xref: /llvm-project-15.0.7/lld/ELF/Writer.cpp (revision bb09ef95)
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "LinkerScript.h"
15 #include "MapFile.h"
16 #include "OutputSections.h"
17 #include "Relocations.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "SyntheticSections.h"
21 #include "Target.h"
22 #include "lld/Common/Filesystem.h"
23 #include "lld/Common/Memory.h"
24 #include "lld/Common/Strings.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/Support/Parallel.h"
28 #include "llvm/Support/RandomNumberGenerator.h"
29 #include "llvm/Support/SHA1.h"
30 #include "llvm/Support/TimeProfiler.h"
31 #include "llvm/Support/xxhash.h"
32 #include <climits>
33 
34 #define DEBUG_TYPE "lld"
35 
36 using namespace llvm;
37 using namespace llvm::ELF;
38 using namespace llvm::object;
39 using namespace llvm::support;
40 using namespace llvm::support::endian;
41 using namespace lld;
42 using namespace lld::elf;
43 
44 namespace {
45 // The writer writes a SymbolTable result to a file.
46 template <class ELFT> class Writer {
47 public:
48   Writer() : buffer(errorHandler().outputBuffer) {}
49   using Elf_Shdr = typename ELFT::Shdr;
50   using Elf_Ehdr = typename ELFT::Ehdr;
51   using Elf_Phdr = typename ELFT::Phdr;
52 
53   void run();
54 
55 private:
56   void copyLocalSymbols();
57   void addSectionSymbols();
58   void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
59   void sortSections();
60   void resolveShfLinkOrder();
61   void finalizeAddressDependentContent();
62   void optimizeBasicBlockJumps();
63   void sortInputSections();
64   void finalizeSections();
65   void checkExecuteOnly();
66   void setReservedSymbolSections();
67 
68   std::vector<PhdrEntry *> createPhdrs(Partition &part);
69   void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
70                          unsigned pFlags);
71   void assignFileOffsets();
72   void assignFileOffsetsBinary();
73   void setPhdrs(Partition &part);
74   void checkSections();
75   void fixSectionAlignments();
76   void openFile();
77   void writeTrapInstr();
78   void writeHeader();
79   void writeSections();
80   void writeSectionsBinary();
81   void writeBuildId();
82 
83   std::unique_ptr<FileOutputBuffer> &buffer;
84 
85   void addRelIpltSymbols();
86   void addStartEndSymbols();
87   void addStartStopSymbols(OutputSection *sec);
88 
89   uint64_t fileSize;
90   uint64_t sectionHeaderOff;
91 };
92 } // anonymous namespace
93 
94 static bool isSectionPrefix(StringRef prefix, StringRef name) {
95   return name.startswith(prefix) || name == prefix.drop_back();
96 }
97 
98 StringRef elf::getOutputSectionName(const InputSectionBase *s) {
99   if (config->relocatable)
100     return s->name;
101 
102   // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
103   // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
104   // technically required, but not doing it is odd). This code guarantees that.
105   if (auto *isec = dyn_cast<InputSection>(s)) {
106     if (InputSectionBase *rel = isec->getRelocatedSection()) {
107       OutputSection *out = rel->getOutputSection();
108       if (s->type == SHT_RELA)
109         return saver.save(".rela" + out->name);
110       return saver.save(".rel" + out->name);
111     }
112   }
113 
114   // A BssSection created for a common symbol is identified as "COMMON" in
115   // linker scripts. It should go to .bss section.
116   if (s->name == "COMMON")
117     return ".bss";
118 
119   if (script->hasSectionsCommand)
120     return s->name;
121 
122   // When no SECTIONS is specified, emulate GNU ld's internal linker scripts
123   // by grouping sections with certain prefixes.
124 
125   // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.",
126   // ".text.unlikely.", ".text.startup." or ".text.exit." before others.
127   // We provide an option -z keep-text-section-prefix to group such sections
128   // into separate output sections. This is more flexible. See also
129   // sortISDBySectionOrder().
130   // ".text.unknown" means the hotness of the section is unknown. When
131   // SampleFDO is used, if a function doesn't have sample, it could be very
132   // cold or it could be a new function never being sampled. Those functions
133   // will be kept in the ".text.unknown" section.
134   if (config->zKeepTextSectionPrefix)
135     for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.",
136                         ".text.startup.", ".text.exit."})
137       if (isSectionPrefix(v, s->name))
138         return v.drop_back();
139 
140   for (StringRef v :
141        {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
142         ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
143         ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
144     if (isSectionPrefix(v, s->name))
145       return v.drop_back();
146 
147   return s->name;
148 }
149 
150 static bool needsInterpSection() {
151   return !config->relocatable && !config->shared &&
152          !config->dynamicLinker.empty() && script->needsInterpSection();
153 }
154 
155 template <class ELFT> void elf::writeResult() {
156   llvm::TimeTraceScope timeScope("Write output file");
157   Writer<ELFT>().run();
158 }
159 
160 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
161   auto it = std::stable_partition(
162       phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) {
163         if (p->p_type != PT_LOAD)
164           return true;
165         if (!p->firstSec)
166           return false;
167         uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
168         return size != 0;
169       });
170 
171   // Clear OutputSection::ptLoad for sections contained in removed
172   // segments.
173   DenseSet<PhdrEntry *> removed(it, phdrs.end());
174   for (OutputSection *sec : outputSections)
175     if (removed.count(sec->ptLoad))
176       sec->ptLoad = nullptr;
177   phdrs.erase(it, phdrs.end());
178 }
179 
180 void elf::copySectionsIntoPartitions() {
181   std::vector<InputSectionBase *> newSections;
182   for (unsigned part = 2; part != partitions.size() + 1; ++part) {
183     for (InputSectionBase *s : inputSections) {
184       if (!(s->flags & SHF_ALLOC) || !s->isLive())
185         continue;
186       InputSectionBase *copy;
187       if (s->type == SHT_NOTE)
188         copy = make<InputSection>(cast<InputSection>(*s));
189       else if (auto *es = dyn_cast<EhInputSection>(s))
190         copy = make<EhInputSection>(*es);
191       else
192         continue;
193       copy->partition = part;
194       newSections.push_back(copy);
195     }
196   }
197 
198   inputSections.insert(inputSections.end(), newSections.begin(),
199                        newSections.end());
200 }
201 
202 void elf::combineEhSections() {
203   for (InputSectionBase *&s : inputSections) {
204     // Ignore dead sections and the partition end marker (.part.end),
205     // whose partition number is out of bounds.
206     if (!s->isLive() || s->partition == 255)
207       continue;
208 
209     Partition &part = s->getPartition();
210     if (auto *es = dyn_cast<EhInputSection>(s)) {
211       part.ehFrame->addSection(es);
212       s = nullptr;
213     } else if (s->kind() == SectionBase::Regular && part.armExidx &&
214                part.armExidx->addSection(cast<InputSection>(s))) {
215       s = nullptr;
216     }
217   }
218 
219   std::vector<InputSectionBase *> &v = inputSections;
220   v.erase(std::remove(v.begin(), v.end(), nullptr), v.end());
221 }
222 
223 static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
224                                    uint64_t val, uint8_t stOther = STV_HIDDEN,
225                                    uint8_t binding = STB_GLOBAL) {
226   Symbol *s = symtab->find(name);
227   if (!s || s->isDefined())
228     return nullptr;
229 
230   s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val,
231                      /*size=*/0, sec});
232   return cast<Defined>(s);
233 }
234 
235 static Defined *addAbsolute(StringRef name) {
236   Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
237                                           STT_NOTYPE, 0, 0, nullptr});
238   return cast<Defined>(sym);
239 }
240 
241 // The linker is expected to define some symbols depending on
242 // the linking result. This function defines such symbols.
243 void elf::addReservedSymbols() {
244   if (config->emachine == EM_MIPS) {
245     // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
246     // so that it points to an absolute address which by default is relative
247     // to GOT. Default offset is 0x7ff0.
248     // See "Global Data Symbols" in Chapter 6 in the following document:
249     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
250     ElfSym::mipsGp = addAbsolute("_gp");
251 
252     // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
253     // start of function and 'gp' pointer into GOT.
254     if (symtab->find("_gp_disp"))
255       ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
256 
257     // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
258     // pointer. This symbol is used in the code generated by .cpload pseudo-op
259     // in case of using -mno-shared option.
260     // https://sourceware.org/ml/binutils/2004-12/msg00094.html
261     if (symtab->find("__gnu_local_gp"))
262       ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
263   } else if (config->emachine == EM_PPC) {
264     // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
265     // support Small Data Area, define it arbitrarily as 0.
266     addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
267   } else if (config->emachine == EM_PPC64) {
268     addPPC64SaveRestore();
269   }
270 
271   // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
272   // combines the typical ELF GOT with the small data sections. It commonly
273   // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
274   // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
275   // represent the TOC base which is offset by 0x8000 bytes from the start of
276   // the .got section.
277   // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
278   // correctness of some relocations depends on its value.
279   StringRef gotSymName =
280       (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
281 
282   if (Symbol *s = symtab->find(gotSymName)) {
283     if (s->isDefined()) {
284       error(toString(s->file) + " cannot redefine linker defined symbol '" +
285             gotSymName + "'");
286       return;
287     }
288 
289     uint64_t gotOff = 0;
290     if (config->emachine == EM_PPC64)
291       gotOff = 0x8000;
292 
293     s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
294                        STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
295     ElfSym::globalOffsetTable = cast<Defined>(s);
296   }
297 
298   // __ehdr_start is the location of ELF file headers. Note that we define
299   // this symbol unconditionally even when using a linker script, which
300   // differs from the behavior implemented by GNU linker which only define
301   // this symbol if ELF headers are in the memory mapped segment.
302   addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
303 
304   // __executable_start is not documented, but the expectation of at
305   // least the Android libc is that it points to the ELF header.
306   addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
307 
308   // __dso_handle symbol is passed to cxa_finalize as a marker to identify
309   // each DSO. The address of the symbol doesn't matter as long as they are
310   // different in different DSOs, so we chose the start address of the DSO.
311   addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
312 
313   // If linker script do layout we do not need to create any standard symbols.
314   if (script->hasSectionsCommand)
315     return;
316 
317   auto add = [](StringRef s, int64_t pos) {
318     return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
319   };
320 
321   ElfSym::bss = add("__bss_start", 0);
322   ElfSym::end1 = add("end", -1);
323   ElfSym::end2 = add("_end", -1);
324   ElfSym::etext1 = add("etext", -1);
325   ElfSym::etext2 = add("_etext", -1);
326   ElfSym::edata1 = add("edata", -1);
327   ElfSym::edata2 = add("_edata", -1);
328 }
329 
330 static OutputSection *findSection(StringRef name, unsigned partition = 1) {
331   for (BaseCommand *base : script->sectionCommands)
332     if (auto *sec = dyn_cast<OutputSection>(base))
333       if (sec->name == name && sec->partition == partition)
334         return sec;
335   return nullptr;
336 }
337 
338 template <class ELFT> void elf::createSyntheticSections() {
339   // Initialize all pointers with NULL. This is needed because
340   // you can call lld::elf::main more than once as a library.
341   memset(&Out::first, 0, sizeof(Out));
342 
343   // Add the .interp section first because it is not a SyntheticSection.
344   // The removeUnusedSyntheticSections() function relies on the
345   // SyntheticSections coming last.
346   if (needsInterpSection()) {
347     for (size_t i = 1; i <= partitions.size(); ++i) {
348       InputSection *sec = createInterpSection();
349       sec->partition = i;
350       inputSections.push_back(sec);
351     }
352   }
353 
354   auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); };
355 
356   in.shStrTab = make<StringTableSection>(".shstrtab", false);
357 
358   Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
359   Out::programHeaders->alignment = config->wordsize;
360 
361   if (config->strip != StripPolicy::All) {
362     in.strTab = make<StringTableSection>(".strtab", false);
363     in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
364     in.symTabShndx = make<SymtabShndxSection>();
365   }
366 
367   in.bss = make<BssSection>(".bss", 0, 1);
368   add(in.bss);
369 
370   // If there is a SECTIONS command and a .data.rel.ro section name use name
371   // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
372   // This makes sure our relro is contiguous.
373   bool hasDataRelRo =
374       script->hasSectionsCommand && findSection(".data.rel.ro", 0);
375   in.bssRelRo =
376       make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
377   add(in.bssRelRo);
378 
379   // Add MIPS-specific sections.
