1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "AArch64ErrataFix.h" 11 #include "ARMErrataFix.h" 12 #include "CallGraphSort.h" 13 #include "Config.h" 14 #include "LinkerScript.h" 15 #include "MapFile.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "lld/Common/Arrays.h" 23 #include "lld/Common/Filesystem.h" 24 #include "lld/Common/Memory.h" 25 #include "lld/Common/Strings.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/Support/Parallel.h" 29 #include "llvm/Support/RandomNumberGenerator.h" 30 #include "llvm/Support/SHA1.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include "llvm/Support/xxhash.h" 33 #include <climits> 34 35 #define DEBUG_TYPE "lld" 36 37 using namespace llvm; 38 using namespace llvm::ELF; 39 using namespace llvm::object; 40 using namespace llvm::support; 41 using namespace llvm::support::endian; 42 using namespace lld; 43 using namespace lld::elf; 44 45 namespace { 46 // The writer writes a SymbolTable result to a file. 47 template <class ELFT> class Writer { 48 public: 49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 50 51 Writer() : buffer(errorHandler().outputBuffer) {} 52 53 void run(); 54 55 private: 56 void copyLocalSymbols(); 57 void addSectionSymbols(); 58 void sortSections(); 59 void resolveShfLinkOrder(); 60 void finalizeAddressDependentContent(); 61 void optimizeBasicBlockJumps(); 62 void sortInputSections(); 63 void finalizeSections(); 64 void checkExecuteOnly(); 65 void setReservedSymbolSections(); 66 67 SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part); 68 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, 69 unsigned pFlags); 70 void assignFileOffsets(); 71 void assignFileOffsetsBinary(); 72 void setPhdrs(Partition &part); 73 void checkSections(); 74 void fixSectionAlignments(); 75 void openFile(); 76 void writeTrapInstr(); 77 void writeHeader(); 78 void writeSections(); 79 void writeSectionsBinary(); 80 void writeBuildId(); 81 82 std::unique_ptr<FileOutputBuffer> &buffer; 83 84 void addRelIpltSymbols(); 85 void addStartEndSymbols(); 86 void addStartStopSymbols(OutputSection *sec); 87 88 uint64_t fileSize; 89 uint64_t sectionHeaderOff; 90 }; 91 } // anonymous namespace 92 93 static bool needsInterpSection() { 94 return !config->relocatable && !config->shared && 95 !config->dynamicLinker.empty() && script->needsInterpSection(); 96 } 97 98 template <class ELFT> void elf::writeResult() { 99 Writer<ELFT>().run(); 100 } 101 102 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) { 103 auto it = std::stable_partition( 104 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { 105 if (p->p_type != PT_LOAD) 106 return true; 107 if (!p->firstSec) 108 return false; 109 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; 110 return size != 0; 111 }); 112 113 // Clear OutputSection::ptLoad for sections contained in removed 114 // segments. 115 DenseSet<PhdrEntry *> removed(it, phdrs.end()); 116 for (OutputSection *sec : outputSections) 117 if (removed.count(sec->ptLoad)) 118 sec->ptLoad = nullptr; 119 phdrs.erase(it, phdrs.end()); 120 } 121 122 void elf::copySectionsIntoPartitions() { 123 SmallVector<InputSectionBase *, 0> newSections; 124 for (unsigned part = 2; part != partitions.size() + 1; ++part) { 125 for (InputSectionBase *s : inputSections) { 126 if (!(s->flags & SHF_ALLOC) || !s->isLive()) 127 continue; 128 InputSectionBase *copy; 129 if (s->type == SHT_NOTE) 130 copy = make<InputSection>(cast<InputSection>(*s)); 131 else if (auto *es = dyn_cast<EhInputSection>(s)) 132 copy = make<EhInputSection>(*es); 133 else 134 continue; 135 copy->partition = part; 136 newSections.push_back(copy); 137 } 138 } 139 140 inputSections.insert(inputSections.end(), newSections.begin(), 141 newSections.end()); 142 } 143 144 void elf::combineEhSections() { 145 llvm::TimeTraceScope timeScope("Combine EH sections"); 146 for (InputSectionBase *&s : inputSections) { 147 // Ignore dead sections and the partition end marker (.part.end), 148 // whose partition number is out of bounds. 149 if (!s->isLive() || s->partition == 255) 150 continue; 151 152 Partition &part = s->getPartition(); 153 if (auto *es = dyn_cast<EhInputSection>(s)) { 154 part.ehFrame->addSection(es); 155 s = nullptr; 156 } else if (s->kind() == SectionBase::Regular && part.armExidx && 157 part.armExidx->addSection(cast<InputSection>(s))) { 158 s = nullptr; 159 } 160 } 161 162 llvm::erase_value(inputSections, nullptr); 163 } 164 165 static Defined *addOptionalRegular(StringRef name, SectionBase *sec, 166 uint64_t val, uint8_t stOther = STV_HIDDEN) { 167 Symbol *s = symtab->find(name); 168 if (!s || s->isDefined()) 169 return nullptr; 170 171 s->resolve(Defined{/*file=*/nullptr, name, STB_GLOBAL, stOther, STT_NOTYPE, 172 val, 173 /*size=*/0, sec}); 174 return cast<Defined>(s); 175 } 176 177 static Defined *addAbsolute(StringRef name) { 178 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN, 179 STT_NOTYPE, 0, 0, nullptr}); 180 return cast<Defined>(sym); 181 } 182 183 // The linker is expected to define some symbols depending on 184 // the linking result. This function defines such symbols. 185 void elf::addReservedSymbols() { 186 if (config->emachine == EM_MIPS) { 187 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer 188 // so that it points to an absolute address which by default is relative 189 // to GOT. Default offset is 0x7ff0. 190 // See "Global Data Symbols" in Chapter 6 in the following document: 191 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 192 ElfSym::mipsGp = addAbsolute("_gp"); 193 194 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between 195 // start of function and 'gp' pointer into GOT. 196 if (symtab->find("_gp_disp")) 197 ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); 198 199 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' 200 // pointer. This symbol is used in the code generated by .cpload pseudo-op 201 // in case of using -mno-shared option. 202 // https://sourceware.org/ml/binutils/2004-12/msg00094.html 203 if (symtab->find("__gnu_local_gp")) 204 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); 205 } else if (config->emachine == EM_PPC) { 206 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't 207 // support Small Data Area, define it arbitrarily as 0. 208 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); 209 } else if (config->emachine == EM_PPC64) { 210 addPPC64SaveRestore(); 211 } 212 213 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which 214 // combines the typical ELF GOT with the small data sections. It commonly 215 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both 216 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to 217 // represent the TOC base which is offset by 0x8000 bytes from the start of 218 // the .got section. 219 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the 220 // correctness of some relocations depends on its value. 221 StringRef gotSymName = 222 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; 223 224 if (Symbol *s = symtab->find(gotSymName)) { 225 if (s->isDefined()) { 226 error(toString(s->file) + " cannot redefine linker defined symbol '" + 227 gotSymName + "'"); 228 return; 229 } 230 231 uint64_t gotOff = 0; 232 if (config->emachine == EM_PPC64) 233 gotOff = 0x8000; 234 235 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN, 236 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); 237 ElfSym::globalOffsetTable = cast<Defined>(s); 238 } 239 240 // __ehdr_start is the location of ELF file headers. Note that we define 241 // this symbol unconditionally even when using a linker script, which 242 // differs from the behavior implemented by GNU linker which only define 243 // this symbol if ELF headers are in the memory mapped segment. 244 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); 245 246 // __executable_start is not documented, but the expectation of at 247 // least the Android libc is that it points to the ELF header. 248 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); 249 250 // __dso_handle symbol is passed to cxa_finalize as a marker to identify 251 // each DSO. The address of the symbol doesn't matter as long as they are 252 // different in different DSOs, so we chose the start address of the DSO. 253 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); 254 255 // If linker script do layout we do not need to create any standard symbols. 256 if (script->hasSectionsCommand) 257 return; 258 259 auto add = [](StringRef s, int64_t pos) { 260 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); 261 }; 262 263 ElfSym::bss = add("__bss_start", 0); 264 ElfSym::end1 = add("end", -1); 265 ElfSym::end2 = add("_end", -1); 266 ElfSym::etext1 = add("etext", -1); 267 ElfSym::etext2 = add("_etext", -1); 268 ElfSym::edata1 = add("edata", -1); 269 ElfSym::edata2 = add("_edata", -1); 270 } 271 272 static OutputSection *findSection(StringRef name, unsigned partition = 1) { 273 for (SectionCommand *cmd : script->sectionCommands) 274 if (auto *sec = dyn_cast<OutputSection>(cmd)) 275 if (sec->name == name && sec->partition == partition) 276 return sec; 277 return nullptr; 278 } 279 280 template <class ELFT> void elf::createSyntheticSections() { 281 // Initialize all pointers with NULL. This is needed because 282 // you can call lld::elf::main more than once as a library. 283 Out::tlsPhdr = nullptr; 284 Out::preinitArray = nullptr; 285 Out::initArray = nullptr; 286 Out::finiArray = nullptr; 287 288 // Add the .interp section first because it is not a SyntheticSection. 289 // The removeUnusedSyntheticSections() function relies on the 290 // SyntheticSections coming last. 291 if (needsInterpSection()) { 292 for (size_t i = 1; i <= partitions.size(); ++i) { 293 InputSection *sec = createInterpSection(); 294 sec->partition = i; 295 inputSections.push_back(sec); 296 } 297 } 298 299 auto add = [](SyntheticSection &sec) { inputSections.push_back(&sec); }; 300 301 in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false); 302 303 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); 304 Out::programHeaders->alignment = config->wordsize; 305 306 if (config->strip != StripPolicy::All) { 307 in.strTab = std::make_unique<StringTableSection>(".strtab", false); 308 in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab); 309 in.symTabShndx = std::make_unique<SymtabShndxSection>(); 310 } 311 312 in.bss = std::make_unique<BssSection>(".bss", 0, 1); 313 add(*in.bss); 314 315 // If there is a SECTIONS command and a .data.rel.ro section name use name 316 // .data.rel.ro.bss so that we match in the .data.rel.ro output section. 317 // This makes sure our relro is contiguous. 318 bool hasDataRelRo = 319 script->hasSectionsCommand && findSection(".data.rel.ro", 0); 320 in.bssRelRo = std::make_unique<BssSection>( 321 hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); 322 add(*in.bssRelRo); 323 324 // Add MIPS-specific sections. 