1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "Writer.h" 11 #include "Config.h" 12 #include "OutputSections.h" 13 #include "SymbolTable.h" 14 #include "Target.h" 15 16 #include "llvm/ADT/StringSwitch.h" 17 #include "llvm/Support/FileOutputBuffer.h" 18 #include "llvm/Support/StringSaver.h" 19 20 using namespace llvm; 21 using namespace llvm::ELF; 22 using namespace llvm::object; 23 24 using namespace lld; 25 using namespace lld::elf2; 26 27 namespace { 28 // The writer writes a SymbolTable result to a file. 29 template <class ELFT> class Writer { 30 public: 31 typedef typename ELFFile<ELFT>::uintX_t uintX_t; 32 typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr; 33 typedef typename ELFFile<ELFT>::Elf_Ehdr Elf_Ehdr; 34 typedef typename ELFFile<ELFT>::Elf_Phdr Elf_Phdr; 35 typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; 36 typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range; 37 typedef typename ELFFile<ELFT>::Elf_Rela Elf_Rela; 38 Writer(SymbolTable<ELFT> &S) : Symtab(S) {} 39 void run(); 40 41 private: 42 void copyLocalSymbols(); 43 void createSections(); 44 template <bool isRela> 45 void scanRelocs(const InputSection<ELFT> &C, 46 iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels); 47 void scanRelocs(const InputSection<ELFT> &C); 48 void assignAddresses(); 49 void openFile(StringRef OutputPath); 50 void writeHeader(); 51 void writeSections(); 52 bool needsInterpSection() const { 53 return !Symtab.getSharedFiles().empty() && !Config->DynamicLinker.empty(); 54 } 55 bool isOutputDynamic() const { 56 return !Symtab.getSharedFiles().empty() || Config->Shared; 57 } 58 uintX_t getVAStart() const { return Config->Shared ? 0 : Target->getVAStart(); } 59 uintX_t getEntryAddr() const; 60 int getPhdrsNum() const; 61 62 OutputSection<ELFT> *getBSS(); 63 void addCommonSymbols(std::vector<DefinedCommon<ELFT> *> &Syms); 64 void addSharedCopySymbols(std::vector<SharedSymbol<ELFT> *> &Syms); 65 66 std::unique_ptr<llvm::FileOutputBuffer> Buffer; 67 68 SpecificBumpPtrAllocator<OutputSection<ELFT>> SecAlloc; 69 SpecificBumpPtrAllocator<MergeOutputSection<ELFT>> MSecAlloc; 70 BumpPtrAllocator Alloc; 71 std::vector<OutputSectionBase<ELFT> *> OutputSections; 72 unsigned getNumSections() const { return OutputSections.size() + 1; } 73 74 void addStartStopSymbols(OutputSectionBase<ELFT> *Sec); 75 void setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags, uintX_t FileOff, 76 uintX_t VA, uintX_t Size, uintX_t Align); 77 void copyPhdr(Elf_Phdr *PH, OutputSectionBase<ELFT> *From); 78 79 SymbolTable<ELFT> &Symtab; 80 std::vector<Elf_Phdr> Phdrs; 81 82 uintX_t FileSize; 83 uintX_t SectionHeaderOff; 84 }; 85 } // anonymous namespace 86 87 template <class ELFT> void lld::elf2::writeResult(SymbolTable<ELFT> *Symtab) { 88 // Initialize output sections that are handled by Writer specially. 89 // Don't reorder because the order of initialization matters. 90 InterpSection<ELFT> Interp; 91 Out<ELFT>::Interp = &Interp; 92 StringTableSection<ELFT> ShStrTab(".shstrtab", false); 93 Out<ELFT>::ShStrTab = &ShStrTab; 94 StringTableSection<ELFT> StrTab(".strtab", false); 95 if (!Config->StripAll) 96 Out<ELFT>::StrTab = &StrTab; 97 StringTableSection<ELFT> DynStrTab(".dynstr", true); 98 Out<ELFT>::DynStrTab = &DynStrTab; 99 GotSection<ELFT> Got; 100 Out<ELFT>::Got = &Got; 101 GotPltSection<ELFT> GotPlt; 102 if (Target->supportsLazyRelocations()) 103 Out<ELFT>::GotPlt = &GotPlt; 104 PltSection<ELFT> Plt; 105 Out<ELFT>::Plt = &Plt; 106 std::unique_ptr<SymbolTableSection<ELFT>> SymTab; 107 if (!Config->StripAll) { 108 SymTab.reset(new SymbolTableSection<ELFT>(*Symtab, *Out<ELFT>::StrTab)); 109 Out<ELFT>::SymTab = SymTab.get(); 110 } 111 SymbolTableSection<ELFT> DynSymTab(*Symtab, *Out<ELFT>::DynStrTab); 112 Out<ELFT>::DynSymTab = &DynSymTab; 113 HashTableSection<ELFT> HashTab; 114 if (Config->SysvHash) 115 Out<ELFT>::HashTab = &HashTab; 116 GnuHashTableSection<ELFT> GnuHashTab; 117 if (Config->GnuHash) 118 Out<ELFT>::GnuHashTab = &GnuHashTab; 119 bool IsRela = Symtab->shouldUseRela(); 120 RelocationSection<ELFT> RelaDyn(IsRela ? ".rela.dyn" : ".rel.dyn", IsRela); 121 Out<ELFT>::RelaDyn = &RelaDyn; 122 RelocationSection<ELFT> RelaPlt(IsRela ? ".rela.plt" : ".rel.plt", IsRela); 123 if (Target->supportsLazyRelocations()) 124 Out<ELFT>::RelaPlt = &RelaPlt; 125 DynamicSection<ELFT> Dynamic(*Symtab); 126 Out<ELFT>::Dynamic = &Dynamic; 127 128 Writer<ELFT>(*Symtab).run(); 129 } 130 131 // The main function of the writer. 