xref: /llvm-project-15.0.7/lld/ELF/Writer.cpp (revision bbc5b46a)
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "Writer.h"
11 #include "Config.h"
12 #include "OutputSections.h"
13 #include "SymbolTable.h"
14 #include "Target.h"
15 
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/Support/FileOutputBuffer.h"
18 #include "llvm/Support/StringSaver.h"
19 
20 using namespace llvm;
21 using namespace llvm::ELF;
22 using namespace llvm::object;
23 
24 using namespace lld;
25 using namespace lld::elf2;
26 
27 namespace {
28 // The writer writes a SymbolTable result to a file.
29 template <class ELFT> class Writer {
30 public:
31   typedef typename ELFFile<ELFT>::uintX_t uintX_t;
32   typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
33   typedef typename ELFFile<ELFT>::Elf_Ehdr Elf_Ehdr;
34   typedef typename ELFFile<ELFT>::Elf_Phdr Elf_Phdr;
35   typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym;
36   typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range;
37   typedef typename ELFFile<ELFT>::Elf_Rela Elf_Rela;
38   Writer(SymbolTable<ELFT> &S) : Symtab(S) {}
39   void run();
40 
41 private:
42   void copyLocalSymbols();
43   void createSections();
44   template <bool isRela>
45   void scanRelocs(const InputSection<ELFT> &C,
46                   iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels);
47   void scanRelocs(const InputSection<ELFT> &C);
48   void assignAddresses();
49   void openFile(StringRef OutputPath);
50   void writeHeader();
51   void writeSections();
52   bool needsInterpSection() const {
53     return !Symtab.getSharedFiles().empty() && !Config->DynamicLinker.empty();
54   }
55   bool isOutputDynamic() const {
56     return !Symtab.getSharedFiles().empty() || Config->Shared;
57   }
58   uintX_t getVAStart() const { return Config->Shared ? 0 : Target->getVAStart(); }
59   uintX_t getEntryAddr() const;
60   int getPhdrsNum() const;
61 
62   OutputSection<ELFT> *getBSS();
63   void addCommonSymbols(std::vector<DefinedCommon<ELFT> *> &Syms);
64   void addSharedCopySymbols(std::vector<SharedSymbol<ELFT> *> &Syms);
65 
66   std::unique_ptr<llvm::FileOutputBuffer> Buffer;
67 
68   SpecificBumpPtrAllocator<OutputSection<ELFT>> SecAlloc;
69   SpecificBumpPtrAllocator<MergeOutputSection<ELFT>> MSecAlloc;
70   BumpPtrAllocator Alloc;
71   std::vector<OutputSectionBase<ELFT> *> OutputSections;
72   unsigned getNumSections() const { return OutputSections.size() + 1; }
73 
74   void addStartStopSymbols(OutputSectionBase<ELFT> *Sec);
75   void setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags, uintX_t FileOff,
76                uintX_t VA, uintX_t Size, uintX_t Align);
77   void copyPhdr(Elf_Phdr *PH, OutputSectionBase<ELFT> *From);
78 
79   SymbolTable<ELFT> &Symtab;
80   std::vector<Elf_Phdr> Phdrs;
81 
82   uintX_t FileSize;
83   uintX_t SectionHeaderOff;
84 };
85 } // anonymous namespace
86 
87 template <class ELFT> void lld::elf2::writeResult(SymbolTable<ELFT> *Symtab) {
88   // Initialize output sections that are handled by Writer specially.
89   // Don't reorder because the order of initialization matters.
90   InterpSection<ELFT> Interp;
91   Out<ELFT>::Interp = &Interp;
92   StringTableSection<ELFT> ShStrTab(".shstrtab", false);
93   Out<ELFT>::ShStrTab = &ShStrTab;
94   StringTableSection<ELFT> StrTab(".strtab", false);
95   if (!Config->StripAll)
96     Out<ELFT>::StrTab = &StrTab;
97   StringTableSection<ELFT> DynStrTab(".dynstr", true);
98   Out<ELFT>::DynStrTab = &DynStrTab;
99   GotSection<ELFT> Got;
100   Out<ELFT>::Got = &Got;
101   GotPltSection<ELFT> GotPlt;
102   if (Target->supportsLazyRelocations())
103     Out<ELFT>::GotPlt = &GotPlt;
104   PltSection<ELFT> Plt;
105   Out<ELFT>::Plt = &Plt;
106   std::unique_ptr<SymbolTableSection<ELFT>> SymTab;
107   if (!Config->StripAll) {
108     SymTab.reset(new SymbolTableSection<ELFT>(*Symtab, *Out<ELFT>::StrTab));
109     Out<ELFT>::SymTab = SymTab.get();
110   }
111   SymbolTableSection<ELFT> DynSymTab(*Symtab, *Out<ELFT>::DynStrTab);
112   Out<ELFT>::DynSymTab = &DynSymTab;
113   HashTableSection<ELFT> HashTab;
114   if (Config->SysvHash)
115     Out<ELFT>::HashTab = &HashTab;
116   GnuHashTableSection<ELFT> GnuHashTab;
117   if (Config->GnuHash)
118     Out<ELFT>::GnuHashTab = &GnuHashTab;
119   bool IsRela = Symtab->shouldUseRela();
120   RelocationSection<ELFT> RelaDyn(IsRela ? ".rela.dyn" : ".rel.dyn", IsRela);
121   Out<ELFT>::RelaDyn = &RelaDyn;
122   RelocationSection<ELFT> RelaPlt(IsRela ? ".rela.plt" : ".rel.plt", IsRela);
123   if (Target->supportsLazyRelocations())
124     Out<ELFT>::RelaPlt = &RelaPlt;
125   DynamicSection<ELFT> Dynamic(*Symtab);
126   Out<ELFT>::Dynamic = &Dynamic;
127 
128   Writer<ELFT>(*Symtab).run();
129 }
130 
131 // The main function of the writer.