325 if (config->emachine == EM_MIPS) { 326 if (!config->shared && config->hasDynSymTab) { 327 in.mipsRldMap = std::make_unique<MipsRldMapSection>(); 328 add(*in.mipsRldMap); 329 } 330 if (auto *sec = MipsAbiFlagsSection<ELFT>::create()) 331 add(*sec); 332 if (auto *sec = MipsOptionsSection<ELFT>::create()) 333 add(*sec); 334 if (auto *sec = MipsReginfoSection<ELFT>::create()) 335 add(*sec); 336 } 337 338 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; 339 340 for (Partition &part : partitions) { 341 auto add = [&](SyntheticSection &sec) { 342 sec.partition = part.getNumber(); 343 inputSections.push_back(&sec); 344 }; 345 346 if (!part.name.empty()) { 347 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(); 348 part.elfHeader->name = part.name; 349 add(*part.elfHeader); 350 351 part.programHeaders = 352 std::make_unique<PartitionProgramHeadersSection<ELFT>>(); 353 add(*part.programHeaders); 354 } 355 356 if (config->buildId != BuildIdKind::None) { 357 part.buildId = std::make_unique<BuildIdSection>(); 358 add(*part.buildId); 359 } 360 361 part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true); 362 part.dynSymTab = 363 std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab); 364 part.dynamic = std::make_unique<DynamicSection<ELFT>>(); 365 if (config->androidPackDynRelocs) 366 part.relaDyn = 367 std::make_unique<AndroidPackedRelocationSection<ELFT>>(relaDynName); 368 else 369 part.relaDyn = std::make_unique<RelocationSection<ELFT>>( 370 relaDynName, config->zCombreloc); 371 372 if (config->hasDynSymTab) { 373 add(*part.dynSymTab); 374 375 part.verSym = std::make_unique<VersionTableSection>(); 376 add(*part.verSym); 377 378 if (!namedVersionDefs().empty()) { 379 part.verDef = std::make_unique<VersionDefinitionSection>(); 380 add(*part.verDef); 381 } 382 383 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(); 384 add(*part.verNeed); 385 386 if (config->gnuHash) { 387 part.gnuHashTab = std::make_unique<GnuHashTableSection>(); 388 add(*part.gnuHashTab); 389 } 390 391 if (config->sysvHash) { 392 part.hashTab = std::make_unique<HashTableSection>(); 393 add(*part.hashTab); 394 } 395 396 add(*part.dynamic); 397 add(*part.dynStrTab); 398 add(*part.relaDyn); 399 } 400 401 if (config->relrPackDynRelocs) { 402 part.relrDyn = std::make_unique<RelrSection<ELFT>>(); 403 add(*part.relrDyn); 404 } 405 406 if (!config->relocatable) { 407 if (config->ehFrameHdr) { 408 part.ehFrameHdr = std::make_unique<EhFrameHeader>(); 409 add(*part.ehFrameHdr); 410 } 411 part.ehFrame = std::make_unique<EhFrameSection>(); 412 add(*part.ehFrame); 413 } 414 415 if (config->emachine == EM_ARM && !config->relocatable) { 416 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx 417 // InputSections. 418 part.armExidx = std::make_unique<ARMExidxSyntheticSection>(); 419 add(*part.armExidx); 420 } 421 } 422 423 if (partitions.size() != 1) { 424 // Create the partition end marker. This needs to be in partition number 255 425 // so that it is sorted after all other partitions. It also has other 426 // special handling (see createPhdrs() and combineEhSections()). 427 in.partEnd = 428 std::make_unique<BssSection>(".part.end", config->maxPageSize, 1); 429 in.partEnd->partition = 255; 430 add(*in.partEnd); 431 432 in.partIndex = std::make_unique<PartitionIndexSection>(); 433 addOptionalRegular("__part_index_begin", in.partIndex.get(), 0); 434 addOptionalRegular("__part_index_end", in.partIndex.get(), 435 in.partIndex->getSize()); 436 add(*in.partIndex); 437 } 438 439 // Add .got. MIPS' .got is so different from the other archs, 440 // it has its own class. 441 if (config->emachine == EM_MIPS) { 442 in.mipsGot = std::make_unique<MipsGotSection>(); 443 add(*in.mipsGot); 444 } else { 445 in.got = std::make_unique<GotSection>(); 446 add(*in.got); 447 } 448 449 if (config->emachine == EM_PPC) { 450 in.ppc32Got2 = std::make_unique<PPC32Got2Section>(); 451 add(*in.ppc32Got2); 452 } 453 454 if (config->emachine == EM_PPC64) { 455 in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>(); 456 add(*in.ppc64LongBranchTarget); 457 } 458 459 in.gotPlt = std::make_unique<GotPltSection>(); 460 add(*in.gotPlt); 461 in.igotPlt = std::make_unique<IgotPltSection>(); 462 add(*in.igotPlt); 463 464 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat 465 // it as a relocation and ensure the referenced section is created. 466 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { 467 if (target->gotBaseSymInGotPlt) 468 in.gotPlt->hasGotPltOffRel = true; 469 else 470 in.got->hasGotOffRel = true; 471 } 472 473 if (config->gdbIndex) 474 add(*GdbIndexSection::create<ELFT>()); 475 476 // We always need to add rel[a].plt to output if it has entries. 477 // Even for static linking it can contain R_[*]_IRELATIVE relocations. 478 in.relaPlt = std::make_unique<RelocationSection<ELFT>>( 479 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false); 480 add(*in.relaPlt); 481 482 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative 483 // relocations are processed last by the dynamic loader. We cannot place the 484 // iplt section in .rel.dyn when Android relocation packing is enabled because 485 // that would cause a section type mismatch. However, because the Android 486 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired 487 // behaviour by placing the iplt section in .rel.plt. 488 in.relaIplt = std::make_unique<RelocationSection<ELFT>>( 489 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, 490 /*sort=*/false); 491 add(*in.relaIplt); 492 493 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && 494 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { 495 in.ibtPlt = std::make_unique<IBTPltSection>(); 496 add(*in.ibtPlt); 497 } 498 499 if (config->emachine == EM_PPC) 500 in.plt = std::make_unique<PPC32GlinkSection>(); 501 else 502 in.plt = std::make_unique<PltSection>(); 503 add(*in.plt); 504 in.iplt = std::make_unique<IpltSection>(); 505 add(*in.iplt); 506 507 if (config->andFeatures) 508 add(*make<GnuPropertySection>()); 509 510 // .note.GNU-stack is always added when we are creating a re-linkable 511 // object file. Other linkers are using the presence of this marker 512 // section to control the executable-ness of the stack area, but that 513 // is irrelevant these days. Stack area should always be non-executable 514 // by default. So we emit this section unconditionally. 515 if (config->relocatable) 516 add(*make<GnuStackSection>()); 517 518 if (in.symTab) 519 add(*in.symTab); 520 if (in.symTabShndx) 521 add(*in.symTabShndx); 522 add(*in.shStrTab); 523 if (in.strTab) 524 add(*in.strTab); 525 } 526 527 // The main function of the writer. 528 template <class ELFT> void Writer<ELFT>::run() { 529 copyLocalSymbols(); 530 531 if (config->copyRelocs) 532 addSectionSymbols(); 533 534 // Now that we have a complete set of output sections. This function 535 // completes section contents. For example, we need to add strings 536 // to the string table, and add entries to .got and .plt. 537 // finalizeSections does that. 538 finalizeSections(); 539 checkExecuteOnly(); 540 541 // If --compressed-debug-sections is specified, compress .debug_* sections. 542 // Do it right now because it changes the size of output sections. 543 for (OutputSection *sec : outputSections) 544 sec->maybeCompress<ELFT>(); 545 546 if (script->hasSectionsCommand) 547 script->allocateHeaders(mainPart->phdrs); 548 549 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a 550 // 0 sized region. This has to be done late since only after assignAddresses 551 // we know the size of the sections. 552 for (Partition &part : partitions) 553 removeEmptyPTLoad(part.phdrs); 554 555 if (!config->oFormatBinary) 556 assignFileOffsets(); 557 else 558 assignFileOffsetsBinary(); 559 560 for (Partition &part : partitions) 561 setPhdrs(part); 562 563 564 // Handle --print-map(-M)/--Map, --why-extract=, --cref and 565 // --print-archive-stats=. Dump them before checkSections() because the files 566 // may be useful in case checkSections() or openFile() fails, for example, due 567 // to an erroneous file size. 568 writeMapAndCref(); 569 writeWhyExtract(); 570 writeArchiveStats(); 571 572 if (config->checkSections) 573 checkSections(); 574 575 // It does not make sense try to open the file if we have error already. 576 if (errorCount()) 577 return; 578 579 { 580 llvm::TimeTraceScope timeScope("Write output file"); 581 // Write the result down to a file. 582 openFile(); 583 if (errorCount()) 584 return; 585 586 if (!config->oFormatBinary) { 587 if (config->zSeparate != SeparateSegmentKind::None) 588 writeTrapInstr(); 589 writeHeader(); 590 writeSections(); 591 } else { 592 writeSectionsBinary(); 593 } 594 595 // Backfill .note.gnu.build-id section content. This is done at last 596 // because the content is usually a hash value of the entire output file. 597 writeBuildId(); 598 if (errorCount()) 599 return; 600 601 if (auto e = buffer->commit()) 602 error("failed to write to the output file: " + toString(std::move(e))); 603 } 604 } 605 606 template <class ELFT, class RelTy> 607 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, 608 llvm::ArrayRef<RelTy> rels) { 609 for (const RelTy &rel : rels) { 610 Symbol &sym = file->getRelocTargetSym(rel); 611 if (sym.isLocal()) 612 sym.used = true; 613 } 614 } 615 616 // The function ensures that the "used" field of local symbols reflects the fact 617 // that the symbol is used in a relocation from a live section. 618 template <class ELFT> static void markUsedLocalSymbols() { 619 // With --gc-sections, the field is already filled. 620 // See MarkLive<ELFT>::resolveReloc(). 621 if (config->gcSections) 622 return; 623 // Without --gc-sections, the field is initialized with "true". 624 // Drop the flag first and then rise for symbols referenced in relocations. 625 for (ELFFileBase *file : objectFiles) { 626 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); 627 for (Symbol *b : f->getLocalSymbols()) 628 b->used = false; 629 for (InputSectionBase *s : f->getSections()) { 630 InputSection *isec = dyn_cast_or_null<InputSection>(s); 631 if (!isec) 632 continue; 633 if (isec->type == SHT_REL) 634 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); 635 else if (isec->type == SHT_RELA) 636 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); 637 } 638 } 639 } 640 641 static bool shouldKeepInSymtab(const Defined &sym) { 642 if (sym.isSection()) 643 return false; 644 645 // If --emit-reloc or -r is given, preserve symbols referenced by relocations 646 // from live sections. 647 if (config->copyRelocs && sym.used) 648 return true; 649 650 // Exclude local symbols pointing to .ARM.exidx sections. 651 // They are probably mapping symbols "$d", which are optional for these 652 // sections. After merging the .ARM.exidx sections, some of these symbols 653 // may become dangling. The easiest way to avoid the issue is not to add 654 // them to the symbol table from the beginning. 655 if (config->emachine == EM_ARM && sym.section && 656 sym.section->type == SHT_ARM_EXIDX) 657 return false; 658 659 if (config->discard == DiscardPolicy::None) 660 return true; 661 if (config->discard == DiscardPolicy::All) 662 return false; 663 664 // In ELF assembly .L symbols are normally discarded by the assembler. 665 // If the assembler fails to do so, the linker discards them if 666 // * --discard-locals is used. 667 // * The symbol is in a SHF_MERGE section, which is normally the reason for 668 // the assembler keeping the .L symbol. 669 if (sym.getName().startswith(".L") && 670 (config->discard == DiscardPolicy::Locals || 671 (sym.section && (sym.section->flags & SHF_MERGE)))) 672 return false; 673 return true; 674 } 675 676 static bool includeInSymtab(const Symbol &b) { 677 if (auto *d = dyn_cast<Defined>(&b)) { 678 // Always include absolute symbols. 679 SectionBase *sec = d->section; 680 if (!sec) 681 return true; 682 683 // Exclude symbols pointing to garbage-collected sections. 684 if (isa<InputSectionBase>(sec) && !sec->isLive()) 685 return false; 686 687 if (auto *s = dyn_cast<MergeInputSection>(sec)) 688 if (!s->getSectionPiece(d->value)->live) 689 return false; 690 return true; 691 } 692 return b.used; 693 } 694 695 // Local symbols are not in the linker's symbol table. This function scans 696 // each object file's symbol table to copy local symbols to the output. 697 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { 698 if (!in.symTab) 699 return; 700 llvm::TimeTraceScope timeScope("Add local symbols"); 701 if (config->copyRelocs && config->discard != DiscardPolicy::None) 702 markUsedLocalSymbols<ELFT>(); 703 for (ELFFileBase *file : objectFiles) { 704 for (Symbol *b : file->getLocalSymbols()) { 705 assert(b->isLocal() && "should have been caught in initializeSymbols()"); 706 auto *dr = dyn_cast<Defined>(b); 707 708 // No reason to keep local undefined symbol in symtab. 