132 template <class ELFT> void Writer<ELFT>::run() { 133 if (!Config->DiscardAll) 134 copyLocalSymbols(); 135 createSections(); 136 assignAddresses(); 137 openFile(Config->OutputFile); 138 writeHeader(); 139 writeSections(); 140 error(Buffer->commit()); 141 } 142 143 namespace { 144 template <bool Is64Bits> struct SectionKey { 145 typedef typename std::conditional<Is64Bits, uint64_t, uint32_t>::type uintX_t; 146 StringRef Name; 147 uint32_t Type; 148 uintX_t Flags; 149 uintX_t EntSize; 150 }; 151 } 152 namespace llvm { 153 template <bool Is64Bits> struct DenseMapInfo<SectionKey<Is64Bits>> { 154 static SectionKey<Is64Bits> getEmptyKey() { 155 return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, 156 0}; 157 } 158 static SectionKey<Is64Bits> getTombstoneKey() { 159 return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 160 0, 0}; 161 } 162 static unsigned getHashValue(const SectionKey<Is64Bits> &Val) { 163 return hash_combine(Val.Name, Val.Type, Val.Flags, Val.EntSize); 164 } 165 static bool isEqual(const SectionKey<Is64Bits> &LHS, 166 const SectionKey<Is64Bits> &RHS) { 167 return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) && 168 LHS.Type == RHS.Type && LHS.Flags == RHS.Flags && 169 LHS.EntSize == RHS.EntSize; 170 } 171 }; 172 } 173 174 // The reason we have to do this early scan is as follows 175 // * To mmap the output file, we need to know the size 176 // * For that, we need to know how many dynamic relocs we will have. 177 // It might be possible to avoid this by outputting the file with write: 178 // * Write the allocated output sections, computing addresses. 179 // * Apply relocations, recording which ones require a dynamic reloc. 180 // * Write the dynamic relocations. 181 // * Write the rest of the file. 182 template <class ELFT> 183 template <bool isRela> 184 void Writer<ELFT>::scanRelocs( 185 const InputSection<ELFT> &C, 186 iterator_range<const Elf_Rel_Impl<ELFT, isRela> *> Rels) { 187 typedef Elf_Rel_Impl<ELFT, isRela> RelType; 188 const ObjectFile<ELFT> &File = *C.getFile(); 189 for (const RelType &RI : Rels) { 190 uint32_t SymIndex = RI.getSymbol(Config->Mips64EL); 191 SymbolBody *Body = File.getSymbolBody(SymIndex); 192 uint32_t Type = RI.getType(Config->Mips64EL); 193 194 // Set "used" bit for --as-needed. 195 if (Body && Body->isUndefined() && !Body->isWeak()) 196 if (auto *S = dyn_cast<SharedSymbol<ELFT>>(Body->repl())) 197 S->File->IsUsed = true; 198 199 if (Body) 200 Body = Body->repl(); 201 bool NeedsGot = false; 202 bool NeedsPlt = false; 203 if (Body) { 204 if (auto *E = dyn_cast<SharedSymbol<ELFT>>(Body)) { 205 if (E->needsCopy()) 206 continue; 207 if (Target->relocNeedsCopy(Type, *Body)) 208 E->OffsetInBSS = 0; 209 } 210 NeedsPlt = Target->relocNeedsPlt(Type, *Body); 211 if (NeedsPlt) { 212 if (Body->isInPlt()) 213 continue; 214 Out<ELFT>::Plt->addEntry(Body); 215 } 216 NeedsGot = Target->relocNeedsGot(Type, *Body); 217 if (NeedsGot) { 218 if (NeedsPlt && Target->supportsLazyRelocations()) { 219 Out<ELFT>::GotPlt->addEntry(Body); 220 } else { 221 if (Body->isInGot()) 222 continue; 223 Out<ELFT>::Got->addEntry(Body); 224 } 225 } 226 } 227 228 bool CBP = canBePreempted(Body, NeedsGot); 229 if (!CBP && (!Config->Shared || Target->isRelRelative(Type))) 230 continue; 231 if (CBP) 232 Body->setUsedInDynamicReloc(); 233 if (NeedsPlt && Target->supportsLazyRelocations()) 234 