132 template <class ELFT> void Writer<ELFT>::run() {
133   if (!Config->DiscardAll)
134     copyLocalSymbols();
135   createSections();
136   assignAddresses();
137   openFile(Config->OutputFile);
138   writeHeader();
139   writeSections();
140   error(Buffer->commit());
141 }
142 
143 namespace {
144 template <bool Is64Bits> struct SectionKey {
145   typedef typename std::conditional<Is64Bits, uint64_t, uint32_t>::type uintX_t;
146   StringRef Name;
147   uint32_t Type;
148   uintX_t Flags;
149   uintX_t EntSize;
150 };
151 }
152 namespace llvm {
153 template <bool Is64Bits> struct DenseMapInfo<SectionKey<Is64Bits>> {
154   static SectionKey<Is64Bits> getEmptyKey() {
155     return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0,
156                                 0};
157   }
158   static SectionKey<Is64Bits> getTombstoneKey() {
159     return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0,
160                                 0, 0};
161   }
162   static unsigned getHashValue(const SectionKey<Is64Bits> &Val) {
163     return hash_combine(Val.Name, Val.Type, Val.Flags, Val.EntSize);
164   }
165   static bool isEqual(const SectionKey<Is64Bits> &LHS,
166                       const SectionKey<Is64Bits> &RHS) {
167     return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
168            LHS.Type == RHS.Type && LHS.Flags == RHS.Flags &&
169            LHS.EntSize == RHS.EntSize;
170   }
171 };
172 }
173 
174 // The reason we have to do this early scan is as follows
175 // * To mmap the output file, we need to know the size
176 // * For that, we need to know how many dynamic relocs we will have.
177 // It might be possible to avoid this by outputting the file with write:
178 // * Write the allocated output sections, computing addresses.
179 // * Apply relocations, recording which ones require a dynamic reloc.
180 // * Write the dynamic relocations.
181 // * Write the rest of the file.
182 template <class ELFT>
183 template <bool isRela>
184 void Writer<ELFT>::scanRelocs(
185     const InputSection<ELFT> &C,
186     iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels) {
187   typedef Elf_Rel_Impl<ELFT, isRela> RelType;
188   const ObjectFile<ELFT> &File = *C.getFile();
189   for (const RelType &RI : Rels) {
190     uint32_t SymIndex = RI.getSymbol(Config->Mips64EL);
191     SymbolBody *Body = File.getSymbolBody(SymIndex);
192     uint32_t Type = RI.getType(Config->Mips64EL);
193 
194     // Set "used" bit for --as-needed.
