXIDX) 717 return false; 718 719 if (config->discard == DiscardPolicy::None) 720 return true; 721 if (config->discard == DiscardPolicy::All) 722 return false; 723 724 // In ELF assembly .L symbols are normally discarded by the assembler. 725 // If the assembler fails to do so, the linker discards them if 726 // * --discard-locals is used. 727 // * The symbol is in a SHF_MERGE section, which is normally the reason for 728 // the assembler keeping the .L symbol. 729 if (sym.getName().startswith(".L") && 730 (config->discard == DiscardPolicy::Locals || 731 (sym.section && (sym.section->flags & SHF_MERGE)))) 732 return false; 733 return true; 734 } 735 736 static bool includeInSymtab(const Symbol &b) { 737 if (!b.isLocal() && !b.isUsedInRegularObj) 738 return false; 739 740 if (auto *d = dyn_cast<Defined>(&b)) { 741 // Always include absolute symbols. 742 SectionBase *sec = d->section; 743 if (!sec) 744 return true; 745 sec = sec->repl; 746 747 // Exclude symbols pointing to garbage-collected sections. 748 if (isa<InputSectionBase>(sec) && !sec->isLive()) 749 return false; 750 751 if (auto *s = dyn_cast<MergeInputSection>(sec)) 752 if (!s->getSectionPiece(d->value)->live) 753 return false; 754 return true; 755 } 756 return b.used; 757 } 758 759 // Local symbols are not in the linker's symbol table. This function scans 760 // each object file's symbol table to copy local symbols to the output. 761 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 762 if (!in.symTab) 763 return; 764 llvm::TimeTraceScope timeScope("Add local symbols"); 765 if (config->copyRelocs && config->discard != DiscardPolicy::None) 766 markUsedLocalSymbols<ELFT>(); 767 for (InputFile *file : objectFiles) { 768 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 769 for (Symbol *b : f->getLocalSymbols()) { 770 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 771 auto *dr = dyn_cast<Defined>(b); 772 773 // No reason to keep local undefined symbol in symtab. 774 if (!dr) 775 continue; 776 if (!includeInSymtab(*b)) 777 continue; 778 if (!shouldKeepInSymtab(*dr)) 779 continue; 780 in.symTab->addSymbol(b); 781 } 782 } 783 } 784 785 // Create a section symbol for each output section so that we can represent 786 // relocations that point to the section. If we know that no relocation is 787 // referring to a section (that happens if the section is a synthetic one), we 788 // don't create a section symbol for that section. 789 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 790 for (BaseCommand *base : script->sectionCommands) { 791 auto *sec = dyn_cast<OutputSection>(base); 792 if (!sec) 793 continue; 794 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) { 795 if (auto *isd = dyn_cast<InputSectionDescription>(base)) 796 return !isd->sections.empty(); 797 return false; 798 }); 799 if (i == sec->sectionCommands.end()) 800 continue; 801 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 802 803 // Relocations are not using REL[A] section symbols. 804 if (isec->type == SHT_REL || isec->type == SHT_RELA) 805 continue; 806 807 // Unlike other synthetic sections, mergeable output sections contain data 808 // copied from input sections, and there may be a relocation pointing to its 809 // contents if -r or --emit-reloc is given. 810 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 811 continue; 812 813 // Set the symbol to be relative to the output section so that its st_value 814 // equals the output section address. Note, there may be a gap between the 815 // start of the output section and isec. 816 auto *sym = 817 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 818 /*value=*/0, /*size=*/0, isec->getOutputSection()); 819 in.symTab->addSymbol(sym); 820 } 821 } 822 823 // Today's loaders have a feature to make segments read-only after 824 // processing dynamic relocations to enhance security. PT_GNU_RELRO 825 // is defined for that. 826 // 827 // This function returns true if a section needs to be put into a 828 // PT_GNU_RELRO segment. 829 static bool isRelroSection(const OutputSection *sec) { 830 if (!config->zRelro) 831 return false; 832 833 uint64_t flags = sec->flags; 834 835 // Non-allocatable or non-writable sections don't need RELRO because 836 // they are not writable or not even mapped to memory in the first place. 837 // RELRO is for sections that are essentially read-only but need to 838 // be writable only at process startup to allow dynamic linker to 839 // apply relocations. 840 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 841 return false; 842 843 // Once initialized, TLS data segments are used as data templates 844 // for a thread-local storage. For each new thread, runtime 845 // allocates memory for a TLS and copy templates there. No thread 846 // are supposed to use templates directly. Thus, it can be in RELRO. 847 if (flags & SHF_TLS) 848 return true; 849 850 // .init_array, .preinit_array and .fini_array contain pointers to 851 // functions that are executed on process startup or exit. These 852 // pointers are set by the static linker, and they are not expected 853 // to change at runtime. But if you are an attacker, you could do 854 // interesting things by manipulating pointers in .fini_array, for 855 // example. So they are put into RELRO. 856 uint32_t type = sec->type; 857 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 858 type == SHT_PREINIT_ARRAY) 859 return true; 860 861 // .got contains pointers to external symbols. They are resolved by 862 // the dynamic linker when a module is loaded into memory, and after 863 // that they are not expected to change. So, it can be in RELRO. 864 if (in.got && sec == in.got->getParent()) 865 return true; 866 867 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 868 // through r2 register, which is reserved for that purpose. Since r2 is used 869 // for accessing .got as well, .got and .toc need to be close enough in the 870 // virtual address space. Usually, .toc comes just after .got. Since we place 871 // .got into RELRO, .toc needs to be placed into RELRO too. 872 if (sec->name.equals(".toc")) 873 return true; 874 875 // .got.plt contains pointers to external function symbols. They are 876 // by default resolved lazily, so we usually cannot put it into RELRO. 877 // However, if "-z now" is given, the lazy symbol resolution is 878 // disabled, which enables us to put it into RELRO. 879 if (sec == in.gotPlt->getParent()) 880 return config->zNow; 881 882 // .dynamic section contains data for the dynamic linker, and 883 // there's no need to write to it at runtime, so it's better to put 884 // it into RELRO. 885 if (sec->name == ".dynamic") 886 return true; 887 888 // Sections with some special names are put into RELRO. This is a 889 // bit unfortunate because section names shouldn't be significant in 890 // ELF in spirit. But in reality many linker features depend on 891 // magic section names. 892 StringRef s = sec->name; 893 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 894 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 895 s == ".fini_array" || s == ".init_array" || 896 s == ".openbsd.randomdata" || s == ".preinit_array"; 897 } 898 899 // We compute a rank for each section. The rank indicates where the 900 // section should be placed in the file. Instead of using simple 901 // numbers (0,1,2...), we use a series of flags. One for each decision 902 // point when placing the section. 903 // Using flags has two key properties: 904 // * It is easy to check if a give branch was taken. 905 // * It is easy two see how similar two ranks are (see getRankProximity). 906 enum RankFlags { 907 RF_NOT_ADDR_SET = 1 << 27, 908 RF_NOT_ALLOC = 1 << 26, 909 RF_PARTITION = 1 << 18, // Partition number (8 bits) 910 RF_NOT_PART_EHDR = 1 << 17, 911 RF_NOT_PART_PHDR = 1 << 16, 912 RF_NOT_INTERP = 1 << 15, 913 RF_NOT_NOTE = 1 << 14, 914 RF_WRITE = 1 << 13, 915 RF_EXEC_WRITE = 1 << 12, 916 RF_EXEC = 1 << 11, 917 RF_RODATA = 1 << 10, 918 RF_NOT_RELRO = 1 << 9, 919 RF_NOT_TLS = 1 << 8, 920 RF_BSS = 1 << 7, 921 RF_PPC_NOT_TOCBSS = 1 << 6, 922 RF_PPC_TOCL = 1 << 5, 923 RF_PPC_TOC = 1 << 4, 924 RF_PPC_GOT = 1 << 3, 925 RF_PPC_BRANCH_LT = 1 << 2, 926 RF_MIPS_GPREL = 1 << 1, 927 RF_MIPS_NOT_GOT = 1 << 0 928 }; 929 930 static unsigned getSectionRank(const OutputSection *sec) { 931 unsigned rank = sec->partition * RF_PARTITION; 932 933 // We want to put section specified by -T option first, so we 934 // can start assigning VA starting from them later. 935 if (config->sectionStartMap.count(sec->name)) 936 return rank; 937 rank |= RF_NOT_ADDR_SET; 938 939 // Allocatable sections go first to reduce the total PT_LOAD size and 940 // so debug info doesn't change addresses in actual code. 941 if (!(sec->flags & SHF_ALLOC)) 942 return rank | RF_NOT_ALLOC; 943 944 if (sec->type == SHT_LLVM_PART_EHDR) 945 return rank; 946 rank |= RF_NOT_PART_EHDR; 947 948 if (sec->type == SHT_LLVM_PART_PHDR) 949 return rank; 950 rank |= RF_NOT_PART_PHDR; 951 952 // Put .interp first because some loaders want to see that section 953 // on the first page of the executable file when loaded into memory. 954 if (sec->name == ".interp") 955 return rank; 956 rank |= RF_NOT_INTERP; 957 958 // Put .note sections (which make up one PT_NOTE) at the beginning so that 959 // they are likely to be included in a core file even if core file size is 960 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 961 // included in a core to match core files with executables. 962 if (sec->type == SHT_NOTE) 963 return rank; 964 rank |= RF_NOT_NOTE; 965 966 // Sort sections based on their access permission in the following 967 // order: R, RX, RWX, RW. This order is based on the following 968 // considerations: 969 // * Read-only sections come first such that they go in the 970 // PT_LOAD covering the program headers at the start of the file. 971 // * Read-only, executable sections come next. 972 // * Writable, executable sections follow such that .plt on 973 // architectures where it needs to be writable will be placed 974 // between .text and .data. 975 // * Writable sections come last, such that .bss lands at the very 976 // end of the last PT_LOAD. 977 bool isExec = sec->flags & SHF_EXECINSTR; 978 bool isWrite = sec->flags & SHF_WRITE; 979 980 if (isExec) { 981 if (isWrite) 982 rank |= RF_EXEC_WRITE; 983 else 984 rank |= RF_EXEC; 985 } else if (isWrite) { 986 rank |= RF_WRITE; 987 } else if (sec->type == SHT_PROGBITS) { 988 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 989 // .eh_frame) closer to .text. They likely contain PC or GOT relative 990 // relocations and there could be relocation overflow if other huge sections 991 // (.dynstr .dynsym) were placed in between. 992 rank |= RF_RODATA; 993 } 994 995 // Place RelRo sections first. After considering SHT_NOBITS below, the 996 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 997 // where | marks where page alignment happens. An alternative ordering is 998 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 999 // waste more bytes due to 2 alignment places. 1000 if (!isRelroSection(sec)) 1001 rank |= RF_NOT_RELRO; 1002 1003 // If we got here we know that both A and B are in the same PT_LOAD. 1004 1005 // The TLS initialization block needs to be a single contiguous block in a R/W 1006 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 1007 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 1008 // after PROGBITS. 