Out<ELFT>::RelaPlt->addReloc({C, RI}); 235 else 236 Out<ELFT>::RelaDyn->addReloc({C, RI}); 237 } 238 } 239 240 template <class ELFT> 241 void Writer<ELFT>::scanRelocs(const InputSection<ELFT> &C) { 242 ObjectFile<ELFT> *File = C.getFile(); 243 ELFFile<ELFT> &EObj = File->getObj(); 244 245 if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC)) 246 return; 247 248 for (const Elf_Shdr *RelSec : C.RelocSections) { 249 if (RelSec->sh_type == SHT_RELA) 250 scanRelocs(C, EObj.relas(RelSec)); 251 else 252 scanRelocs(C, EObj.rels(RelSec)); 253 } 254 } 255 256 template <class ELFT> 257 static void reportUndefined(const SymbolTable<ELFT> &S, const SymbolBody &Sym) { 258 typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; 259 typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range; 260 261 if (Config->Shared && !Config->NoUndefined) 262 return; 263 264 const Elf_Sym &SymE = cast<ELFSymbolBody<ELFT>>(Sym).Sym; 265 ELFFileBase<ELFT> *SymFile = nullptr; 266 267 for (const std::unique_ptr<ObjectFile<ELFT>> &File : S.getObjectFiles()) { 268 Elf_Sym_Range Syms = File->getObj().symbols(File->getSymbolTable()); 269 if (&SymE > Syms.begin() && &SymE < Syms.end()) 270 SymFile = File.get(); 271 } 272 273 std::string Message = "undefined symbol: " + Sym.getName().str(); 274 if (SymFile) 275 Message += " in " + SymFile->getName().str(); 276 if (Config->NoInhibitExec) 277 warning(Message); 278 else 279 error(Message); 280 } 281 282 // Local symbols are not in the linker's symbol table. This function scans 283 // each object file's symbol table to copy local symbols to the output. 284 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 285 for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) { 286 for (const Elf_Sym &Sym : F->getLocalSymbols()) { 287 ErrorOr<StringRef> SymNameOrErr = Sym.getName(F->getStringTable()); 288 error(SymNameOrErr); 289 StringRef SymName = *SymNameOrErr; 290 if (!shouldKeepInSymtab<ELFT>(*F, SymName, Sym)) 291 continue; 292 if (Out<ELFT>::SymTab) 293 Out<ELFT>::SymTab->addLocalSymbol(SymName); 294 } 295 } 296 } 297 298 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that 299 // we would like to make sure appear is a specific order to maximize their 300 // coverage by a single signed 16-bit offset from the TOC base pointer. 301 // Conversely, the special .tocbss section should be first among all SHT_NOBITS 302 // sections. This will put it next to the loaded special PPC64 sections (and, 303 // thus, within reach of the TOC base pointer). 304 static int getPPC64SectionRank(StringRef SectionName) { 305 return StringSwitch<int>(SectionName) 306 .Case(".tocbss", 0) 307 .Case(".branch_lt", 2) 308 .Case(".toc", 3) 309 .Case(".toc1", 4) 310 .Case(".opd", 5) 311 .Default(1); 312 } 313 314 // Output section ordering is determined by this function. 315 template <class ELFT> 316 static bool compareOutputSections(OutputSectionBase<ELFT> *A, 317 OutputSectionBase<ELFT> *B) { 318 typedef typename ELFFile<ELFT>::uintX_t uintX_t; 319 320 uintX_t AFlags = A->getFlags(); 321 uintX_t BFlags = B->getFlags(); 322 323 // Allocatable sections go first to reduce the total PT_LOAD size and 324 // so debug info doesn't change addresses in actual code. 325 bool AIsAlloc = AFlags & SHF_ALLOC; 326 bool BIsAlloc = BFlags & SHF_ALLOC; 327 if (AIsAlloc != BIsAlloc) 328 return AIsAlloc; 329 330 // We don't have any special requirements for the relative order of 331 // two non allocatable sections. 332 if (!AIsAlloc) 333 return false; 334 335 // We want the read only sections first so that they go in the PT_LOAD 336 // covering the program headers at the start of the file. 337 bool AIsWritable = AFlags & SHF_WRITE; 338 bool BIsWritable = BFlags & SHF_WRITE; 339 if (AIsWritable != BIsWritable) 340 return BIsWritable; 341 342 // For a corresponding reason, put non exec sections first (the program 343 // header PT_LOAD is not executable). 