195     if (Body && Body->isUndefined() && !Body->isWeak())
196       if (auto *S = dyn_cast<SharedSymbol<ELFT>>(Body->repl()))
197         S->File->IsUsed = true;
198 
199     if (Body)
200       Body = Body->repl();
201     bool NeedsGot = false;
202     bool NeedsPlt = false;
203     if (Body) {
204       if (auto *E = dyn_cast<SharedSymbol<ELFT>>(Body)) {
205         if (E->needsCopy())
206           continue;
207         if (Target->relocNeedsCopy(Type, *Body))
208           E->OffsetInBSS = 0;
209       }
210       NeedsPlt = Target->relocNeedsPlt(Type, *Body);
211       if (NeedsPlt) {
212         if (Body->isInPlt())
213           continue;
214         Out<ELFT>::Plt->addEntry(Body);
215       }
216       NeedsGot = Target->relocNeedsGot(Type, *Body);
217       if (NeedsGot) {
218         if (NeedsPlt && Target->supportsLazyRelocations()) {
219           Out<ELFT>::GotPlt->addEntry(Body);
220         } else {
221           if (Body->isInGot())
222             continue;
223           Out<ELFT>::Got->addEntry(Body);
224         }
225       }
226     }
227 
228     bool CBP = canBePreempted(Body, NeedsGot);
229     if (!CBP && (!Config->Shared || Target->isRelRelative(Type)))
230       continue;
231     if (CBP)
232       Body->setUsedInDynamicReloc();
233     if (NeedsPlt && Target->supportsLazyRelocations())
234       Out<ELFT>::RelaPlt->addReloc({C, RI});
235     else
236       Out<ELFT>::RelaDyn->addReloc({C, RI});
237   }
238 }
239 
240 template <class ELFT>
241 void Writer<ELFT>::scanRelocs(const InputSection<ELFT> &C) {
242   ObjectFile<ELFT> *File = C.getFile();
243   ELFFile<ELFT> &EObj = File->getObj();
244 
245   if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC))
246     return;
247 
248   for (const Elf_Shdr *RelSec : C.RelocSections) {
249     if (RelSec->sh_type == SHT_RELA)
250       scanRelocs(C, EObj.relas(RelSec));
251     else
252       scanRelocs(C, EObj.rels(RelSec));
253   }
254 }
255 
256 template <class ELFT>
257 static void reportUndefined(const SymbolTable<ELFT> &S, const SymbolBody &Sym) {
258   typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym;
259   typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range;
260 
261   if (Config->Shared && !Config->NoUndefined)
262     return;
263 
264   const Elf_Sym &SymE = cast<ELFSymbolBody<ELFT>>(Sym).Sym;
265   ELFFileBase<ELFT> *SymFile = nullptr;
266 
267   for (const std::unique_ptr<ObjectFile<ELFT>> &File : S.getObjectFiles()) {
268     Elf_Sym_Range Syms = File->getObj().symbols(File->getSymbolTable());
269     if (&SymE > Syms.begin() && &SymE < Syms.end())
270       SymFile = File.get();
271   }
272 
273   std::string Message = "undefined symbol: " + Sym.getName().str();
274   if (SymFile)
275     Message += " in " + SymFile->getName().str();
276   if (Config->NoInhibitExec)
277     warning(Message);
278   else
279     error(Message);
280 }
281 
282 // Local symbols are not in the linker's symbol table. This function scans
283 // each object file's symbol table to copy local symbols to the output.
284 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
285   for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) {
286     for (const Elf_Sym &Sym : F->getLocalSymbols()) {
287       ErrorOr<StringRef> SymNameOrErr = Sym.getName(F->getStringTable());
288       error(SymNameOrErr);
289       StringRef SymName = *SymNameOrErr;
290       if (!shouldKeepInSymtab<ELFT>(*F, SymName, Sym))
291         continue;
292       if (Out<ELFT>::SymTab)
293         Out<ELFT>::SymTab->addLocalSymbol(SymName);
294     }
295   }
296 }
297 
298 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that
299 // we would like to make sure appear is a specific order to maximize their
300 // coverage by a single signed 16-bit offset from the TOC base pointer.
301 // Conversely, the special .tocbss section should be first among all SHT_NOBITS
302 // sections. This will put it next to the loaded special PPC64 sections (and,
303 // thus, within reach of the TOC base pointer).
304 static int getPPC64SectionRank(StringRef SectionName) {
305   return StringSwitch<int>(SectionName)
306            .Case(".tocbss", 0)
307            .Case(".branch_lt", 2)
308            .Case(".toc", 3)
309            .Case(".toc1", 4)
310            .Case(".opd", 5)
311            .Default(1);
312 }
313 
314 // Output section ordering is determined by this function.
315 template <class ELFT>
316 static bool compareOutputSections(OutputSectionBase<ELFT> *A,
317                                   OutputSectionBase<ELFT> *B) {
318   typedef typename ELFFile<ELFT>::uintX_t uintX_t;
319 
320   uintX_t AFlags = A->getFlags();
321   uintX_t BFlags = B->getFlags();
322 
323   // Allocatable sections go first to reduce the total PT_LOAD size and
324   // so debug info doesn't change addresses in actual code.
325   bool AIsAlloc = AFlags & SHF_ALLOC;
326   bool BIsAlloc = BFlags & SHF_ALLOC;
327   if (AIsAlloc != BIsAlloc)
328     return AIsAlloc;
329 
330   // We don't have any special requirements for the relative order of
331   // two non allocatable sections.
332   if (!AIsAlloc)
333     return false;
334 
335   // We want the read only sections first so that they go in the PT_LOAD
336   // covering the program headers at the start of the file.
337   bool AIsWritable = AFlags & SHF_WRITE;
338   bool BIsWritable = BFlags & SHF_WRITE;
339   if (AIsWritable != BIsWritable)
340     return BIsWritable;
341 
342   // For a corresponding reason, put non exec sections first (the program
343   // header PT_LOAD is not executable).
344   bool AIsExec = AFlags & SHF_EXECINSTR;
345   bool BIsExec = BFlags & SHF_EXECINSTR;
346   if (AIsExec != BIsExec)
347     return BIsExec;
348 
349   // If we got here we know that both A and B are in the same PT_LOAD.