380   if (config->emachine == EM_MIPS) {
381     if (!config->shared && config->hasDynSymTab) {
382       in.mipsRldMap = make<MipsRldMapSection>();
383       add(in.mipsRldMap);
384     }
385     if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
386       add(sec);
387     if (auto *sec = MipsOptionsSection<ELFT>::create())
388       add(sec);
389     if (auto *sec = MipsReginfoSection<ELFT>::create())
390       add(sec);
391   }
392 
393   StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
394 
395   for (Partition &part : partitions) {
396     auto add = [&](SyntheticSection *sec) {
397       sec->partition = part.getNumber();
398       inputSections.push_back(sec);
399     };
400 
401     if (!part.name.empty()) {
402       part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
403       part.elfHeader->name = part.name;
404       add(part.elfHeader);
405 
406       part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
407       add(part.programHeaders);
408     }
409 
410     if (config->buildId != BuildIdKind::None) {
411       part.buildId = make<BuildIdSection>();
412       add(part.buildId);
413     }
414 
415     part.dynStrTab = make<StringTableSection>(".dynstr", true);
416     part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
417     part.dynamic = make<DynamicSection<ELFT>>();
418     if (config->androidPackDynRelocs)
419       part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName);
420     else
421       part.relaDyn =
422           make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc);
423 
424     if (config->hasDynSymTab) {
425       part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
426       add(part.dynSymTab);
427 
428       part.verSym = make<VersionTableSection>();
429       add(part.verSym);
430 
431       if (!namedVersionDefs().empty()) {
432         part.verDef = make<VersionDefinitionSection>();
433         add(part.verDef);
434       }
435 
436       part.verNeed = make<VersionNeedSection<ELFT>>();
437       add(part.verNeed);
438 
439       if (config->gnuHash) {
440         part.gnuHashTab = make<GnuHashTableSection>();
441         add(part.gnuHashTab);
442       }
443 
444       if (config->sysvHash) {
445         part.hashTab = make<HashTableSection>();
446         add(part.hashTab);
447       }
448 
449       add(part.dynamic);
450       add(part.dynStrTab);
451       add(part.relaDyn);
452     }
453 
454     if (config->relrPackDynRelocs) {
455       part.relrDyn = make<RelrSection<ELFT>>();
456       add(part.relrDyn);
457     }
458 
459     if (!config->relocatable) {
460       if (config->ehFrameHdr) {
461         part.ehFrameHdr = make<EhFrameHeader>();
462         add(part.ehFrameHdr);
463       }
464       part.ehFrame = make<EhFrameSection>();
465       add(part.ehFrame);
466     }
467 
468     if (config->emachine == EM_ARM && !config->relocatable) {
469       // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
470       // InputSections.
471       part.armExidx = make<ARMExidxSyntheticSection>();
472       add(part.armExidx);
473     }
474   }
475 
476   if (partitions.size() != 1) {
477     // Create the partition end marker. This needs to be in partition number 255
478     // so that it is sorted after all other partitions. It also has other
479     // special handling (see createPhdrs() and combineEhSections()).
480     in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
481     in.partEnd->partition = 255;
482     add(in.partEnd);
483 
484     in.partIndex = make<PartitionIndexSection>();
485     addOptionalRegular("__part_index_begin", in.partIndex, 0);
486     addOptionalRegular("__part_index_end", in.partIndex,
487                        in.partIndex->getSize());
488     add(in.partIndex);
489   }
490 
491   // Add .got. MIPS' .got is so different from the other archs,
492   // it has its own class.
493   if (config->emachine == EM_MIPS) {
494     in.mipsGot = make<MipsGotSection>();
495     add(in.mipsGot);
496   } else {
497     in.got = make<GotSection>();
498     add(in.got);
499   }
500 
501   if (config->emachine == EM_PPC) {
502     in.ppc32Got2 = make<PPC32Got2Section>();
503     add(in.ppc32Got2);
504   }
505 
506   if (config->emachine == EM_PPC64) {
507     in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
508     add(in.ppc64LongBranchTarget);
509   }
510 
511   in.gotPlt = make<GotPltSection>();
512   add(in.gotPlt);
513   in.igotPlt = make<IgotPltSection>();
514   add(in.igotPlt);
515 
516   // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
517   // it as a relocation and ensure the referenced section is created.
518   if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
519     if (target->gotBaseSymInGotPlt)
520       in.gotPlt->hasGotPltOffRel = true;
521     else
522       in.got->hasGotOffRel = true;
523   }
524 
525   if (config->gdbIndex)
526     add(GdbIndexSection::create<ELFT>());
527 
528   // We always need to add rel[a].plt to output if it has entries.
529   // Even for static linking it can contain R_[*]_IRELATIVE relocations.
530   in.relaPlt = make<RelocationSection<ELFT>>(
531       config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
532   add(in.relaPlt);
533 
534   // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
535   // relocations are processed last by the dynamic loader. We cannot place the
536   // iplt section in .rel.dyn when Android relocation packing is enabled because
537   // that would cause a section type mismatch. However, because the Android
538   // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
539   // behaviour by placing the iplt section in .rel.plt.
540   in.relaIplt = make<RelocationSection<ELFT>>(
541       config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
542       /*sort=*/false);
543   add(in.relaIplt);
544 
545   if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
546       (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
547     in.ibtPlt = make<IBTPltSection>();
548     add(in.ibtPlt);
549   }
550 
551   in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>()
552                                       : make<PltSection>();
553   add(in.plt);
554   in.iplt = make<IpltSection>();
555   add(in.iplt);
556 
557   if (config->andFeatures)
558     add(make<GnuPropertySection>());
559 
560   // .note.GNU-stack is always added when we are creating a re-linkable
561   // object file. Other linkers are using the presence of this marker
562   // section to control the executable-ness of the stack area, but that
563   // is irrelevant these days. Stack area should always be non-executable
564   // by default. So we emit this section unconditionally.
565   if (config->relocatable)
566     add(make<GnuStackSection>());
567 
568   if (in.symTab)
569     add(in.symTab);
570   if (in.symTabShndx)
571     add(in.symTabShndx);
572   add(in.shStrTab);
573   if (in.strTab)
574     add(in.strTab);
575 }
576 
577 // The main function of the writer.
578 template <class ELFT> void Writer<ELFT>::run() {
579   copyLocalSymbols();
580 
581   if (config->copyRelocs)
582     addSectionSymbols();
583 
584   // Now that we have a complete set of output sections. This function
585   // completes section contents. For example, we need to add strings
586   // to the string table, and add entries to .got and .plt.
587   // finalizeSections does that.
588   finalizeSections();
589   checkExecuteOnly();
590   if (errorCount())
591     return;
592 
593   // If -compressed-debug-sections is specified, we need to compress
594   // .debug_* sections. Do it right now because it changes the size of
595   // output sections.
596   for (OutputSection *sec : outputSections)
597     sec->maybeCompress<ELFT>();
598 
599   if (script->hasSectionsCommand)
600     script->allocateHeaders(mainPart->phdrs);
601 
602   // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
603   // 0 sized region. This has to be done late since only after assignAddresses
604   // we know the size of the sections.
605   for (Partition &part : partitions)
606     removeEmptyPTLoad(part.phdrs);
607 
608   if (!config->oFormatBinary)
609     assignFileOffsets();
610   else
611     assignFileOffsetsBinary();
612 
613   for (Partition &part : partitions)
614     setPhdrs(part);
615 
616   if (config->relocatable)
617     for (OutputSection *sec : outputSections)
618       sec->addr = 0;
619 
620   // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them
621   // before checkSections() because the files may be useful in case
622   // checkSections() or openFile() fails, for example, due to an erroneous file
623   // size.
624   writeMapFile();
625   writeCrossReferenceTable();
626   writeArchiveStats();
627 
628   if (config->checkSections)
629     checkSections();
630 
631   // It does not make sense try to open the file if we have error already.
632   if (errorCount())
633     return;
634   // Write the result down to a file.
635   openFile();
636   if (errorCount())
637     return;
638 
639   if (!config->oFormatBinary) {
640     if (config->zSeparate != SeparateSegmentKind::None)
641       writeTrapInstr();
642     writeHeader();
643     writeSections();
644   } else {
645     writeSectionsBinary();
646   }
647 
648   // Backfill .note.gnu.build-id section content. This is done at last
649   // because the content is usually a hash value of the entire output file.
650   writeBuildId();
651   if (errorCount())
652     return;
653 
654   if (auto e = buffer->commit())
655     error("failed to write to the output file: " + toString(std::move(e)));
656 }
657 
658 template <class ELFT, class RelTy>
659 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file,
660                                      llvm::ArrayRef<RelTy> rels) {
661   for (const RelTy &rel : rels) {
662     Symbol &sym = file->getRelocTargetSym(rel);
663     if (sym.isLocal())
664       sym.used = true;
665   }
666 }
667 
668 // The function ensures that the "used" field of local symbols reflects the fact
669 // that the symbol is used in a relocation from a live section.
670 template <class ELFT> static void markUsedLocalSymbols() {
671   // With --gc-sections, the field is already filled.
672   // See MarkLive<ELFT>::resolveReloc().
673   if (config->gcSections)
674     return;
675   // Without --gc-sections, the field is initialized with "true".
676   // Drop the flag first and then rise for symbols referenced in relocations.
677   for (InputFile *file : objectFiles) {
678     ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
679     for (Symbol *b : f->getLocalSymbols())
680       b->used = false;
681     for (InputSectionBase *s : f->getSections()) {
682       InputSection *isec = dyn_cast_or_null<InputSection>(s);
683       if (!isec)
684         continue;
685       if (isec->type == SHT_REL)
686         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>());
687       else if (isec->type == SHT_RELA)
688         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>());
689     }
690   }
691 }
692 
693 static bool shouldKeepInSymtab(const Defined &sym) {
694   if (sym.isSection())
695     return false;
696 
697   // If --emit-reloc or -r is given, preserve symbols referenced by relocations
698   // from live sections.
699   if (config->copyRelocs && sym.used)
700     return true;
701 
702   // Exclude local symbols pointing to .ARM.exidx sections.
703   // They are probably mapping symbols "$d", which are optional for these
704   // sections. After merging the .ARM.exidx sections, some of these symbols
705   // may become dangling. The easiest way to avoid the issue is not to add
706   // them to the symbol table from the beginning.
707   if (config->emachine == EM_ARM && sym.section &&
708       sym.section->type == SHT_ARM_EXIDX)
709     return false;
710 
711   if (config->discard == DiscardPolicy::None)
712     return true;
713   if (config->discard == DiscardPolicy::All)
714     return false;
715 
716   // In ELF assembly .L symbols are normally discarded by the assembler.
717   // If the assembler fails to do so, the linker discards them if
718   // * --discard-locals is used.
719   // * The symbol is in a SHF_MERGE section, which is normally the reason for
720   //   the assembler keeping the .L symbol.
721   StringRef name = sym.getName();
722   bool isLocal = name.startswith(".L") || name.empty();
723   if (!isLocal)
724     return true;
725 
726   if (config->discard == DiscardPolicy::Locals)
727     return false;
728 
729   SectionBase *sec = sym.section;
730   return !sec || !(sec->flags & SHF_MERGE);
731 }
732 
733 static bool includeInSymtab(const Symbol &b) {
734   if (!b.isLocal() && !b.isUsedInRegularObj)
735     return false;
736 
737   if (auto *d = dyn_cast<Defined>(&b)) {
738     // Always include absolute symbols.
739     SectionBase *sec = d->section;
740     if (!sec)
741       return true;
742     sec = sec->repl;
743 
744     // Exclude symbols pointing to garbage-collected sections.
745     if (isa<InputSectionBase>(sec) && !sec->isLive())
746       return false;
747 
748     if (auto *s = dyn_cast<MergeInputSection>(sec))
749       if (!s->getSectionPiece(d->value)->live)
750         return false;
751     return true;
752   }
753   return b.used;
754 }
755 
756 // Local symbols are not in the linker's symbol table. This function scans
757 // each object file's symbol table to copy local symbols to the output.
758 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
759   if (!in.symTab)
760     return;
761   if (config->copyRelocs && config->discard != DiscardPolicy::None)
762     markUsedLocalSymbols<ELFT>();
763   for (InputFile *file : objectFiles) {
764     ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
765     for (Symbol *b : f->getLocalSymbols()) {
766       assert(b->isLocal() && "should have been caught in initializeSymbols()");
767       auto *dr = dyn_cast<Defined>(b);
768 
769       // No reason to keep local undefined symbol in symtab.
770       if (!dr)
771         continue;
772       if (!includeInSymtab(*b))
773         continue;
774       if (!shouldKeepInSymtab(*dr))
775         continue;
776       in.symTab->addSymbol(b);
777     }
778   }
779 }
780 
781 // Create a section symbol for each output section so that we can represent
782 // relocations that point to the section. If we know that no relocation is
783 // referring to a section (that happens if the section is a synthetic one), we
784 // don't create a section symbol for that section.
785 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
786   for (BaseCommand *base : script->sectionCommands) {
787     auto *sec = dyn_cast<OutputSection>(base);
788     if (!sec)
789       continue;
790     auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) {
791       if (auto *isd = dyn_cast<InputSectionDescription>(base))
792         return !isd->sections.empty();
793       return false;
794     });
795     if (i == sec->sectionCommands.end())
796       continue;
797     InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0];
798 
799     // Relocations are not using REL[A] section symbols.
800     if (isec->type == SHT_REL || isec->type == SHT_RELA)
801       continue;
802 
803     // Unlike other synthetic sections, mergeable output sections contain data
804     // copied from input sections, and there may be a relocation pointing to its
805     // contents if -r or -emit-reloc are given.
806     if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
807       continue;
808 
809     auto *sym =
810         make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
811                       /*value=*/0, /*size=*/0, isec);
812     in.symTab->addSymbol(sym);
813   }
814 }
815 
816 // Today's loaders have a feature to make segments read-only after
817 // processing dynamic relocations to enhance security. PT_GNU_RELRO
818 // is defined for that.
819 //
820 // This function returns true if a section needs to be put into a
821 // PT_GNU_RELRO segment.
822 static bool isRelroSection(const OutputSection *sec) {
823   if (!config->zRelro)
824     return false;
825 
826   uint64_t flags = sec->flags;
827 
828   // Non-allocatable or non-writable sections don't need RELRO because
829   // they are not writable or not even mapped to memory in the first place.
830   // RELRO is for sections that are essentially read-only but need to
831   // be writable only at process startup to allow dynamic linker to
832   // apply relocations.
833   if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
834     return false;
835 
836   // Once initialized, TLS data segments are used as data templates
837   // for a thread-local storage. For each new thread, runtime
838   // allocates memory for a TLS and copy templates there. No thread
839   // are supposed to use templates directly. Thus, it can be in RELRO.