709 if (!dr) 710 continue; 711 if (includeInSymtab(*b) && shouldKeepInSymtab(*dr)) 712 in.symTab->addSymbol(b); 713 } 714 } 715 } 716 717 // Create a section symbol for each output section so that we can represent 718 // relocations that point to the section. If we know that no relocation is 719 // referring to a section (that happens if the section is a synthetic one), we 720 // don't create a section symbol for that section. 721 template <class ELFT> void Writer<ELFT>::addSectionSymbols() { 722 for (SectionCommand *cmd : script->sectionCommands) { 723 auto *sec = dyn_cast<OutputSection>(cmd); 724 if (!sec) 725 continue; 726 auto i = llvm::find_if(sec->commands, [](SectionCommand *cmd) { 727 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 728 return !isd->sections.empty(); 729 return false; 730 }); 731 if (i == sec->commands.end()) 732 continue; 733 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0]; 734 735 // Relocations are not using REL[A] section symbols. 736 if (isec->type == SHT_REL || isec->type == SHT_RELA) 737 continue; 738 739 // Unlike other synthetic sections, mergeable output sections contain data 740 // copied from input sections, and there may be a relocation pointing to its 741 // contents if -r or --emit-reloc is given. 742 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE)) 743 continue; 744 745 // Set the symbol to be relative to the output section so that its st_value 746 // equals the output section address. Note, there may be a gap between the 747 // start of the output section and isec. 748 in.symTab->addSymbol( 749 makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION, 750 /*value=*/0, /*size=*/0, isec->getOutputSection())); 751 } 752 } 753 754 // Today's loaders have a feature to make segments read-only after 755 // processing dynamic relocations to enhance security. PT_GNU_RELRO 756 // is defined for that. 757 // 758 // This function returns true if a section needs to be put into a 759 // PT_GNU_RELRO segment. 760 static bool isRelroSection(const OutputSection *sec) { 761 if (!config->zRelro) 762 return false; 763 764 uint64_t flags = sec->flags; 765 766 // Non-allocatable or non-writable sections don't need RELRO because 767 // they are not writable or not even mapped to memory in the first place. 768 // RELRO is for sections that are essentially read-only but need to 769 // be writable only at process startup to allow dynamic linker to 770 // apply relocations. 771 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) 772 return false; 773 774 // Once initialized, TLS data segments are used as data templates 775 // for a thread-local storage. For each new thread, runtime 776 // allocates memory for a TLS and copy templates there. No thread 777 // are supposed to use templates directly. Thus, it can be in RELRO. 778 if (flags & SHF_TLS) 779 return true; 780 781 // .init_array, .preinit_array and .fini_array contain pointers to 782 // functions that are executed on process startup or exit. These 783 // pointers are set by the static linker, and they are not expected 784 // to change at runtime. But if you are an attacker, you could do 785 // interesting things by manipulating pointers in .fini_array, for 786 // example. So they are put into RELRO. 787 uint32_t type = sec->type; 788 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || 789 type == SHT_PREINIT_ARRAY) 790 return true; 791 792 // .got contains pointers to external symbols. They are resolved by 793 // the dynamic linker when a module is loaded into memory, and after 794 // that they are not expected to change. So, it can be in RELRO. 795 if (in.got && sec == in.got->getParent()) 796 return true; 797 798 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed 799 // through r2 register, which is reserved for that purpose. Since r2 is used 800 // for accessing .got as well, .got and .toc need to be close enough in the 801 // virtual address space. Usually, .toc comes just after .got. Since we place 802 // .got into RELRO, .toc needs to be placed into RELRO too. 803 if (sec->name.equals(".toc")) 804 return true; 805 806 // .got.plt contains pointers to external function symbols. They are 807 // by default resolved lazily, so we usually cannot put it into RELRO. 808 // However, if "-z now" is given, the lazy symbol resolution is 809 // disabled, which enables us to put it into RELRO. 810 if (sec == in.gotPlt->getParent()) 811 return config->zNow; 812 813 // .dynamic section contains data for the dynamic linker, and 814 // there's no need to write to it at runtime, so it's better to put 815 // it into RELRO. 816 if (sec->name == ".dynamic") 817 return true; 818 819 // Sections with some special names are put into RELRO. This is a 820 // bit unfortunate because section names shouldn't be significant in 821 // ELF in spirit. But in reality many linker features depend on 822 // magic section names. 823 StringRef s = sec->name; 824 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || 825 s == ".dtors" || s == ".jcr" || s == ".eh_frame" || 826 s == ".fini_array" || s == ".init_array" || 827 s == ".openbsd.randomdata" || s == ".preinit_array"; 828 } 829 830 // We compute a rank for each section. The rank indicates where the 831 // section should be placed in the file. Instead of using simple 832 // numbers (0,1,2...), we use a series of flags. One for each decision 833 // point when placing the section. 834 // Using flags has two key properties: 835 // * It is easy to check if a give branch was taken. 836 // * It is easy two see how similar two ranks are (see getRankProximity). 837 enum RankFlags { 838 RF_NOT_ADDR_SET = 1 << 27, 839 RF_NOT_ALLOC = 1 << 26, 840 RF_PARTITION = 1 << 18, // Partition number (8 bits) 841 RF_NOT_PART_EHDR = 1 << 17, 842 RF_NOT_PART_PHDR = 1 << 16, 843 RF_NOT_INTERP = 1 << 15, 844 RF_NOT_NOTE = 1 << 14, 845 RF_WRITE = 1 << 13, 846 RF_EXEC_WRITE = 1 << 12, 847 RF_EXEC = 1 << 11, 848 RF_RODATA = 1 << 10, 849 RF_NOT_RELRO = 1 << 9, 850 RF_NOT_TLS = 1 << 8, 851 RF_BSS = 1 << 7, 852 RF_PPC_NOT_TOCBSS = 1 << 6, 853 RF_PPC_TOCL = 1 << 5, 854 RF_PPC_TOC = 1 << 4, 855 RF_PPC_GOT = 1 << 3, 856 RF_PPC_BRANCH_LT = 1 << 2, 857 RF_MIPS_GPREL = 1 << 1, 858 RF_MIPS_NOT_GOT = 1 << 0 859 }; 860 861 static unsigned getSectionRank(const OutputSection *sec) { 862 unsigned rank = sec->partition * RF_PARTITION; 863 864 // We want to put section specified by -T option first, so we 865 // can start assigning VA starting from them later. 866 if (config->sectionStartMap.count(sec->name)) 867 return rank; 868 rank |= RF_NOT_ADDR_SET; 869 870 // Allocatable sections go first to reduce the total PT_LOAD size and 871 // so debug info doesn't change addresses in actual code. 872 if (!(sec->flags & SHF_ALLOC)) 873 return rank | RF_NOT_ALLOC; 874 875 if (sec->type == SHT_LLVM_PART_EHDR) 876 return rank; 877 rank |= RF_NOT_PART_EHDR; 878 879 if (sec->type == SHT_LLVM_PART_PHDR) 880 return rank; 881 rank |= RF_NOT_PART_PHDR; 882 883 // Put .interp first because some loaders want to see that section 884 // on the first page of the executable file when loaded into memory. 885 if (sec->name == ".interp") 886 return rank; 887 rank |= RF_NOT_INTERP; 888 889 // Put .note sections (which make up one PT_NOTE) at the beginning so that 890 // they are likely to be included in a core file even if core file size is 891 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be 892 // included in a core to match core files with executables. 893 if (sec->type == SHT_NOTE) 894 return rank; 895 rank |= RF_NOT_NOTE; 896 897 // Sort sections based on their access permission in the following 898 // order: R, RX, RWX, RW. This order is based on the following 899 // considerations: 900 // * Read-only sections come first such that they go in the 901 // PT_LOAD covering the program headers at the start of the file. 902 // * Read-only, executable sections come next. 903 // * Writable, executable sections follow such that .plt on 904 // architectures where it needs to be writable will be placed 905 // between .text and .data. 906 // * Writable sections come last, such that .bss lands at the very 907 // end of the last PT_LOAD. 908 bool isExec = sec->flags & SHF_EXECINSTR; 909 bool isWrite = sec->flags & SHF_WRITE; 910 911 if (isExec) { 912 if (isWrite) 913 rank |= RF_EXEC_WRITE; 914 else 915 rank |= RF_EXEC; 916 } else if (isWrite) { 917 rank |= RF_WRITE; 918 } else if (sec->type == SHT_PROGBITS) { 919 // Make non-executable and non-writable PROGBITS sections (e.g .rodata 920 // .eh_frame) closer to .text. They likely contain PC or GOT relative 921 // relocations and there could be relocation overflow if other huge sections 922 // (.dynstr .dynsym) were placed in between. 923 rank |= RF_RODATA; 924 } 925 926 // Place RelRo sections first. After considering SHT_NOBITS below, the 927 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss), 928 // where | marks where page alignment happens. An alternative ordering is 929 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may 930 // waste more bytes due to 2 alignment places. 931 if (!isRelroSection(sec)) 932 rank |= RF_NOT_RELRO; 933 934 // If we got here we know that both A and B are in the same PT_LOAD. 935 936 // The TLS initialization block needs to be a single contiguous block in a R/W 937 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W 938 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections 939 // after PROGBITS. 940 if (!(sec->flags & SHF_TLS)) 941 rank |= RF_NOT_TLS; 942 943 // Within TLS sections, or within other RelRo sections, or within non-RelRo 944 // sections, place non-NOBITS sections first. 945 if (sec->type == SHT_NOBITS) 946 rank |= RF_BSS; 947 948 // Some architectures have additional ordering restrictions for sections 949 // within the same PT_LOAD. 950 if (config->emachine == EM_PPC64) { 951 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections 952 // that we would like to make sure appear is a specific order to maximize 953 // their coverage by a single signed 16-bit offset from the TOC base 954 // pointer. Conversely, the special .tocbss section should be first among 955 // all SHT_NOBITS sections. This will put it next to the loaded special 956 // PPC64 sections (and, thus, within reach of the TOC base pointer). 957 StringRef name = sec->name; 958 if (name != ".tocbss") 959 rank |= RF_PPC_NOT_TOCBSS; 960 961 if (name == ".toc1") 962 rank |= RF_PPC_TOCL; 963 964 if (name == ".toc") 965 rank |= RF_PPC_TOC; 966 967 if (name == ".got") 968 rank |= RF_PPC_GOT; 969 970 if (name == ".branch_lt") 971 rank |= RF_PPC_BRANCH_LT; 972 } 973 974 if (config->emachine == EM_MIPS) { 975 // All sections with SHF_MIPS_GPREL flag should be grouped together 976 // because data in these sections is addressable with a gp relative address. 977 if (sec->flags & SHF_MIPS_GPREL) 978 rank |= RF_MIPS_GPREL; 979 980 if (sec->name != ".got") 981 rank |= RF_MIPS_NOT_GOT; 982 } 983 984 return rank; 985 } 986 987 static bool compareSections(const SectionCommand *aCmd, 988 const SectionCommand *bCmd) { 989 const OutputSection *a = cast<OutputSection>(aCmd); 990 const OutputSection *b = cast<OutputSection>(bCmd); 991 992 if (a->sortRank != b->sortRank) 993 return a->sortRank < b->sortRank; 994 995 if (!(a->sortRank & RF_NOT_ADDR_SET)) 996 return config->sectionStartMap.lookup(a->name) < 997 config->sectionStartMap.lookup(b->name); 998 return false; 999 } 1000 1001 void PhdrEntry::add(OutputSection *sec) { 1002 lastSec = sec; 1003 if (!firstSec) 1004 firstSec = sec; 1005 p_align = std::max(p_align, sec->alignment); 1006 if (p_type == PT_LOAD) 1007 sec->ptLoad = this; 1008 } 1009 1010 // The beginning and the ending of .rel[a].plt section are marked 1011 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked 1012 // executable. The runtime needs these symbols in order to resolve 1013 // all IRELATIVE relocs on startup. For dynamic executables, we don't 1014 // need these symbols, since IRELATIVE relocs are resolved through GOT 1015 // and PLT. For details, see http://www.airs.com/blog/archives/403. 