350 
351   // The TLS initialization block needs to be a single contiguous block in a R/W
352   // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS
353   // sections are placed here as they don't take up virtual address space in the
354   // PT_LOAD.
355   bool AIsTLS = AFlags & SHF_TLS;
356   bool BIsTLS = BFlags & SHF_TLS;
357   if (AIsTLS != BIsTLS)
358     return AIsTLS;
359 
360   // The next requirement we have is to put nobits sections last. The
361   // reason is that the only thing the dynamic linker will see about
362   // them is a p_memsz that is larger than p_filesz. Seeing that it
363   // zeros the end of the PT_LOAD, so that has to correspond to the
364   // nobits sections.
365   bool AIsNoBits = A->getType() == SHT_NOBITS;
366   bool BIsNoBits = B->getType() == SHT_NOBITS;
367   if (AIsNoBits != BIsNoBits)
368     return BIsNoBits;
369 
370   // Some architectures have additional ordering restrictions for sections
371   // within the same PT_LOAD.
372   if (Config->EMachine == EM_PPC64)
373     return getPPC64SectionRank(A->getName()) <
374            getPPC64SectionRank(B->getName());
375 
376   return false;
377 }
378 
379 template <class ELFT> OutputSection<ELFT> *Writer<ELFT>::getBSS() {
380   if (!Out<ELFT>::Bss) {
381     Out<ELFT>::Bss = new (SecAlloc.Allocate())
382         OutputSection<ELFT>(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE);
383     OutputSections.push_back(Out<ELFT>::Bss);
384   }
385   return Out<ELFT>::Bss;
386 }
387 
388 // Until this function is called, common symbols do not belong to any section.
389 // This function adds them to end of BSS section.
390 template <class ELFT>
391 void Writer<ELFT>::addCommonSymbols(std::vector<DefinedCommon<ELFT> *> &Syms) {
392   typedef typename ELFFile<ELFT>::uintX_t uintX_t;
393   typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym;
394 
395   if (Syms.empty())
396     return;
397 
398   // Sort the common symbols by alignment as an heuristic to pack them better.
399   std::stable_sort(
400     Syms.begin(), Syms.end(),
401     [](const DefinedCommon<ELFT> *A, const DefinedCommon<ELFT> *B) {
402       return A->MaxAlignment > B->MaxAlignment;
403     });
404 
405   uintX_t Off = getBSS()->getSize();
406   for (DefinedCommon<ELFT> *C : Syms) {
407     const Elf_Sym &Sym = C->Sym;
408     uintX_t Align = C->MaxAlignment;
409     Off = RoundUpToAlignment(Off, Align);
410     C->OffsetInBSS = Off;
411     Off += Sym.st_size;
412   }
413 
414   Out<ELFT>::Bss->setSize(Off);
415 }
416 
417 template <class ELFT>
418 void Writer<ELFT>::addSharedCopySymbols(
419     std::vector<SharedSymbol<ELFT> *> &Syms) {
420   typedef typename ELFFile<ELFT>::uintX_t uintX_t;
421   typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym;
422   typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
423 
424   if (Syms.empty())
425     return;
426 
427   uintX_t Off = getBSS()->getSize();
428   for (SharedSymbol<ELFT> *C : Syms) {
429     const Elf_Sym &Sym = C->Sym;
430     const Elf_Shdr *Sec = C->File->getSection(Sym);
431     uintX_t SecAlign = Sec->sh_addralign;
432     uintX_t Align = Sym.st_value % SecAlign;
433     if (Align == 0)
434       Align = SecAlign;
435     Out<ELFT>::Bss->updateAlign(Align);
436     Off = RoundUpToAlignment(Off, Align);
437     C->OffsetInBSS = Off;
438     Off += Sym.st_size;
439   }
440   Out<ELFT>::Bss->setSize(Off);
441 }
442 
443 static StringRef getOutputName(StringRef S) {
444   if (S.startswith(".text."))
445     return ".text";
446   if (S.startswith(".rodata."))
447     return ".rodata";
448   if (S.startswith(".data."))
449     return ".data";
450   if (S.startswith(".bss."))
451     return ".bss";
452   return S;
453 }
454 
455 // Create output section objects and add them to OutputSections.
456 template <class ELFT> void Writer<ELFT>::createSections() {
457   // .interp needs to be on the first page in the output file.
458   if (needsInterpSection())
459     OutputSections.push_back(Out<ELFT>::Interp);
460 
461   SmallDenseMap<SectionKey<ELFT::Is64Bits>, OutputSectionBase<ELFT> *> Map;
462 
463   std::vector<OutputSectionBase<ELFT> *> RegularSections;
464 
465   for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) {
466     for (InputSectionBase<ELFT> *C : F->getSections()) {
467       if (!C || !C->isLive() || C == &InputSection<ELFT>::Discarded)
468         continue;
469       const Elf_Shdr *H = C->getSectionHdr();
470       uintX_t OutFlags = H->sh_flags & ~SHF_GROUP;
471       // For SHF_MERGE we create different output sections for each sh_entsize.