840   if (flags & SHF_TLS)
841     return true;
842 
843   // .init_array, .preinit_array and .fini_array contain pointers to
844   // functions that are executed on process startup or exit. These
845   // pointers are set by the static linker, and they are not expected
846   // to change at runtime. But if you are an attacker, you could do
847   // interesting things by manipulating pointers in .fini_array, for
848   // example. So they are put into RELRO.
849   uint32_t type = sec->type;
850   if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
851       type == SHT_PREINIT_ARRAY)
852     return true;
853 
854   // .got contains pointers to external symbols. They are resolved by
855   // the dynamic linker when a module is loaded into memory, and after
856   // that they are not expected to change. So, it can be in RELRO.
857   if (in.got && sec == in.got->getParent())
858     return true;
859 
860   // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
861   // through r2 register, which is reserved for that purpose. Since r2 is used
862   // for accessing .got as well, .got and .toc need to be close enough in the
863   // virtual address space. Usually, .toc comes just after .got. Since we place
864   // .got into RELRO, .toc needs to be placed into RELRO too.
865   if (sec->name.equals(".toc"))
866     return true;
867 
868   // .got.plt contains pointers to external function symbols. They are
869   // by default resolved lazily, so we usually cannot put it into RELRO.
870   // However, if "-z now" is given, the lazy symbol resolution is
871   // disabled, which enables us to put it into RELRO.
872   if (sec == in.gotPlt->getParent())
873     return config->zNow;
874 
875   // .dynamic section contains data for the dynamic linker, and
876   // there's no need to write to it at runtime, so it's better to put
877   // it into RELRO.
878   if (sec->name == ".dynamic")
879     return true;
880 
881   // Sections with some special names are put into RELRO. This is a
882   // bit unfortunate because section names shouldn't be significant in
883   // ELF in spirit. But in reality many linker features depend on
884   // magic section names.
885   StringRef s = sec->name;
886   return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
887          s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
888          s == ".fini_array" || s == ".init_array" ||
889          s == ".openbsd.randomdata" || s == ".preinit_array";
890 }
891 
892 // We compute a rank for each section. The rank indicates where the
893 // section should be placed in the file.  Instead of using simple
894 // numbers (0,1,2...), we use a series of flags. One for each decision
895 // point when placing the section.
896 // Using flags has two key properties:
897 // * It is easy to check if a give branch was taken.
898 // * It is easy two see how similar two ranks are (see getRankProximity).
899 enum RankFlags {
900   RF_NOT_ADDR_SET = 1 << 27,
901   RF_NOT_ALLOC = 1 << 26,
902   RF_PARTITION = 1 << 18, // Partition number (8 bits)
903   RF_NOT_PART_EHDR = 1 << 17,
904   RF_NOT_PART_PHDR = 1 << 16,
905   RF_NOT_INTERP = 1 << 15,
906   RF_NOT_NOTE = 1 << 14,
907   RF_WRITE = 1 << 13,
908   RF_EXEC_WRITE = 1 << 12,
909   RF_EXEC = 1 << 11,
910   RF_RODATA = 1 << 10,
911   RF_NOT_RELRO = 1 << 9,
912   RF_NOT_TLS = 1 << 8,
913   RF_BSS = 1 << 7,
914   RF_PPC_NOT_TOCBSS = 1 << 6,
915   RF_PPC_TOCL = 1 << 5,
916   RF_PPC_TOC = 1 << 4,
917   RF_PPC_GOT = 1 << 3,
918   RF_PPC_BRANCH_LT = 1 << 2,
919   RF_MIPS_GPREL = 1 << 1,
920   RF_MIPS_NOT_GOT = 1 << 0
921 };
922 
923 static unsigned getSectionRank(const OutputSection *sec) {
924   unsigned rank = sec->partition * RF_PARTITION;
925 
926   // We want to put section specified by -T option first, so we
927   // can start assigning VA starting from them later.
928   if (config->sectionStartMap.count(sec->name))
929     return rank;
930   rank |= RF_NOT_ADDR_SET;
931 
932   // Allocatable sections go first to reduce the total PT_LOAD size and
933   // so debug info doesn't change addresses in actual code.
934   if (!(sec->flags & SHF_ALLOC))
935     return rank | RF_NOT_ALLOC;
936 
937   if (sec->type == SHT_LLVM_PART_EHDR)
938     return rank;
939   rank |= RF_NOT_PART_EHDR;
940 
941   if (sec->type == SHT_LLVM_PART_PHDR)
942     return rank;
943   rank |= RF_NOT_PART_PHDR;
944 
945   // Put .interp first because some loaders want to see that section
946   // on the first page of the executable file when loaded into memory.
947   if (sec->name == ".interp")
948     return rank;
949   rank |= RF_NOT_INTERP;
950 
951   // Put .note sections (which make up one PT_NOTE) at the beginning so that
952   // they are likely to be included in a core file even if core file size is
953   // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
954   // included in a core to match core files with executables.
955   if (sec->type == SHT_NOTE)
956     return rank;
957   rank |= RF_NOT_NOTE;
958 
959   // Sort sections based on their access permission in the following
960   // order: R, RX, RWX, RW.  This order is based on the following
961   // considerations:
962   // * Read-only sections come first such that they go in the
963   //   PT_LOAD covering the program headers at the start of the file.
964   // * Read-only, executable sections come next.
965   // * Writable, executable sections follow such that .plt on
966   //   architectures where it needs to be writable will be placed
967   //   between .text and .data.
968   // * Writable sections come last, such that .bss lands at the very
969   //   end of the last PT_LOAD.
970   bool isExec = sec->flags & SHF_EXECINSTR;
971   bool isWrite = sec->flags & SHF_WRITE;
972 
973   if (isExec) {
974     if (isWrite)
975       rank |= RF_EXEC_WRITE;
976     else
977       rank |= RF_EXEC;
978   } else if (isWrite) {
979     rank |= RF_WRITE;
980   } else if (sec->type == SHT_PROGBITS) {
981     // Make non-executable and non-writable PROGBITS sections (e.g .rodata
982     // .eh_frame) closer to .text. They likely contain PC or GOT relative
983     // relocations and there could be relocation overflow if other huge sections
984     // (.dynstr .dynsym) were placed in between.
985     rank |= RF_RODATA;
986   }
987 
988   // Place RelRo sections first. After considering SHT_NOBITS below, the
989   // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
990   // where | marks where page alignment happens. An alternative ordering is
991   // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
992   // waste more bytes due to 2 alignment places.
993   if (!isRelroSection(sec))
994     rank |= RF_NOT_RELRO;
995 
996   // If we got here we know that both A and B are in the same PT_LOAD.
997 
998   // The TLS initialization block needs to be a single contiguous block in a R/W
999   // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
1000   // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
1001   // after PROGBITS.
1002   if (!(sec->flags & SHF_TLS))
1003     rank |= RF_NOT_TLS;
1004 
1005   // Within TLS sections, or within other RelRo sections, or within non-RelRo
1006   // sections, place non-NOBITS sections first.
1007   if (sec->type == SHT_NOBITS)
1008     rank |= RF_BSS;
1009 
1010   // Some architectures have additional ordering restrictions for sections
1011   // within the same PT_LOAD.
1012   if (config->emachine == EM_PPC64) {
1013     // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
1014     // that we would like to make sure appear is a specific order to maximize
1015     // their coverage by a single signed 16-bit offset from the TOC base
1016     // pointer. Conversely, the special .tocbss section should be first among
1017     // all SHT_NOBITS sections. This will put it next to the loaded special
1018     // PPC64 sections (and, thus, within reach of the TOC base pointer).
1019     StringRef name = sec->name;
1020     if (name != ".tocbss")
1021       rank |= RF_PPC_NOT_TOCBSS;
1022 
1023     if (name == ".toc1")
1024       rank |= RF_PPC_TOCL;
1025 
1026     if (name == ".toc")
1027       rank |= RF_PPC_TOC;
1028 
1029     if (name == ".got")
1030       rank |= RF_PPC_GOT;
1031 
1032     if (name == ".branch_lt")
1033       rank |= RF_PPC_BRANCH_LT;
1034   }
1035 
1036   if (config->emachine == EM_MIPS) {
1037     // All sections with SHF_MIPS_GPREL flag should be grouped together
1038     // because data in these sections is addressable with a gp relative address.
1039     if (sec->flags & SHF_MIPS_GPREL)
1040       rank |= RF_MIPS_GPREL;
1041 
1042     if (sec->name != ".got")
1043       rank |= RF_MIPS_NOT_GOT;
1044   }
1045 
1046   return rank;
1047 }
1048 
1049 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) {
1050   const OutputSection *a = cast<OutputSection>(aCmd);
1051   const OutputSection *b = cast<OutputSection>(bCmd);
1052 
1053   if (a->sortRank != b->sortRank)
1054     return a->sortRank < b->sortRank;
1055 
1056   if (!(a->sortRank & RF_NOT_ADDR_SET))
1057     return config->sectionStartMap.lookup(a->name) <
1058            config->sectionStartMap.lookup(b->name);
1059   return false;
1060 }
1061 
1062 void PhdrEntry::add(OutputSection *sec) {
1063   lastSec = sec;
1064   if (!firstSec)
1065     firstSec = sec;
1066   p_align = std::max(p_align, sec->alignment);
1067   if (p_type == PT_LOAD)
1068     sec->ptLoad = this;
1069 }
1070 
1071 // The beginning and the ending of .rel[a].plt section are marked
1072 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
1073 // executable. The runtime needs these symbols in order to resolve
1074 // all IRELATIVE relocs on startup. For dynamic executables, we don't
1075 // need these symbols, since IRELATIVE relocs are resolved through GOT
1076 // and PLT. For details, see http://www.airs.com/blog/archives/403.
1077 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
1078   if (config->relocatable || needsInterpSection())
1079     return;
1080 
1081   // By default, __rela_iplt_{start,end} belong to a dummy section 0
1082   // because .rela.plt might be empty and thus removed from output.
1083   // We'll override Out::elfHeader with In.relaIplt later when we are
1084   // sure that .rela.plt exists in output.
1085   ElfSym::relaIpltStart = addOptionalRegular(
1086       config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1087       Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1088 
1089   ElfSym::relaIpltEnd = addOptionalRegular(
1090       config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1091       Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1092 }
1093 
1094 template <class ELFT>
1095 void Writer<ELFT>::forEachRelSec(
1096     llvm::function_ref<void(InputSectionBase &)> fn) {
1097   // Scan all relocations. Each relocation goes through a series
1098   // of tests to determine if it needs special treatment, such as
1099   // creating GOT, PLT, copy relocations, etc.
1100   // Note that relocations for non-alloc sections are directly
1101   // processed by InputSection::relocateNonAlloc.
1102   for (InputSectionBase *isec : inputSections)
1103     if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
1104       fn(*isec);
1105   for (Partition &part : partitions) {
1106     for (EhInputSection *es : part.ehFrame->sections)
1107       fn(*es);
1108     if (part.armExidx && part.armExidx->isLive())
1109       for (InputSection *ex : part.armExidx->exidxSections)
1110         fn(*ex);
1111   }
1112 }
1113 
1114 // This function generates assignments for predefined symbols (e.g. _end or
1115 // _etext) and inserts them into the commands sequence to be processed at the
1116 // appropriate time. This ensures that the value is going to be correct by the
1117 // time any references to these symbols are processed and is equivalent to
1118 // defining these symbols explicitly in the linker script.
1119 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1120   if (ElfSym::globalOffsetTable) {
1121     // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1122     // to the start of the .got or .got.plt section.
1123     InputSection *gotSection = in.gotPlt;
1124     if (!target->gotBaseSymInGotPlt)
1125       gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
1126                               : cast<InputSection>(in.got);
1127     ElfSym::globalOffsetTable->section = gotSection;
1128   }
1129 
1130   // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1131   if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1132     ElfSym::relaIpltStart->section = in.relaIplt;
1133     ElfSym::relaIpltEnd->section = in.relaIplt;
1134     ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1135   }
1136 
1137   PhdrEntry *last = nullptr;
1138   PhdrEntry *lastRO = nullptr;
1139 
1140   for (Partition &part : partitions) {
1141     for (PhdrEntry *p : part.phdrs) {
1142       if (p->p_type != PT_LOAD)
1143         continue;
1144       last = p;
1145       if (!(p->p_flags & PF_W))
1146         lastRO = p;
1147     }
1148   }
1149 
1150   if (lastRO) {
1151     // _etext is the first location after the last read-only loadable segment.
1152     if (ElfSym::etext1)
1153       ElfSym::etext1->section = lastRO->lastSec;
1154     if (ElfSym::etext2)
1155       ElfSym::etext2->section = lastRO->lastSec;
1156   }
1157 
1158   if (last) {
1159     // _edata points to the end of the last mapped initialized section.
1160     OutputSection *edata = nullptr;
1161     for (OutputSection *os : outputSections) {
1162       if (os->type != SHT_NOBITS)
1163         edata = os;
1164       if (os == last->lastSec)
1165         break;
1166     }
1167 
1168     if (ElfSym::edata1)
1169       ElfSym::edata1->section = edata;
1170     if (ElfSym::edata2)
1171       ElfSym::edata2->section = edata;
1172 
1173     // _end is the first location after the uninitialized data region.
1174     if (ElfSym::end1)
1175       ElfSym::end1->section = last->lastSec;
1176     if (ElfSym::end2)
1177       ElfSym::end2->section = last->lastSec;
1178   }
1179 
1180   if (ElfSym::bss)
1181     ElfSym::bss->section = findSection(".bss");
1182 
1183   // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1184   // be equal to the _gp symbol's value.
1185   if (ElfSym::mipsGp) {
1186     // Find GP-relative section with the lowest address
1187     // and use this address to calculate default _gp value.