344 bool AIsExec = AFlags & SHF_EXECINSTR; 345 bool BIsExec = BFlags & SHF_EXECINSTR; 346 if (AIsExec != BIsExec) 347 return BIsExec; 348 349 // If we got here we know that both A and B are in the same PT_LOAD. 350 351 // The TLS initialization block needs to be a single contiguous block in a R/W 352 // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS 353 // sections are placed here as they don't take up virtual address space in the 354 // PT_LOAD. 355 bool AIsTLS = AFlags & SHF_TLS; 356 bool BIsTLS = BFlags & SHF_TLS; 357 if (AIsTLS != BIsTLS) 358 return AIsTLS; 359 360 // The next requirement we have is to put nobits sections last. The 361 // reason is that the only thing the dynamic linker will see about 362 // them is a p_memsz that is larger than p_filesz. Seeing that it 363 // zeros the end of the PT_LOAD, so that has to correspond to the 364 // nobits sections. 365 bool AIsNoBits = A->getType() == SHT_NOBITS; 366 bool BIsNoBits = B->getType() == SHT_NOBITS; 367 if (AIsNoBits != BIsNoBits) 368 return BIsNoBits; 369 370 // Some architectures have additional ordering restrictions for sections 371 // within the same PT_LOAD. 372 if (Config->EMachine == EM_PPC64) 373 return getPPC64SectionRank(A->getName()) < 374 getPPC64SectionRank(B->getName()); 375 376 return false; 377 } 378 379 template <class ELFT> OutputSection<ELFT> *Writer<ELFT>::getBSS() { 380 if (!Out<ELFT>::Bss) { 381 Out<ELFT>::Bss = new (SecAlloc.Allocate()) 382 OutputSection<ELFT>(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); 383 OutputSections.push_back(Out<ELFT>::Bss); 384 } 385 return Out<ELFT>::Bss; 386 } 387 388 // Until this function is called, common symbols do not belong to any section. 389 // This function adds them to end of BSS section. 390 template <class ELFT> 391 void Writer<ELFT>::addCommonSymbols(std::vector<DefinedCommon<ELFT> *> &Syms) { 392 typedef typename ELFFile<ELFT>::uintX_t uintX_t; 393 typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; 394 395 if (Syms.empty()) 396 return; 397 398 // Sort the common symbols by alignment as an heuristic to pack them better. 399 std::stable_sort( 400 Syms.begin(), Syms.end(), 401 [](const DefinedCommon<ELFT> *A, const DefinedCommon<ELFT> *B) { 402 return A->MaxAlignment > B->MaxAlignment; 403 }); 404 405 uintX_t Off = getBSS()->getSize(); 406 for (DefinedCommon<ELFT> *C : Syms) { 407 const Elf_Sym &Sym = C->Sym; 408 uintX_t Align = C->MaxAlignment; 409 Off = RoundUpToAlignment(Off, Align); 410 C->OffsetInBSS = Off; 411 Off += Sym.st_size; 412 } 413 414 Out<ELFT>::Bss->setSize(Off); 415 } 416 417 template <class ELFT> 418 void Writer<ELFT>::addSharedCopySymbols( 419 std::vector<SharedSymbol<ELFT> *> &Syms) { 420 typedef typename ELFFile<ELFT>::uintX_t uintX_t; 421 typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; 422 typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr; 423 424 if (Syms.empty()) 425 return; 426 427 uintX_t Off = getBSS()->getSize(); 428 for (SharedSymbol<ELFT> *C : Syms) { 429 const Elf_Sym &Sym = C->Sym; 430 const Elf_Shdr *Sec = C->File->getSection(Sym); 431 uintX_t SecAlign = Sec->sh_addralign; 432 uintX_t Align = Sym.st_value % SecAlign; 433 if (Align == 0) 434 Align = SecAlign; 435 Out<ELFT>::Bss->updateAlign(Align); 436 Off = RoundUpToAlignment(Off, Align); 437 C->OffsetInBSS = Off; 438 Off += Sym.st_size; 439 } 440 Out<ELFT>::Bss->setSize(Off); 441 } 442 443 static StringRef getOutputName(StringRef S) { 444 if (S.startswith(".text.")) 445 return ".text"; 446 if (S.startswith(".rodata.")) 447 return ".rodata"; 448 if (S.startswith(".data.")) 449 return ".data"; 450 if (S.startswith(".bss.")) 451 return ".bss"; 452 return S; 453 } 454 455 // Create output section objects and add them to OutputSections. 