472       // This makes each output section simple and keeps a single level
473       // mapping from input to output.
474       auto *IS = dyn_cast<InputSection<ELFT>>(C);
475       uintX_t EntSize = IS ? 0 : H->sh_entsize;
476       SectionKey<ELFT::Is64Bits> Key{getOutputName(C->getSectionName()),
477                                      H->sh_type, OutFlags, EntSize};
478       OutputSectionBase<ELFT> *&Sec = Map[Key];
479       if (!Sec) {
480         if (IS)
481           Sec = new (SecAlloc.Allocate())
482               OutputSection<ELFT>(Key.Name, Key.Type, Key.Flags);
483         else
484           Sec = new (MSecAlloc.Allocate())
485               MergeOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags);
486         OutputSections.push_back(Sec);
487         RegularSections.push_back(Sec);
488       }
489       if (IS)
490         static_cast<OutputSection<ELFT> *>(Sec)->addSection(IS);
491       else
492         static_cast<MergeOutputSection<ELFT> *>(Sec)
493             ->addSection(cast<MergeInputSection<ELFT>>(C));
494     }
495   }
496 
497   Out<ELFT>::Bss = static_cast<OutputSection<ELFT> *>(
498       Map[{".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE, 0}]);
499 
500   Out<ELFT>::Dynamic->PreInitArraySec = Map.lookup(
501       {".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC, 0});
502   Out<ELFT>::Dynamic->InitArraySec =
503       Map.lookup({".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC, 0});
504   Out<ELFT>::Dynamic->FiniArraySec =
505       Map.lookup({".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC, 0});
506 
507   auto AddStartEnd = [&](StringRef Start, StringRef End,
508                          OutputSectionBase<ELFT> *OS) {
509     if (OS) {
510       Symtab.addSyntheticSym(Start, *OS, 0);
511       Symtab.addSyntheticSym(End, *OS, OS->getSize());
512     } else {
513       Symtab.addIgnoredSym(Start);
514       Symtab.addIgnoredSym(End);
515     }
516   };
517 
518   AddStartEnd("__preinit_array_start", "__preinit_array_end",
519               Out<ELFT>::Dynamic->PreInitArraySec);
520   AddStartEnd("__init_array_start", "__init_array_end",
521               Out<ELFT>::Dynamic->InitArraySec);
522   AddStartEnd("__fini_array_start", "__fini_array_end",
523               Out<ELFT>::Dynamic->FiniArraySec);
524 
525   for (OutputSectionBase<ELFT> *Sec : RegularSections)
526     addStartStopSymbols(Sec);
527 
528   // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For
529   // static linking the linker is required to optimize away any references to
530   // __tls_get_addr, so it's not defined anywhere. Create a hidden definition
531   // to avoid the undefined symbol error.
532   if (!isOutputDynamic())
533     Symtab.addIgnoredSym("__tls_get_addr");
534 
535   // Scan relocations. This must be done after every symbol is declared so that
536   // we can correctly decide if a dynamic relocation is needed.
537   for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles())
538     for (InputSectionBase<ELFT> *B : F->getSections())
539       if (auto *S = dyn_cast_or_null<InputSection<ELFT>>(B))
540         if (S != &InputSection<ELFT>::Discarded)
541           if (S->isLive())
542             scanRelocs(*S);
543 
544   std::vector<DefinedCommon<ELFT> *> CommonSymbols;
545   std::vector<SharedSymbol<ELFT> *> SharedCopySymbols;
546   for (auto &P : Symtab.getSymbols()) {
547     SymbolBody *Body = P.second->Body;
548     if (auto *U = dyn_cast<Undefined<ELFT>>(Body))
549       if (!U->isWeak() && !U->canKeepUndefined())
550         reportUndefined<ELFT>(Symtab, *Body);
551 
552     if (auto *C = dyn_cast<DefinedCommon<ELFT>>(Body))
553       CommonSymbols.push_back(C);
554     if (auto *SC = dyn_cast<SharedSymbol<ELFT>>(Body))
555       if (SC->needsCopy())
556         SharedCopySymbols.push_back(SC);
557 
558     if (!includeInSymtab<ELFT>(*Body))
559       continue;
560     if (Out<ELFT>::SymTab)
561       Out<ELFT>::SymTab->addSymbol(Body);
562 
563     if (isOutputDynamic() && includeInDynamicSymtab(*Body))
564       Out<ELFT>::DynSymTab->addSymbol(Body);
565   }
566   addCommonSymbols(CommonSymbols);
567   addSharedCopySymbols(SharedCopySymbols);
568 
569   // This order is not the same as the final output order
570   // because we sort the sections using their attributes below.