1188     for (OutputSection *os : outputSections) {
1189       if (os->flags & SHF_MIPS_GPREL) {
1190         ElfSym::mipsGp->section = os;
1191         ElfSym::mipsGp->value = 0x7ff0;
1192         break;
1193       }
1194     }
1195   }
1196 }
1197 
1198 // We want to find how similar two ranks are.
1199 // The more branches in getSectionRank that match, the more similar they are.
1200 // Since each branch corresponds to a bit flag, we can just use
1201 // countLeadingZeros.
1202 static int getRankProximityAux(OutputSection *a, OutputSection *b) {
1203   return countLeadingZeros(a->sortRank ^ b->sortRank);
1204 }
1205 
1206 static int getRankProximity(OutputSection *a, BaseCommand *b) {
1207   auto *sec = dyn_cast<OutputSection>(b);
1208   return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
1209 }
1210 
1211 // When placing orphan sections, we want to place them after symbol assignments
1212 // so that an orphan after
1213 //   begin_foo = .;
1214 //   foo : { *(foo) }
1215 //   end_foo = .;
1216 // doesn't break the intended meaning of the begin/end symbols.
1217 // We don't want to go over sections since findOrphanPos is the
1218 // one in charge of deciding the order of the sections.
1219 // We don't want to go over changes to '.', since doing so in
1220 //  rx_sec : { *(rx_sec) }
1221 //  . = ALIGN(0x1000);
1222 //  /* The RW PT_LOAD starts here*/
1223 //  rw_sec : { *(rw_sec) }
1224 // would mean that the RW PT_LOAD would become unaligned.
1225 static bool shouldSkip(BaseCommand *cmd) {
1226   if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1227     return assign->name != ".";
1228   return false;
1229 }
1230 
1231 // We want to place orphan sections so that they share as much
1232 // characteristics with their neighbors as possible. For example, if
1233 // both are rw, or both are tls.
1234 static std::vector<BaseCommand *>::iterator
1235 findOrphanPos(std::vector<BaseCommand *>::iterator b,
1236               std::vector<BaseCommand *>::iterator e) {
1237   OutputSection *sec = cast<OutputSection>(*e);
1238 
1239   // Find the first element that has as close a rank as possible.
1240   auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) {
1241     return getRankProximity(sec, a) < getRankProximity(sec, b);
1242   });
1243   if (i == e)
1244     return e;
1245 
1246   // Consider all existing sections with the same proximity.
1247   int proximity = getRankProximity(sec, *i);
1248   for (; i != e; ++i) {
1249     auto *curSec = dyn_cast<OutputSection>(*i);
1250     if (!curSec || !curSec->hasInputSections)
1251       continue;
1252     if (getRankProximity(sec, curSec) != proximity ||
1253         sec->sortRank < curSec->sortRank)
1254       break;
1255   }
1256 
1257   auto isOutputSecWithInputSections = [](BaseCommand *cmd) {
1258     auto *os = dyn_cast<OutputSection>(cmd);
1259     return os && os->hasInputSections;
1260   };
1261   auto j = std::find_if(llvm::make_reverse_iterator(i),
1262                         llvm::make_reverse_iterator(b),
1263                         isOutputSecWithInputSections);
1264   i = j.base();
1265 
1266   // As a special case, if the orphan section is the last section, put
1267   // it at the very end, past any other commands.
1268   // This matches bfd's behavior and is convenient when the linker script fully
1269   // specifies the start of the file, but doesn't care about the end (the non
1270   // alloc sections for example).
1271   auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1272   if (nextSec == e)
1273     return e;
1274 
1275   while (i != e && shouldSkip(*i))
1276     ++i;
1277   return i;
1278 }
1279 
1280 // Adds random priorities to sections not already in the map.
1281 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) {
1282   if (!config->shuffleSectionSeed)
1283     return;
1284 
1285   std::vector<int> priorities(inputSections.size() - order.size());
1286   // Existing priorities are < 0, so use priorities >= 0 for the missing
1287   // sections.
1288   int curPrio = 0;
1289   for (int &prio : priorities)
1290     prio = curPrio++;
1291   uint32_t seed = *config->shuffleSectionSeed;
1292   std::mt19937 g(seed ? seed : std::random_device()());
1293   llvm::shuffle(priorities.begin(), priorities.end(), g);
1294   int prioIndex = 0;
1295   for (InputSectionBase *sec : inputSections) {
1296     if (order.try_emplace(sec, priorities[prioIndex]).second)
1297       ++prioIndex;
1298   }
1299 }
1300 
1301 // Builds section order for handling --symbol-ordering-file.
1302 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1303   DenseMap<const InputSectionBase *, int> sectionOrder;
1304   // Use the rarely used option -call-graph-ordering-file to sort sections.
1305   if (!config->callGraphProfile.empty())
1306     return computeCallGraphProfileOrder();
1307 
1308   if (config->symbolOrderingFile.empty())
1309     return sectionOrder;
1310 
1311   struct SymbolOrderEntry {
1312     int priority;
1313     bool present;
1314   };
1315 
1316   // Build a map from symbols to their priorities. Symbols that didn't
1317   // appear in the symbol ordering file have the lowest priority 0.
1318   // All explicitly mentioned symbols have negative (higher) priorities.
1319   DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
1320   int priority = -config->symbolOrderingFile.size();
1321   for (StringRef s : config->symbolOrderingFile)
1322     symbolOrder.insert({s, {priority++, false}});
1323 
1324   // Build a map from sections to their priorities.
1325   auto addSym = [&](Symbol &sym) {
1326     auto it = symbolOrder.find(sym.getName());
1327     if (it == symbolOrder.end())
1328       return;
1329     SymbolOrderEntry &ent = it->second;
1330     ent.present = true;
1331 
1332     maybeWarnUnorderableSymbol(&sym);
1333 
1334     if (auto *d = dyn_cast<Defined>(&sym)) {
1335       if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1336         int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
1337         priority = std::min(priority, ent.priority);
1338       }
1339     }
1340   };
1341 
1342   // We want both global and local symbols. We get the global ones from the
1343   // symbol table and iterate the object files for the local ones.
1344   for (Symbol *sym : symtab->symbols())
1345     if (!sym->isLazy())
1346       addSym(*sym);
1347 
1348   for (InputFile *file : objectFiles)
1349     for (Symbol *sym : file->getSymbols()) {
1350       if (!sym->isLocal())
1351         break;
1352       addSym(*sym);
1353     }
1354 
1355   if (config->warnSymbolOrdering)
1356     for (auto orderEntry : symbolOrder)
1357       if (!orderEntry.second.present)
1358         warn("symbol ordering file: no such symbol: " + orderEntry.first);
1359 
1360   return sectionOrder;
1361 }
1362 
1363 // Sorts the sections in ISD according to the provided section order.
1364 static void
1365 sortISDBySectionOrder(InputSectionDescription *isd,
1366                       const DenseMap<const InputSectionBase *, int> &order) {
1367   std::vector<InputSection *> unorderedSections;
1368   std::vector<std::pair<InputSection *, int>> orderedSections;
1369   uint64_t unorderedSize = 0;
1370 
1371   for (InputSection *isec : isd->sections) {
1372     auto i = order.find(isec);
1373     if (i == order.end()) {
1374       unorderedSections.push_back(isec);
1375       unorderedSize += isec->getSize();
1376       continue;
1377     }
1378     orderedSections.push_back({isec, i->second});
1379   }
1380   llvm::sort(orderedSections, llvm::less_second());
1381 
1382   // Find an insertion point for the ordered section list in the unordered
1383   // section list. On targets with limited-range branches, this is the mid-point
1384   // of the unordered section list. This decreases the likelihood that a range
1385   // extension thunk will be needed to enter or exit the ordered region. If the
1386   // ordered section list is a list of hot functions, we can generally expect
1387   // the ordered functions to be called more often than the unordered functions,
1388   // making it more likely that any particular call will be within range, and
1389   // therefore reducing the number of thunks required.
1390   //
1391   // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1392   // If the layout is:
1393   //
1394   // 8MB hot
1395   // 32MB cold
1396   //
1397   // only the first 8-16MB of the cold code (depending on which hot function it
1398   // is actually calling) can call the hot code without a range extension thunk.
1399   // However, if we use this layout:
1400   //
1401   // 16MB cold
1402   // 8MB hot
1403   // 16MB cold
1404   //
1405   // both the last 8-16MB of the first block of cold code and the first 8-16MB
1406   // of the second block of cold code can call the hot code without a thunk. So
1407   // we effectively double the amount of code that could potentially call into
1408   // the hot code without a thunk.
1409   size_t insPt = 0;
1410   if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
1411     uint64_t unorderedPos = 0;
1412     for (; insPt != unorderedSections.size(); ++insPt) {
1413       unorderedPos += unorderedSections[insPt]->getSize();
1414       if (unorderedPos > unorderedSize / 2)
1415         break;
1416     }
1417   }
1418 
1419   isd->sections.clear();
1420   for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
1421     isd->sections.push_back(isec);
1422   for (std::pair<InputSection *, int> p : orderedSections)
1423     isd->sections.push_back(p.first);
1424   for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
1425     isd->sections.push_back(isec);
1426 }
1427 
1428 static void sortSection(OutputSection *sec,
1429                         const DenseMap<const InputSectionBase *, int> &order) {
1430   StringRef name = sec->name;
1431 
1432   // Never sort these.
1433   if (name == ".init" || name == ".fini")
1434     return;
1435 
1436   // IRelative relocations that usually live in the .rel[a].dyn section should
1437   // be proccessed last by the dynamic loader. To achieve that we add synthetic
1438   // sections in the required order from the begining so that the in.relaIplt
1439   // section is placed last in an output section. Here we just do not apply
1440   // sorting for an output section which holds the in.relaIplt section.
1441   if (in.relaIplt->getParent() == sec)
1442     return;
1443 
1444   // Sort input sections by priority using the list provided by
1445   // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1446   // digit radix sort. The sections may be sorted stably again by a more
1447   // significant key.
1448   if (!order.empty())
1449     for (BaseCommand *b : sec->sectionCommands)
1450       if (auto *isd = dyn_cast<InputSectionDescription>(b))
1451         sortISDBySectionOrder(isd, order);
1452 
1453   // Sort input sections by section name suffixes for
1454   // __attribute__((init_priority(N))).
1455   if (name == ".init_array" || name == ".fini_array") {
1456     if (!script->hasSectionsCommand)
1457       sec->sortInitFini();
1458     return;
1459   }
1460 
1461   // Sort input sections by the special rule for .ctors and .dtors.
1462   if (name == ".ctors" || name == ".dtors") {
1463     if (!script->hasSectionsCommand)
1464       sec->sortCtorsDtors();
1465     return;
1466   }
1467 
1468   // .toc is allocated just after .got and is accessed using GOT-relative
1469   // relocations. Object files compiled with small code model have an
1470   // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1471   // To reduce the risk of relocation overflow, .toc contents are sorted so that
1472   // sections having smaller relocation offsets are at beginning of .toc
1473   if (config->emachine == EM_PPC64 && name == ".toc") {
1474     if (script->hasSectionsCommand)
1475       return;
1476     assert(sec->sectionCommands.size() == 1);
1477     auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]);
1478     llvm::stable_sort(isd->sections,
1479                       [](const InputSection *a, const InputSection *b) -> bool {
1480                         return a->file->ppc64SmallCodeModelTocRelocs &&
1481                                !b->file->ppc64SmallCodeModelTocRelocs;
1482                       });
1483     return;
1484   }
1485 }
1486 
1487 // If no layout was provided by linker script, we want to apply default
1488 // sorting for special input sections. This also handles --symbol-ordering-file.
1489 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1490   // Build the order once since it is expensive.
1491   DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1492   maybeShuffle(order);
1493   for (BaseCommand *base : script->sectionCommands)
1494     if (auto *sec = dyn_cast<OutputSection>(base))
1495       sortSection(sec, order);
1496 }
1497 
1498 template <class ELFT> void Writer<ELFT>::sortSections() {
1499   script->adjustSectionsBeforeSorting();
1500 
1501   // Don't sort if using -r. It is not necessary and we want to preserve the
1502   // relative order for SHF_LINK_ORDER sections.
1503   if (config->relocatable)
1504     return;
1505 
1506   sortInputSections();
1507 
1508   for (BaseCommand *base : script->sectionCommands) {
1509     auto *os = dyn_cast<OutputSection>(base);
1510     if (!os)
1511       continue;
1512     os->sortRank = getSectionRank(os);
1513 
1514     // We want to assign rude approximation values to outSecOff fields
1515     // to know the relative order of the input sections. We use it for
1516     // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
1517     uint64_t i = 0;
1518     for (InputSection *sec : getInputSections(os))
1519       sec->outSecOff = i++;
1520   }
1521 
1522   if (!script->hasSectionsCommand) {
1523     // We know that all the OutputSections are contiguous in this case.
1524     auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); };
1525     std::stable_sort(
1526         llvm::find_if(script->sectionCommands, isSection),
1527         llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
1528         compareSections);
1529 
1530     // Process INSERT commands. From this point onwards the order of
1531     // script->sectionCommands is fixed.
1532     script->processInsertCommands();
1533     return;
1534   }
1535 
1536   script->processInsertCommands();
1537 
1538   // Orphan sections are sections present in the input files which are
1539   // not explicitly placed into the output file by the linker script.
1540   //
1541   // The sections in the linker script are already in the correct
1542   // order. We have to figuere out where to insert the orphan
1543   // sections.
1544   //
1545   // The order of the sections in the script is arbitrary and may not agree with
1546   // compareSections. This means that we cannot easily define a strict weak
1547   // ordering. To see why, consider a comparison of a section in the script and
1548   // one not in the script. We have a two simple options:
1549   // * Make them equivalent (a is not less than b, and b is not less than a).