1016 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { 1017 if (config->relocatable || config->isPic) 1018 return; 1019 1020 // By default, __rela_iplt_{start,end} belong to a dummy section 0 1021 // because .rela.plt might be empty and thus removed from output. 1022 // We'll override Out::elfHeader with In.relaIplt later when we are 1023 // sure that .rela.plt exists in output. 1024 ElfSym::relaIpltStart = addOptionalRegular( 1025 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", 1026 Out::elfHeader, 0, STV_HIDDEN); 1027 1028 ElfSym::relaIpltEnd = addOptionalRegular( 1029 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", 1030 Out::elfHeader, 0, STV_HIDDEN); 1031 } 1032 1033 // This function generates assignments for predefined symbols (e.g. _end or 1034 // _etext) and inserts them into the commands sequence to be processed at the 1035 // appropriate time. This ensures that the value is going to be correct by the 1036 // time any references to these symbols are processed and is equivalent to 1037 // defining these symbols explicitly in the linker script. 1038 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { 1039 if (ElfSym::globalOffsetTable) { 1040 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually 1041 // to the start of the .got or .got.plt section. 1042 InputSection *sec = in.gotPlt.get(); 1043 if (!target->gotBaseSymInGotPlt) 1044 sec = in.mipsGot.get() ? cast<InputSection>(in.mipsGot.get()) 1045 : cast<InputSection>(in.got.get()); 1046 ElfSym::globalOffsetTable->section = sec; 1047 } 1048 1049 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. 1050 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { 1051 ElfSym::relaIpltStart->section = in.relaIplt.get(); 1052 ElfSym::relaIpltEnd->section = in.relaIplt.get(); 1053 ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); 1054 } 1055 1056 PhdrEntry *last = nullptr; 1057 PhdrEntry *lastRO = nullptr; 1058 1059 for (Partition &part : partitions) { 1060 for (PhdrEntry *p : part.phdrs) { 1061 if (p->p_type != PT_LOAD) 1062 continue; 1063 last = p; 1064 if (!(p->p_flags & PF_W)) 1065 lastRO = p; 1066 } 1067 } 1068 1069 if (lastRO) { 1070 // _etext is the first location after the last read-only loadable segment. 1071 if (ElfSym::etext1) 1072 ElfSym::etext1->section = lastRO->lastSec; 1073 if (ElfSym::etext2) 1074 ElfSym::etext2->section = lastRO->lastSec; 1075 } 1076 1077 if (last) { 1078 // _edata points to the end of the last mapped initialized section. 1079 OutputSection *edata = nullptr; 1080 for (OutputSection *os : outputSections) { 1081 if (os->type != SHT_NOBITS) 1082 edata = os; 1083 if (os == last->lastSec) 1084 break; 1085 } 1086 1087 if (ElfSym::edata1) 1088 ElfSym::edata1->section = edata; 1089 if (ElfSym::edata2) 1090 ElfSym::edata2->section = edata; 1091 1092 // _end is the first location after the uninitialized data region. 1093 if (ElfSym::end1) 1094 ElfSym::end1->section = last->lastSec; 1095 if (ElfSym::end2) 1096 ElfSym::end2->section = last->lastSec; 1097 } 1098 1099 if (ElfSym::bss) 1100 ElfSym::bss->section = findSection(".bss"); 1101 1102 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should 1103 // be equal to the _gp symbol's value. 1104 if (ElfSym::mipsGp) { 1105 // Find GP-relative section with the lowest address 1106 // and use this address to calculate default _gp value. 1107 for (OutputSection *os : outputSections) { 1108 if (os->flags & SHF_MIPS_GPREL) { 1109 ElfSym::mipsGp->section = os; 1110 ElfSym::mipsGp->value = 0x7ff0; 1111 break; 1112 } 1113 } 1114 } 1115 } 1116 1117 // We want to find how similar two ranks are. 1118 // The more branches in getSectionRank that match, the more similar they are. 1119 // Since each branch corresponds to a bit flag, we can just use 1120 // countLeadingZeros. 1121 static int getRankProximityAux(OutputSection *a, OutputSection *b) { 1122 return countLeadingZeros(a->sortRank ^ b->sortRank); 1123 } 1124 1125 static int getRankProximity(OutputSection *a, SectionCommand *b) { 1126 auto *sec = dyn_cast<OutputSection>(b); 1127 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1; 1128 } 1129 1130 // When placing orphan sections, we want to place them after symbol assignments 1131 // so that an orphan after 1132 // begin_foo = .; 1133 // foo : { *(foo) } 1134 // end_foo = .; 1135 // doesn't break the intended meaning of the begin/end symbols. 1136 // We don't want to go over sections since findOrphanPos is the 1137 // one in charge of deciding the order of the sections. 1138 // We don't want to go over changes to '.', since doing so in 1139 // rx_sec : { *(rx_sec) } 1140 // . = ALIGN(0x1000); 1141 // /* The RW PT_LOAD starts here*/ 1142 // rw_sec : { *(rw_sec) } 1143 // would mean that the RW PT_LOAD would become unaligned. 1144 static bool shouldSkip(SectionCommand *cmd) { 1145 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 1146 return assign->name != "."; 1147 return false; 1148 } 1149 1150 // We want to place orphan sections so that they share as much 1151 // characteristics with their neighbors as possible. For example, if 1152 // both are rw, or both are tls. 1153 static SmallVectorImpl<SectionCommand *>::iterator 1154 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b, 1155 SmallVectorImpl<SectionCommand *>::iterator e) { 1156 OutputSection *sec = cast<OutputSection>(*e); 1157 1158 // Find the first element that has as close a rank as possible. 1159 auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) { 1160 return getRankProximity(sec, a) < getRankProximity(sec, b); 1161 }); 1162 if (i == e) 1163 return e; 1164 auto foundSec = dyn_cast<OutputSection>(*i); 1165 if (!foundSec) 1166 return e; 1167 1168 // Consider all existing sections with the same proximity. 1169 int proximity = getRankProximity(sec, *i); 1170 unsigned sortRank = sec->sortRank; 1171 if (script->hasPhdrsCommands() || !script->memoryRegions.empty()) 1172 // Prevent the orphan section to be placed before the found section. If 1173 // custom program headers are defined, that helps to avoid adding it to a 1174 // previous segment and changing flags of that segment, for example, making 1175 // a read-only segment writable. If memory regions are defined, an orphan 1176 // section should continue the same region as the found section to better 1177 // resemble the behavior of GNU ld. 1178 sortRank = std::max(sortRank, foundSec->sortRank); 1179 for (; i != e; ++i) { 1180 auto *curSec = dyn_cast<OutputSection>(*i); 1181 if (!curSec || !curSec->hasInputSections) 1182 continue; 1183 if (getRankProximity(sec, curSec) != proximity || 1184 sortRank < curSec->sortRank) 1185 break; 1186 } 1187 1188 auto isOutputSecWithInputSections = [](SectionCommand *cmd) { 1189 auto *os = dyn_cast<OutputSection>(cmd); 1190 return os && os->hasInputSections; 1191 }; 1192 auto j = 1193 std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b), 1194 isOutputSecWithInputSections); 1195 i = j.base(); 1196 1197 // As a special case, if the orphan section is the last section, put 1198 // it at the very end, past any other commands. 1199 // This matches bfd's behavior and is convenient when the linker script fully 1200 // specifies the start of the file, but doesn't care about the end (the non 1201 // alloc sections for example). 1202 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); 1203 if (nextSec == e) 1204 return e; 1205 1206 while (i != e && shouldSkip(*i)) 1207 ++i; 1208 return i; 1209 } 1210 1211 // Adds random priorities to sections not already in the map. 1212 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { 1213 if (config->shuffleSections.empty()) 1214 return; 1215 1216 SmallVector<InputSectionBase *, 0> matched, sections = inputSections; 1217 matched.reserve(sections.size()); 1218 for (const auto &patAndSeed : config->shuffleSections) { 1219 matched.clear(); 1220 for (InputSectionBase *sec : sections) 1221 if (patAndSeed.first.match(sec->name)) 1222 matched.push_back(sec); 1223 const uint32_t seed = patAndSeed.second; 1224 if (seed == UINT32_MAX) { 1225 // If --shuffle-sections <section-glob>=-1, reverse the section order. The 1226 // section order is stable even if the number of sections changes. This is 1227 // useful to catch issues like static initialization order fiasco 1228 // reliably. 1229 std::reverse(matched.begin(), matched.end()); 1230 } else { 1231 std::mt19937 g(seed ? seed : std::random_device()()); 1232 llvm::shuffle(matched.begin(), matched.end(), g); 1233 } 1234 size_t i = 0; 1235 for (InputSectionBase *&sec : sections) 1236 if (patAndSeed.first.match(sec->name)) 1237 sec = matched[i++]; 1238 } 1239 1240 // Existing priorities are < 0, so use priorities >= 0 for the missing 1241 // sections. 1242 int prio = 0; 1243 for (InputSectionBase *sec : sections) { 1244 if (order.try_emplace(sec, prio).second) 1245 ++prio; 1246 } 1247 } 1248 1249 // Builds section order for handling --symbol-ordering-file. 1250 static DenseMap<const InputSectionBase *, int> buildSectionOrder() { 1251 DenseMap<const InputSectionBase *, int> sectionOrder; 1252 // Use the rarely used option --call-graph-ordering-file to sort sections. 1253 if (!config->callGraphProfile.empty()) 1254 return computeCallGraphProfileOrder(); 1255 1256 if (config->symbolOrderingFile.empty()) 1257 return sectionOrder; 1258 1259 struct SymbolOrderEntry { 1260 int priority; 1261 bool present; 1262 }; 1263 1264 // Build a map from symbols to their priorities. Symbols that didn't 1265 // appear in the symbol ordering file have the lowest priority 0. 1266 // All explicitly mentioned symbols have negative (higher) priorities. 1267 DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder; 1268 int priority = -config->symbolOrderingFile.size(); 1269 for (StringRef s : config->symbolOrderingFile) 1270 symbolOrder.insert({CachedHashStringRef(s), {priority++, false}}); 1271 1272 // Build a map from sections to their priorities. 1273 auto addSym = [&](Symbol &sym) { 1274 auto it = symbolOrder.find(CachedHashStringRef(sym.getName())); 1275 if (it == symbolOrder.end()) 1276 return; 1277 SymbolOrderEntry &ent = it->second; 1278 ent.present = true; 1279 1280 maybeWarnUnorderableSymbol(&sym); 1281 1282 if (auto *d = dyn_cast<Defined>(&sym)) { 1283 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { 1284 int &priority = sectionOrder[cast<InputSectionBase>(sec)]; 1285 priority = std::min(priority, ent.priority); 1286 } 1287 } 1288 }; 1289 1290 // We want both global and local symbols. We get the global ones from the 1291 // symbol table and iterate the object files for the local ones. 1292 for (Symbol *sym : symtab->symbols()) 1293 addSym(*sym); 1294 1295 for (ELFFileBase *file : objectFiles) 1296 for (Symbol *sym : file->getLocalSymbols()) 1297 addSym(*sym); 1298 1299 if (config->warnSymbolOrdering) 1300 for (auto orderEntry : symbolOrder) 1301 if (!orderEntry.second.present) 1302 warn("symbol ordering file: no such symbol: " + orderEntry.first.val()); 1303 1304 return sectionOrder; 1305 } 1306 1307 // Sorts the sections in ISD according to the provided section order. 1308 static void 1309 sortISDBySectionOrder(InputSectionDescription *isd, 1310 const DenseMap<const InputSectionBase *, int> &order) { 1311 SmallVector<InputSection *, 0> unorderedSections; 1312 SmallVector<std::pair<InputSection *, int>, 0> orderedSections; 1313 uint64_t unorderedSize = 0; 1314 1315 for (InputSection *isec : isd->sections) { 1316 auto i = order.find(isec); 1317 if (i == order.end()) { 1318 unorderedSections.push_back(isec); 1319 unorderedSize += isec->getSize(); 1320 continue; 1321 } 1322 orderedSections.push_back({isec, i->second}); 1323 } 1324 llvm::sort(orderedSections, llvm::less_second()); 1325 1326 // Find an insertion point for the ordered section list in the unordered 1327 // section list. On targets with limited-range branches, this is the mid-point 1328 // of the unordered section list. This decreases the likelihood that a range 1329 // extension thunk will be needed to enter or exit the ordered region. If the 1330 // ordered section list is a list of hot functions, we can generally expect 1331 // the ordered functions to be called more often than the unordered functions, 1332 // making it more likely that any particular call will be within range, and 1333 // therefore reducing the number of thunks required. 