571   if (Out<ELFT>::SymTab)
572     OutputSections.push_back(Out<ELFT>::SymTab);
573   OutputSections.push_back(Out<ELFT>::ShStrTab);
574   if (Out<ELFT>::StrTab)
575     OutputSections.push_back(Out<ELFT>::StrTab);
576   if (isOutputDynamic()) {
577     OutputSections.push_back(Out<ELFT>::DynSymTab);
578     if (Out<ELFT>::GnuHashTab)
579       OutputSections.push_back(Out<ELFT>::GnuHashTab);
580     if (Out<ELFT>::HashTab)
581       OutputSections.push_back(Out<ELFT>::HashTab);
582     OutputSections.push_back(Out<ELFT>::Dynamic);
583     OutputSections.push_back(Out<ELFT>::DynStrTab);
584     if (Out<ELFT>::RelaDyn->hasRelocs())
585       OutputSections.push_back(Out<ELFT>::RelaDyn);
586     if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs())
587       OutputSections.push_back(Out<ELFT>::RelaPlt);
588   }
589   if (!Out<ELFT>::Got->empty())
590     OutputSections.push_back(Out<ELFT>::Got);
591   if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty())
592     OutputSections.push_back(Out<ELFT>::GotPlt);
593   if (!Out<ELFT>::Plt->empty())
594     OutputSections.push_back(Out<ELFT>::Plt);
595 
596   std::stable_sort(OutputSections.begin(), OutputSections.end(),
597                    compareOutputSections<ELFT>);
598 
599   for (unsigned I = 0, N = OutputSections.size(); I < N; ++I)
600     OutputSections[I]->SectionIndex = I + 1;
601 
602   for (OutputSectionBase<ELFT> *Sec : OutputSections)
603     Out<ELFT>::ShStrTab->add(Sec->getName());
604 
605   // Finalizers fix each section's size.
606   // .dynamic section's finalizer may add strings to .dynstr,
607   // so finalize that early.
608   // Likewise, .dynsym is finalized early since that may fill up .gnu.hash.
609   Out<ELFT>::Dynamic->finalize();
610   if (isOutputDynamic())
611     Out<ELFT>::DynSymTab->finalize();
612 
613   // Fill other section headers.
614   for (OutputSectionBase<ELFT> *Sec : OutputSections)
615     Sec->finalize();
616 
617   // If we have a .opd section (used under PPC64 for function descriptors),
618   // store a pointer to it here so that we can use it later when processing
619   // relocations.
620   Out<ELFT>::Opd = Map.lookup({".opd", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC, 0});
621 }
622 
623 static bool isAlpha(char C) {
624   return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z') || C == '_';
625 }
626 
627 static bool isAlnum(char C) { return isAlpha(C) || ('0' <= C && C <= '9'); }
628 
629 // Returns true if S is valid as a C language identifier.
630 static bool isValidCIdentifier(StringRef S) {
631   if (S.empty() || !isAlpha(S[0]))
632     return false;
633   return std::all_of(S.begin() + 1, S.end(), isAlnum);
634 }
635 
636 // If a section name is valid as a C identifier (which is rare because of
637 // the leading '.'), linkers are expected to define __start_<secname> and
638 // __stop_<secname> symbols. They are at beginning and end of the section,
639 // respectively. This is not requested by the ELF standard, but GNU ld and
640 // gold provide the feature, and used by many programs.
641 template <class ELFT>
642 void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) {
643   StringRef S = Sec->getName();
644   if (!isValidCIdentifier(S))
645     return;
646   StringSaver Saver(Alloc);
647   StringRef Start = Saver.save("__start_" + S);
648   StringRef Stop = Saver.save("__stop_" + S);
649   if (Symtab.isUndefined(Start))
650     Symtab.addSyntheticSym(Start, *Sec, 0);
651   if (Symtab.isUndefined(Stop))
652     Symtab.addSyntheticSym(Stop, *Sec, Sec->getSize());
653 }
654 
655 template <class ELFT> static bool needsPhdr(OutputSectionBase<ELFT> *Sec) {
656   return Sec->getFlags() & SHF_ALLOC;
657 }
658 
659 static uint32_t toPhdrFlags(uint64_t Flags) {
660   uint32_t Ret = PF_R;
661   if (Flags & SHF_WRITE)
662     Ret |= PF_W;
663   if (Flags & SHF_EXECINSTR)
664     Ret |= PF_X;
665   return Ret;
666 }
667 
668 // Visits all sections to create PHDRs and to assign incremental,
669 // non-overlapping addresses to output sections.
670 template <class ELFT> void Writer<ELFT>::assignAddresses() {
671   uintX_t VA = getVAStart() + sizeof(Elf_Ehdr);
672   uintX_t FileOff = sizeof(Elf_Ehdr);
673 
674   // Calculate and reserve the space for the program header first so that
675   // the first section can start right after the program header.
676   Phdrs.resize(getPhdrsNum());
677   size_t PhdrSize = sizeof(Elf_Phdr) * Phdrs.size();
678 
679   // The first phdr entry is PT_PHDR which describes the program header itself.