1550   //   The problem is then that equivalence has to be transitive and we can
1551   //   have sections a, b and c with only b in a script and a less than c
1552   //   which breaks this property.
1553   // * Use compareSectionsNonScript. Given that the script order doesn't have
1554   //   to match, we can end up with sections a, b, c, d where b and c are in the
1555   //   script and c is compareSectionsNonScript less than b. In which case d
1556   //   can be equivalent to c, a to b and d < a. As a concrete example:
1557   //   .a (rx) # not in script
1558   //   .b (rx) # in script
1559   //   .c (ro) # in script
1560   //   .d (ro) # not in script
1561   //
1562   // The way we define an order then is:
1563   // *  Sort only the orphan sections. They are in the end right now.
1564   // *  Move each orphan section to its preferred position. We try
1565   //    to put each section in the last position where it can share
1566   //    a PT_LOAD.
1567   //
1568   // There is some ambiguity as to where exactly a new entry should be
1569   // inserted, because Commands contains not only output section
1570   // commands but also other types of commands such as symbol assignment
1571   // expressions. There's no correct answer here due to the lack of the
1572   // formal specification of the linker script. We use heuristics to
1573   // determine whether a new output command should be added before or
1574   // after another commands. For the details, look at shouldSkip
1575   // function.
1576 
1577   auto i = script->sectionCommands.begin();
1578   auto e = script->sectionCommands.end();
1579   auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) {
1580     if (auto *sec = dyn_cast<OutputSection>(base))
1581       return sec->sectionIndex == UINT32_MAX;
1582     return false;
1583   });
1584 
1585   // Sort the orphan sections.
1586   std::stable_sort(nonScriptI, e, compareSections);
1587 
1588   // As a horrible special case, skip the first . assignment if it is before any
1589   // section. We do this because it is common to set a load address by starting
1590   // the script with ". = 0xabcd" and the expectation is that every section is
1591   // after that.
1592   auto firstSectionOrDotAssignment =
1593       std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); });
1594   if (firstSectionOrDotAssignment != e &&
1595       isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1596     ++firstSectionOrDotAssignment;
1597   i = firstSectionOrDotAssignment;
1598 
1599   while (nonScriptI != e) {
1600     auto pos = findOrphanPos(i, nonScriptI);
1601     OutputSection *orphan = cast<OutputSection>(*nonScriptI);
1602 
1603     // As an optimization, find all sections with the same sort rank
1604     // and insert them with one rotate.
1605     unsigned rank = orphan->sortRank;
1606     auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) {
1607       return cast<OutputSection>(cmd)->sortRank != rank;
1608     });
1609     std::rotate(pos, nonScriptI, end);
1610     nonScriptI = end;
1611   }
1612 
1613   script->adjustSectionsAfterSorting();
1614 }
1615 
1616 static bool compareByFilePosition(InputSection *a, InputSection *b) {
1617   InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr;
1618   InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr;
1619   // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
1620   // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
1621   if (!la || !lb)
1622     return la && !lb;
1623   OutputSection *aOut = la->getParent();
1624   OutputSection *bOut = lb->getParent();
1625 
1626   if (aOut != bOut)
1627     return aOut->addr < bOut->addr;
1628   return la->outSecOff < lb->outSecOff;
1629 }
1630 
1631 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1632   for (OutputSection *sec : outputSections) {
1633     if (!(sec->flags & SHF_LINK_ORDER))
1634       continue;
1635 
1636     // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1637     // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1638     if (!config->relocatable && config->emachine == EM_ARM &&
1639         sec->type == SHT_ARM_EXIDX)
1640       continue;
1641 
1642     // Link order may be distributed across several InputSectionDescriptions.
1643     // Sorting is performed separately.
1644     std::vector<InputSection **> scriptSections;
1645     std::vector<InputSection *> sections;
1646     for (BaseCommand *base : sec->sectionCommands) {
1647       auto *isd = dyn_cast<InputSectionDescription>(base);
1648       if (!isd)
1649         continue;
1650       bool hasLinkOrder = false;
1651       scriptSections.clear();
1652       sections.clear();
1653       for (InputSection *&isec : isd->sections) {
1654         if (isec->flags & SHF_LINK_ORDER) {
1655           InputSection *link = isec->getLinkOrderDep();
1656           if (link && !link->getParent())
1657             error(toString(isec) + ": sh_link points to discarded section " +
1658                   toString(link));
1659           hasLinkOrder = true;
1660         }
1661         scriptSections.push_back(&isec);
1662         sections.push_back(isec);
1663       }
1664       if (hasLinkOrder && errorCount() == 0) {
1665         llvm::stable_sort(sections, compareByFilePosition);
1666         for (int i = 0, n = sections.size(); i != n; ++i)
1667           *scriptSections[i] = sections[i];
1668       }
1669     }
1670   }
1671 }
1672 
1673 static void finalizeSynthetic(SyntheticSection *sec) {
1674   if (sec && sec->isNeeded() && sec->getParent())
1675     sec->finalizeContents();
1676 }
1677 
1678 // We need to generate and finalize the content that depends on the address of
1679 // InputSections. As the generation of the content may also alter InputSection
1680 // addresses we must converge to a fixed point. We do that here. See the comment
1681 // in Writer<ELFT>::finalizeSections().
1682 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1683   ThunkCreator tc;
1684   AArch64Err843419Patcher a64p;
1685   ARMErr657417Patcher a32p;
1686   script->assignAddresses();
1687   // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1688   // do require the relative addresses of OutputSections because linker scripts
1689   // can assign Virtual Addresses to OutputSections that are not monotonically
1690   // increasing.
1691   for (Partition &part : partitions)
1692     finalizeSynthetic(part.armExidx);
1693   resolveShfLinkOrder();
1694 
1695   // Converts call x@GDPLT to call __tls_get_addr
1696   if (config->emachine == EM_HEXAGON)
1697     hexagonTLSSymbolUpdate(outputSections);
1698 
1699   int assignPasses = 0;
1700   for (;;) {
1701     bool changed = target->needsThunks && tc.createThunks(outputSections);
1702 
1703     // With Thunk Size much smaller than branch range we expect to
1704     // converge quickly; if we get to 15 something has gone wrong.
1705     if (changed && tc.pass >= 15) {
1706       error("thunk creation not converged");
1707       break;
1708     }
1709 
1710     if (config->fixCortexA53Errata843419) {
1711       if (changed)
1712         script->assignAddresses();
1713       changed |= a64p.createFixes();
1714     }
1715     if (config->fixCortexA8) {
1716       if (changed)
1717         script->assignAddresses();
1718       changed |= a32p.createFixes();
1719     }
1720 
1721     if (in.mipsGot)
1722       in.mipsGot->updateAllocSize();
1723 
1724     for (Partition &part : partitions) {
1725       changed |= part.relaDyn->updateAllocSize();
1726       if (part.relrDyn)
1727         changed |= part.relrDyn->updateAllocSize();
1728     }
1729 
1730     const Defined *changedSym = script->assignAddresses();
1731     if (!changed) {
1732       // Some symbols may be dependent on section addresses. When we break the
1733       // loop, the symbol values are finalized because a previous
1734       // assignAddresses() finalized section addresses.
1735       if (!changedSym)
1736         break;
1737       if (++assignPasses == 5) {
1738         errorOrWarn("assignment to symbol " + toString(*changedSym) +
1739                     " does not converge");
1740         break;
1741       }
1742     }
1743   }
1744 
1745   // If addrExpr is set, the address may not be a multiple of the alignment.
1746   // Warn because this is error-prone.
1747   for (BaseCommand *cmd : script->sectionCommands)
1748     if (auto *os = dyn_cast<OutputSection>(cmd))
1749       if (os->addr % os->alignment != 0)
1750         warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " +
1751              os->name + " is not a multiple of alignment (" +
1752              Twine(os->alignment) + ")");
1753 }
1754 
1755 // If Input Sections have been shrinked (basic block sections) then
1756 // update symbol values and sizes associated with these sections.  With basic
1757 // block sections, input sections can shrink when the jump instructions at
1758 // the end of the section are relaxed.
1759 static void fixSymbolsAfterShrinking() {
1760   for (InputFile *File : objectFiles) {
1761     parallelForEach(File->getSymbols(), [&](Symbol *Sym) {
1762       auto *def = dyn_cast<Defined>(Sym);
1763       if (!def)
1764         return;
1765 
1766       const SectionBase *sec = def->section;
1767       if (!sec)
1768         return;
1769 
1770       const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl);
1771       if (!inputSec || !inputSec->bytesDropped)
1772         return;
1773 
1774       const size_t OldSize = inputSec->data().size();
1775       const size_t NewSize = OldSize - inputSec->bytesDropped;
1776 
1777       if (def->value > NewSize && def->value <= OldSize) {
1778         LLVM_DEBUG(llvm::dbgs()
1779                    << "Moving symbol " << Sym->getName() << " from "
1780                    << def->value << " to "
1781                    << def->value - inputSec->bytesDropped << " bytes\n");
1782         def->value -= inputSec->bytesDropped;
1783         return;
1784       }
1785 
1786       if (def->value + def->size > NewSize && def->value <= OldSize &&
1787           def->value + def->size <= OldSize) {
1788         LLVM_DEBUG(llvm::dbgs()
1789                    << "Shrinking symbol " << Sym->getName() << " from "
1790                    << def->size << " to " << def->size - inputSec->bytesDropped
1791                    << " bytes\n");
1792         def->size -= inputSec->bytesDropped;
1793       }
1794     });
1795   }
1796 }
1797 
1798 // If basic block sections exist, there are opportunities to delete fall thru
1799 // jumps and shrink jump instructions after basic block reordering.  This
1800 // relaxation pass does that.  It is only enabled when --optimize-bb-jumps
1801 // option is used.
1802 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() {
1803   assert(config->optimizeBBJumps);
1804 
1805   script->assignAddresses();
1806   // For every output section that has executable input sections, this
1807   // does the following:
1808   //   1. Deletes all direct jump instructions in input sections that
1809   //      jump to the following section as it is not required.
1810   //   2. If there are two consecutive jump instructions, it checks
1811   //      if they can be flipped and one can be deleted.
1812   for (OutputSection *os : outputSections) {
1813     if (!(os->flags & SHF_EXECINSTR))
1814       continue;
1815     std::vector<InputSection *> sections = getInputSections(os);
1816     std::vector<unsigned> result(sections.size());
1817     // Delete all fall through jump instructions.  Also, check if two
1818     // consecutive jump instructions can be flipped so that a fall
1819     // through jmp instruction can be deleted.
1820     parallelForEachN(0, sections.size(), [&](size_t i) {
1821       InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr;
1822       InputSection &is = *sections[i];
1823       result[i] =
1824           target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0;
1825     });
1826     size_t numDeleted = std::count(result.begin(), result.end(), 1);
1827     if (numDeleted > 0) {
1828       script->assignAddresses();
1829       LLVM_DEBUG(llvm::dbgs()
1830                  << "Removing " << numDeleted << " fall through jumps\n");
1831     }
1832   }
1833 
1834   fixSymbolsAfterShrinking();
1835 
1836   for (OutputSection *os : outputSections) {
1837     std::vector<InputSection *> sections = getInputSections(os);
1838     for (InputSection *is : sections)
1839       is->trim();
1840   }
1841 }
1842 
1843 // In order to allow users to manipulate linker-synthesized sections,
1844 // we had to add synthetic sections to the input section list early,
1845 // even before we make decisions whether they are needed. This allows
1846 // users to write scripts like this: ".mygot : { .got }".
1847 //
1848 // Doing it has an unintended side effects. If it turns out that we
1849 // don't need a .got (for example) at all because there's no
1850 // relocation that needs a .got, we don't want to emit .got.
1851 //
1852 // To deal with the above problem, this function is called after
1853 // scanRelocations is called to remove synthetic sections that turn
1854 // out to be empty.
1855 static void removeUnusedSyntheticSections() {
1856   // All input synthetic sections that can be empty are placed after
1857   // all regular ones. We iterate over them all and exit at first
1858   // non-synthetic.
1859   for (InputSectionBase *s : llvm::reverse(inputSections)) {
1860     SyntheticSection *ss = dyn_cast<SyntheticSection>(s);
1861     if (!ss)
1862       return;
1863     OutputSection *os = ss->getParent();
1864     if (!os || ss->isNeeded())
1865       continue;
1866 
1867     // If we reach here, then ss is an unused synthetic section and we want to
1868     // remove it from the corresponding input section description, and
1869     // orphanSections.
1870     for (BaseCommand *b : os->sectionCommands)
1871       if (auto *isd = dyn_cast<InputSectionDescription>(b))
1872         llvm::erase_if(isd->sections,
1873                        [=](InputSection *isec) { return isec == ss; });
1874     llvm::erase_if(script->orphanSections,
1875                    [=](const InputSectionBase *isec) { return isec == ss; });
1876   }
1877 }
1878 
1879 // Create output section objects and add them to OutputSections.
1880 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1881   Out::preinitArray = findSection(".preinit_array");
1882   Out::initArray = findSection(".init_array");
1883   Out::finiArray = findSection(".fini_array");
1884 
1885   // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1886   // symbols for sections, so that the runtime can get the start and end
1887   // addresses of each section by section name. Add such symbols.
1888   if (!config->relocatable) {
1889     addStartEndSymbols();
1890     for (BaseCommand *base : script->sectionCommands)
1891       if (auto *sec = dyn_cast<OutputSection>(base))
1892         addStartStopSymbols(sec);
1893   }
1894 
1895   // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1896   // It should be okay as no one seems to care about the type.