456 template <class ELFT> void Writer<ELFT>::createSections() { 457 // .interp needs to be on the first page in the output file. 458 if (needsInterpSection()) 459 OutputSections.push_back(Out<ELFT>::Interp); 460 461 SmallDenseMap<SectionKey<ELFT::Is64Bits>, OutputSectionBase<ELFT> *> Map; 462 463 std::vector<OutputSectionBase<ELFT> *> RegularSections; 464 465 for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) { 466 for (InputSectionBase<ELFT> *C : F->getSections()) { 467 if (!C || !C->isLive() || C == &InputSection<ELFT>::Discarded) 468 continue; 469 const Elf_Shdr *H = C->getSectionHdr(); 470 uintX_t OutFlags = H->sh_flags & ~SHF_GROUP; 471 // For SHF_MERGE we create different output sections for each sh_entsize. 472 // This makes each output section simple and keeps a single level 473 // mapping from input to output. 474 auto *IS = dyn_cast<InputSection<ELFT>>(C); 475 uintX_t EntSize = IS ? 0 : H->sh_entsize; 476 SectionKey<ELFT::Is64Bits> Key{getOutputName(C->getSectionName()), 477 H->sh_type, OutFlags, EntSize}; 478 OutputSectionBase<ELFT> *&Sec = Map[Key]; 479 if (!Sec) { 480 if (IS) 481 Sec = new (SecAlloc.Allocate()) 482 OutputSection<ELFT>(Key.Name, Key.Type, Key.Flags); 483 else 484 Sec = new (MSecAlloc.Allocate()) 485 MergeOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags); 486 OutputSections.push_back(Sec); 487 RegularSections.push_back(Sec); 488 } 489 if (IS) 490 static_cast<OutputSection<ELFT> *>(Sec)->addSection(IS); 491 else 492 static_cast<MergeOutputSection<ELFT> *>(Sec) 493 ->addSection(cast<MergeInputSection<ELFT>>(C)); 494 } 495 } 496 497 Out<ELFT>::Bss = static_cast<OutputSection<ELFT> *>( 498 Map[{".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE, 0}]); 499 500 Out<ELFT>::Dynamic->PreInitArraySec = Map.lookup( 501 {".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC, 0}); 502 Out<ELFT>::Dynamic->InitArraySec = 503 Map.lookup({".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC, 0}); 504 Out<ELFT>::Dynamic->FiniArraySec = 505 Map.lookup({".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC, 0}); 506 507 auto AddStartEnd = [&](StringRef Start, StringRef End, 508 OutputSectionBase<ELFT> *OS) { 509 if (OS) { 510 Symtab.addSyntheticSym(Start, *OS, 0); 511 Symtab.addSyntheticSym(End, *OS, OS->getSize()); 512 } else { 513 Symtab.addIgnoredSym(Start); 514 Symtab.addIgnoredSym(End); 515 } 516 }; 517 518 AddStartEnd("__preinit_array_start", "__preinit_array_end", 519 Out<ELFT>::Dynamic->PreInitArraySec); 520 AddStartEnd("__init_array_start", "__init_array_end", 521 Out<ELFT>::Dynamic->InitArraySec); 522 AddStartEnd("__fini_array_start", "__fini_array_end", 523 Out<ELFT>::Dynamic->FiniArraySec); 524 525 for (OutputSectionBase<ELFT> *Sec : RegularSections) 526 addStartStopSymbols(Sec); 527 528 // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For 529 // static linking the linker is required to optimize away any references to 530 // __tls_get_addr, so it's not defined anywhere. Create a hidden definition 531 // to avoid the undefined symbol error. 532 if (!isOutputDynamic()) 533 Symtab.addIgnoredSym("__tls_get_addr"); 534 535 // Scan relocations. This must be done after every symbol is declared so that 536 // we can correctly decide if a dynamic relocation is needed. 537 for (const std::unique_ptr<ObjectFile<ELFT>> &F : Symtab.getObjectFiles()) 538 for (InputSectionBase<ELFT> *B : F->getSections()) 539 if (auto *S = dyn_cast_or_null<InputSection<ELFT>>(B)) 540 if (S != &InputSection<ELFT>::Discarded) 541 if (S->isLive()) 542 scanRelocs(*S); 543 544 std::vector<DefinedCommon<ELFT> *> CommonSymbols; 545 std::vector<SharedSymbol<ELFT> *> SharedCopySymbols; 546 for (auto &P : Symtab.getSymbols()) { 547 SymbolBody *Body = P.second->Body; 548 if (auto *U = dyn_cast<Undefined<ELFT>>(Body)) 549 if (!U->isWeak() && !U->canKeepUndefined()) 550 reportUndefined<ELFT>(Symtab, *Body); 551 552 if (auto *C = dyn_cast<DefinedCommon<ELFT>>(Body)) 553 CommonSymbols.push_back(C); 554 if (auto *SC = dyn_cast<SharedSymbol<ELFT>>(Body)) 555 if (SC->needsCopy()) 556 SharedCopySymbols.push_back(SC); 557 558 if (!includeInSymtab<ELFT>(*Body)) 559 continue; 560 if (Out<ELFT>::SymTab) 561 Out<ELFT>::SymTab->addSymbol(Body); 562 563 if (isOutputDynamic() && includeInDynamicSymtab(*Body)) 564 Out<ELFT>::DynSymTab->addSymbol(Body); 565 } 566 addCommonSymbols(CommonSymbols); 567 addSharedCopySymbols(SharedCopySymbols); 568 569 // This order is not the same as the final output order 570 // because we sort the sections using their attributes below. 