1009 if (!(sec->flags & SHF_TLS)) 1010 rank |= RF_NOT_TLS; 1011 1012 // Within TLS sections, or within other RelRo sections, or within non-RelRo 1013 // sections, place non-NOBITS sections first. 1014 if (sec->type == SHT_NOBITS) 1015 rank |= RF_BSS; 1016 1017 // Some architectures have additional ordering restrictions for sections 1018 // within the same PT_LOAD. 1019 if (config->emachine == EM_PPC64) { 1020 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 1021 // that we would like to make sure appear is a specific order to maximize 1022 // their coverage by a single signed 16-bit offset from the TOC base 1023 // pointer. Conversely, the special .tocbss section should be first among 1024 // all SHT_NOBITS sections. This will put it next to the loaded special 1025 // PPC64 sections (and, thus, within reach of the TOC base pointer). 1026 StringRef name = sec->name; 1027 if (name != ".tocbss") 1028 rank |= RF_PPC_NOT_TOCBSS; 1029 1030 if (name == ".toc1") 1031 rank |= RF_PPC_TOCL; 1032 1033 if (name == ".toc") 1034 rank |= RF_PPC_TOC; 1035 1036 if (name == ".got") 1037 rank |= RF_PPC_GOT; 1038 1039 if (name == ".branch_lt") 1040 rank |= RF_PPC_BRANCH_LT; 1041 } 1042 1043 if (config->emachine == EM_MIPS) { 1044 // All sections with SHF_MIPS_GPREL flag should be grouped together 1045 // because data in these sections is addressable with a gp relative address. 1046 if (sec->flags & SHF_MIPS_GPREL) 1047 rank |= RF_MIPS_GPREL; 1048 1049 if (sec->name != ".got") 1050 rank |= RF_MIPS_NOT_GOT; 1051 } 1052 1053 return rank; 1054 } 1055 1056 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) { 1057 const OutputSection *a = cast<OutputSection>(aCmd); 1058 const OutputSection *b = cast<OutputSection>(bCmd); 1059 1060 if (a->sortRank != b->sortRank) 1061 return a->sortRank < b->sortRank; 1062 1063 if (!(a->sortRank & RF_NOT_ADDR_SET)) 1064 return config->sectionStartMap.lookup(a->name) < 1065 config->sectionStartMap.lookup(b->name); 1066 return false; 1067 } 1068 1069 void PhdrEntry::add(OutputSection *sec) { 1070 lastSec = sec; 1071 if (!firstSec) 1072 firstSec = sec; 1073 p_align = std::max(p_align, sec->alignment); 1074 if (p_type == PT_LOAD) 1075 sec->ptLoad = this; 1076 } 1077 1078 // The beginning and the ending of .rel[a].plt section are marked 1079 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1080 // executable. The runtime needs these symbols in order to resolve 1081 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1082 // need these symbols, since IRELATIVE relocs are resolved through GOT 1083 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1084 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1085 if (config->relocatable || config->isPic) 1086 return; 1087 1088 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1089 // because .rela.plt might be empty and thus removed from output. 1090 // We'll override Out::elfHeader with In.relaIplt later when we are 1091 // sure that .rela.plt exists in output. 1092 ElfSym::relaIpltStart = addOptionalRegular( 1093 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1094 Out::elfHeader, 0, STV_HIDDEN); 1095 1096 ElfSym::relaIpltEnd = addOptionalRegular( 1097 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1098 Out::elfHeader, 0, STV_HIDDEN); 1099 } 1100 1101 template <class ELFT> 1102 void Writer<ELFT>::forEachRelSec( 1103 llvm::function_ref<void(InputSectionBase &)> fn) { 1104 // Scan all relocations. Each relocation goes through a series 1105 // of tests to determine if it needs special treatment, such as 1106 // creating GOT, PLT, copy relocations, etc. 1107 // Note that relocations for non-alloc sections are directly 1108 // processed by InputSection::relocateNonAlloc. 1109 for (InputSectionBase *isec : inputSections) 1110 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC)) 1111 fn(*isec); 1112 for (Partition &part : partitions) { 1113 for (EhInputSection *es : part.ehFrame->sections) 1114 fn(*es); 1115 if (part.armExidx && part.armExidx->isLive()) 1116 for (InputSection *ex : part.armExidx->exidxSections) 1117 fn(*ex); 1118 } 1119 } 1120 1121 // This function generates assignments for predefined symbols (e.g. _end or 1122 // _etext) and inserts them into the commands sequence to be processed at the 1123 // appropriate time. This ensures that the value is going to be correct by the 1124 // time any references to these symbols are processed and is equivalent to 1125 // defining these symbols explicitly in the linker script. 1126 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1127 if (ElfSym::globalOffsetTable) { 1128 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1129 // to the start of the .got or .got.plt section. 1130 InputSection *gotSection = in.gotPlt; 1131 if (!target->gotBaseSymInGotPlt) 1132 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot) 1133 : cast<InputSection>(in.got); 1134 ElfSym::globalOffsetTable->section = gotSection; 1135 } 1136 1137 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1138 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1139 ElfSym::relaIpltStart->section = in.relaIplt; 1140 ElfSym::relaIpltEnd->section = in.relaIplt; 1141 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1142 } 1143 1144 PhdrEntry *last = nullptr; 1145 PhdrEntry *lastRO = nullptr; 1146 1147 for (Partition &part : partitions) { 1148 for (PhdrEntry *p : part.phdrs) { 1149 if (p->p_type != PT_LOAD) 1150 continue; 1151 last = p; 1152 if (!(p->p_flags & PF_W)) 1153 lastRO = p; 1154 } 1155 } 1156 1157 if (lastRO) { 1158 // _etext is the first location after the last read-only loadable segment. 1159 if (ElfSym::etext1) 1160 ElfSym::etext1->section = lastRO->lastSec; 1161 if (ElfSym::etext2) 1162 ElfSym::etext2->section = lastRO->lastSec; 1163 } 1164 1165 if (last) { 1166 // _edata points to the end of the last mapped initialized section. 1167 OutputSection *edata = nullptr; 1168 for (OutputSection *os : outputSections) { 1169 if (os->type != SHT_NOBITS) 1170 edata = os; 1171 if (os == last->lastSec) 1172 break; 1173 } 1174 1175 if (ElfSym::edata1) 1176 ElfSym::edata1->section = edata; 1177 if (ElfSym::edata2) 1178 ElfSym::edata2->section = edata; 1179 1180 // _end is the first location after the uninitialized data region. 1181 if (ElfSym::end1) 1182 ElfSym::end1->section = last->lastSec; 1183 if (ElfSym::end2) 1184 ElfSym::end2->section = last->lastSec; 1185 } 1186 1187 if (ElfSym::bss) 1188 ElfSym::bss->section = findSection(".bss"); 1189 1190 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1191 // be equal to the _gp symbol's value. 1192 if (ElfSym::mipsGp) { 1193 // Find GP-relative section with the lowest address 1194 // and use this address to calculate default _gp value. 1195 for (OutputSection *os : outputSections) { 1196 if (os->flags & SHF_MIPS_GPREL) { 1197 ElfSym::mipsGp->section = os; 1198 ElfSym::mipsGp->value = 0x7ff0; 1199 break; 1200 } 1201 } 1202 } 1203 } 1204 1205 // We want to find how similar two ranks are. 1206 // The more branches in getSectionRank that match, the more similar they are. 1207 // Since each branch corresponds to a bit flag, we can just use 1208 // countLeadingZeros. 1209 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1210 return countLeadingZeros(a->sortRank ^ b->sortRank); 1211 } 1212 1213 static int getRankProximity(OutputSection *a, BaseCommand *b) { 1214 auto *sec = dyn_cast<OutputSection>(b); 1215 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1216 } 1217 1218 // When placing orphan sections, we want to place them after symbol assignments 1219 // so that an orphan after 1220 // begin_foo = .; 1221 // foo : { *(foo) } 1222 // end_foo = .; 1223 // doesn't break the intended meaning of the begin/end symbols. 1224 // We don't want to go over sections since findOrphanPos is the 1225 // one in charge of deciding the order of the sections. 1226 // We don't want to go over changes to '.', since doing so in 1227 // rx_sec : { *(rx_sec) } 1228 // . = ALIGN(0x1000); 1229 // /* The RW PT_LOAD starts here*/ 1230 // rw_sec : { *(rw_sec) } 1231 // would mean that the RW PT_LOAD would become unaligned. 1232 static bool shouldSkip(BaseCommand *cmd) { 1233 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1234 return assign->name != "."; 1235 return false; 1236 } 1237 1238 // We want to place orphan sections so that they share as much 1239 // characteristics with their neighbors as possible. For example, if 1240 // both are rw, or both are tls. 1241 static std::vector<BaseCommand *>::iterator 1242 findOrphanPos(std::vector<BaseCommand *>::iterator b, 1243 std::vector<BaseCommand *>::iterator e) { 1244 OutputSection *sec = cast<OutputSection>(*e); 1245 1246 // Find the first element that has as close a rank as possible. 1247 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) { 1248 return getRankProximity(sec, a) < getRankProximity(sec, b); 1249 }); 1250 if (i == e) 1251 return e; 1252 auto foundSec = dyn_cast<OutputSection>(*i); 1253 if (!foundSec) 1254 return e; 1255 1256 // Consider all existing sections with the same proximity. 1257 int proximity = getRankProximity(sec, *i); 1258 unsigned sortRank = sec->sortRank; 1259 if (script->hasPhdrsCommands()) 1260 // Prevent the orphan section to be placed before the found section because 1261 // that can result in adding it to a previous segment and changing flags of 1262 // that segment, for example, making a read-only segment writable. 1263 sortRank = std::max(sortRank, foundSec->sortRank); 1264 for (; i != e; ++i) { 1265 auto *curSec = dyn_cast<OutputSection>(*i); 1266 if (!curSec || !curSec->hasInputSections) 1267 continue; 1268 if (getRankProximity(sec, curSec) != proximity || 1269 sortRank < curSec->sortRank) 1270 break; 1271 } 1272 1273 auto isOutputSecWithInputSections = [](BaseCommand *cmd) { 1274 auto *os = dyn_cast<OutputSection>(cmd); 1275 return os && os->hasInputSections; 1276 }; 1277 auto j = std::find_if(llvm::make_reverse_iterator(i), 1278 llvm::make_reverse_iterator(b), 1279 isOutputSecWithInputSections); 1280 i = j.base(); 1281 1282 // As a special case, if the orphan section is the last section, put 1283 // it at the very end, past any other commands. 1284 // This matches bfd's behavior and is convenient when the linker script fully 1285 // specifies the start of the file, but doesn't care about the end (the non 1286 // alloc sections for example). 1287 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1288 if (nextSec == e) 1289 return e; 1290 1291 while (i != e && shouldSkip(*i)) 1292 ++i; 1293 return i; 1294 } 1295 1296 // Adds random priorities to sections not already in the map. 1297 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1298 if (config->shuffleSections.empty()) 1299 return; 1300 1301 std::vector<InputSectionBase *> matched, sections = inputSections; 1302 matched.reserve(sections.size()); 1303 for (const auto &patAndSeed : config->shuffleSections) { 1304 matched.clear(); 1305 for (InputSectionBase *sec : sections) 1306 if (patAndSeed.first.match(sec->name)) 1307 matched.push_back(sec); 1308 const uint32_t seed = patAndSeed.second; 1309 if (seed == UINT32_MAX) { 1310 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1311 // section order is stable even if the number of sections changes. This is 1312 // useful to catch issues like static initialization order fiasco 1313 // reliably. 