1897   // Even the author of gold doesn't remember why gold behaves that way.
1898   // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1899   if (mainPart->dynamic->parent)
1900     symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
1901                               STV_HIDDEN, STT_NOTYPE,
1902                               /*value=*/0, /*size=*/0, mainPart->dynamic});
1903 
1904   // Define __rel[a]_iplt_{start,end} symbols if needed.
1905   addRelIpltSymbols();
1906 
1907   // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1908   // should only be defined in an executable. If .sdata does not exist, its
1909   // value/section does not matter but it has to be relative, so set its
1910   // st_shndx arbitrarily to 1 (Out::elfHeader).
1911   if (config->emachine == EM_RISCV && !config->shared) {
1912     OutputSection *sec = findSection(".sdata");
1913     ElfSym::riscvGlobalPointer =
1914         addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader,
1915                            0x800, STV_DEFAULT, STB_GLOBAL);
1916   }
1917 
1918   if (config->emachine == EM_X86_64) {
1919     // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1920     // way that:
1921     //
1922     // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1923     // computes 0.
1924     // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
1925     // the TLS block).
1926     //
1927     // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
1928     // an absolute symbol of zero. This is different from GNU linkers which
1929     // define _TLS_MODULE_BASE_ relative to the first TLS section.
1930     Symbol *s = symtab->find("_TLS_MODULE_BASE_");
1931     if (s && s->isUndefined()) {
1932       s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
1933                          STT_TLS, /*value=*/0, 0,
1934                          /*section=*/nullptr});
1935       ElfSym::tlsModuleBase = cast<Defined>(s);
1936     }
1937   }
1938 
1939   // This responsible for splitting up .eh_frame section into
1940   // pieces. The relocation scan uses those pieces, so this has to be
1941   // earlier.
1942   for (Partition &part : partitions)
1943     finalizeSynthetic(part.ehFrame);
1944 
1945   for (Symbol *sym : symtab->symbols())
1946     sym->isPreemptible = computeIsPreemptible(*sym);
1947 
1948   // Change values of linker-script-defined symbols from placeholders (assigned
1949   // by declareSymbols) to actual definitions.
1950   script->processSymbolAssignments();
1951 
1952   // Scan relocations. This must be done after every symbol is declared so that
1953   // we can correctly decide if a dynamic relocation is needed. This is called
1954   // after processSymbolAssignments() because it needs to know whether a
1955   // linker-script-defined symbol is absolute.
1956   ppc64noTocRelax.clear();
1957   if (!config->relocatable) {
1958     forEachRelSec(scanRelocations<ELFT>);
1959     reportUndefinedSymbols<ELFT>();
1960   }
1961 
1962   if (in.plt && in.plt->isNeeded())
1963     in.plt->addSymbols();
1964   if (in.iplt && in.iplt->isNeeded())
1965     in.iplt->addSymbols();
1966 
1967   if (!config->allowShlibUndefined) {
1968     // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1969     // entries are seen. These cases would otherwise lead to runtime errors
1970     // reported by the dynamic linker.
1971     //
1972     // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
1973     // catch more cases. That is too much for us. Our approach resembles the one
1974     // used in ld.gold, achieves a good balance to be useful but not too smart.
1975     for (SharedFile *file : sharedFiles)
1976       file->allNeededIsKnown =
1977           llvm::all_of(file->dtNeeded, [&](StringRef needed) {
1978             return symtab->soNames.count(needed);
1979           });
1980 
1981     for (Symbol *sym : symtab->symbols())
1982       if (sym->isUndefined() && !sym->isWeak())
1983         if (auto *f = dyn_cast_or_null<SharedFile>(sym->file))
1984           if (f->allNeededIsKnown)
1985             errorOrWarn(toString(f) + ": undefined reference to " +
1986                         toString(*sym) + " [--no-allow-shlib-undefined]");
1987   }
1988 
1989   // Now that we have defined all possible global symbols including linker-
1990   // synthesized ones. Visit all symbols to give the finishing touches.
1991   for (Symbol *sym : symtab->symbols()) {
1992     if (!includeInSymtab(*sym))
1993       continue;
1994     if (in.symTab)
1995       in.symTab->addSymbol(sym);
1996 
1997     if (sym->includeInDynsym()) {
1998       partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
1999       if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
2000         if (file->isNeeded && !sym->isUndefined())
2001           addVerneed(sym);
2002     }
2003   }
2004 
2005   // We also need to scan the dynamic relocation tables of the other partitions
2006   // and add any referenced symbols to the partition's dynsym.
2007   for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
2008     DenseSet<Symbol *> syms;
2009     for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
2010       syms.insert(e.sym);
2011     for (DynamicReloc &reloc : part.relaDyn->relocs)
2012       if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second)
2013         part.dynSymTab->addSymbol(reloc.sym);
2014   }
2015 
2016   // Do not proceed if there was an undefined symbol.
2017   if (errorCount())
2018     return;
2019 
2020   if (in.mipsGot)
2021     in.mipsGot->build();
2022 
2023   removeUnusedSyntheticSections();
2024   script->diagnoseOrphanHandling();
2025 
2026   sortSections();
2027 
2028   // Now that we have the final list, create a list of all the
2029   // OutputSections for convenience.
2030   for (BaseCommand *base : script->sectionCommands)
2031     if (auto *sec = dyn_cast<OutputSection>(base))
2032       outputSections.push_back(sec);
2033 
2034   // Prefer command line supplied address over other constraints.
2035   for (OutputSection *sec : outputSections) {
2036     auto i = config->sectionStartMap.find(sec->name);
2037     if (i != config->sectionStartMap.end())
2038       sec->addrExpr = [=] { return i->second; };
2039   }
2040 
2041   // With the outputSections available check for GDPLT relocations
2042   // and add __tls_get_addr symbol if needed.
2043   if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) {
2044     Symbol *sym = symtab->addSymbol(Undefined{
2045         nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE});
2046     sym->isPreemptible = true;
2047     partitions[0].dynSymTab->addSymbol(sym);
2048   }
2049 
2050   // This is a bit of a hack. A value of 0 means undef, so we set it
2051   // to 1 to make __ehdr_start defined. The section number is not
2052   // particularly relevant.
2053   Out::elfHeader->sectionIndex = 1;
2054 
2055   for (size_t i = 0, e = outputSections.size(); i != e; ++i) {
2056     OutputSection *sec = outputSections[i];
2057     sec->sectionIndex = i + 1;
2058     sec->shName = in.shStrTab->addString(sec->name);
2059   }
2060 
2061   // Binary and relocatable output does not have PHDRS.
2062   // The headers have to be created before finalize as that can influence the
2063   // image base and the dynamic section on mips includes the image base.
2064   if (!config->relocatable && !config->oFormatBinary) {
2065     for (Partition &part : partitions) {
2066       part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
2067                                               : createPhdrs(part);
2068       if (config->emachine == EM_ARM) {
2069         // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2070         addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
2071       }
2072       if (config->emachine == EM_MIPS) {
2073         // Add separate segments for MIPS-specific sections.
2074         addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
2075         addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
2076         addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
2077       }
2078     }
2079     Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
2080 
2081     // Find the TLS segment. This happens before the section layout loop so that
2082     // Android relocation packing can look up TLS symbol addresses. We only need
2083     // to care about the main partition here because all TLS symbols were moved
2084     // to the main partition (see MarkLive.cpp).
2085     for (PhdrEntry *p : mainPart->phdrs)
2086       if (p->p_type == PT_TLS)
2087         Out::tlsPhdr = p;
2088   }
2089 
2090   // Some symbols are defined in term of program headers. Now that we
2091   // have the headers, we can find out which sections they point to.
2092   setReservedSymbolSections();
2093 
2094   finalizeSynthetic(in.bss);
2095   finalizeSynthetic(in.bssRelRo);
2096   finalizeSynthetic(in.symTabShndx);
2097   finalizeSynthetic(in.shStrTab);
2098   finalizeSynthetic(in.strTab);
2099   finalizeSynthetic(in.got);
2100   finalizeSynthetic(in.mipsGot);
2101   finalizeSynthetic(in.igotPlt);
2102   finalizeSynthetic(in.gotPlt);
2103   finalizeSynthetic(in.relaIplt);
2104   finalizeSynthetic(in.relaPlt);
2105   finalizeSynthetic(in.plt);
2106   finalizeSynthetic(in.iplt);
2107   finalizeSynthetic(in.ppc32Got2);
2108   finalizeSynthetic(in.partIndex);
2109 
2110   // Dynamic section must be the last one in this list and dynamic
2111   // symbol table section (dynSymTab) must be the first one.
2112   for (Partition &part : partitions) {
2113     finalizeSynthetic(part.dynSymTab);
2114     finalizeSynthetic(part.gnuHashTab);
2115     finalizeSynthetic(part.hashTab);
2116     finalizeSynthetic(part.verDef);
2117     finalizeSynthetic(part.relaDyn);
2118     finalizeSynthetic(part.relrDyn);
2119     finalizeSynthetic(part.ehFrameHdr);
2120     finalizeSynthetic(part.verSym);
2121     finalizeSynthetic(part.verNeed);
2122     finalizeSynthetic(part.dynamic);
2123   }
2124 
2125   if (!script->hasSectionsCommand && !config->relocatable)
2126     fixSectionAlignments();
2127 
2128   // This is used to:
2129   // 1) Create "thunks":
2130   //    Jump instructions in many ISAs have small displacements, and therefore
2131   //    they cannot jump to arbitrary addresses in memory. For example, RISC-V
2132   //    JAL instruction can target only +-1 MiB from PC. It is a linker's
2133   //    responsibility to create and insert small pieces of code between
2134   //    sections to extend the ranges if jump targets are out of range. Such
2135   //    code pieces are called "thunks".
2136   //
2137   //    We add thunks at this stage. We couldn't do this before this point
2138   //    because this is the earliest point where we know sizes of sections and
2139   //    their layouts (that are needed to determine if jump targets are in
2140   //    range).
2141   //
2142   // 2) Update the sections. We need to generate content that depends on the
2143   //    address of InputSections. For example, MIPS GOT section content or
2144   //    android packed relocations sections content.
2145   //
2146   // 3) Assign the final values for the linker script symbols. Linker scripts
2147   //    sometimes using forward symbol declarations. We want to set the correct
2148   //    values. They also might change after adding the thunks.
2149   finalizeAddressDependentContent();
2150   if (errorCount())
2151     return;
2152 
2153   // finalizeAddressDependentContent may have added local symbols to the static symbol table.
2154   finalizeSynthetic(in.symTab);
2155   finalizeSynthetic(in.ppc64LongBranchTarget);
2156 
2157   // Relaxation to delete inter-basic block jumps created by basic block
2158   // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
2159   // can relax jump instructions based on symbol offset.
2160   if (config->optimizeBBJumps)
2161     optimizeBasicBlockJumps();
2162 
2163   // Fill other section headers. The dynamic table is finalized
2164   // at the end because some tags like RELSZ depend on result
2165   // of finalizing other sections.
2166   for (OutputSection *sec : outputSections)
2167     sec->finalize();
2168 }
2169 
2170 // Ensure data sections are not mixed with executable sections when
2171 // -execute-only is used. -execute-only is a feature to make pages executable
2172 // but not readable, and the feature is currently supported only on AArch64.
2173 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
2174   if (!config->executeOnly)
2175     return;
2176 
2177   for (OutputSection *os : outputSections)
2178     if (os->flags & SHF_EXECINSTR)
2179       for (InputSection *isec : getInputSections(os))
2180         if (!(isec->flags & SHF_EXECINSTR))
2181           error("cannot place " + toString(isec) + " into " + toString(os->name) +
2182                 ": -execute-only does not support intermingling data and code");
2183 }
2184 
2185 // The linker is expected to define SECNAME_start and SECNAME_end
2186 // symbols for a few sections. This function defines them.
2187 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
2188   // If a section does not exist, there's ambiguity as to how we
2189   // define _start and _end symbols for an init/fini section. Since
2190   // the loader assume that the symbols are always defined, we need to
2191   // always define them. But what value? The loader iterates over all
2192   // pointers between _start and _end to run global ctors/dtors, so if
2193   // the section is empty, their symbol values don't actually matter
2194   // as long as _start and _end point to the same location.
2195   //
2196   // That said, we don't want to set the symbols to 0 (which is
2197   // probably the simplest value) because that could cause some
2198   // program to fail to link due to relocation overflow, if their
2199   // program text is above 2 GiB. We use the address of the .text
2200   // section instead to prevent that failure.
2201   //
2202   // In rare situations, the .text section may not exist. If that's the
2203   // case, use the image base address as a last resort.
2204   OutputSection *Default = findSection(".text");
2205   if (!Default)
2206     Default = Out::elfHeader;
2207 
2208   auto define = [=](StringRef start, StringRef end, OutputSection *os) {
2209     if (os) {
2210       addOptionalRegular(start, os, 0);
2211       addOptionalRegular(end, os, -1);
2212     } else {
2213       addOptionalRegular(start, Default, 0);
2214       addOptionalRegular(end, Default, 0);
2215     }
2216   };
2217 
2218   define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
2219   define("__init_array_start", "__init_array_end", Out::initArray);
2220   define("__fini_array_start", "__fini_array_end", Out::finiArray);
2221 
2222   if (OutputSection *sec = findSection(".ARM.exidx"))
2223     define("__exidx_start", "__exidx_end", sec);
2224 }
2225 
2226 // If a section name is valid as a C identifier (which is rare because of
2227 // the leading '.'), linkers are expected to define __start_<secname> and
2228 // __stop_<secname> symbols. They are at beginning and end of the section,
2229 // respectively. This is not requested by the ELF standard, but GNU ld and
2230 // gold provide the feature, and used by many programs.