571 if (Out<ELFT>::SymTab) 572 OutputSections.push_back(Out<ELFT>::SymTab); 573 OutputSections.push_back(Out<ELFT>::ShStrTab); 574 if (Out<ELFT>::StrTab) 575 OutputSections.push_back(Out<ELFT>::StrTab); 576 if (isOutputDynamic()) { 577 OutputSections.push_back(Out<ELFT>::DynSymTab); 578 if (Out<ELFT>::GnuHashTab) 579 OutputSections.push_back(Out<ELFT>::GnuHashTab); 580 if (Out<ELFT>::HashTab) 581 OutputSections.push_back(Out<ELFT>::HashTab); 582 OutputSections.push_back(Out<ELFT>::Dynamic); 583 OutputSections.push_back(Out<ELFT>::DynStrTab); 584 if (Out<ELFT>::RelaDyn->hasRelocs()) 585 OutputSections.push_back(Out<ELFT>::RelaDyn); 586 if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) 587 OutputSections.push_back(Out<ELFT>::RelaPlt); 588 } 589 if (!Out<ELFT>::Got->empty()) 590 OutputSections.push_back(Out<ELFT>::Got); 591 if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty()) 592 OutputSections.push_back(Out<ELFT>::GotPlt); 593 if (!Out<ELFT>::Plt->empty()) 594 OutputSections.push_back(Out<ELFT>::Plt); 595 596 std::stable_sort(OutputSections.begin(), OutputSections.end(), 597 compareOutputSections<ELFT>); 598 599 for (unsigned I = 0, N = OutputSections.size(); I < N; ++I) 600 OutputSections[I]->SectionIndex = I + 1; 601 602 for (OutputSectionBase<ELFT> *Sec : OutputSections) 603 Out<ELFT>::ShStrTab->add(Sec->getName()); 604 605 // Finalizers fix each section's size. 606 // .dynamic section's finalizer may add strings to .dynstr, 607 // so finalize that early. 608 // Likewise, .dynsym is finalized early since that may fill up .gnu.hash. 609 Out<ELFT>::Dynamic->finalize(); 610 if (isOutputDynamic()) 611 Out<ELFT>::DynSymTab->finalize(); 612 613 // Fill other section headers. 614 for (OutputSectionBase<ELFT> *Sec : OutputSections) 615 Sec->finalize(); 616 617 // If we have a .opd section (used under PPC64 for function descriptors), 618 // store a pointer to it here so that we can use it later when processing 619 // relocations. 620 Out<ELFT>::Opd = Map.lookup({".opd", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC, 0}); 621 } 622 623 static bool isAlpha(char C) { 624 return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z') || C == '_'; 625 } 626 627 static bool isAlnum(char C) { return isAlpha(C) || ('0' <= C && C <= '9'); } 628 629 // Returns true if S is valid as a C language identifier. 630 static bool isValidCIdentifier(StringRef S) { 631 if (S.empty() || !isAlpha(S[0])) 632 return false; 633 return std::all_of(S.begin() + 1, S.end(), isAlnum); 634 } 635 636 // If a section name is valid as a C identifier (which is rare because of 637 // the leading '.'), linkers are expected to define __start_<secname> and 638 // __stop_<secname> symbols. They are at beginning and end of the section, 639 // respectively. This is not requested by the ELF standard, but GNU ld and 640 // gold provide the feature, and used by many programs. 641 template <class ELFT> 642 void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) { 643 StringRef S = Sec->getName(); 644 if (!isValidCIdentifier(S)) 645 return; 646 StringSaver Saver(Alloc); 647 StringRef Start = Saver.save("__start_" + S); 648 StringRef Stop = Saver.save("__stop_" + S); 649 if (Symtab.isUndefined(Start)) 650 Symtab.addSyntheticSym(Start, *Sec, 0); 651 if (Symtab.isUndefined(Stop)) 652 Symtab.addSyntheticSym(Stop, *Sec, Sec->getSize()); 653 } 654 655 template <class ELFT> static bool needsPhdr(OutputSectionBase<ELFT> *Sec) { 656 return Sec->getFlags() & SHF_ALLOC; 657 } 658 659 static uint32_t toPhdrFlags(uint64_t Flags) { 660 uint32_t Ret = PF_R; 661 if (Flags & SHF_WRITE) 662 Ret |= PF_W; 663 if (Flags & SHF_EXECINSTR) 664 Ret |= PF_X; 665 return Ret; 666 } 667 668 // Visits all sections to create PHDRs and to assign incremental, 669 // non-overlapping addresses to output sections. 