1314 std::reverse(matched.begin(), matched.end()); 1315 } else { 1316 std::mt19937 g(seed ? seed : std::random_device()()); 1317 llvm::shuffle(matched.begin(), matched.end(), g); 1318 } 1319 size_t i = 0; 1320 for (InputSectionBase *&sec : sections) 1321 if (patAndSeed.first.match(sec->name)) 1322 sec = matched[i++]; 1323 } 1324 1325 // Existing priorities are < 0, so use priorities >= 0 for the missing 1326 // sections. 1327 int prio = 0; 1328 for (InputSectionBase *sec : sections) { 1329 if (order.try_emplace(sec, prio).second) 1330 ++prio; 1331 } 1332 } 1333 1334 // Builds section order for handling --symbol-ordering-file. 1335 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1336 DenseMap<const InputSectionBase *, int> sectionOrder; 1337 // Use the rarely used option --call-graph-ordering-file to sort sections. 1338 if (!config->callGraphProfile.empty()) 1339 return computeCallGraphProfileOrder(); 1340 1341 if (config->symbolOrderingFile.empty()) 1342 return sectionOrder; 1343 1344 struct SymbolOrderEntry { 1345 int priority; 1346 bool present; 1347 }; 1348 1349 // Build a map from symbols to their priorities. Symbols that didn't 1350 // appear in the symbol ordering file have the lowest priority 0. 1351 // All explicitly mentioned symbols have negative (higher) priorities. 1352 DenseMap<StringRef, SymbolOrderEntry> symbolOrder; 1353 int priority = -config->symbolOrderingFile.size(); 1354 for (StringRef s : config->symbolOrderingFile) 1355 symbolOrder.insert({s, {priority++, false}}); 1356 1357 // Build a map from sections to their priorities. 1358 auto addSym = [&](Symbol &sym) { 1359 auto it = symbolOrder.find(sym.getName()); 1360 if (it == symbolOrder.end()) 1361 return; 1362 SymbolOrderEntry &ent = it->second; 1363 ent.present = true; 1364 1365 maybeWarnUnorderableSymbol(&sym); 1366 1367 if (auto *d = dyn_cast<Defined>(&sym)) { 1368 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1369 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)]; 1370 priority = std::min(priority, ent.priority); 1371 } 1372 } 1373 }; 1374 1375 // We want both global and local symbols. We get the global ones from the 1376 // symbol table and iterate the object files for the local ones. 1377 for (Symbol *sym : symtab->symbols()) 1378 if (!sym->isLazy()) 1379 addSym(*sym); 1380 1381 for (InputFile *file : objectFiles) 1382 for (Symbol *sym : file->getSymbols()) { 1383 if (!sym->isLocal()) 1384 break; 1385 addSym(*sym); 1386 } 1387 1388 if (config->warnSymbolOrdering) 1389 for (auto orderEntry : symbolOrder) 1390 if (!orderEntry.second.present) 1391 warn("symbol ordering file: no such symbol: " + orderEntry.first); 1392 1393 return sectionOrder; 1394 } 1395 1396 // Sorts the sections in ISD according to the provided section order. 1397 static void 1398 sortISDBySectionOrder(InputSectionDescription *isd, 1399 const DenseMap<const InputSectionBase *, int> &order) { 1400 std::vector<InputSection *> unorderedSections; 1401 std::vector<std::pair<InputSection *, int>> orderedSections; 1402 uint64_t unorderedSize = 0; 1403 1404 for (InputSection *isec : isd->sections) { 1405 auto i = order.find(isec); 1406 if (i == order.end()) { 1407 unorderedSections.push_back(isec); 1408 unorderedSize += isec->getSize(); 1409 continue; 1410 } 1411 orderedSections.push_back({isec, i->second}); 1412 } 1413 llvm::sort(orderedSections, llvm::less_second()); 1414 1415 // Find an insertion point for the ordered section list in the unordered 1416 // section list. On targets with limited-range branches, this is the mid-point 1417 // of the unordered section list. This decreases the likelihood that a range 1418 // extension thunk will be needed to enter or exit the ordered region. If the 1419 // ordered section list is a list of hot functions, we can generally expect 1420 // the ordered functions to be called more often than the unordered functions, 1421 // making it more likely that any particular call will be within range, and 1422 // therefore reducing the number of thunks required. 1423 // 1424 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1425 // If the layout is: 1426 // 1427 // 8MB hot 1428 // 32MB cold 1429 // 1430 // only the first 8-16MB of the cold code (depending on which hot function it 1431 // is actually calling) can call the hot code without a range extension thunk. 1432 // However, if we use this layout: 1433 // 1434 // 16MB cold 1435 // 8MB hot 1436 // 16MB cold 1437 // 1438 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1439 // of the second block of cold code can call the hot code without a thunk. So 1440 // we effectively double the amount of code that could potentially call into 1441 // the hot code without a thunk. 1442 size_t insPt = 0; 1443 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1444 uint64_t unorderedPos = 0; 1445 for (; insPt != unorderedSections.size(); ++insPt) { 1446 unorderedPos += unorderedSections[insPt]->getSize(); 1447 if (unorderedPos > unorderedSize / 2) 1448 break; 1449 } 1450 } 1451 1452 isd->sections.clear(); 1453 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1454 isd->sections.push_back(isec); 1455 for (std::pair<InputSection *, int> p : orderedSections) 1456 isd->sections.push_back(p.first); 1457 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1458 isd->sections.push_back(isec); 1459 } 1460 1461 static void sortSection(OutputSection *sec, 1462 const DenseMap<const InputSectionBase *, int> &order) { 1463 StringRef name = sec->name; 1464 1465 // Never sort these. 1466 if (name == ".init" || name == ".fini") 1467 return; 1468 1469 // IRelative relocations that usually live in the .rel[a].dyn section should 1470 // be processed last by the dynamic loader. To achieve that we add synthetic 1471 // sections in the required order from the beginning so that the in.relaIplt 1472 // section is placed last in an output section. Here we just do not apply 1473 // sorting for an output section which holds the in.relaIplt section. 1474 if (in.relaIplt->getParent() == sec) 1475 return; 1476 1477 // Sort input sections by priority using the list provided by 1478 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1479 // digit radix sort. The sections may be sorted stably again by a more 1480 // significant key. 1481 if (!order.empty()) 1482 for (BaseCommand *b : sec->sectionCommands) 1483 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1484 sortISDBySectionOrder(isd, order); 1485 1486 if (script->hasSectionsCommand) 1487 return; 1488 1489 if (name == ".init_array" || name == ".fini_array") { 1490 sec->sortInitFini(); 1491 } else if (name == ".ctors" || name == ".dtors") { 1492 sec->sortCtorsDtors(); 1493 } else if (config->emachine == EM_PPC64 && name == ".toc") { 1494 // .toc is allocated just after .got and is accessed using GOT-relative 1495 // relocations. Object files compiled with small code model have an 1496 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1497 // To reduce the risk of relocation overflow, .toc contents are sorted so 1498 // that sections having smaller relocation offsets are at beginning of .toc 1499 assert(sec->sectionCommands.size() == 1); 1500 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]); 1501 llvm::stable_sort(isd->sections, 1502 [](const InputSection *a, const InputSection *b) -> bool { 1503 return a->file->ppc64SmallCodeModelTocRelocs && 1504 !b->file->ppc64SmallCodeModelTocRelocs; 1505 }); 1506 } 1507 } 1508 1509 // If no layout was provided by linker script, we want to apply default 1510 // sorting for special input sections. This also handles --symbol-ordering-file. 1511 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1512 // Build the order once since it is expensive. 1513 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1514 maybeShuffle(order); 1515 for (BaseCommand *base : script->sectionCommands) 1516 if (auto *sec = dyn_cast<OutputSection>(base)) 1517 sortSection(sec, order); 1518 } 1519 1520 template <class ELFT> void Writer<ELFT>::sortSections() { 1521 llvm::TimeTraceScope timeScope("Sort sections"); 1522 script->adjustSectionsBeforeSorting(); 1523 1524 // Don't sort if using -r. It is not necessary and we want to preserve the 1525 // relative order for SHF_LINK_ORDER sections. 1526 if (config->relocatable) 1527 return; 1528 1529 sortInputSections(); 1530 1531 for (BaseCommand *base : script->sectionCommands) { 1532 auto *os = dyn_cast<OutputSection>(base); 1533 if (!os) 1534 continue; 1535 os->sortRank = getSectionRank(os); 1536 1537 // We want to assign rude approximation values to outSecOff fields 1538 // to know the relative order of the input sections. We use it for 1539 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder(). 1540 uint64_t i = 0; 1541 for (InputSection *sec : getInputSections(os)) 1542 sec->outSecOff = i++; 1543 } 1544 1545 if (!script->hasSectionsCommand) { 1546 // We know that all the OutputSections are contiguous in this case. 1547 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); }; 1548 std::stable_sort( 1549 llvm::find_if(script->sectionCommands, isSection), 1550 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1551 compareSections); 1552 1553 // Process INSERT commands. From this point onwards the order of 1554 // script->sectionCommands is fixed. 1555 script->processInsertCommands(); 1556 return; 1557 } 1558 1559 script->processInsertCommands(); 1560 1561 // Orphan sections are sections present in the input files which are 1562 // not explicitly placed into the output file by the linker script. 1563 // 1564 // The sections in the linker script are already in the correct 1565 // order. We have to figuere out where to insert the orphan 1566 // sections. 1567 // 1568 // The order of the sections in the script is arbitrary and may not agree with 1569 // compareSections. This means that we cannot easily define a strict weak 1570 // ordering. To see why, consider a comparison of a section in the script and 1571 // one not in the script. We have a two simple options: 1572 // * Make them equivalent (a is not less than b, and b is not less than a). 1573 // The problem is then that equivalence has to be transitive and we can 1574 // have sections a, b and c with only b in a script and a less than c 1575 // which breaks this property. 1576 // * Use compareSectionsNonScript. Given that the script order doesn't have 1577 // to match, we can end up with sections a, b, c, d where b and c are in the 1578 // script and c is compareSectionsNonScript less than b. In which case d 1579 // can be equivalent to c, a to b and d < a. As a concrete example: 1580 // .a (rx) # not in script 1581 // .b (rx) # in script 1582 // .c (ro) # in script 1583 // .d (ro) # not in script 1584 // 1585 // The way we define an order then is: 1586 // * Sort only the orphan sections. They are in the end right now. 1587 // * Move each orphan section to its preferred position. We try 1588 // to put each section in the last position where it can share 1589 // a PT_LOAD. 1590 // 1591 // There is some ambiguity as to where exactly a new entry should be 1592 // inserted, because Commands contains not only output section 1593 // commands but also other types of commands such as symbol assignment 1594 // expressions. There's no correct answer here due to the lack of the 1595 // formal specification of the linker script. We use heuristics to 1596 // determine whether a new output command should be added before or 1597 // after another commands. For the details, look at shouldSkip 1598 // function. 