2231 template <class ELFT>
2232 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
2233   StringRef s = sec->name;
2234   if (!isValidCIdentifier(s))
2235     return;
2236   addOptionalRegular(saver.save("__start_" + s), sec, 0,
2237                      config->zStartStopVisibility);
2238   addOptionalRegular(saver.save("__stop_" + s), sec, -1,
2239                      config->zStartStopVisibility);
2240 }
2241 
2242 static bool needsPtLoad(OutputSection *sec) {
2243   if (!(sec->flags & SHF_ALLOC) || sec->noload)
2244     return false;
2245 
2246   // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2247   // responsible for allocating space for them, not the PT_LOAD that
2248   // contains the TLS initialization image.
2249   if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
2250     return false;
2251   return true;
2252 }
2253 
2254 // Linker scripts are responsible for aligning addresses. Unfortunately, most
2255 // linker scripts are designed for creating two PT_LOADs only, one RX and one
2256 // RW. This means that there is no alignment in the RO to RX transition and we
2257 // cannot create a PT_LOAD there.
2258 static uint64_t computeFlags(uint64_t flags) {
2259   if (config->omagic)
2260     return PF_R | PF_W | PF_X;
2261   if (config->executeOnly && (flags & PF_X))
2262     return flags & ~PF_R;
2263   if (config->singleRoRx && !(flags & PF_W))
2264     return flags | PF_X;
2265   return flags;
2266 }
2267 
2268 // Decide which program headers to create and which sections to include in each
2269 // one.
2270 template <class ELFT>
2271 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
2272   std::vector<PhdrEntry *> ret;
2273   auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2274     ret.push_back(make<PhdrEntry>(type, flags));
2275     return ret.back();
2276   };
2277 
2278   unsigned partNo = part.getNumber();
2279   bool isMain = partNo == 1;
2280 
2281   // Add the first PT_LOAD segment for regular output sections.
2282   uint64_t flags = computeFlags(PF_R);
2283   PhdrEntry *load = nullptr;
2284 
2285   // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2286   // PT_LOAD.
2287   if (!config->nmagic && !config->omagic) {
2288     // The first phdr entry is PT_PHDR which describes the program header
2289     // itself.
2290     if (isMain)
2291       addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2292     else
2293       addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2294 
2295     // PT_INTERP must be the second entry if exists.
2296     if (OutputSection *cmd = findSection(".interp", partNo))
2297       addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2298 
2299     // Add the headers. We will remove them if they don't fit.
2300     // In the other partitions the headers are ordinary sections, so they don't
2301     // need to be added here.
2302     if (isMain) {
2303       load = addHdr(PT_LOAD, flags);
2304       load->add(Out::elfHeader);
2305       load->add(Out::programHeaders);
2306     }
2307   }
2308 
2309   // PT_GNU_RELRO includes all sections that should be marked as
2310   // read-only by dynamic linker after processing relocations.
2311   // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2312   // an error message if more than one PT_GNU_RELRO PHDR is required.
2313   PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2314   bool inRelroPhdr = false;
2315   OutputSection *relroEnd = nullptr;
2316   for (OutputSection *sec : outputSections) {
2317     if (sec->partition != partNo || !needsPtLoad(sec))
2318       continue;
2319     if (isRelroSection(sec)) {
2320       inRelroPhdr = true;
2321       if (!relroEnd)
2322         relRo->add(sec);
2323       else
2324         error("section: " + sec->name + " is not contiguous with other relro" +
2325               " sections");
2326     } else if (inRelroPhdr) {
2327       inRelroPhdr = false;
2328       relroEnd = sec;
2329     }
2330   }
2331 
2332   for (OutputSection *sec : outputSections) {
2333     if (!needsPtLoad(sec))
2334       continue;
2335 
2336     // Normally, sections in partitions other than the current partition are
2337     // ignored. But partition number 255 is a special case: it contains the
2338     // partition end marker (.part.end). It needs to be added to the main
2339     // partition so that a segment is created for it in the main partition,
2340     // which will cause the dynamic loader to reserve space for the other
2341     // partitions.
2342     if (sec->partition != partNo) {
2343       if (isMain && sec->partition == 255)
2344         addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2345       continue;
2346     }
2347 
2348     // Segments are contiguous memory regions that has the same attributes
2349     // (e.g. executable or writable). There is one phdr for each segment.
2350     // Therefore, we need to create a new phdr when the next section has
2351     // different flags or is loaded at a discontiguous address or memory
2352     // region using AT or AT> linker script command, respectively. At the same
2353     // time, we don't want to create a separate load segment for the headers,
2354     // even if the first output section has an AT or AT> attribute.
2355     uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2356     bool sameLMARegion =
2357         load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
2358     if (!(load && newFlags == flags && sec != relroEnd &&
2359           sec->memRegion == load->firstSec->memRegion &&
2360           (sameLMARegion || load->lastSec == Out::programHeaders))) {
2361       load = addHdr(PT_LOAD, newFlags);
2362       flags = newFlags;
2363     }
2364 
2365     load->add(sec);
2366   }
2367 
2368   // Add a TLS segment if any.
2369   PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2370   for (OutputSection *sec : outputSections)
2371     if (sec->partition == partNo && sec->flags & SHF_TLS)
2372       tlsHdr->add(sec);
2373   if (tlsHdr->firstSec)
2374     ret.push_back(tlsHdr);
2375 
2376   // Add an entry for .dynamic.
2377   if (OutputSection *sec = part.dynamic->getParent())
2378     addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2379 
2380   if (relRo->firstSec)
2381     ret.push_back(relRo);
2382 
2383   // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2384   if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2385       part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2386     addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2387         ->add(part.ehFrameHdr->getParent());
2388 
2389   // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2390   // the dynamic linker fill the segment with random data.
2391   if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2392     addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2393 
2394   if (config->zGnustack != GnuStackKind::None) {
2395     // PT_GNU_STACK is a special section to tell the loader to make the
2396     // pages for the stack non-executable. If you really want an executable
2397     // stack, you can pass -z execstack, but that's not recommended for
2398     // security reasons.
2399     unsigned perm = PF_R | PF_W;
2400     if (config->zGnustack == GnuStackKind::Exec)
2401       perm |= PF_X;
2402     addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2403   }
2404 
2405   // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2406   // is expected to perform W^X violations, such as calling mprotect(2) or
2407   // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2408   // OpenBSD.
2409   if (config->zWxneeded)
2410     addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2411 
2412   if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2413     addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2414 
2415   // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2416   // same alignment.
2417   PhdrEntry *note = nullptr;
2418   for (OutputSection *sec : outputSections) {
2419     if (sec->partition != partNo)
2420       continue;
2421     if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2422       if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
2423         note = addHdr(PT_NOTE, PF_R);
2424       note->add(sec);
2425     } else {
2426       note = nullptr;
2427     }
2428   }
2429   return ret;
2430 }
2431 
2432 template <class ELFT>
2433 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2434                                      unsigned pType, unsigned pFlags) {
2435   unsigned partNo = part.getNumber();
2436   auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2437     return cmd->partition == partNo && cmd->type == shType;
2438   });
2439   if (i == outputSections.end())
2440     return;
2441 
2442   PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2443   entry->add(*i);
2444   part.phdrs.push_back(entry);
2445 }
2446 
2447 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2448 // This is achieved by assigning an alignment expression to addrExpr of each
2449 // such section.
2450 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2451   const PhdrEntry *prev;
2452   auto pageAlign = [&](const PhdrEntry *p) {
2453     OutputSection *cmd = p->firstSec;
2454     if (!cmd)
2455       return;
2456     cmd->alignExpr = [align = cmd->alignment]() { return align; };
2457     if (!cmd->addrExpr) {
2458       // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2459       // padding in the file contents.
2460       //
2461       // When -z separate-code is used we must not have any overlap in pages
2462       // between an executable segment and a non-executable segment. We align to
2463       // the next maximum page size boundary on transitions between executable
2464       // and non-executable segments.
2465       //
2466       // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2467       // sections will be extracted to a separate file. Align to the next
2468       // maximum page size boundary so that we can find the ELF header at the
2469       // start. We cannot benefit from overlapping p_offset ranges with the
2470       // previous segment anyway.
2471       if (config->zSeparate == SeparateSegmentKind::Loadable ||
2472           (config->zSeparate == SeparateSegmentKind::Code && prev &&
2473            (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2474           cmd->type == SHT_LLVM_PART_EHDR)
2475         cmd->addrExpr = [] {
2476           return alignTo(script->getDot(), config->maxPageSize);
2477         };
2478       // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2479       // it must be the RW. Align to p_align(PT_TLS) to make sure
2480       // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2481       // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2482       // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2483       // be congruent to 0 modulo p_align(PT_TLS).
2484       //
2485       // Technically this is not required, but as of 2019, some dynamic loaders
2486       // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2487       // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2488       // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2489       // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2490       // blocks correctly. We need to keep the workaround for a while.
2491       else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2492         cmd->addrExpr = [] {
2493           return alignTo(script->getDot(), config->maxPageSize) +
2494                  alignTo(script->getDot() % config->maxPageSize,
2495                          Out::tlsPhdr->p_align);
2496         };
2497       else
2498         cmd->addrExpr = [] {
2499           return alignTo(script->getDot(), config->maxPageSize) +
2500                  script->getDot() % config->maxPageSize;
2501         };
2502     }
2503   };
2504 
2505   for (Partition &part : partitions) {
2506     prev = nullptr;
2507     for (const PhdrEntry *p : part.phdrs)
2508       if (p->p_type == PT_LOAD && p->firstSec) {
2509         pageAlign(p);
2510         prev = p;
2511       }
2512   }
2513 }
2514 
2515 // Compute an in-file position for a given section. The file offset must be the
2516 // same with its virtual address modulo the page size, so that the loader can
2517 // load executables without any address adjustment.
2518 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2519   // The first section in a PT_LOAD has to have congruent offset and address
2520   // modulo the maximum page size.
2521   if (os->ptLoad && os->ptLoad->firstSec == os)
2522     return alignTo(off, os->ptLoad->p_align, os->addr);
2523 
2524   // File offsets are not significant for .bss sections other than the first one
2525   // in a PT_LOAD. By convention, we keep section offsets monotonically
2526   // increasing rather than setting to zero.
2527    if (os->type == SHT_NOBITS)
2528      return off;
2529 
2530   // If the section is not in a PT_LOAD, we just have to align it.
2531   if (!os->ptLoad)
2532     return alignTo(off, os->alignment);
2533 
2534   // If two sections share the same PT_LOAD the file offset is calculated
2535   // using this formula: Off2 = Off1 + (VA2 - VA1).
2536   OutputSection *first = os->ptLoad->firstSec;
2537   return first->offset + os->addr - first->addr;
2538 }
2539 
2540 // Set an in-file position to a given section and returns the end position of
2541 // the section.
2542 static uint64_t setFileOffset(OutputSection *os, uint64_t off) {
2543   off = computeFileOffset(os, off);
2544   os->offset = off;
2545 
2546   if (os->type == SHT_NOBITS)
2547     return off;
2548   return off + os->size;
2549 }
2550 
2551 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2552   // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
2553   auto needsOffset = [](OutputSection &sec) {
2554     return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0;
2555   };
2556   uint64_t minAddr = UINT64_MAX;
2557   for (OutputSection *sec : outputSections)
2558     if (needsOffset(*sec)) {
2559       sec->offset = sec->getLMA();
2560       minAddr = std::min(minAddr, sec->offset);
2561     }
2562 
2563   // Sections are laid out at LMA minus minAddr.
2564   fileSize = 0;
2565   for (OutputSection *sec : outputSections)
2566     if (needsOffset(*sec)) {
2567       sec->offset -= minAddr;
2568       fileSize = std::max(fileSize, sec->offset + sec->size);
2569     }
2570 }
2571 
2572 static std::string rangeToString(uint64_t addr, uint64_t len) {
2573   return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2574 }
2575 
2576 // Assign file offsets to output sections.
2577 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2578   uint64_t off = 0;
2579   off = setFileOffset(Out::elfHeader, off);
2580   off = setFileOffset(Out::programHeaders, off);
2581 
2582   PhdrEntry *lastRX = nullptr;
2583   for (Partition &part : partitions)
2584     for (PhdrEntry *p : part.phdrs)
2585       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2586         lastRX = p;
2587 
2588   // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
2589   // will not occupy file offsets contained by a PT_LOAD.
2590   for (OutputSection *sec : outputSections) {
2591     if (!(sec->flags & SHF_ALLOC))
2592       continue;
2593     off = setFileOffset(sec, off);
2594 
2595     // If this is a last section of the last executable segment and that
2596     // segment is the last loadable segment, align the offset of the
2597     // following section to avoid loading non-segments parts of the file.
2598     if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2599         lastRX->lastSec == sec)
2600       off = alignTo(off, config->commonPageSize);
2601   }
2602   for (OutputSection *sec : outputSections)
2603     if (!(sec->flags & SHF_ALLOC))
2604       off = setFileOffset(sec, off);
2605 
2606   sectionHeaderOff = alignTo(off, config->wordsize);
2607   fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2608 
2609   // Our logic assumes that sections have rising VA within the same segment.
2610   // With use of linker scripts it is possible to violate this rule and get file
2611   // offset overlaps or overflows. That should never happen with a valid script
2612   // which does not move the location counter backwards and usually scripts do
2613   // not do that. Unfortunately, there are apps in the wild, for example, Linux
2614   // kernel, which control segment distribution explicitly and move the counter
2615   // backwards, so we have to allow doing that to support linking them. We
2616   // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2617   // we want to prevent file size overflows because it would crash the linker.