680   setPhdr(&Phdrs[0], PT_PHDR, PF_R, FileOff, VA, PhdrSize, /*Align=*/8);
681   FileOff += PhdrSize;
682   VA += PhdrSize;
683 
684   // PT_INTERP must be the second entry if exists.
685   int PhdrIdx = 0;
686   Elf_Phdr *Interp = nullptr;
687   if (needsInterpSection())
688     Interp = &Phdrs[++PhdrIdx];
689 
690   // Add the first PT_LOAD segment for regular output sections.
691   setPhdr(&Phdrs[++PhdrIdx], PT_LOAD, PF_R, 0, getVAStart(), FileOff,
692           Target->getPageSize());
693 
694   Elf_Phdr TlsPhdr{};
695   uintX_t ThreadBSSOffset = 0;
696   // Create phdrs as we assign VAs and file offsets to all output sections.
697   for (OutputSectionBase<ELFT> *Sec : OutputSections) {
698     if (needsPhdr<ELFT>(Sec)) {
699       uintX_t Flags = toPhdrFlags(Sec->getFlags());
700       if (Phdrs[PhdrIdx].p_flags != Flags) {
701         // Flags changed. Create a new PT_LOAD.
702         VA = RoundUpToAlignment(VA, Target->getPageSize());
703         FileOff = RoundUpToAlignment(FileOff, Target->getPageSize());
704         Elf_Phdr *PH = &Phdrs[++PhdrIdx];
705         setPhdr(PH, PT_LOAD, Flags, FileOff, VA, 0, Target->getPageSize());
706       }
707 
708       if (Sec->getFlags() & SHF_TLS) {
709         if (!TlsPhdr.p_vaddr) {
710           setPhdr(&TlsPhdr, PT_TLS, PF_R, FileOff, VA, 0, Sec->getAlign());
711           Out<ELFT>::TlsInitImageVA = VA;
712         }
713         if (Sec->getType() != SHT_NOBITS)
714           VA = RoundUpToAlignment(VA, Sec->getAlign());
715         uintX_t TVA = RoundUpToAlignment(VA + ThreadBSSOffset, Sec->getAlign());
716         Sec->setVA(TVA);
717         TlsPhdr.p_memsz += Sec->getSize();
718         if (Sec->getType() == SHT_NOBITS) {
719           ThreadBSSOffset = TVA - VA + Sec->getSize();
720         } else {
721           TlsPhdr.p_filesz += Sec->getSize();
722           VA += Sec->getSize();
723         }
724         TlsPhdr.p_align = std::max<uintX_t>(TlsPhdr.p_align, Sec->getAlign());
725       } else {
726         VA = RoundUpToAlignment(VA, Sec->getAlign());
727         Sec->setVA(VA);
728         VA += Sec->getSize();
729       }
730     }
731 
732     FileOff = RoundUpToAlignment(FileOff, Sec->getAlign());
733     Sec->setFileOffset(FileOff);
734     if (Sec->getType() != SHT_NOBITS)
735       FileOff += Sec->getSize();
736     if (needsPhdr<ELFT>(Sec)) {
737       Elf_Phdr *Cur = &Phdrs[PhdrIdx];
738       Cur->p_filesz = FileOff - Cur->p_offset;
739       Cur->p_memsz = VA - Cur->p_vaddr;
740     }
741   }
742 
743   if (TlsPhdr.p_vaddr)
744     Phdrs[++PhdrIdx] = TlsPhdr;
745 
746   // Add an entry for .dynamic.
747   if (isOutputDynamic()) {
748     Elf_Phdr *PH = &Phdrs[++PhdrIdx];
749     PH->p_type = PT_DYNAMIC;
750     copyPhdr(PH, Out<ELFT>::Dynamic);
751   }
752 
753   // Fix up PT_INTERP as we now know the address of .interp section.
754   if (Interp) {
755     Interp->p_type = PT_INTERP;
756     copyPhdr(Interp, Out<ELFT>::Interp);
757   }
758 
759   // Add space for section headers.
760   SectionHeaderOff = RoundUpToAlignment(FileOff, ELFT::Is64Bits ? 8 : 4);
761   FileSize = SectionHeaderOff + getNumSections() * sizeof(Elf_Shdr);
762 }
763 
764 // Returns the number of PHDR entries.
765 template <class ELFT> int Writer<ELFT>::getPhdrsNum() const {
766   bool Tls = false;
767   int I = 2; // 2 for PT_PHDR and the first PT_LOAD
768   if (needsInterpSection())
769     ++I;
770   if (isOutputDynamic())
771     ++I;
772   uintX_t Last = PF_R;
773   for (OutputSectionBase<ELFT> *Sec : OutputSections) {
774     if (!needsPhdr<ELFT>(Sec))
775       continue;
776     if (Sec->getFlags() & SHF_TLS)
777       Tls = true;
778     uintX_t Flags = toPhdrFlags(Sec->getFlags());
779     if (Last != Flags) {
780       Last = Flags;
781       ++I;
782     }
783   }
784   if (Tls)
785     ++I;
786   return I;
787 }
788 
789 template <class ELFT> void Writer<ELFT>::writeHeader() {
790   uint8_t *Buf = Buffer->getBufferStart();
791   memcpy(Buf, "\177ELF", 4);
792 
793   // Write the ELF header.