1599 1600 auto i = script->sectionCommands.begin(); 1601 auto e = script->sectionCommands.end(); 1602 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) { 1603 if (auto *sec = dyn_cast<OutputSection>(base)) 1604 return sec->sectionIndex == UINT32_MAX; 1605 return false; 1606 }); 1607 1608 // Sort the orphan sections. 1609 std::stable_sort(nonScriptI, e, compareSections); 1610 1611 // As a horrible special case, skip the first . assignment if it is before any 1612 // section. We do this because it is common to set a load address by starting 1613 // the script with ". = 0xabcd" and the expectation is that every section is 1614 // after that. 1615 auto firstSectionOrDotAssignment = 1616 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); }); 1617 if (firstSectionOrDotAssignment != e && 1618 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1619 ++firstSectionOrDotAssignment; 1620 i = firstSectionOrDotAssignment; 1621 1622 while (nonScriptI != e) { 1623 auto pos = findOrphanPos(i, nonScriptI); 1624 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1625 1626 // As an optimization, find all sections with the same sort rank 1627 // and insert them with one rotate. 1628 unsigned rank = orphan->sortRank; 1629 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) { 1630 return cast<OutputSection>(cmd)->sortRank != rank; 1631 }); 1632 std::rotate(pos, nonScriptI, end); 1633 nonScriptI = end; 1634 } 1635 1636 script->adjustSectionsAfterSorting(); 1637 } 1638 1639 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1640 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1641 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1642 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1643 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1644 if (!la || !lb) 1645 return la && !lb; 1646 OutputSection *aOut = la->getParent(); 1647 OutputSection *bOut = lb->getParent(); 1648 1649 if (aOut != bOut) 1650 return aOut->addr < bOut->addr; 1651 return la->outSecOff < lb->outSecOff; 1652 } 1653 1654 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1655 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1656 for (OutputSection *sec : outputSections) { 1657 if (!(sec->flags & SHF_LINK_ORDER)) 1658 continue; 1659 1660 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1661 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1662 if (!config->relocatable && config->emachine == EM_ARM && 1663 sec->type == SHT_ARM_EXIDX) 1664 continue; 1665 1666 // Link order may be distributed across several InputSectionDescriptions. 1667 // Sorting is performed separately. 1668 std::vector<InputSection **> scriptSections; 1669 std::vector<InputSection *> sections; 1670 for (BaseCommand *base : sec->sectionCommands) { 1671 auto *isd = dyn_cast<InputSectionDescription>(base); 1672 if (!isd) 1673 continue; 1674 bool hasLinkOrder = false; 1675 scriptSections.clear(); 1676 sections.clear(); 1677 for (InputSection *&isec : isd->sections) { 1678 if (isec->flags & SHF_LINK_ORDER) { 1679 InputSection *link = isec->getLinkOrderDep(); 1680 if (link && !link->getParent()) 1681 error(toString(isec) + ": sh_link points to discarded section " + 1682 toString(link)); 1683 hasLinkOrder = true; 1684 } 1685 scriptSections.push_back(&isec); 1686 sections.push_back(isec); 1687 } 1688 if (hasLinkOrder && errorCount() == 0) { 1689 llvm::stable_sort(sections, compareByFilePosition); 1690 for (int i = 0, n = sections.size(); i != n; ++i) 1691 *scriptSections[i] = sections[i]; 1692 } 1693 } 1694 } 1695 } 1696 1697 static void finalizeSynthetic(SyntheticSection *sec) { 1698 if (sec && sec->isNeeded() && sec->getParent()) { 1699 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1700 sec->finalizeContents(); 1701 } 1702 } 1703 1704 // We need to generate and finalize the content that depends on the address of 1705 // InputSections. As the generation of the content may also alter InputSection 1706 // addresses we must converge to a fixed point. We do that here. See the comment 1707 // in Writer<ELFT>::finalizeSections(). 1708 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1709 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1710 ThunkCreator tc; 1711 AArch64Err843419Patcher a64p; 1712 ARMErr657417Patcher a32p; 1713 script->assignAddresses(); 1714 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1715 // do require the relative addresses of OutputSections because linker scripts 1716 // can assign Virtual Addresses to OutputSections that are not monotonically 1717 // increasing. 1718 for (Partition &part : partitions) 1719 finalizeSynthetic(part.armExidx); 1720 resolveShfLinkOrder(); 1721 1722 // Converts call x@GDPLT to call __tls_get_addr 1723 if (config->emachine == EM_HEXAGON) 1724 hexagonTLSSymbolUpdate(outputSections); 1725 1726 int assignPasses = 0; 1727 for (;;) { 1728 bool changed = target->needsThunks && tc.createThunks(outputSections); 1729 1730 // With Thunk Size much smaller than branch range we expect to 1731 // converge quickly; if we get to 15 something has gone wrong. 1732 if (changed && tc.pass >= 15) { 1733 error("thunk creation not converged"); 1734 break; 1735 } 1736 1737 if (config->fixCortexA53Errata843419) { 1738 if (changed) 1739 script->assignAddresses(); 1740 changed |= a64p.createFixes(); 1741 } 1742 if (config->fixCortexA8) { 1743 if (changed) 1744 script->assignAddresses(); 1745 changed |= a32p.createFixes(); 1746 } 1747 1748 if (in.mipsGot) 1749 in.mipsGot->updateAllocSize(); 1750 1751 for (Partition &part : partitions) { 1752 changed |= part.relaDyn->updateAllocSize(); 1753 if (part.relrDyn) 1754 changed |= part.relrDyn->updateAllocSize(); 1755 } 1756 1757 const Defined *changedSym = script->assignAddresses(); 1758 if (!changed) { 1759 // Some symbols may be dependent on section addresses. When we break the 1760 // loop, the symbol values are finalized because a previous 1761 // assignAddresses() finalized section addresses. 1762 if (!changedSym) 1763 break; 1764 if (++assignPasses == 5) { 1765 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1766 " does not converge"); 1767 break; 1768 } 1769 } 1770 } 1771 1772 // If addrExpr is set, the address may not be a multiple of the alignment. 1773 // Warn because this is error-prone. 1774 for (BaseCommand *cmd : script->sectionCommands) 1775 if (auto *os = dyn_cast<OutputSection>(cmd)) 1776 if (os->addr % os->alignment != 0) 1777 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1778 os->name + " is not a multiple of alignment (" + 1779 Twine(os->alignment) + ")"); 1780 } 1781 1782 // If Input Sections have been shrunk (basic block sections) then 1783 // update symbol values and sizes associated with these sections. With basic 1784 // block sections, input sections can shrink when the jump instructions at 1785 // the end of the section are relaxed. 1786 static void fixSymbolsAfterShrinking() { 1787 for (InputFile *File : objectFiles) { 1788 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1789 auto *def = dyn_cast<Defined>(Sym); 1790 if (!def) 1791 return; 1792 1793 const SectionBase *sec = def->section; 1794 if (!sec) 1795 return; 1796 1797 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl); 1798 if (!inputSec || !inputSec->bytesDropped) 1799 return; 1800 1801 const size_t OldSize = inputSec->data().size(); 1802 const size_t NewSize = OldSize - inputSec->bytesDropped; 1803 1804 if (def->value > NewSize && def->value <= OldSize) { 1805 LLVM_DEBUG(llvm::dbgs() 1806 << "Moving symbol " << Sym->getName() << " from " 1807 << def->value << " to " 1808 << def->value - inputSec->bytesDropped << " bytes\n"); 1809 def->value -= inputSec->bytesDropped; 1810 return; 1811 } 1812 1813 if (def->value + def->size > NewSize && def->value <= OldSize && 1814 def->value + def->size <= OldSize) { 1815 LLVM_DEBUG(llvm::dbgs() 1816 << "Shrinking symbol " << Sym->getName() << " from " 1817 << def->size << " to " << def->size - inputSec->bytesDropped 1818 << " bytes\n"); 1819 def->size -= inputSec->bytesDropped; 1820 } 1821 }); 1822 } 1823 } 1824 1825 // If basic block sections exist, there are opportunities to delete fall thru 1826 // jumps and shrink jump instructions after basic block reordering. This 1827 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1828 // option is used. 1829 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1830 assert(config->optimizeBBJumps); 1831 1832 script->assignAddresses(); 1833 // For every output section that has executable input sections, this 1834 // does the following: 1835 // 1. Deletes all direct jump instructions in input sections that 1836 // jump to the following section as it is not required. 1837 // 2. If there are two consecutive jump instructions, it checks 1838 // if they can be flipped and one can be deleted. 1839 for (OutputSection *os : outputSections) { 1840 if (!(os->flags & SHF_EXECINSTR)) 1841 continue; 1842 std::vector<InputSection *> sections = getInputSections(os); 1843 std::vector<unsigned> result(sections.size()); 1844 // Delete all fall through jump instructions. Also, check if two 1845 // consecutive jump instructions can be flipped so that a fall 1846 // through jmp instruction can be deleted. 1847 parallelForEachN(0, sections.size(), [&](size_t i) { 1848 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1849 InputSection &is = *sections[i]; 1850 result[i] = 1851 target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0; 1852 }); 1853 size_t numDeleted = std::count(result.begin(), result.end(), 1); 1854 if (numDeleted > 0) { 1855 script->assignAddresses(); 1856 LLVM_DEBUG(llvm::dbgs() 1857 << "Removing " << numDeleted << " fall through jumps\n"); 1858 } 1859 } 1860 1861 fixSymbolsAfterShrinking(); 1862 1863 for (OutputSection *os : outputSections) { 1864 std::vector<InputSection *> sections = getInputSections(os); 1865 for (InputSection *is : sections) 1866 is->trim(); 1867 } 1868 } 1869 1870 // In order to allow users to manipulate linker-synthesized sections, 1871 // we had to add synthetic sections to the input section list early, 1872 // even before we make decisions whether they are needed. This allows 1873 // users to write scripts like this: ".mygot : { .got }". 1874 // 1875 // Doing it has an unintended side effects. If it turns out that we 1876 // don't need a .got (for example) at all because there's no 1877 // relocation that needs a .got, we don't want to emit .got. 1878 // 1879 // To deal with the above problem, this function is called after 1880 // scanRelocations is called to remove synthetic sections that turn 1881 // out to be empty. 1882 static void removeUnusedSyntheticSections() { 1883 // All input synthetic sections that can be empty are placed after 1884 // all regular ones. Reverse iterate to find the first synthetic section 1885 // after a non-synthetic one which will be our starting point. 