1334 // 1335 // For example, imagine that you have 8MB of hot code and 32MB of cold code. 1336 // If the layout is: 1337 // 1338 // 8MB hot 1339 // 32MB cold 1340 // 1341 // only the first 8-16MB of the cold code (depending on which hot function it 1342 // is actually calling) can call the hot code without a range extension thunk. 1343 // However, if we use this layout: 1344 // 1345 // 16MB cold 1346 // 8MB hot 1347 // 16MB cold 1348 // 1349 // both the last 8-16MB of the first block of cold code and the first 8-16MB 1350 // of the second block of cold code can call the hot code without a thunk. So 1351 // we effectively double the amount of code that could potentially call into 1352 // the hot code without a thunk. 1353 size_t insPt = 0; 1354 if (target->getThunkSectionSpacing() && !orderedSections.empty()) { 1355 uint64_t unorderedPos = 0; 1356 for (; insPt != unorderedSections.size(); ++insPt) { 1357 unorderedPos += unorderedSections[insPt]->getSize(); 1358 if (unorderedPos > unorderedSize / 2) 1359 break; 1360 } 1361 } 1362 1363 isd->sections.clear(); 1364 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt)) 1365 isd->sections.push_back(isec); 1366 for (std::pair<InputSection *, int> p : orderedSections) 1367 isd->sections.push_back(p.first); 1368 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt)) 1369 isd->sections.push_back(isec); 1370 } 1371 1372 static void sortSection(OutputSection *sec, 1373 const DenseMap<const InputSectionBase *, int> &order) { 1374 StringRef name = sec->name; 1375 1376 // Never sort these. 1377 if (name == ".init" || name == ".fini") 1378 return; 1379 1380 // IRelative relocations that usually live in the .rel[a].dyn section should 1381 // be processed last by the dynamic loader. To achieve that we add synthetic 1382 // sections in the required order from the beginning so that the in.relaIplt 1383 // section is placed last in an output section. Here we just do not apply 1384 // sorting for an output section which holds the in.relaIplt section. 1385 if (in.relaIplt->getParent() == sec) 1386 return; 1387 1388 // Sort input sections by priority using the list provided by 1389 // --symbol-ordering-file or --shuffle-sections=. This is a least significant 1390 // digit radix sort. The sections may be sorted stably again by a more 1391 // significant key. 1392 if (!order.empty()) 1393 for (SectionCommand *b : sec->commands) 1394 if (auto *isd = dyn_cast<InputSectionDescription>(b)) 1395 sortISDBySectionOrder(isd, order); 1396 1397 if (script->hasSectionsCommand) 1398 return; 1399 1400 if (name == ".init_array" || name == ".fini_array") { 1401 sec->sortInitFini(); 1402 } else if (name == ".ctors" || name == ".dtors") { 1403 sec->sortCtorsDtors(); 1404 } else if (config->emachine == EM_PPC64 && name == ".toc") { 1405 // .toc is allocated just after .got and is accessed using GOT-relative 1406 // relocations. Object files compiled with small code model have an 1407 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. 1408 // To reduce the risk of relocation overflow, .toc contents are sorted so 1409 // that sections having smaller relocation offsets are at beginning of .toc 1410 assert(sec->commands.size() == 1); 1411 auto *isd = cast<InputSectionDescription>(sec->commands[0]); 1412 llvm::stable_sort(isd->sections, 1413 [](const InputSection *a, const InputSection *b) -> bool { 1414 return a->file->ppc64SmallCodeModelTocRelocs && 1415 !b->file->ppc64SmallCodeModelTocRelocs; 1416 }); 1417 } 1418 } 1419 1420 // If no layout was provided by linker script, we want to apply default 1421 // sorting for special input sections. This also handles --symbol-ordering-file. 1422 template <class ELFT> void Writer<ELFT>::sortInputSections() { 1423 // Build the order once since it is expensive. 1424 DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); 1425 maybeShuffle(order); 1426 for (SectionCommand *cmd : script->sectionCommands) 1427 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1428 sortSection(sec, order); 1429 } 1430 1431 template <class ELFT> void Writer<ELFT>::sortSections() { 1432 llvm::TimeTraceScope timeScope("Sort sections"); 1433 script->adjustSectionsBeforeSorting(); 1434 1435 // Don't sort if using -r. It is not necessary and we want to preserve the 1436 // relative order for SHF_LINK_ORDER sections. 1437 if (config->relocatable) 1438 return; 1439 1440 sortInputSections(); 1441 1442 for (SectionCommand *cmd : script->sectionCommands) { 1443 auto *os = dyn_cast<OutputSection>(cmd); 1444 if (!os) 1445 continue; 1446 os->sortRank = getSectionRank(os); 1447 } 1448 1449 if (!script->hasSectionsCommand) { 1450 // We know that all the OutputSections are contiguous in this case. 1451 auto isSection = [](SectionCommand *cmd) { 1452 return isa<OutputSection>(cmd); 1453 }; 1454 std::stable_sort( 1455 llvm::find_if(script->sectionCommands, isSection), 1456 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(), 1457 compareSections); 1458 1459 // Process INSERT commands. From this point onwards the order of 1460 // script->sectionCommands is fixed. 1461 script->processInsertCommands(); 1462 return; 1463 } 1464 1465 script->processInsertCommands(); 1466 1467 // Orphan sections are sections present in the input files which are 1468 // not explicitly placed into the output file by the linker script. 1469 // 1470 // The sections in the linker script are already in the correct 1471 // order. We have to figuere out where to insert the orphan 1472 // sections. 1473 // 1474 // The order of the sections in the script is arbitrary and may not agree with 1475 // compareSections. This means that we cannot easily define a strict weak 1476 // ordering. To see why, consider a comparison of a section in the script and 1477 // one not in the script. We have a two simple options: 1478 // * Make them equivalent (a is not less than b, and b is not less than a). 1479 // The problem is then that equivalence has to be transitive and we can 1480 // have sections a, b and c with only b in a script and a less than c 1481 // which breaks this property. 1482 // * Use compareSectionsNonScript. Given that the script order doesn't have 1483 // to match, we can end up with sections a, b, c, d where b and c are in the 1484 // script and c is compareSectionsNonScript less than b. In which case d 1485 // can be equivalent to c, a to b and d < a. As a concrete example: 1486 // .a (rx) # not in script 1487 // .b (rx) # in script 1488 // .c (ro) # in script 1489 // .d (ro) # not in script 1490 // 1491 // The way we define an order then is: 1492 // * Sort only the orphan sections. They are in the end right now. 1493 // * Move each orphan section to its preferred position. We try 1494 // to put each section in the last position where it can share 1495 // a PT_LOAD. 1496 // 1497 // There is some ambiguity as to where exactly a new entry should be 1498 // inserted, because Commands contains not only output section 1499 // commands but also other types of commands such as symbol assignment 1500 // expressions. There's no correct answer here due to the lack of the 1501 // formal specification of the linker script. We use heuristics to 1502 // determine whether a new output command should be added before or 1503 // after another commands. For the details, look at shouldSkip 1504 // function. 1505 1506 auto i = script->sectionCommands.begin(); 1507 auto e = script->sectionCommands.end(); 1508 auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) { 1509 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1510 return sec->sectionIndex == UINT32_MAX; 1511 return false; 1512 }); 1513 1514 // Sort the orphan sections. 1515 std::stable_sort(nonScriptI, e, compareSections); 1516 1517 // As a horrible special case, skip the first . assignment if it is before any 1518 // section. We do this because it is common to set a load address by starting 1519 // the script with ". = 0xabcd" and the expectation is that every section is 1520 // after that. 1521 auto firstSectionOrDotAssignment = 1522 std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); }); 1523 if (firstSectionOrDotAssignment != e && 1524 isa<SymbolAssignment>(**firstSectionOrDotAssignment)) 1525 ++firstSectionOrDotAssignment; 1526 i = firstSectionOrDotAssignment; 1527 1528 while (nonScriptI != e) { 1529 auto pos = findOrphanPos(i, nonScriptI); 1530 OutputSection *orphan = cast<OutputSection>(*nonScriptI); 1531 1532 // As an optimization, find all sections with the same sort rank 1533 // and insert them with one rotate. 1534 unsigned rank = orphan->sortRank; 1535 auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) { 1536 return cast<OutputSection>(cmd)->sortRank != rank; 1537 }); 1538 std::rotate(pos, nonScriptI, end); 1539 nonScriptI = end; 1540 } 1541 1542 script->adjustSectionsAfterSorting(); 1543 } 1544 1545 static bool compareByFilePosition(InputSection *a, InputSection *b) { 1546 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; 1547 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; 1548 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before 1549 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. 1550 if (!la || !lb) 1551 return la && !lb; 1552 OutputSection *aOut = la->getParent(); 1553 OutputSection *bOut = lb->getParent(); 1554 1555 if (aOut != bOut) 1556 return aOut->addr < bOut->addr; 1557 return la->outSecOff < lb->outSecOff; 1558 } 1559 1560 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { 1561 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); 1562 for (OutputSection *sec : outputSections) { 1563 if (!(sec->flags & SHF_LINK_ORDER)) 1564 continue; 1565 1566 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated 1567 // this processing inside the ARMExidxsyntheticsection::finalizeContents(). 1568 if (!config->relocatable && config->emachine == EM_ARM && 1569 sec->type == SHT_ARM_EXIDX) 1570 continue; 1571 1572 // Link order may be distributed across several InputSectionDescriptions. 1573 // Sorting is performed separately. 1574 std::vector<InputSection **> scriptSections; 1575 std::vector<InputSection *> sections; 1576 for (SectionCommand *cmd : sec->commands) { 1577 auto *isd = dyn_cast<InputSectionDescription>(cmd); 1578 if (!isd) 1579 continue; 1580 bool hasLinkOrder = false; 1581 scriptSections.clear(); 1582 sections.clear(); 1583 for (InputSection *&isec : isd->sections) { 1584 if (isec->flags & SHF_LINK_ORDER) { 1585 InputSection *link = isec->getLinkOrderDep(); 1586 if (link && !link->getParent()) 1587 error(toString(isec) + ": sh_link points to discarded section " + 1588 toString(link)); 1589 hasLinkOrder = true; 1590 } 1591 scriptSections.push_back(&isec); 1592 sections.push_back(isec); 1593 } 1594 if (hasLinkOrder && errorCount() == 0) { 1595 llvm::stable_sort(sections, compareByFilePosition); 1596 for (int i = 0, n = sections.size(); i != n; ++i) 1597 *scriptSections[i] = sections[i]; 1598 } 1599 } 1600 } 1601 } 1602 1603 static void finalizeSynthetic(SyntheticSection *sec) { 1604 if (sec && sec->isNeeded() && sec->getParent()) { 1605 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); 1606 sec->finalizeContents(); 1607 } 1608 } 1609 1610 // We need to generate and finalize the content that depends on the address of 1611 // InputSections. As the generation of the content may also alter InputSection 1612 // addresses we must converge to a fixed point. We do that here. See the comment 1613 // in Writer<ELFT>::finalizeSections(). 