794   auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf);
795   EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
796   EHdr->e_ident[EI_DATA] = ELFT::TargetEndianness == llvm::support::little
797                                ? ELFDATA2LSB
798                                : ELFDATA2MSB;
799   EHdr->e_ident[EI_VERSION] = EV_CURRENT;
800 
801   auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf);
802   EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI();
803 
804   EHdr->e_type = Config->Shared ? ET_DYN : ET_EXEC;
805   EHdr->e_machine = FirstObj.getEMachine();
806   EHdr->e_version = EV_CURRENT;
807   EHdr->e_entry = getEntryAddr();
808   EHdr->e_phoff = sizeof(Elf_Ehdr);
809   EHdr->e_shoff = SectionHeaderOff;
810   EHdr->e_ehsize = sizeof(Elf_Ehdr);
811   EHdr->e_phentsize = sizeof(Elf_Phdr);
812   EHdr->e_phnum = Phdrs.size();
813   EHdr->e_shentsize = sizeof(Elf_Shdr);
814   EHdr->e_shnum = getNumSections();
815   EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex;
816 
817   // Write the program header table.
818   memcpy(Buf + EHdr->e_phoff, &Phdrs[0], Phdrs.size() * sizeof(Phdrs[0]));
819 
820   // Write the section header table. Note that the first table entry is null.
821   auto SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff);
822   for (OutputSectionBase<ELFT> *Sec : OutputSections)
823     Sec->writeHeaderTo(++SHdrs);
824 }
825 
826 template <class ELFT> void Writer<ELFT>::openFile(StringRef Path) {
827   ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
828       FileOutputBuffer::create(Path, FileSize, FileOutputBuffer::F_executable);
829   error(BufferOrErr, Twine("failed to open ") + Path);
830   Buffer = std::move(*BufferOrErr);
831 }
832 
833 // Write section contents to a mmap'ed file.
834 template <class ELFT> void Writer<ELFT>::writeSections() {
835   uint8_t *Buf = Buffer->getBufferStart();
836 
837   // PPC64 needs to process relocations in the .opd section before processing
838   // relocations in code-containing sections.
839   if (OutputSectionBase<ELFT> *Sec = Out<ELFT>::Opd) {
840     Out<ELFT>::OpdBuf = Buf + Sec->getFileOff();
841     Sec->writeTo(Buf + Sec->getFileOff());
842   }
843 
844   for (OutputSectionBase<ELFT> *Sec : OutputSections)
845     if (Sec != Out<ELFT>::Opd)
846       Sec->writeTo(Buf + Sec->getFileOff());
847 }
848 
849 template <class ELFT>
850 typename ELFFile<ELFT>::uintX_t Writer<ELFT>::getEntryAddr() const {
851   if (Config->EntrySym) {
852     if (auto *E = dyn_cast<ELFSymbolBody<ELFT>>(Config->EntrySym->repl()))
853       return getSymVA<ELFT>(*E);
854     return 0;
855   }
856   if (Config->EntryAddr != uint64_t(-1))
857     return Config->EntryAddr;
858   return 0;
859 }
860 
861 template <class ELFT>
862 void Writer<ELFT>::setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags,
863                            uintX_t FileOff, uintX_t VA, uintX_t Size,
864                            uintX_t Align) {
865   PH->p_type = Type;
866   PH->p_flags = Flags;
867   PH->p_offset = FileOff;
868   PH->p_vaddr = VA;
869   PH->p_paddr = VA;
870   PH->p_filesz = Size;
871   PH->p_memsz = Size;
872   PH->p_align = Align;
873 }
874 
875 template <class ELFT>
876 void Writer<ELFT>::copyPhdr(Elf_Phdr *PH, OutputSectionBase<ELFT> *From) {
877   PH->p_flags = toPhdrFlags(From->getFlags());
878   PH->p_offset = From->getFileOff();
879   PH->p_vaddr = From->getVA();
880   PH->p_paddr = From->getVA();
881   PH->p_filesz = From->getSize();
882   PH->p_memsz = From->getSize();
883   PH->p_align = From->getAlign();
884 }
885 
886 template void lld::elf2::writeResult<ELF32LE>(SymbolTable<ELF32LE> *Symtab);
887 template void lld::elf2::writeResult<ELF32BE>(SymbolTable<ELF32BE> *Symtab);
888 template void lld::elf2::writeResult<ELF64LE>(SymbolTable<ELF64LE> *Symtab);
889 template void lld::elf2::writeResult<ELF64BE>(SymbolTable<ELF64BE> *Symtab);
890