1886 auto start = std::find_if(inputSections.rbegin(), inputSections.rend(), 1887 [](InputSectionBase *s) { 1888 return !isa<SyntheticSection>(s); 1889 }) 1890 .base(); 1891 1892 DenseSet<InputSectionDescription *> isdSet; 1893 // Mark unused synthetic sections for deletion 1894 auto end = std::stable_partition( 1895 start, inputSections.end(), [&](InputSectionBase *s) { 1896 SyntheticSection *ss = dyn_cast<SyntheticSection>(s); 1897 OutputSection *os = ss->getParent(); 1898 if (!os || ss->isNeeded()) 1899 return true; 1900 1901 // If we reach here, then ss is an unused synthetic section and we want 1902 // to remove it from the corresponding input section description, and 1903 // orphanSections. 1904 for (BaseCommand *b : os->sectionCommands) 1905 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1906 isdSet.insert(isd); 1907 1908 llvm::erase_if( 1909 script->orphanSections, 1910 [=](const InputSectionBase *isec) { return isec == ss; }); 1911 1912 return false; 1913 }); 1914 1915 DenseSet<InputSectionBase *> unused(end, inputSections.end()); 1916 for (auto *isd : isdSet) 1917 llvm::erase_if(isd->sections, 1918 [=](InputSection *isec) { return unused.count(isec); }); 1919 1920 // Erase unused synthetic sections. 1921 inputSections.erase(end, inputSections.end()); 1922 } 1923 1924 // Create output section objects and add them to OutputSections. 1925 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1926 Out::preinitArray = findSection(".preinit_array"); 1927 Out::initArray = findSection(".init_array"); 1928 Out::finiArray = findSection(".fini_array"); 1929 1930 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1931 // symbols for sections, so that the runtime can get the start and end 1932 // addresses of each section by section name. Add such symbols. 1933 if (!config->relocatable) { 1934 addStartEndSymbols(); 1935 for (BaseCommand *base : script->sectionCommands) 1936 if (auto *sec = dyn_cast<OutputSection>(base)) 1937 addStartStopSymbols(sec); 1938 } 1939 1940 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1941 // It should be okay as no one seems to care about the type. 1942 // Even the author of gold doesn't remember why gold behaves that way. 1943 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1944 if (mainPart->dynamic->parent) 1945 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, 1946 STV_HIDDEN, STT_NOTYPE, 1947 /*value=*/0, /*size=*/0, mainPart->dynamic}); 1948 1949 // Define __rel[a]_iplt_{start,end} symbols if needed. 1950 addRelIpltSymbols(); 1951 1952 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1953 // should only be defined in an executable. If .sdata does not exist, its 1954 // value/section does not matter but it has to be relative, so set its 1955 // st_shndx arbitrarily to 1 (Out::elfHeader). 1956 if (config->emachine == EM_RISCV && !config->shared) { 1957 OutputSection *sec = findSection(".sdata"); 1958 ElfSym::riscvGlobalPointer = 1959 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1960 0x800, STV_DEFAULT); 1961 } 1962 1963 if (config->emachine == EM_386 || config->emachine == EM_X86_64) { 1964 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1965 // way that: 1966 // 1967 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1968 // computes 0. 1969 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1970 // the TLS block). 1971 // 1972 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1973 // an absolute symbol of zero. This is different from GNU linkers which 1974 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1975 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1976 if (s && s->isUndefined()) { 1977 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1978 STT_TLS, /*value=*/0, 0, 1979 /*section=*/nullptr}); 1980 ElfSym::tlsModuleBase = cast<Defined>(s); 1981 } 1982 } 1983 1984 { 1985 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1986 // This responsible for splitting up .eh_frame section into 1987 // pieces. The relocation scan uses those pieces, so this has to be 1988 // earlier. 1989 for (Partition &part : partitions) 1990 finalizeSynthetic(part.ehFrame); 1991 } 1992 1993 for (Symbol *sym : symtab->symbols()) 1994 sym->isPreemptible = computeIsPreemptible(*sym); 1995 1996 // Change values of linker-script-defined symbols from placeholders (assigned 1997 // by declareSymbols) to actual definitions. 1998 script->processSymbolAssignments(); 1999 2000 { 2001 llvm::TimeTraceScope timeScope("Scan relocations"); 2002 // Scan relocations. This must be done after every symbol is declared so 2003 // that we can correctly decide if a dynamic relocation is needed. This is 2004 // called after processSymbolAssignments() because it needs to know whether 2005 // a linker-script-defined symbol is absolute. 2006 ppc64noTocRelax.clear(); 2007 if (!config->relocatable) { 2008 forEachRelSec(scanRelocations<ELFT>); 2009 reportUndefinedSymbols<ELFT>(); 2010 } 2011 } 2012 2013 if (in.plt && in.plt->isNeeded()) 2014 in.plt->addSymbols(); 2015 if (in.iplt && in.iplt->isNeeded()) 2016 in.iplt->addSymbols(); 2017 2018 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 2019 auto diagnose = 2020 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 2021 ? errorOrWarn 2022 : warn; 2023 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 2024 // entries are seen. These cases would otherwise lead to runtime errors 2025 // reported by the dynamic linker. 2026 // 2027 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 2028 // catch more cases. That is too much for us. Our approach resembles the one 2029 // used in ld.gold, achieves a good balance to be useful but not too smart. 2030 for (SharedFile *file : sharedFiles) { 2031 bool allNeededIsKnown = 2032 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 2033 return symtab->soNames.count(needed); 2034 }); 2035 if (!allNeededIsKnown) 2036 continue; 2037 for (Symbol *sym : file->requiredSymbols) 2038 if (sym->isUndefined() && !sym->isWeak()) 2039 diagnose(toString(file) + ": undefined reference to " + 2040 toString(*sym) + " [--no-allow-shlib-undefined]"); 2041 } 2042 } 2043 2044 { 2045 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 2046 // Now that we have defined all possible global symbols including linker- 2047 // synthesized ones. Visit all symbols to give the finishing touches. 2048 for (Symbol *sym : symtab->symbols()) { 2049 if (!includeInSymtab(*sym)) 2050 continue; 2051 if (in.symTab) 2052 in.symTab->addSymbol(sym); 2053 2054 if (sym->includeInDynsym()) { 2055 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 2056 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 2057 if (file->isNeeded && !sym->isUndefined()) 2058 addVerneed(sym); 2059 } 2060 } 2061 2062 // We also need to scan the dynamic relocation tables of the other 2063 // partitions and add any referenced symbols to the partition's dynsym. 2064 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 2065 DenseSet<Symbol *> syms; 2066 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 2067 syms.insert(e.sym); 2068 for (DynamicReloc &reloc : part.relaDyn->relocs) 2069 if (reloc.sym && reloc.needsDynSymIndex() && 2070 syms.insert(reloc.sym).second) 2071 part.dynSymTab->addSymbol(reloc.sym); 2072 } 2073 } 2074 2075 // Do not proceed if there was an undefined symbol. 2076 if (errorCount()) 2077 return; 2078 2079 if (in.mipsGot) 2080 in.mipsGot->build(); 2081 2082 removeUnusedSyntheticSections(); 2083 script->diagnoseOrphanHandling(); 2084 2085 sortSections(); 2086 2087 // Now that we have the final list, create a list of all the 2088 // OutputSections for convenience. 2089 for (BaseCommand *base : script->sectionCommands) 2090 if (auto *sec = dyn_cast<OutputSection>(base)) 2091 outputSections.push_back(sec); 2092 2093 // Prefer command line supplied address over other constraints. 2094 for (OutputSection *sec : outputSections) { 2095 auto i = config->sectionStartMap.find(sec->name); 2096 if (i != config->sectionStartMap.end()) 2097 sec->addrExpr = [=] { return i->second; }; 2098 } 2099 2100 // With the outputSections available check for GDPLT relocations 2101 // and add __tls_get_addr symbol if needed. 2102 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2103 Symbol *sym = symtab->addSymbol(Undefined{ 2104 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2105 sym->isPreemptible = true; 2106 partitions[0].dynSymTab->addSymbol(sym); 2107 } 2108 2109 // This is a bit of a hack. A value of 0 means undef, so we set it 2110 // to 1 to make __ehdr_start defined. The section number is not 2111 // particularly relevant. 2112 Out::elfHeader->sectionIndex = 1; 2113 2114 for (size_t i = 0, e = outputSections.size(); i != e; ++i) { 2115 OutputSection *sec = outputSections[i]; 2116 sec->sectionIndex = i + 1; 2117 sec->shName = in.shStrTab->addString(sec->name); 2118 } 2119 2120 // Binary and relocatable output does not have PHDRS. 2121 // The headers have to be created before finalize as that can influence the 2122 // image base and the dynamic section on mips includes the image base. 2123 if (!config->relocatable && !config->oFormatBinary) { 2124 for (Partition &part : partitions) { 2125 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2126 : createPhdrs(part); 2127 if (config->emachine == EM_ARM) { 2128 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2129 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2130 } 2131 if (config->emachine == EM_MIPS) { 2132 // Add separate segments for MIPS-specific sections. 2133 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2134 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2135 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2136 } 2137 } 2138 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2139 2140 // Find the TLS segment. This happens before the section layout loop so that 2141 // Android relocation packing can look up TLS symbol addresses. We only need 2142 // to care about the main partition here because all TLS symbols were moved 2143 // to the main partition (see MarkLive.cpp). 2144 for (PhdrEntry *p : mainPart->phdrs) 2145 if (p->p_type == PT_TLS) 2146 Out::tlsPhdr = p; 2147 } 2148 2149 // Some symbols are defined in term of program headers. Now that we 2150 // have the headers, we can find out which sections they point to. 2151 setReservedSymbolSections(); 2152 2153 { 2154 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2155 2156 finalizeSynthetic(in.bss); 2157 finalizeSynthetic(in.bssRelRo); 2158 finalizeSynthetic(in.symTabShndx); 2159 finalizeSynthetic(in.shStrTab); 2160 finalizeSynthetic(in.strTab); 2161 finalizeSynthetic(in.got); 2162 finalizeSynthetic(in.mipsGot); 2163 finalizeSynthetic(in.igotPlt); 2164 finalizeSynthetic(in.gotPlt); 2165 finalizeSynthetic(in.relaIplt); 2166 finalizeSynthetic(in.relaPlt); 2167 finalizeSynthetic(in.plt); 2168 finalizeSynthetic(in.iplt); 2169 finalizeSynthetic(in.ppc32Got2); 2170 finalizeSynthetic(in.partIndex); 2171 2172 // Dynamic section must be the last one in this list and dynamic 2173 // symbol table section (dynSymTab) must be the first one. 2174 for (Partition &part : partitions) { 2175 finalizeSynthetic(part.dynSymTab); 2176 finalizeSynthetic(part.gnuHashTab); 2177 finalizeSynthetic(part.hashTab); 2178 finalizeSynthetic(part.verDef); 2179 finalizeSynthetic(part.relaDyn); 2180 finalizeSynthetic(part.relrDyn); 2181 finalizeSynthetic(part.ehFrameHdr); 2182 finalizeSynthetic(part.verSym); 2183 finalizeSynthetic(part.verNeed); 2184 finalizeSynthetic(part.dynamic); 2185 } 2186 } 2187 2188 if (!script->hasSectionsCommand && !config->relocatable) 2189 fixSectionAlignments(); 2190 2191 // This is used to: 2192 // 1) Create "thunks": 2193 // Jump instructions in many ISAs have small displacements, and therefore 2194 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2195 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2196 // responsibility to create and insert small pieces of code between 2197 // sections to extend the ranges if jump targets are out of range. Such 2198 // code pieces are called "thunks". 