670 template <class ELFT> void Writer<ELFT>::assignAddresses() { 671 uintX_t VA = getVAStart() + sizeof(Elf_Ehdr); 672 uintX_t FileOff = sizeof(Elf_Ehdr); 673 674 // Calculate and reserve the space for the program header first so that 675 // the first section can start right after the program header. 676 Phdrs.resize(getPhdrsNum()); 677 size_t PhdrSize = sizeof(Elf_Phdr) * Phdrs.size(); 678 679 // The first phdr entry is PT_PHDR which describes the program header itself. 680 setPhdr(&Phdrs[0], PT_PHDR, PF_R, FileOff, VA, PhdrSize, /*Align=*/8); 681 FileOff += PhdrSize; 682 VA += PhdrSize; 683 684 // PT_INTERP must be the second entry if exists. 685 int PhdrIdx = 0; 686 Elf_Phdr *Interp = nullptr; 687 if (needsInterpSection()) 688 Interp = &Phdrs[++PhdrIdx]; 689 690 // Add the first PT_LOAD segment for regular output sections. 691 setPhdr(&Phdrs[++PhdrIdx], PT_LOAD, PF_R, 0, getVAStart(), FileOff, 692 Target->getPageSize()); 693 694 Elf_Phdr TlsPhdr{}; 695 uintX_t ThreadBSSOffset = 0; 696 // Create phdrs as we assign VAs and file offsets to all output sections. 697 for (OutputSectionBase<ELFT> *Sec : OutputSections) { 698 if (needsPhdr<ELFT>(Sec)) { 699 uintX_t Flags = toPhdrFlags(Sec->getFlags()); 700 if (Phdrs[PhdrIdx].p_flags != Flags) { 701 // Flags changed. Create a new PT_LOAD. 702 VA = RoundUpToAlignment(VA, Target->getPageSize()); 703 FileOff = RoundUpToAlignment(FileOff, Target->getPageSize()); 704 Elf_Phdr *PH = &Phdrs[++PhdrIdx]; 705 setPhdr(PH, PT_LOAD, Flags, FileOff, VA, 0, Target->getPageSize()); 706 } 707 708 if (Sec->getFlags() & SHF_TLS) { 709 if (!TlsPhdr.p_vaddr) { 710 setPhdr(&TlsPhdr, PT_TLS, PF_R, FileOff, VA, 0, Sec->getAlign()); 711 Out<ELFT>::TlsInitImageVA = VA; 712 } 713 if (Sec->getType() != SHT_NOBITS) 714 VA = RoundUpToAlignment(VA, Sec->getAlign()); 715 uintX_t TVA = RoundUpToAlignment(VA + ThreadBSSOffset, Sec->getAlign()); 716 Sec->setVA(TVA); 717 TlsPhdr.p_memsz += Sec->getSize(); 718 if (Sec->getType() == SHT_NOBITS) { 719 ThreadBSSOffset = TVA - VA + Sec->getSize(); 720 } else { 721 TlsPhdr.p_filesz += Sec->getSize(); 722 VA += Sec->getSize(); 723 } 724 TlsPhdr.p_align = std::max<uintX_t>(TlsPhdr.p_align, Sec->getAlign()); 725 } else { 726 VA = RoundUpToAlignment(VA, Sec->getAlign()); 727 Sec->setVA(VA); 728 VA += Sec->getSize(); 729 } 730 } 731 732 FileOff = RoundUpToAlignment(FileOff, Sec->getAlign()); 733 Sec->setFileOffset(FileOff); 734 if (Sec->getType() != SHT_NOBITS) 735 FileOff += Sec->getSize(); 736 if (needsPhdr<ELFT>(Sec)) { 737 Elf_Phdr *Cur = &Phdrs[PhdrIdx]; 738 Cur->p_filesz = FileOff - Cur->p_offset; 739 Cur->p_memsz = VA - Cur->p_vaddr; 740 } 741 } 742 743 if (TlsPhdr.p_vaddr) 744 Phdrs[++PhdrIdx] = TlsPhdr; 745 746 // Add an entry for .dynamic. 747 if (isOutputDynamic()) { 748 Elf_Phdr *PH = &Phdrs[++PhdrIdx]; 749 PH->p_type = PT_DYNAMIC; 750 copyPhdr(PH, Out<ELFT>::Dynamic); 751 } 752 753 // Fix up PT_INTERP as we now know the address of .interp section. 754 if (Interp) { 755 Interp->p_type = PT_INTERP; 756 copyPhdr(Interp, Out<ELFT>::Interp); 757 } 758 759 // Add space for section headers. 760 SectionHeaderOff = RoundUpToAlignment(FileOff, ELFT::Is64Bits ? 8 : 4); 761 FileSize = SectionHeaderOff + getNumSections() * sizeof(Elf_Shdr); 762 } 763 764 // Returns the number of PHDR entries. 765 template <class ELFT> int Writer<ELFT>::getPhdrsNum() const { 766 bool Tls = false; 767 int I = 2; // 2 for PT_PHDR and the first PT_LOAD 768 if (needsInterpSection()) 769 ++I; 770 if (isOutputDynamic()) 771 ++I; 772 uintX_t Last = PF_R; 773 for (OutputSectionBase<ELFT> *Sec : OutputSections) { 774 if (!needsPhdr<ELFT>(Sec)) 775 continue; 776 if (Sec->getFlags() & SHF_TLS) 777 Tls = true; 778 uintX_t Flags = toPhdrFlags(Sec->getFlags()); 779 if (Last != Flags) { 780 Last = Flags; 781 ++I; 782 } 783 } 784 if (Tls) 785 ++I; 786 return I; 787 } 788 789 template <class ELFT> void Writer<ELFT>::writeHeader() { 790 uint8_t *Buf = Buffer->getBufferStart(); 791 memcpy(Buf, "\177ELF", 4); 792 793 // Write the ELF header. 