2618   for (OutputSection *sec : outputSections) {
2619     if (sec->type == SHT_NOBITS)
2620       continue;
2621     if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2622       error("unable to place section " + sec->name + " at file offset " +
2623             rangeToString(sec->offset, sec->size) +
2624             "; check your linker script for overflows");
2625   }
2626 }
2627 
2628 // Finalize the program headers. We call this function after we assign
2629 // file offsets and VAs to all sections.
2630 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2631   for (PhdrEntry *p : part.phdrs) {
2632     OutputSection *first = p->firstSec;
2633     OutputSection *last = p->lastSec;
2634 
2635     if (first) {
2636       p->p_filesz = last->offset - first->offset;
2637       if (last->type != SHT_NOBITS)
2638         p->p_filesz += last->size;
2639 
2640       p->p_memsz = last->addr + last->size - first->addr;
2641       p->p_offset = first->offset;
2642       p->p_vaddr = first->addr;
2643 
2644       // File offsets in partitions other than the main partition are relative
2645       // to the offset of the ELF headers. Perform that adjustment now.
2646       if (part.elfHeader)
2647         p->p_offset -= part.elfHeader->getParent()->offset;
2648 
2649       if (!p->hasLMA)
2650         p->p_paddr = first->getLMA();
2651     }
2652 
2653     if (p->p_type == PT_GNU_RELRO) {
2654       p->p_align = 1;
2655       // musl/glibc ld.so rounds the size down, so we need to round up
2656       // to protect the last page. This is a no-op on FreeBSD which always
2657       // rounds up.
2658       p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) -
2659                    p->p_offset;
2660     }
2661   }
2662 }
2663 
2664 // A helper struct for checkSectionOverlap.
2665 namespace {
2666 struct SectionOffset {
2667   OutputSection *sec;
2668   uint64_t offset;
2669 };
2670 } // namespace
2671 
2672 // Check whether sections overlap for a specific address range (file offsets,
2673 // load and virtual addresses).
2674 static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
2675                          bool isVirtualAddr) {
2676   llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2677     return a.offset < b.offset;
2678   });
2679 
2680   // Finding overlap is easy given a vector is sorted by start position.
2681   // If an element starts before the end of the previous element, they overlap.
2682   for (size_t i = 1, end = sections.size(); i < end; ++i) {
2683     SectionOffset a = sections[i - 1];
2684     SectionOffset b = sections[i];
2685     if (b.offset >= a.offset + a.sec->size)
2686       continue;
2687 
2688     // If both sections are in OVERLAY we allow the overlapping of virtual
2689     // addresses, because it is what OVERLAY was designed for.
2690     if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2691       continue;
2692 
2693     errorOrWarn("section " + a.sec->name + " " + name +
2694                 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2695                 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2696                 b.sec->name + " range is " +
2697                 rangeToString(b.offset, b.sec->size));
2698   }
2699 }
2700 
2701 // Check for overlapping sections and address overflows.
2702 //
2703 // In this function we check that none of the output sections have overlapping
2704 // file offsets. For SHF_ALLOC sections we also check that the load address
2705 // ranges and the virtual address ranges don't overlap
2706 template <class ELFT> void Writer<ELFT>::checkSections() {
2707   // First, check that section's VAs fit in available address space for target.
2708   for (OutputSection *os : outputSections)
2709     if ((os->addr + os->size < os->addr) ||
2710         (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
2711       errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2712                   " of size 0x" + utohexstr(os->size) +
2713                   " exceeds available address space");
2714 
2715   // Check for overlapping file offsets. In this case we need to skip any
2716   // section marked as SHT_NOBITS. These sections don't actually occupy space in
2717   // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2718   // binary is specified only add SHF_ALLOC sections are added to the output
2719   // file so we skip any non-allocated sections in that case.
2720   std::vector<SectionOffset> fileOffs;
2721   for (OutputSection *sec : outputSections)
2722     if (sec->size > 0 && sec->type != SHT_NOBITS &&
2723         (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2724       fileOffs.push_back({sec, sec->offset});
2725   checkOverlap("file", fileOffs, false);
2726 
2727   // When linking with -r there is no need to check for overlapping virtual/load
2728   // addresses since those addresses will only be assigned when the final
2729   // executable/shared object is created.
2730   if (config->relocatable)
2731     return;
2732 
2733   // Checking for overlapping virtual and load addresses only needs to take
2734   // into account SHF_ALLOC sections since others will not be loaded.
2735   // Furthermore, we also need to skip SHF_TLS sections since these will be
2736   // mapped to other addresses at runtime and can therefore have overlapping
2737   // ranges in the file.
2738   std::vector<SectionOffset> vmas;
2739   for (OutputSection *sec : outputSections)
2740     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2741       vmas.push_back({sec, sec->addr});
2742   checkOverlap("virtual address", vmas, true);
2743 
2744   // Finally, check that the load addresses don't overlap. This will usually be
2745   // the same as the virtual addresses but can be different when using a linker
2746   // script with AT().
2747   std::vector<SectionOffset> lmas;
2748   for (OutputSection *sec : outputSections)
2749     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2750       lmas.push_back({sec, sec->getLMA()});
2751   checkOverlap("load address", lmas, false);
2752 }
2753 
2754 // The entry point address is chosen in the following ways.
2755 //
2756 // 1. the '-e' entry command-line option;
2757 // 2. the ENTRY(symbol) command in a linker control script;
2758 // 3. the value of the symbol _start, if present;
2759 // 4. the number represented by the entry symbol, if it is a number;
2760 // 5. the address of the first byte of the .text section, if present;
2761 // 6. the address 0.
2762 static uint64_t getEntryAddr() {
2763   // Case 1, 2 or 3
2764   if (Symbol *b = symtab->find(config->entry))
2765     return b->getVA();
2766 
2767   // Case 4
2768   uint64_t addr;
2769   if (to_integer(config->entry, addr))
2770     return addr;
2771 
2772   // Case 5
2773   if (OutputSection *sec = findSection(".text")) {
2774     if (config->warnMissingEntry)
2775       warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" +
2776            utohexstr(sec->addr));
2777     return sec->addr;
2778   }
2779 
2780   // Case 6
2781   if (config->warnMissingEntry)
2782     warn("cannot find entry symbol " + config->entry +
2783          "; not setting start address");
2784   return 0;
2785 }
2786 
2787 static uint16_t getELFType() {
2788   if (config->isPic)
2789     return ET_DYN;
2790   if (config->relocatable)
2791     return ET_REL;
2792   return ET_EXEC;
2793 }
2794 
2795 template <class ELFT> void Writer<ELFT>::writeHeader() {
2796   writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2797   writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2798 
2799   auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2800   eHdr->e_type = getELFType();
2801   eHdr->e_entry = getEntryAddr();
2802   eHdr->e_shoff = sectionHeaderOff;
2803 
2804   // Write the section header table.
2805   //
2806   // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2807   // and e_shstrndx fields. When the value of one of these fields exceeds
2808   // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2809   // use fields in the section header at index 0 to store
2810   // the value. The sentinel values and fields are:
2811   // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2812   // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2813   auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2814   size_t num = outputSections.size() + 1;
2815   if (num >= SHN_LORESERVE)
2816     sHdrs->sh_size = num;
2817   else
2818     eHdr->e_shnum = num;
2819 
2820   uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2821   if (strTabIndex >= SHN_LORESERVE) {
2822     sHdrs->sh_link = strTabIndex;
2823     eHdr->e_shstrndx = SHN_XINDEX;
2824   } else {
2825     eHdr->e_shstrndx = strTabIndex;
2826   }
2827 
2828   for (OutputSection *sec : outputSections)
2829     sec->writeHeaderTo<ELFT>(++sHdrs);
2830 }
2831 
2832 // Open a result file.
2833 template <class ELFT> void Writer<ELFT>::openFile() {
2834   uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2835   if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2836     error("output file too large: " + Twine(fileSize) + " bytes");
2837     return;
2838   }
2839 
2840   unlinkAsync(config->outputFile);
2841   unsigned flags = 0;
2842   if (!config->relocatable)
2843     flags |= FileOutputBuffer::F_executable;
2844   if (!config->mmapOutputFile)
2845     flags |= FileOutputBuffer::F_no_mmap;
2846   Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2847       FileOutputBuffer::create(config->outputFile, fileSize, flags);
2848 
2849   if (!bufferOrErr) {
2850     error("failed to open " + config->outputFile + ": " +
2851           llvm::toString(bufferOrErr.takeError()));
2852     return;
2853   }
2854   buffer = std::move(*bufferOrErr);
2855   Out::bufferStart = buffer->getBufferStart();
2856 }
2857 
2858 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2859   for (OutputSection *sec : outputSections)
2860     if (sec->flags & SHF_ALLOC)
2861       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2862 }
2863 
2864 static void fillTrap(uint8_t *i, uint8_t *end) {
2865   for (; i + 4 <= end; i += 4)
2866     memcpy(i, &target->trapInstr, 4);
2867 }
2868 
2869 // Fill the last page of executable segments with trap instructions
2870 // instead of leaving them as zero. Even though it is not required by any
2871 // standard, it is in general a good thing to do for security reasons.
2872 //
2873 // We'll leave other pages in segments as-is because the rest will be
2874 // overwritten by output sections.
2875 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2876   for (Partition &part : partitions) {
2877     // Fill the last page.
2878     for (PhdrEntry *p : part.phdrs)
2879       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2880         fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
2881                                               config->commonPageSize),
2882                  Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
2883                                             config->commonPageSize));
2884 
2885     // Round up the file size of the last segment to the page boundary iff it is
2886     // an executable segment to ensure that other tools don't accidentally
2887     // trim the instruction padding (e.g. when stripping the file).
2888     PhdrEntry *last = nullptr;
2889     for (PhdrEntry *p : part.phdrs)
2890       if (p->p_type == PT_LOAD)
2891         last = p;
2892 
2893     if (last && (last->p_flags & PF_X))
2894       last->p_memsz = last->p_filesz =
2895           alignTo(last->p_filesz, config->commonPageSize);
2896   }
2897 }
2898 
2899 // Write section contents to a mmap'ed file.
2900 template <class ELFT> void Writer<ELFT>::writeSections() {
2901   // In -r or -emit-relocs mode, write the relocation sections first as in
2902   // ELf_Rel targets we might find out that we need to modify the relocated
2903   // section while doing it.
2904   for (OutputSection *sec : outputSections)
2905     if (sec->type == SHT_REL || sec->type == SHT_RELA)
2906       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2907 
2908   for (OutputSection *sec : outputSections)
2909     if (sec->type != SHT_REL && sec->type != SHT_RELA)
2910       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2911 }
2912 
2913 // Split one uint8 array into small pieces of uint8 arrays.
2914 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr,
2915                                             size_t chunkSize) {
2916   std::vector<ArrayRef<uint8_t>> ret;
2917   while (arr.size() > chunkSize) {
2918     ret.push_back(arr.take_front(chunkSize));
2919     arr = arr.drop_front(chunkSize);
2920   }
2921   if (!arr.empty())
2922     ret.push_back(arr);
2923   return ret;
2924 }
2925 
2926 // Computes a hash value of Data using a given hash function.
2927 // In order to utilize multiple cores, we first split data into 1MB
2928 // chunks, compute a hash for each chunk, and then compute a hash value
2929 // of the hash values.
2930 static void
2931 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
2932             llvm::ArrayRef<uint8_t> data,
2933             std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
2934   std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
2935   std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());
2936 
2937   // Compute hash values.
2938   parallelForEachN(0, chunks.size(), [&](size_t i) {
2939     hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
2940   });
2941 
2942   // Write to the final output buffer.
2943   hashFn(hashBuf.data(), hashes);
2944 }
2945 
2946 template <class ELFT> void Writer<ELFT>::writeBuildId() {
2947   if (!mainPart->buildId || !mainPart->buildId->getParent())
2948     return;
2949 
2950   if (config->buildId == BuildIdKind::Hexstring) {
2951     for (Partition &part : partitions)
2952       part.buildId->writeBuildId(config->buildIdVector);
2953     return;
2954   }
2955 
2956   // Compute a hash of all sections of the output file.
2957   size_t hashSize = mainPart->buildId->hashSize;
2958   std::vector<uint8_t> buildId(hashSize);
2959   llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};
2960 
2961   switch (config->buildId) {
2962   case BuildIdKind::Fast:
2963     computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
2964       write64le(dest, xxHash64(arr));
2965     });
2966     break;
2967   case BuildIdKind::Md5:
2968     computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2969       memcpy(dest, MD5::hash(arr).data(), hashSize);
2970     });
2971     break;
2972   case BuildIdKind::Sha1:
2973     computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2974       memcpy(dest, SHA1::hash(arr).data(), hashSize);
2975     });
2976     break;
2977   case BuildIdKind::Uuid:
2978     if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
2979       error("entropy source failure: " + ec.message());
2980     break;
2981   default:
2982     llvm_unreachable("unknown BuildIdKind");
2983   }
2984   for (Partition &part : partitions)
2985     part.buildId->writeBuildId(buildId);
2986 }
2987 
2988 template void elf::createSyntheticSections<ELF32LE>();
2989 template void elf::createSyntheticSections<ELF32BE>();
2990 template void elf::createSyntheticSections<ELF64LE>();
2991 template void elf::createSyntheticSections<ELF64BE>();
2992 
2993 template void elf::writeResult<ELF32LE>();
2994 template void elf::writeResult<ELF32BE>();
2995 template void elf::writeResult<ELF64LE>();
2996 template void elf::writeResult<ELF64BE>();
2997