2199 // 2200 // We add thunks at this stage. We couldn't do this before this point 2201 // because this is the earliest point where we know sizes of sections and 2202 // their layouts (that are needed to determine if jump targets are in 2203 // range). 2204 // 2205 // 2) Update the sections. We need to generate content that depends on the 2206 // address of InputSections. For example, MIPS GOT section content or 2207 // android packed relocations sections content. 2208 // 2209 // 3) Assign the final values for the linker script symbols. Linker scripts 2210 // sometimes using forward symbol declarations. We want to set the correct 2211 // values. They also might change after adding the thunks. 2212 finalizeAddressDependentContent(); 2213 if (errorCount()) 2214 return; 2215 2216 { 2217 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2218 // finalizeAddressDependentContent may have added local symbols to the 2219 // static symbol table. 2220 finalizeSynthetic(in.symTab); 2221 finalizeSynthetic(in.ppc64LongBranchTarget); 2222 } 2223 2224 // Relaxation to delete inter-basic block jumps created by basic block 2225 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2226 // can relax jump instructions based on symbol offset. 2227 if (config->optimizeBBJumps) 2228 optimizeBasicBlockJumps(); 2229 2230 // Fill other section headers. The dynamic table is finalized 2231 // at the end because some tags like RELSZ depend on result 2232 // of finalizing other sections. 2233 for (OutputSection *sec : outputSections) 2234 sec->finalize(); 2235 } 2236 2237 // Ensure data sections are not mixed with executable sections when 2238 // --execute-only is used. --execute-only make pages executable but not 2239 // readable. 2240 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2241 if (!config->executeOnly) 2242 return; 2243 2244 for (OutputSection *os : outputSections) 2245 if (os->flags & SHF_EXECINSTR) 2246 for (InputSection *isec : getInputSections(os)) 2247 if (!(isec->flags & SHF_EXECINSTR)) 2248 error("cannot place " + toString(isec) + " into " + toString(os->name) + 2249 ": -execute-only does not support intermingling data and code"); 2250 } 2251 2252 // The linker is expected to define SECNAME_start and SECNAME_end 2253 // symbols for a few sections. This function defines them. 2254 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2255 // If a section does not exist, there's ambiguity as to how we 2256 // define _start and _end symbols for an init/fini section. Since 2257 // the loader assume that the symbols are always defined, we need to 2258 // always define them. But what value? The loader iterates over all 2259 // pointers between _start and _end to run global ctors/dtors, so if 2260 // the section is empty, their symbol values don't actually matter 2261 // as long as _start and _end point to the same location. 2262 // 2263 // That said, we don't want to set the symbols to 0 (which is 2264 // probably the simplest value) because that could cause some 2265 // program to fail to link due to relocation overflow, if their 2266 // program text is above 2 GiB. We use the address of the .text 2267 // section instead to prevent that failure. 2268 // 2269 // In rare situations, the .text section may not exist. If that's the 2270 // case, use the image base address as a last resort. 2271 OutputSection *Default = findSection(".text"); 2272 if (!Default) 2273 Default = Out::elfHeader; 2274 2275 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2276 if (os) { 2277 addOptionalRegular(start, os, 0); 2278 addOptionalRegular(end, os, -1); 2279 } else { 2280 addOptionalRegular(start, Default, 0); 2281 addOptionalRegular(end, Default, 0); 2282 } 2283 }; 2284 2285 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2286 define("__init_array_start", "__init_array_end", Out::initArray); 2287 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2288 2289 if (OutputSection *sec = findSection(".ARM.exidx")) 2290 define("__exidx_start", "__exidx_end", sec); 2291 } 2292 2293 // If a section name is valid as a C identifier (which is rare because of 2294 // the leading '.'), linkers are expected to define __start_<secname> and 2295 // __stop_<secname> symbols. They are at beginning and end of the section, 2296 // respectively. This is not requested by the ELF standard, but GNU ld and 2297 // gold provide the feature, and used by many programs. 2298 template <class ELFT> 2299 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2300 StringRef s = sec->name; 2301 if (!isValidCIdentifier(s)) 2302 return; 2303 addOptionalRegular(saver.save("__start_" + s), sec, 0, 2304 config->zStartStopVisibility); 2305 addOptionalRegular(saver.save("__stop_" + s), sec, -1, 2306 config->zStartStopVisibility); 2307 } 2308 2309 static bool needsPtLoad(OutputSection *sec) { 2310 if (!(sec->flags & SHF_ALLOC)) 2311 return false; 2312 2313 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2314 // responsible for allocating space for them, not the PT_LOAD that 2315 // contains the TLS initialization image. 2316 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2317 return false; 2318 return true; 2319 } 2320 2321 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2322 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2323 // RW. This means that there is no alignment in the RO to RX transition and we 2324 // cannot create a PT_LOAD there. 2325 static uint64_t computeFlags(uint64_t flags) { 2326 if (config->omagic) 2327 return PF_R | PF_W | PF_X; 2328 if (config->executeOnly && (flags & PF_X)) 2329 return flags & ~PF_R; 2330 if (config->singleRoRx && !(flags & PF_W)) 2331 return flags | PF_X; 2332 return flags; 2333 } 2334 2335 // Decide which program headers to create and which sections to include in each 2336 // one. 2337 template <class ELFT> 2338 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) { 2339 std::vector<PhdrEntry *> ret; 2340 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2341 ret.push_back(make<PhdrEntry>(type, flags)); 2342 return ret.back(); 2343 }; 2344 2345 unsigned partNo = part.getNumber(); 2346 bool isMain = partNo == 1; 2347 2348 // Add the first PT_LOAD segment for regular output sections. 2349 uint64_t flags = computeFlags(PF_R); 2350 PhdrEntry *load = nullptr; 2351 2352 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2353 // PT_LOAD. 2354 if (!config->nmagic && !config->omagic) { 2355 // The first phdr entry is PT_PHDR which describes the program header 2356 // itself. 2357 if (isMain) 2358 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2359 else 2360 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2361 2362 // PT_INTERP must be the second entry if exists. 2363 if (OutputSection *cmd = findSection(".interp", partNo)) 2364 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2365 2366 // Add the headers. We will remove them if they don't fit. 2367 // In the other partitions the headers are ordinary sections, so they don't 2368 // need to be added here. 2369 if (isMain) { 2370 load = addHdr(PT_LOAD, flags); 2371 load->add(Out::elfHeader); 2372 load->add(Out::programHeaders); 2373 } 2374 } 2375 2376 // PT_GNU_RELRO includes all sections that should be marked as 2377 // read-only by dynamic linker after processing relocations. 2378 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2379 // an error message if more than one PT_GNU_RELRO PHDR is required. 2380 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2381 bool inRelroPhdr = false; 2382 OutputSection *relroEnd = nullptr; 2383 for (OutputSection *sec : outputSections) { 2384 if (sec->partition != partNo || !needsPtLoad(sec)) 2385 continue; 2386 if (isRelroSection(sec)) { 2387 inRelroPhdr = true; 2388 if (!relroEnd) 2389 relRo->add(sec); 2390 else 2391 error("section: " + sec->name + " is not contiguous with other relro" + 2392 " sections"); 2393 } else if (inRelroPhdr) { 2394 inRelroPhdr = false; 2395 relroEnd = sec; 2396 } 2397 } 2398 2399 for (OutputSection *sec : outputSections) { 2400 if (!needsPtLoad(sec)) 2401 continue; 2402 2403 // Normally, sections in partitions other than the current partition are 2404 // ignored. But partition number 255 is a special case: it contains the 2405 // partition end marker (.part.end). It needs to be added to the main 2406 // partition so that a segment is created for it in the main partition, 2407 // which will cause the dynamic loader to reserve space for the other 2408 // partitions. 2409 if (sec->partition != partNo) { 2410 if (isMain && sec->partition == 255) 2411 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2412 continue; 2413 } 2414 2415 // Segments are contiguous memory regions that has the same attributes 2416 // (e.g. executable or writable). There is one phdr for each segment. 2417 // Therefore, we need to create a new phdr when the next section has 2418 // different flags or is loaded at a discontiguous address or memory 2419 // region using AT or AT> linker script command, respectively. At the same 2420 // time, we don't want to create a separate load segment for the headers, 2421 // even if the first output section has an AT or AT> attribute. 2422 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2423 bool sameLMARegion = 2424 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2425 if (!(load && newFlags == flags && sec != relroEnd && 2426 sec->memRegion == load->firstSec->memRegion && 2427 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2428 load = addHdr(PT_LOAD, newFlags); 2429 flags = newFlags; 2430 } 2431 2432 load->add(sec); 2433 } 2434 2435 // Add a TLS segment if any. 2436 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2437 for (OutputSection *sec : outputSections) 2438 if (sec->partition == partNo && sec->flags & SHF_TLS) 2439 tlsHdr->add(sec); 2440 if (tlsHdr->firstSec) 2441 ret.push_back(tlsHdr); 2442 2443 // Add an entry for .dynamic. 2444 if (OutputSection *sec = part.dynamic->getParent()) 2445 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2446 2447 if (relRo->firstSec) 2448 ret.push_back(relRo); 2449 2450 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2451 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2452 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2453 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2454 ->add(part.ehFrameHdr->getParent()); 2455 2456 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2457 // the dynamic linker fill the segment with random data. 2458 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2459 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2460 2461 if (config->zGnustack != GnuStackKind::None) { 2462 // PT_GNU_STACK is a special section to tell the loader to make the 2463 // pages for the stack non-executable. If you really want an executable 2464 // stack, you can pass -z execstack, but that's not recommended for 2465 // security reasons. 