794 auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); 795 EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 796 EHdr->e_ident[EI_DATA] = ELFT::TargetEndianness == llvm::support::little 797 ? ELFDATA2LSB 798 : ELFDATA2MSB; 799 EHdr->e_ident[EI_VERSION] = EV_CURRENT; 800 801 auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf); 802 EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI(); 803 804 EHdr->e_type = Config->Shared ? ET_DYN : ET_EXEC; 805 EHdr->e_machine = FirstObj.getEMachine(); 806 EHdr->e_version = EV_CURRENT; 807 EHdr->e_entry = getEntryAddr(); 808 EHdr->e_phoff = sizeof(Elf_Ehdr); 809 EHdr->e_shoff = SectionHeaderOff; 810 EHdr->e_ehsize = sizeof(Elf_Ehdr); 811 EHdr->e_phentsize = sizeof(Elf_Phdr); 812 EHdr->e_phnum = Phdrs.size(); 813 EHdr->e_shentsize = sizeof(Elf_Shdr); 814 EHdr->e_shnum = getNumSections(); 815 EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex; 816 817 // Write the program header table. 818 memcpy(Buf + EHdr->e_phoff, &Phdrs[0], Phdrs.size() * sizeof(Phdrs[0])); 819 820 // Write the section header table. Note that the first table entry is null. 821 auto SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); 822 for (OutputSectionBase<ELFT> *Sec : OutputSections) 823 Sec->writeHeaderTo(++SHdrs); 824 } 825 826 template <class ELFT> void Writer<ELFT>::openFile(StringRef Path) { 827 ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr = 828 FileOutputBuffer::create(Path, FileSize, FileOutputBuffer::F_executable); 829 error(BufferOrErr, Twine("failed to open ") + Path); 830 Buffer = std::move(*BufferOrErr); 831 } 832 833 // Write section contents to a mmap'ed file. 834 template <class ELFT> void Writer<ELFT>::writeSections() { 835 uint8_t *Buf = Buffer->getBufferStart(); 836 837 // PPC64 needs to process relocations in the .opd section before processing 838 // relocations in code-containing sections. 839 if (OutputSectionBase<ELFT> *Sec = Out<ELFT>::Opd) { 840 Out<ELFT>::OpdBuf = Buf + Sec->getFileOff(); 841 Sec->writeTo(Buf + Sec->getFileOff()); 842 } 843 844 for (OutputSectionBase<ELFT> *Sec : OutputSections) 845 if (Sec != Out<ELFT>::Opd) 846 Sec->writeTo(Buf + Sec->getFileOff()); 847 } 848 849 template <class ELFT> 850 typename ELFFile<ELFT>::uintX_t Writer<ELFT>::getEntryAddr() const { 851 if (Config->EntrySym) { 852 if (auto *E = dyn_cast<ELFSymbolBody<ELFT>>(Config->EntrySym->repl())) 853 return getSymVA<ELFT>(*E); 854 return 0; 855 } 856 if (Config->EntryAddr != uint64_t(-1)) 857 return Config->EntryAddr; 858 return 0; 859 } 860 861 template <class ELFT> 862 void Writer<ELFT>::setPhdr(Elf_Phdr *PH, uint32_t Type, uint32_t Flags, 863 uintX_t FileOff, uintX_t VA, uintX_t Size, 864 uintX_t Align) { 865 PH->p_type = Type; 866 PH->p_flags = Flags; 867 PH->p_offset = FileOff; 868 PH->p_vaddr = VA; 869 PH->p_paddr = VA; 870 PH->p_filesz = Size; 871 PH->p_memsz = Size; 872 PH->p_align = Align; 873 } 874 875 template <class ELFT> 876 void Writer<ELFT>::copyPhdr(Elf_Phdr *PH, OutputSectionBase<ELFT> *From) { 877 PH->p_flags = toPhdrFlags(From->getFlags()); 878 PH->p_offset = From->getFileOff(); 879 PH->p_vaddr = From->getVA(); 880 PH->p_paddr = From->getVA(); 881 PH->p_filesz = From->getSize(); 882 PH->p_memsz = From->getSize(); 883 PH->p_align = From->getAlign(); 884 } 885 886 template void lld::elf2::writeResult<ELF32LE>(SymbolTable<ELF32LE> *Symtab); 887 template void lld::elf2::writeResult<ELF32BE>(SymbolTable<ELF32BE> *Symtab); 888 template void lld::elf2::writeResult<ELF64LE>(SymbolTable<ELF64LE> *Symtab); 889 template void lld::elf2::writeResult<ELF64BE>(SymbolTable<ELF64BE> *Symtab); 890