1614 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { 1615 llvm::TimeTraceScope timeScope("Finalize address dependent content"); 1616 ThunkCreator tc; 1617 AArch64Err843419Patcher a64p; 1618 ARMErr657417Patcher a32p; 1619 script->assignAddresses(); 1620 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they 1621 // do require the relative addresses of OutputSections because linker scripts 1622 // can assign Virtual Addresses to OutputSections that are not monotonically 1623 // increasing. 1624 for (Partition &part : partitions) 1625 finalizeSynthetic(part.armExidx.get()); 1626 resolveShfLinkOrder(); 1627 1628 // Converts call x@GDPLT to call __tls_get_addr 1629 if (config->emachine == EM_HEXAGON) 1630 hexagonTLSSymbolUpdate(outputSections); 1631 1632 int assignPasses = 0; 1633 for (;;) { 1634 bool changed = target->needsThunks && tc.createThunks(outputSections); 1635 1636 // With Thunk Size much smaller than branch range we expect to 1637 // converge quickly; if we get to 15 something has gone wrong. 1638 if (changed && tc.pass >= 15) { 1639 error("thunk creation not converged"); 1640 break; 1641 } 1642 1643 if (config->fixCortexA53Errata843419) { 1644 if (changed) 1645 script->assignAddresses(); 1646 changed |= a64p.createFixes(); 1647 } 1648 if (config->fixCortexA8) { 1649 if (changed) 1650 script->assignAddresses(); 1651 changed |= a32p.createFixes(); 1652 } 1653 1654 if (in.mipsGot) 1655 in.mipsGot->updateAllocSize(); 1656 1657 for (Partition &part : partitions) { 1658 changed |= part.relaDyn->updateAllocSize(); 1659 if (part.relrDyn) 1660 changed |= part.relrDyn->updateAllocSize(); 1661 } 1662 1663 const Defined *changedSym = script->assignAddresses(); 1664 if (!changed) { 1665 // Some symbols may be dependent on section addresses. When we break the 1666 // loop, the symbol values are finalized because a previous 1667 // assignAddresses() finalized section addresses. 1668 if (!changedSym) 1669 break; 1670 if (++assignPasses == 5) { 1671 errorOrWarn("assignment to symbol " + toString(*changedSym) + 1672 " does not converge"); 1673 break; 1674 } 1675 } 1676 } 1677 1678 if (config->relocatable) 1679 for (OutputSection *sec : outputSections) 1680 sec->addr = 0; 1681 1682 // If addrExpr is set, the address may not be a multiple of the alignment. 1683 // Warn because this is error-prone. 1684 for (SectionCommand *cmd : script->sectionCommands) 1685 if (auto *os = dyn_cast<OutputSection>(cmd)) 1686 if (os->addr % os->alignment != 0) 1687 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " + 1688 os->name + " is not a multiple of alignment (" + 1689 Twine(os->alignment) + ")"); 1690 } 1691 1692 // If Input Sections have been shrunk (basic block sections) then 1693 // update symbol values and sizes associated with these sections. With basic 1694 // block sections, input sections can shrink when the jump instructions at 1695 // the end of the section are relaxed. 1696 static void fixSymbolsAfterShrinking() { 1697 for (InputFile *File : objectFiles) { 1698 parallelForEach(File->getSymbols(), [&](Symbol *Sym) { 1699 auto *def = dyn_cast<Defined>(Sym); 1700 if (!def) 1701 return; 1702 1703 const SectionBase *sec = def->section; 1704 if (!sec) 1705 return; 1706 1707 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec); 1708 if (!inputSec || !inputSec->bytesDropped) 1709 return; 1710 1711 const size_t OldSize = inputSec->data().size(); 1712 const size_t NewSize = OldSize - inputSec->bytesDropped; 1713 1714 if (def->value > NewSize && def->value <= OldSize) { 1715 LLVM_DEBUG(llvm::dbgs() 1716 << "Moving symbol " << Sym->getName() << " from " 1717 << def->value << " to " 1718 << def->value - inputSec->bytesDropped << " bytes\n"); 1719 def->value -= inputSec->bytesDropped; 1720 return; 1721 } 1722 1723 if (def->value + def->size > NewSize && def->value <= OldSize && 1724 def->value + def->size <= OldSize) { 1725 LLVM_DEBUG(llvm::dbgs() 1726 << "Shrinking symbol " << Sym->getName() << " from " 1727 << def->size << " to " << def->size - inputSec->bytesDropped 1728 << " bytes\n"); 1729 def->size -= inputSec->bytesDropped; 1730 } 1731 }); 1732 } 1733 } 1734 1735 // If basic block sections exist, there are opportunities to delete fall thru 1736 // jumps and shrink jump instructions after basic block reordering. This 1737 // relaxation pass does that. It is only enabled when --optimize-bb-jumps 1738 // option is used. 1739 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { 1740 assert(config->optimizeBBJumps); 1741 1742 script->assignAddresses(); 1743 // For every output section that has executable input sections, this 1744 // does the following: 1745 // 1. Deletes all direct jump instructions in input sections that 1746 // jump to the following section as it is not required. 1747 // 2. If there are two consecutive jump instructions, it checks 1748 // if they can be flipped and one can be deleted. 1749 for (OutputSection *osec : outputSections) { 1750 if (!(osec->flags & SHF_EXECINSTR)) 1751 continue; 1752 SmallVector<InputSection *, 0> sections = getInputSections(*osec); 1753 std::vector<unsigned> result(sections.size()); 1754 // Delete all fall through jump instructions. Also, check if two 1755 // consecutive jump instructions can be flipped so that a fall 1756 // through jmp instruction can be deleted. 1757 for (size_t i = 0, e = sections.size(); i != e; ++i) { 1758 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; 1759 InputSection &sec = *sections[i]; 1760 result[i] = target->deleteFallThruJmpInsn(sec, sec.file, next) ? 1 : 0; 1761 } 1762 size_t numDeleted = std::count(result.begin(), result.end(), 1); 1763 if (numDeleted > 0) { 1764 script->assignAddresses(); 1765 LLVM_DEBUG(llvm::dbgs() 1766 << "Removing " << numDeleted << " fall through jumps\n"); 1767 } 1768 } 1769 1770 fixSymbolsAfterShrinking(); 1771 1772 for (OutputSection *osec : outputSections) 1773 for (InputSection *is : getInputSections(*osec)) 1774 is->trim(); 1775 } 1776 1777 // In order to allow users to manipulate linker-synthesized sections, 1778 // we had to add synthetic sections to the input section list early, 1779 // even before we make decisions whether they are needed. This allows 1780 // users to write scripts like this: ".mygot : { .got }". 1781 // 1782 // Doing it has an unintended side effects. If it turns out that we 1783 // don't need a .got (for example) at all because there's no 1784 // relocation that needs a .got, we don't want to emit .got. 1785 // 1786 // To deal with the above problem, this function is called after 1787 // scanRelocations is called to remove synthetic sections that turn 1788 // out to be empty. 1789 static void removeUnusedSyntheticSections() { 1790 // All input synthetic sections that can be empty are placed after 1791 // all regular ones. Reverse iterate to find the first synthetic section 1792 // after a non-synthetic one which will be our starting point. 1793 auto start = std::find_if(inputSections.rbegin(), inputSections.rend(), 1794 [](InputSectionBase *s) { 1795 return !isa<SyntheticSection>(s); 1796 }) 1797 .base(); 1798 1799 // Remove unused synthetic sections from inputSections; 1800 DenseSet<InputSectionBase *> unused; 1801 auto end = 1802 std::remove_if(start, inputSections.end(), [&](InputSectionBase *s) { 1803 auto *sec = cast<SyntheticSection>(s); 1804 if (sec->getParent() && sec->isNeeded()) 1805 return false; 1806 unused.insert(sec); 1807 return true; 1808 }); 1809 inputSections.erase(end, inputSections.end()); 1810 1811 // Remove unused synthetic sections from the corresponding input section 1812 // description and orphanSections. 1813 for (auto *sec : unused) 1814 if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent()) 1815 for (SectionCommand *cmd : osec->commands) 1816 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 1817 llvm::erase_if(isd->sections, [&](InputSection *isec) { 1818 return unused.count(isec); 1819 }); 1820 llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) { 1821 return unused.count(sec); 1822 }); 1823 } 1824 1825 // Create output section objects and add them to OutputSections. 1826 template <class ELFT> void Writer<ELFT>::finalizeSections() { 1827 Out::preinitArray = findSection(".preinit_array"); 1828 Out::initArray = findSection(".init_array"); 1829 Out::finiArray = findSection(".fini_array"); 1830 1831 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop 1832 // symbols for sections, so that the runtime can get the start and end 1833 // addresses of each section by section name. Add such symbols. 1834 if (!config->relocatable) { 1835 addStartEndSymbols(); 1836 for (SectionCommand *cmd : script->sectionCommands) 1837 if (auto *sec = dyn_cast<OutputSection>(cmd)) 1838 addStartStopSymbols(sec); 1839 } 1840 1841 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. 1842 // It should be okay as no one seems to care about the type. 1843 // Even the author of gold doesn't remember why gold behaves that way. 1844 // https://sourceware.org/ml/binutils/2002-03/msg00360.html 1845 if (mainPart->dynamic->parent) 1846 symtab->addSymbol( 1847 Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE, 1848 /*value=*/0, /*size=*/0, mainPart->dynamic.get()}); 1849 1850 // Define __rel[a]_iplt_{start,end} symbols if needed. 1851 addRelIpltSymbols(); 1852 1853 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol 1854 // should only be defined in an executable. If .sdata does not exist, its 1855 // value/section does not matter but it has to be relative, so set its 1856 // st_shndx arbitrarily to 1 (Out::elfHeader). 1857 if (config->emachine == EM_RISCV && !config->shared) { 1858 OutputSection *sec = findSection(".sdata"); 1859 ElfSym::riscvGlobalPointer = 1860 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 1861 0x800, STV_DEFAULT); 1862 } 1863 1864 if (config->emachine == EM_386 || config->emachine == EM_X86_64) { 1865 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a 1866 // way that: 1867 // 1868 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that 1869 // computes 0. 1870 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in 1871 // the TLS block). 1872 // 1873 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as 1874 // an absolute symbol of zero. This is different from GNU linkers which 1875 // define _TLS_MODULE_BASE_ relative to the first TLS section. 1876 Symbol *s = symtab->find("_TLS_MODULE_BASE_"); 1877 if (s && s->isUndefined()) { 1878 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN, 1879 STT_TLS, /*value=*/0, 0, 1880 /*section=*/nullptr}); 1881 ElfSym::tlsModuleBase = cast<Defined>(s); 1882 } 1883 } 1884 1885 { 1886 llvm::TimeTraceScope timeScope("Finalize .eh_frame"); 1887 // This responsible for splitting up .eh_frame section into 1888 // pieces. The relocation scan uses those pieces, so this has to be 1889 // earlier. 1890 for (Partition &part : partitions) 1891 finalizeSynthetic(part.ehFrame.get()); 1892 } 1893 1894 if (config->hasDynSymTab) 1895 for (Symbol *sym : symtab->symbols()) 1896 sym->isPreemptible = computeIsPreemptible(*sym); 1897 1898 // Change values of linker-script-defined symbols from placeholders (assigned 1899 // by declareSymbols) to actual definitions. 1900 script->processSymbolAssignments(); 1901 1902 { 1903 llvm::TimeTraceScope timeScope("Scan relocations"); 1904 // Scan relocations. This must be done after every symbol is declared so 1905 // that we can correctly decide if a dynamic relocation is needed. This is 1906 // called after processSymbolAssignments() because it needs to know whether 1907 // a linker-script-defined symbol is absolute. 1908 ppc64noTocRelax.clear(); 1909 if (!config->relocatable) { 1910 // Scan all relocations. Each relocation goes through a series of tests to 1911 // determine if it needs special treatment, such as creating GOT, PLT, 1912 // copy relocations, etc. Note that relocations for non-alloc sections are 1913 // directly processed by InputSection::relocateNonAlloc. 