2466 unsigned perm = PF_R | PF_W; 2467 if (config->zGnustack == GnuStackKind::Exec) 2468 perm |= PF_X; 2469 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2470 } 2471 2472 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2473 // is expected to perform W^X violations, such as calling mprotect(2) or 2474 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2475 // OpenBSD. 2476 if (config->zWxneeded) 2477 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2478 2479 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2480 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2481 2482 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2483 // same alignment. 2484 PhdrEntry *note = nullptr; 2485 for (OutputSection *sec : outputSections) { 2486 if (sec->partition != partNo) 2487 continue; 2488 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2489 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2490 note = addHdr(PT_NOTE, PF_R); 2491 note->add(sec); 2492 } else { 2493 note = nullptr; 2494 } 2495 } 2496 return ret; 2497 } 2498 2499 template <class ELFT> 2500 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2501 unsigned pType, unsigned pFlags) { 2502 unsigned partNo = part.getNumber(); 2503 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2504 return cmd->partition == partNo && cmd->type == shType; 2505 }); 2506 if (i == outputSections.end()) 2507 return; 2508 2509 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2510 entry->add(*i); 2511 part.phdrs.push_back(entry); 2512 } 2513 2514 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2515 // This is achieved by assigning an alignment expression to addrExpr of each 2516 // such section. 2517 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2518 const PhdrEntry *prev; 2519 auto pageAlign = [&](const PhdrEntry *p) { 2520 OutputSection *cmd = p->firstSec; 2521 if (!cmd) 2522 return; 2523 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2524 if (!cmd->addrExpr) { 2525 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2526 // padding in the file contents. 2527 // 2528 // When -z separate-code is used we must not have any overlap in pages 2529 // between an executable segment and a non-executable segment. We align to 2530 // the next maximum page size boundary on transitions between executable 2531 // and non-executable segments. 2532 // 2533 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2534 // sections will be extracted to a separate file. Align to the next 2535 // maximum page size boundary so that we can find the ELF header at the 2536 // start. We cannot benefit from overlapping p_offset ranges with the 2537 // previous segment anyway. 2538 if (config->zSeparate == SeparateSegmentKind::Loadable || 2539 (config->zSeparate == SeparateSegmentKind::Code && prev && 2540 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2541 cmd->type == SHT_LLVM_PART_EHDR) 2542 cmd->addrExpr = [] { 2543 return alignTo(script->getDot(), config->maxPageSize); 2544 }; 2545 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2546 // it must be the RW. Align to p_align(PT_TLS) to make sure 2547 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2548 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2549 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2550 // be congruent to 0 modulo p_align(PT_TLS). 2551 // 2552 // Technically this is not required, but as of 2019, some dynamic loaders 2553 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2554 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2555 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2556 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2557 // blocks correctly. We need to keep the workaround for a while. 2558 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2559 cmd->addrExpr = [] { 2560 return alignTo(script->getDot(), config->maxPageSize) + 2561 alignTo(script->getDot() % config->maxPageSize, 2562 Out::tlsPhdr->p_align); 2563 }; 2564 else 2565 cmd->addrExpr = [] { 2566 return alignTo(script->getDot(), config->maxPageSize) + 2567 script->getDot() % config->maxPageSize; 2568 }; 2569 } 2570 }; 2571 2572 for (Partition &part : partitions) { 2573 prev = nullptr; 2574 for (const PhdrEntry *p : part.phdrs) 2575 if (p->p_type == PT_LOAD && p->firstSec) { 2576 pageAlign(p); 2577 prev = p; 2578 } 2579 } 2580 } 2581 2582 // Compute an in-file position for a given section. The file offset must be the 2583 // same with its virtual address modulo the page size, so that the loader can 2584 // load executables without any address adjustment. 2585 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2586 // The first section in a PT_LOAD has to have congruent offset and address 2587 // modulo the maximum page size. 2588 if (os->ptLoad && os->ptLoad->firstSec == os) 2589 return alignTo(off, os->ptLoad->p_align, os->addr); 2590 2591 // File offsets are not significant for .bss sections other than the first one 2592 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically 2593 // increasing rather than setting to zero. 2594 if (os->type == SHT_NOBITS && 2595 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) 2596 return off; 2597 2598 // If the section is not in a PT_LOAD, we just have to align it. 2599 if (!os->ptLoad) 2600 return alignTo(off, os->alignment); 2601 2602 // If two sections share the same PT_LOAD the file offset is calculated 2603 // using this formula: Off2 = Off1 + (VA2 - VA1). 2604 OutputSection *first = os->ptLoad->firstSec; 2605 return first->offset + os->addr - first->addr; 2606 } 2607 2608 // Set an in-file position to a given section and returns the end position of 2609 // the section. 2610 static uint64_t setFileOffset(OutputSection *os, uint64_t off) { 2611 off = computeFileOffset(os, off); 2612 os->offset = off; 2613 2614 if (os->type == SHT_NOBITS) 2615 return off; 2616 return off + os->size; 2617 } 2618 2619 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2620 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2621 auto needsOffset = [](OutputSection &sec) { 2622 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2623 }; 2624 uint64_t minAddr = UINT64_MAX; 2625 for (OutputSection *sec : outputSections) 2626 if (needsOffset(*sec)) { 2627 sec->offset = sec->getLMA(); 2628 minAddr = std::min(minAddr, sec->offset); 2629 } 2630 2631 // Sections are laid out at LMA minus minAddr. 2632 fileSize = 0; 2633 for (OutputSection *sec : outputSections) 2634 if (needsOffset(*sec)) { 2635 sec->offset -= minAddr; 2636 fileSize = std::max(fileSize, sec->offset + sec->size); 2637 } 2638 } 2639 2640 static std::string rangeToString(uint64_t addr, uint64_t len) { 2641 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2642 } 2643 2644 // Assign file offsets to output sections. 2645 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2646 uint64_t off = 0; 2647 off = setFileOffset(Out::elfHeader, off); 2648 off = setFileOffset(Out::programHeaders, off); 2649 2650 PhdrEntry *lastRX = nullptr; 2651 for (Partition &part : partitions) 2652 for (PhdrEntry *p : part.phdrs) 2653 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2654 lastRX = p; 2655 2656 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2657 // will not occupy file offsets contained by a PT_LOAD. 2658 for (OutputSection *sec : outputSections) { 2659 if (!(sec->flags & SHF_ALLOC)) 2660 continue; 2661 off = setFileOffset(sec, off); 2662 2663 // If this is a last section of the last executable segment and that 2664 // segment is the last loadable segment, align the offset of the 2665 // following section to avoid loading non-segments parts of the file. 2666 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2667 lastRX->lastSec == sec) 2668 off = alignTo(off, config->commonPageSize); 2669 } 2670 for (OutputSection *sec : outputSections) 2671 if (!(sec->flags & SHF_ALLOC)) 2672 off = setFileOffset(sec, off); 2673 2674 sectionHeaderOff = alignTo(off, config->wordsize); 2675 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2676 2677 // Our logic assumes that sections have rising VA within the same segment. 2678 // With use of linker scripts it is possible to violate this rule and get file 2679 // offset overlaps or overflows. That should never happen with a valid script 2680 // which does not move the location counter backwards and usually scripts do 2681 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2682 // kernel, which control segment distribution explicitly and move the counter 2683 // backwards, so we have to allow doing that to support linking them. We 2684 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2685 // we want to prevent file size overflows because it would crash the linker. 2686 for (OutputSection *sec : outputSections) { 2687 if (sec->type == SHT_NOBITS) 2688 continue; 2689 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2690 error("unable to place section " + sec->name + " at file offset " + 2691 rangeToString(sec->offset, sec->size) + 2692 "; check your linker script for overflows"); 2693 } 2694 } 2695 2696 // Finalize the program headers. We call this function after we assign 2697 // file offsets and VAs to all sections. 2698 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2699 for (PhdrEntry *p : part.phdrs) { 2700 OutputSection *first = p->firstSec; 2701 OutputSection *last = p->lastSec; 2702 2703 if (first) { 2704 p->p_filesz = last->offset - first->offset; 2705 if (last->type != SHT_NOBITS) 2706 p->p_filesz += last->size; 2707 2708 p->p_memsz = last->addr + last->size - first->addr; 2709 p->p_offset = first->offset; 2710 p->p_vaddr = first->addr; 2711 2712 // File offsets in partitions other than the main partition are relative 2713 // to the offset of the ELF headers. Perform that adjustment now. 2714 if (part.elfHeader) 2715 p->p_offset -= part.elfHeader->getParent()->offset; 2716 2717 if (!p->hasLMA) 2718 p->p_paddr = first->getLMA(); 2719 } 2720 2721 if (p->p_type == PT_GNU_RELRO) { 2722 p->p_align = 1; 2723 // musl/glibc ld.so rounds the size down, so we need to round up 2724 // to protect the last page. This is a no-op on FreeBSD which always 2725 // rounds up. 2726 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2727 p->p_offset; 2728 } 2729 } 2730 } 2731 2732 // A helper struct for checkSectionOverlap. 2733 namespace { 2734 struct SectionOffset { 2735 OutputSection *sec; 2736 uint64_t offset; 2737 }; 2738 } // namespace 2739 2740 // Check whether sections overlap for a specific address range (file offsets, 2741 // load and virtual addresses). 2742 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2743 bool isVirtualAddr) { 2744 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2745 return a.offset < b.offset; 2746 }); 2747 2748 // Finding overlap is easy given a vector is sorted by start position. 2749 // If an element starts before the end of the previous element, they overlap. 2750 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2751 SectionOffset a = sections[i - 1]; 2752 SectionOffset b = sections[i]; 2753 if (b.offset >= a.offset + a.sec->size) 2754 continue; 2755 2756 // If both sections are in OVERLAY we allow the overlapping of virtual 2757 // addresses, because it is what OVERLAY was designed for. 2758 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2759 continue; 2760 2761 errorOrWarn("section " + a.sec->name + " " + name + 2762 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2763 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2764 b.sec->name + " range is " + 2765 rangeToString(b.offset, b.sec->size)); 2766 } 2767 } 2768 2769 // Check for overlapping sections and address overflows. 2770 // 2771 // In this function we check that none of the output sections have overlapping 2772 // file offsets. For SHF_ALLOC sections we also check that the load address 2773 // ranges and the virtual address ranges don't overlap 2774 template <class ELFT> void Writer<ELFT>::checkSections() { 2775 // First, check that section's VAs fit in available address space for target. 2776 for (OutputSection *os : outputSections) 2777 if ((os->addr + os->size < os->addr) || 2778 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2779 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2780 " of size 0x" + utohexstr(os->size) + 2781 " exceeds available address space"); 2782 2783 // Check for overlapping file offsets. In this case we need to skip any 2784 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2785 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2786 // binary is specified only add SHF_ALLOC sections are added to the output 2787 // file so we skip any non-allocated sections in that case. 2788 std::vector<SectionOffset> fileOffs; 2789 for (OutputSection *sec : outputSections) 2790 if (sec->size > 0 && sec->type != SHT_NOBITS && 2791 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2792 fileOffs.push_back({sec, sec->offset}); 2793 checkOverlap("file", fileOffs, false); 2794 2795 // When linking with -r there is no need to check for overlapping virtual/load 2796 // addresses since those addresses will only be assigned when the final 2797 // executable/shared object is created. 2798 if (config->relocatable) 2799 return; 2800 2801 // Checking for overlapping virtual and load addresses only needs to take 2802 // into account SHF_ALLOC sections since others will not be loaded. 2803 // Furthermore, we also need to skip SHF_TLS sections since these will be 2804 // mapped to other addresses at runtime and can therefore have overlapping 2805 // ranges in the file. 2806 std::vector<SectionOffset> vmas; 2807 for (OutputSection *sec : outputSections) 2808 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2809 vmas.push_back({sec, sec->addr}); 2810 checkOverlap("virtual address", vmas, true); 2811 2812 // Finally, check that the load addresses don't overlap. This will usually be 2813 // the same as the virtual addresses but can be different when using a linker 2814 // script with AT(). 2815 std::vector<SectionOffset> lmas; 2816 for (OutputSection *sec : outputSections) 2817 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2818 lmas.push_back({sec, sec->getLMA()}); 2819 checkOverlap("load address", lmas, false); 2820 } 2821 2822 // The entry point address is chosen in the following ways. 2823 // 2824 // 1. the '-e' entry command-line option; 2825 // 2. the ENTRY(symbol) command in a linker control script; 2826 // 3. the value of the symbol _start, if present; 2827 // 4. the number represented by the entry symbol, if it is a number; 2828 // 5. the address 0. 2829 static uint64_t getEntryAddr() { 2830 // Case 1, 2 or 3 2831 if (Symbol *b = symtab->find(config->entry)) 2832 return b->getVA(); 2833 2834 // Case 4 2835 uint64_t addr; 2836 if (to_integer(config->entry, addr)) 2837 return addr; 2838 2839 // Case 5 2840 if (config->warnMissingEntry) 2841 warn("cannot find entry symbol " + config->entry + 2842 "; not setting start address"); 2843 return 0; 2844 } 2845 2846 static uint16_t getELFType() { 2847 if (config->isPic) 2848 return ET_DYN; 2849 if (config->relocatable) 2850 return ET_REL; 2851 return ET_EXEC; 2852 } 2853 2854 template <class ELFT> void Writer<ELFT>::writeHeader() { 2855 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2856 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2857 2858 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2859 eHdr->e_type = getELFType(); 2860 eHdr->e_entry = getEntryAddr(); 2861 eHdr->e_shoff = sectionHeaderOff; 2862 2863 // Write the section header table. 2864 // 2865 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2866 // and e_shstrndx fields. When the value of one of these fields exceeds 2867 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2868 // use fields in the section header at index 0 to store 2869 // the value. The sentinel values and fields are: 2870 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2871 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2872 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2873 size_t num = outputSections.size() + 1; 2874 if (num >= SHN_LORESERVE) 2875 sHdrs->sh_size = num; 2876 else 2877 eHdr->e_shnum = num; 2878 2879 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2880 if (strTabIndex >= SHN_LORESERVE) { 2881 sHdrs->sh_link = strTabIndex; 2882 eHdr->e_shstrndx = SHN_XINDEX; 2883 } else { 2884 eHdr->e_shstrndx = strTabIndex; 2885 } 2886 2887 for (OutputSection *sec : outputSections) 2888 sec->writeHeaderTo<ELFT>(++sHdrs); 2889 } 2890 2891 // Open a result file. 2892 template <class ELFT> void Writer<ELFT>::openFile() { 2893 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2894 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2895 std::string msg; 2896 raw_string_ostream s(msg); 2897 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2898 << "section sizes:\n"; 2899 for (OutputSection *os : outputSections) 2900 s << os->name << ' ' << os->size << "\n"; 2901 error(s.str()); 2902 return; 2903 } 2904 2905 unlinkAsync(config->outputFile); 2906 unsigned flags = 0; 2907 if (!config->relocatable) 2908 flags |= FileOutputBuffer::F_executable; 2909 if (!config->mmapOutputFile) 2910 flags |= FileOutputBuffer::F_no_mmap; 2911 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2912 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2913 2914 if (!bufferOrErr) { 2915 error("failed to open " + config->outputFile + ": " + 2916 llvm::toString(bufferOrErr.takeError())); 2917 return; 2918 } 2919 buffer = std::move(*bufferOrErr); 2920 Out::bufferStart = buffer->getBufferStart(); 2921 } 2922 2923 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2924 for (OutputSection *sec : outputSections) 2925 if (sec->flags & SHF_ALLOC) 2926 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2927 } 2928 2929 static void fillTrap(uint8_t *i, uint8_t *end) { 2930 for (; i + 4 <= end; i += 4) 2931 memcpy(i, &target->trapInstr, 4); 2932 } 2933 2934 // Fill the last page of executable segments with trap instructions 2935 // instead of leaving them as zero. Even though it is not required by any 2936 // standard, it is in general a good thing to do for security reasons. 2937 // 2938 // We'll leave other pages in segments as-is because the rest will be 2939 // overwritten by output sections. 2940 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2941 for (Partition &part : partitions) { 2942 // Fill the last page. 2943 for (PhdrEntry *p : part.phdrs) 2944 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2945 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz, 2946 config->commonPageSize), 2947 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2948 config->commonPageSize)); 2949 2950 // Round up the file size of the last segment to the page boundary iff it is 2951 // an executable segment to ensure that other tools don't accidentally 2952 // trim the instruction padding (e.g. when stripping the file). 2953 PhdrEntry *last = nullptr; 2954 for (PhdrEntry *p : part.phdrs) 2955 if (p->p_type == PT_LOAD) 2956 last = p; 2957 2958 if (last && (last->p_flags & PF_X)) 2959 last->p_memsz = last->p_filesz = 2960 alignTo(last->p_filesz, config->commonPageSize); 2961 } 2962 } 2963 2964 // Write section contents to a mmap'ed file. 2965 template <class ELFT> void Writer<ELFT>::writeSections() { 2966 // In -r or --emit-relocs mode, write the relocation sections first as in 2967 // ELf_Rel targets we might find out that we need to modify the relocated 2968 // section while doing it. 2969 for (OutputSection *sec : outputSections) 2970 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2971 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2972 2973 for (OutputSection *sec : outputSections) 2974 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2975 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2976 2977 // Finally, check that all dynamic relocation addends were written correctly. 2978 if (config->checkDynamicRelocs && config->writeAddends) { 2979 for (OutputSection *sec : outputSections) 2980 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2981 sec->checkDynRelAddends(Out::bufferStart); 2982 } 2983 } 2984 2985 // Computes a hash value of Data using a given hash function. 2986 // In order to utilize multiple cores, we first split data into 1MB 2987 // chunks, compute a hash for each chunk, and then compute a hash value 2988 // of the hash values. 2989 static void 2990 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2991 llvm::ArrayRef<uint8_t> data, 2992 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2993 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2994 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2995 2996 // Compute hash values. 2997 parallelForEachN(0, chunks.size(), [&](size_t i) { 2998 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2999 }); 3000 3001 // Write to the final output buffer. 3002 hashFn(hashBuf.data(), hashes); 3003 } 3004 3005 template <class ELFT> void Writer<ELFT>::writeBuildId() { 3006 if (!mainPart->buildId || !mainPart->buildId->getParent()) 3007 return; 3008 3009 if (config->buildId == BuildIdKind::Hexstring) { 3010 for (Partition &part : partitions) 3011 part.buildId->writeBuildId(config->buildIdVector); 3012 return; 3013 } 3014 3015 // Compute a hash of all sections of the output file. 3016 size_t hashSize = mainPart->buildId->hashSize; 3017 std::vector<uint8_t> buildId(hashSize); 3018 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 3019 3020 switch (config->buildId) { 3021 case BuildIdKind::Fast: 3022 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 3023 write64le(dest, xxHash64(arr)); 3024 }); 3025 break; 3026 case BuildIdKind::Md5: 3027 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3028 memcpy(dest, MD5::hash(arr).data(), hashSize); 3029 }); 3030 break; 3031 case BuildIdKind::Sha1: 3032 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 3033 memcpy(dest, SHA1::hash(arr).data(), hashSize); 3034 }); 3035 break; 3036 case BuildIdKind::Uuid: 3037 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 3038 error("entropy source failure: " + ec.message()); 3039 break; 3040 default: 3041 llvm_unreachable("unknown BuildIdKind"); 3042 } 3043 for (Partition &part : partitions) 3044 part.buildId->writeBuildId(buildId); 3045 } 3046 3047 template void elf::createSyntheticSections<ELF32LE>(); 3048 template void elf::createSyntheticSections<ELF32BE>(); 3049 template void elf::createSyntheticSections<ELF64LE>(); 3050 template void elf::createSyntheticSections<ELF64BE>(); 3051 3052 template void elf::writeResult<ELF32LE>(); 3053 template void elf::writeResult<ELF32BE>(); 3054 template void elf::writeResult<ELF64LE>(); 3055 template void elf::writeResult<ELF64BE>(); 3056