1914 for (InputSectionBase *sec : inputSections) 1915 if (sec->isLive() && isa<InputSection>(sec) && (sec->flags & SHF_ALLOC)) 1916 scanRelocations<ELFT>(*sec); 1917 for (Partition &part : partitions) { 1918 for (EhInputSection *sec : part.ehFrame->sections) 1919 scanRelocations<ELFT>(*sec); 1920 if (part.armExidx && part.armExidx->isLive()) 1921 for (InputSection *sec : part.armExidx->exidxSections) 1922 scanRelocations<ELFT>(*sec); 1923 } 1924 1925 reportUndefinedSymbols<ELFT>(); 1926 postScanRelocations(); 1927 } 1928 } 1929 1930 if (in.plt && in.plt->isNeeded()) 1931 in.plt->addSymbols(); 1932 if (in.iplt && in.iplt->isNeeded()) 1933 in.iplt->addSymbols(); 1934 1935 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { 1936 auto diagnose = 1937 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError 1938 ? errorOrWarn 1939 : warn; 1940 // Error on undefined symbols in a shared object, if all of its DT_NEEDED 1941 // entries are seen. These cases would otherwise lead to runtime errors 1942 // reported by the dynamic linker. 1943 // 1944 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to 1945 // catch more cases. That is too much for us. Our approach resembles the one 1946 // used in ld.gold, achieves a good balance to be useful but not too smart. 1947 for (SharedFile *file : sharedFiles) { 1948 bool allNeededIsKnown = 1949 llvm::all_of(file->dtNeeded, [&](StringRef needed) { 1950 return symtab->soNames.count(CachedHashStringRef(needed)); 1951 }); 1952 if (!allNeededIsKnown) 1953 continue; 1954 for (Symbol *sym : file->requiredSymbols) 1955 if (sym->isUndefined() && !sym->isWeak()) 1956 diagnose(toString(file) + ": undefined reference to " + 1957 toString(*sym) + " [--no-allow-shlib-undefined]"); 1958 } 1959 } 1960 1961 { 1962 llvm::TimeTraceScope timeScope("Add symbols to symtabs"); 1963 // Now that we have defined all possible global symbols including linker- 1964 // synthesized ones. Visit all symbols to give the finishing touches. 1965 for (Symbol *sym : symtab->symbols()) { 1966 if (!sym->isUsedInRegularObj || !includeInSymtab(*sym)) 1967 continue; 1968 if (!config->relocatable) 1969 sym->binding = sym->computeBinding(); 1970 if (in.symTab) 1971 in.symTab->addSymbol(sym); 1972 1973 if (sym->includeInDynsym()) { 1974 partitions[sym->partition - 1].dynSymTab->addSymbol(sym); 1975 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) 1976 if (file->isNeeded && !sym->isUndefined()) 1977 addVerneed(sym); 1978 } 1979 } 1980 1981 // We also need to scan the dynamic relocation tables of the other 1982 // partitions and add any referenced symbols to the partition's dynsym. 1983 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { 1984 DenseSet<Symbol *> syms; 1985 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) 1986 syms.insert(e.sym); 1987 for (DynamicReloc &reloc : part.relaDyn->relocs) 1988 if (reloc.sym && reloc.needsDynSymIndex() && 1989 syms.insert(reloc.sym).second) 1990 part.dynSymTab->addSymbol(reloc.sym); 1991 } 1992 } 1993 1994 if (in.mipsGot) 1995 in.mipsGot->build(); 1996 1997 removeUnusedSyntheticSections(); 1998 script->diagnoseOrphanHandling(); 1999 2000 sortSections(); 2001 2002 // Create a list of OutputSections, assign sectionIndex, and populate 2003 // in.shStrTab. 2004 for (SectionCommand *cmd : script->sectionCommands) 2005 if (auto *osec = dyn_cast<OutputSection>(cmd)) { 2006 outputSections.push_back(osec); 2007 osec->sectionIndex = outputSections.size(); 2008 osec->shName = in.shStrTab->addString(osec->name); 2009 } 2010 2011 // Prefer command line supplied address over other constraints. 2012 for (OutputSection *sec : outputSections) { 2013 auto i = config->sectionStartMap.find(sec->name); 2014 if (i != config->sectionStartMap.end()) 2015 sec->addrExpr = [=] { return i->second; }; 2016 } 2017 2018 // With the outputSections available check for GDPLT relocations 2019 // and add __tls_get_addr symbol if needed. 2020 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { 2021 Symbol *sym = symtab->addSymbol(Undefined{ 2022 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); 2023 sym->isPreemptible = true; 2024 partitions[0].dynSymTab->addSymbol(sym); 2025 } 2026 2027 // This is a bit of a hack. A value of 0 means undef, so we set it 2028 // to 1 to make __ehdr_start defined. The section number is not 2029 // particularly relevant. 2030 Out::elfHeader->sectionIndex = 1; 2031 Out::elfHeader->size = sizeof(typename ELFT::Ehdr); 2032 2033 // Binary and relocatable output does not have PHDRS. 2034 // The headers have to be created before finalize as that can influence the 2035 // image base and the dynamic section on mips includes the image base. 2036 if (!config->relocatable && !config->oFormatBinary) { 2037 for (Partition &part : partitions) { 2038 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() 2039 : createPhdrs(part); 2040 if (config->emachine == EM_ARM) { 2041 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME 2042 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); 2043 } 2044 if (config->emachine == EM_MIPS) { 2045 // Add separate segments for MIPS-specific sections. 2046 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); 2047 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); 2048 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); 2049 } 2050 } 2051 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); 2052 2053 // Find the TLS segment. This happens before the section layout loop so that 2054 // Android relocation packing can look up TLS symbol addresses. We only need 2055 // to care about the main partition here because all TLS symbols were moved 2056 // to the main partition (see MarkLive.cpp). 2057 for (PhdrEntry *p : mainPart->phdrs) 2058 if (p->p_type == PT_TLS) 2059 Out::tlsPhdr = p; 2060 } 2061 2062 // Some symbols are defined in term of program headers. Now that we 2063 // have the headers, we can find out which sections they point to. 2064 setReservedSymbolSections(); 2065 2066 { 2067 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2068 2069 finalizeSynthetic(in.bss.get()); 2070 finalizeSynthetic(in.bssRelRo.get()); 2071 finalizeSynthetic(in.symTabShndx.get()); 2072 finalizeSynthetic(in.shStrTab.get()); 2073 finalizeSynthetic(in.strTab.get()); 2074 finalizeSynthetic(in.got.get()); 2075 finalizeSynthetic(in.mipsGot.get()); 2076 finalizeSynthetic(in.igotPlt.get()); 2077 finalizeSynthetic(in.gotPlt.get()); 2078 finalizeSynthetic(in.relaIplt.get()); 2079 finalizeSynthetic(in.relaPlt.get()); 2080 finalizeSynthetic(in.plt.get()); 2081 finalizeSynthetic(in.iplt.get()); 2082 finalizeSynthetic(in.ppc32Got2.get()); 2083 finalizeSynthetic(in.partIndex.get()); 2084 2085 // Dynamic section must be the last one in this list and dynamic 2086 // symbol table section (dynSymTab) must be the first one. 2087 for (Partition &part : partitions) { 2088 finalizeSynthetic(part.dynSymTab.get()); 2089 finalizeSynthetic(part.gnuHashTab.get()); 2090 finalizeSynthetic(part.hashTab.get()); 2091 finalizeSynthetic(part.verDef.get()); 2092 finalizeSynthetic(part.relaDyn.get()); 2093 finalizeSynthetic(part.relrDyn.get()); 2094 finalizeSynthetic(part.ehFrameHdr.get()); 2095 finalizeSynthetic(part.verSym.get()); 2096 finalizeSynthetic(part.verNeed.get()); 2097 finalizeSynthetic(part.dynamic.get()); 2098 } 2099 } 2100 2101 if (!script->hasSectionsCommand && !config->relocatable) 2102 fixSectionAlignments(); 2103 2104 // This is used to: 2105 // 1) Create "thunks": 2106 // Jump instructions in many ISAs have small displacements, and therefore 2107 // they cannot jump to arbitrary addresses in memory. For example, RISC-V 2108 // JAL instruction can target only +-1 MiB from PC. It is a linker's 2109 // responsibility to create and insert small pieces of code between 2110 // sections to extend the ranges if jump targets are out of range. Such 2111 // code pieces are called "thunks". 2112 // 2113 // We add thunks at this stage. We couldn't do this before this point 2114 // because this is the earliest point where we know sizes of sections and 2115 // their layouts (that are needed to determine if jump targets are in 2116 // range). 2117 // 2118 // 2) Update the sections. We need to generate content that depends on the 2119 // address of InputSections. For example, MIPS GOT section content or 2120 // android packed relocations sections content. 2121 // 2122 // 3) Assign the final values for the linker script symbols. Linker scripts 2123 // sometimes using forward symbol declarations. We want to set the correct 2124 // values. They also might change after adding the thunks. 2125 finalizeAddressDependentContent(); 2126 2127 // All information needed for OutputSection part of Map file is available. 2128 if (errorCount()) 2129 return; 2130 2131 { 2132 llvm::TimeTraceScope timeScope("Finalize synthetic sections"); 2133 // finalizeAddressDependentContent may have added local symbols to the 2134 // static symbol table. 2135 finalizeSynthetic(in.symTab.get()); 2136 finalizeSynthetic(in.ppc64LongBranchTarget.get()); 2137 } 2138 2139 // Relaxation to delete inter-basic block jumps created by basic block 2140 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps 2141 // can relax jump instructions based on symbol offset. 2142 if (config->optimizeBBJumps) 2143 optimizeBasicBlockJumps(); 2144 2145 // Fill other section headers. The dynamic table is finalized 2146 // at the end because some tags like RELSZ depend on result 2147 // of finalizing other sections. 2148 for (OutputSection *sec : outputSections) 2149 sec->finalize(); 2150 } 2151 2152 // Ensure data sections are not mixed with executable sections when 2153 // --execute-only is used. --execute-only make pages executable but not 2154 // readable. 2155 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { 2156 if (!config->executeOnly) 2157 return; 2158 2159 for (OutputSection *osec : outputSections) 2160 if (osec->flags & SHF_EXECINSTR) 2161 for (InputSection *isec : getInputSections(*osec)) 2162 if (!(isec->flags & SHF_EXECINSTR)) 2163 error("cannot place " + toString(isec) + " into " + 2164 toString(osec->name) + 2165 ": --execute-only does not support intermingling data and code"); 2166 } 2167 2168 // The linker is expected to define SECNAME_start and SECNAME_end 2169 // symbols for a few sections. This function defines them. 2170 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { 2171 // If a section does not exist, there's ambiguity as to how we 2172 // define _start and _end symbols for an init/fini section. Since 2173 // the loader assume that the symbols are always defined, we need to 2174 // always define them. But what value? The loader iterates over all 2175 // pointers between _start and _end to run global ctors/dtors, so if 2176 // the section is empty, their symbol values don't actually matter 2177 // as long as _start and _end point to the same location. 2178 // 2179 // That said, we don't want to set the symbols to 0 (which is 2180 // probably the simplest value) because that could cause some 2181 // program to fail to link due to relocation overflow, if their 2182 // program text is above 2 GiB. We use the address of the .text 2183 // section instead to prevent that failure. 2184 // 2185 // In rare situations, the .text section may not exist. If that's the 2186 // case, use the image base address as a last resort. 2187 OutputSection *Default = findSection(".text"); 2188 if (!Default) 2189 Default = Out::elfHeader; 2190 2191 auto define = [=](StringRef start, StringRef end, OutputSection *os) { 2192 if (os && !script->isDiscarded(os)) { 2193 addOptionalRegular(start, os, 0); 2194 addOptionalRegular(end, os, -1); 2195 } else { 2196 addOptionalRegular(start, Default, 0); 2197 addOptionalRegular(end, Default, 0); 2198 } 2199 }; 2200 2201 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); 2202 define("__init_array_start", "__init_array_end", Out::initArray); 2203 define("__fini_array_start", "__fini_array_end", Out::finiArray); 2204 2205 if (OutputSection *sec = findSection(".ARM.exidx")) 2206 define("__exidx_start", "__exidx_end", sec); 2207 } 2208 2209 // If a section name is valid as a C identifier (which is rare because of 2210 // the leading '.'), linkers are expected to define __start_<secname> and 2211 // __stop_<secname> symbols. They are at beginning and end of the section, 2212 // respectively. This is not requested by the ELF standard, but GNU ld and 2213 // gold provide the feature, and used by many programs. 2214 template <class ELFT> 2215 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) { 2216 StringRef s = sec->name; 2217 if (!isValidCIdentifier(s)) 2218 return; 2219 addOptionalRegular(saver.save("__start_" + s), sec, 0, 2220 config->zStartStopVisibility); 2221 addOptionalRegular(saver.save("__stop_" + s), sec, -1, 2222 config->zStartStopVisibility); 2223 } 2224 2225 static bool needsPtLoad(OutputSection *sec) { 2226 if (!(sec->flags & SHF_ALLOC)) 2227 return false; 2228 2229 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is 2230 // responsible for allocating space for them, not the PT_LOAD that 2231 // contains the TLS initialization image. 2232 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) 2233 return false; 2234 return true; 2235 } 2236 2237 // Linker scripts are responsible for aligning addresses. Unfortunately, most 2238 // linker scripts are designed for creating two PT_LOADs only, one RX and one 2239 // RW. This means that there is no alignment in the RO to RX transition and we 2240 // cannot create a PT_LOAD there. 2241 static uint64_t computeFlags(uint64_t flags) { 2242 if (config->omagic) 2243 return PF_R | PF_W | PF_X; 2244 if (config->executeOnly && (flags & PF_X)) 2245 return flags & ~PF_R; 2246 if (config->singleRoRx && !(flags & PF_W)) 2247 return flags | PF_X; 2248 return flags; 2249 } 2250 2251 // Decide which program headers to create and which sections to include in each 2252 // one. 2253 template <class ELFT> 2254 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) { 2255 SmallVector<PhdrEntry *, 0> ret; 2256 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { 2257 ret.push_back(make<PhdrEntry>(type, flags)); 2258 return ret.back(); 2259 }; 2260 2261 unsigned partNo = part.getNumber(); 2262 bool isMain = partNo == 1; 2263 2264 // Add the first PT_LOAD segment for regular output sections. 2265 uint64_t flags = computeFlags(PF_R); 2266 PhdrEntry *load = nullptr; 2267 2268 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly 2269 // PT_LOAD. 2270 if (!config->nmagic && !config->omagic) { 2271 // The first phdr entry is PT_PHDR which describes the program header 2272 // itself. 2273 if (isMain) 2274 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); 2275 else 2276 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); 2277 2278 // PT_INTERP must be the second entry if exists. 2279 if (OutputSection *cmd = findSection(".interp", partNo)) 2280 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); 2281 2282 // Add the headers. We will remove them if they don't fit. 2283 // In the other partitions the headers are ordinary sections, so they don't 2284 // need to be added here. 2285 if (isMain) { 2286 load = addHdr(PT_LOAD, flags); 2287 load->add(Out::elfHeader); 2288 load->add(Out::programHeaders); 2289 } 2290 } 2291 2292 // PT_GNU_RELRO includes all sections that should be marked as 2293 // read-only by dynamic linker after processing relocations. 2294 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give 2295 // an error message if more than one PT_GNU_RELRO PHDR is required. 2296 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); 2297 bool inRelroPhdr = false; 2298 OutputSection *relroEnd = nullptr; 2299 for (OutputSection *sec : outputSections) { 2300 if (sec->partition != partNo || !needsPtLoad(sec)) 2301 continue; 2302 if (isRelroSection(sec)) { 2303 inRelroPhdr = true; 2304 if (!relroEnd) 2305 relRo->add(sec); 2306 else 2307 error("section: " + sec->name + " is not contiguous with other relro" + 2308 " sections"); 2309 } else if (inRelroPhdr) { 2310 inRelroPhdr = false; 2311 relroEnd = sec; 2312 } 2313 } 2314 2315 for (OutputSection *sec : outputSections) { 2316 if (!needsPtLoad(sec)) 2317 continue; 2318 2319 // Normally, sections in partitions other than the current partition are 2320 // ignored. But partition number 255 is a special case: it contains the 2321 // partition end marker (.part.end). It needs to be added to the main 2322 // partition so that a segment is created for it in the main partition, 2323 // which will cause the dynamic loader to reserve space for the other 2324 // partitions. 2325 if (sec->partition != partNo) { 2326 if (isMain && sec->partition == 255) 2327 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); 2328 continue; 2329 } 2330 2331 // Segments are contiguous memory regions that has the same attributes 2332 // (e.g. executable or writable). There is one phdr for each segment. 2333 // Therefore, we need to create a new phdr when the next section has 2334 // different flags or is loaded at a discontiguous address or memory 2335 // region using AT or AT> linker script command, respectively. At the same 2336 // time, we don't want to create a separate load segment for the headers, 2337 // even if the first output section has an AT or AT> attribute. 2338 uint64_t newFlags = computeFlags(sec->getPhdrFlags()); 2339 bool sameLMARegion = 2340 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; 2341 if (!(load && newFlags == flags && sec != relroEnd && 2342 sec->memRegion == load->firstSec->memRegion && 2343 (sameLMARegion || load->lastSec == Out::programHeaders))) { 2344 load = addHdr(PT_LOAD, newFlags); 2345 flags = newFlags; 2346 } 2347 2348 load->add(sec); 2349 } 2350 2351 // Add a TLS segment if any. 2352 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); 2353 for (OutputSection *sec : outputSections) 2354 if (sec->partition == partNo && sec->flags & SHF_TLS) 2355 tlsHdr->add(sec); 2356 if (tlsHdr->firstSec) 2357 ret.push_back(tlsHdr); 2358 2359 // Add an entry for .dynamic. 2360 if (OutputSection *sec = part.dynamic->getParent()) 2361 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); 2362 2363 if (relRo->firstSec) 2364 ret.push_back(relRo); 2365 2366 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. 2367 if (part.ehFrame->isNeeded() && part.ehFrameHdr && 2368 part.ehFrame->getParent() && part.ehFrameHdr->getParent()) 2369 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) 2370 ->add(part.ehFrameHdr->getParent()); 2371 2372 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes 2373 // the dynamic linker fill the segment with random data. 2374 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) 2375 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); 2376 2377 if (config->zGnustack != GnuStackKind::None) { 2378 // PT_GNU_STACK is a special section to tell the loader to make the 2379 // pages for the stack non-executable. If you really want an executable 2380 // stack, you can pass -z execstack, but that's not recommended for 2381 // security reasons. 2382 unsigned perm = PF_R | PF_W; 2383 if (config->zGnustack == GnuStackKind::Exec) 2384 perm |= PF_X; 2385 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; 2386 } 2387 2388 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable 2389 // is expected to perform W^X violations, such as calling mprotect(2) or 2390 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on 2391 // OpenBSD. 2392 if (config->zWxneeded) 2393 addHdr(PT_OPENBSD_WXNEEDED, PF_X); 2394 2395 if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) 2396 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); 2397 2398 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the 2399 // same alignment. 2400 PhdrEntry *note = nullptr; 2401 for (OutputSection *sec : outputSections) { 2402 if (sec->partition != partNo) 2403 continue; 2404 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { 2405 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment) 2406 note = addHdr(PT_NOTE, PF_R); 2407 note->add(sec); 2408 } else { 2409 note = nullptr; 2410 } 2411 } 2412 return ret; 2413 } 2414 2415 template <class ELFT> 2416 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, 2417 unsigned pType, unsigned pFlags) { 2418 unsigned partNo = part.getNumber(); 2419 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { 2420 return cmd->partition == partNo && cmd->type == shType; 2421 }); 2422 if (i == outputSections.end()) 2423 return; 2424 2425 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); 2426 entry->add(*i); 2427 part.phdrs.push_back(entry); 2428 } 2429 2430 // Place the first section of each PT_LOAD to a different page (of maxPageSize). 2431 // This is achieved by assigning an alignment expression to addrExpr of each 2432 // such section. 2433 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { 2434 const PhdrEntry *prev; 2435 auto pageAlign = [&](const PhdrEntry *p) { 2436 OutputSection *cmd = p->firstSec; 2437 if (!cmd) 2438 return; 2439 cmd->alignExpr = [align = cmd->alignment]() { return align; }; 2440 if (!cmd->addrExpr) { 2441 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid 2442 // padding in the file contents. 2443 // 2444 // When -z separate-code is used we must not have any overlap in pages 2445 // between an executable segment and a non-executable segment. We align to 2446 // the next maximum page size boundary on transitions between executable 2447 // and non-executable segments. 2448 // 2449 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition 2450 // sections will be extracted to a separate file. Align to the next 2451 // maximum page size boundary so that we can find the ELF header at the 2452 // start. We cannot benefit from overlapping p_offset ranges with the 2453 // previous segment anyway. 2454 if (config->zSeparate == SeparateSegmentKind::Loadable || 2455 (config->zSeparate == SeparateSegmentKind::Code && prev && 2456 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || 2457 cmd->type == SHT_LLVM_PART_EHDR) 2458 cmd->addrExpr = [] { 2459 return alignTo(script->getDot(), config->maxPageSize); 2460 }; 2461 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, 2462 // it must be the RW. Align to p_align(PT_TLS) to make sure 2463 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if 2464 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) 2465 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not 2466 // be congruent to 0 modulo p_align(PT_TLS). 2467 // 2468 // Technically this is not required, but as of 2019, some dynamic loaders 2469 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and 2470 // x86-64) doesn't make runtime address congruent to p_vaddr modulo 2471 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same 2472 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS 2473 // blocks correctly. We need to keep the workaround for a while. 2474 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) 2475 cmd->addrExpr = [] { 2476 return alignTo(script->getDot(), config->maxPageSize) + 2477 alignTo(script->getDot() % config->maxPageSize, 2478 Out::tlsPhdr->p_align); 2479 }; 2480 else 2481 cmd->addrExpr = [] { 2482 return alignTo(script->getDot(), config->maxPageSize) + 2483 script->getDot() % config->maxPageSize; 2484 }; 2485 } 2486 }; 2487 2488 for (Partition &part : partitions) { 2489 prev = nullptr; 2490 for (const PhdrEntry *p : part.phdrs) 2491 if (p->p_type == PT_LOAD && p->firstSec) { 2492 pageAlign(p); 2493 prev = p; 2494 } 2495 } 2496 } 2497 2498 // Compute an in-file position for a given section. The file offset must be the 2499 // same with its virtual address modulo the page size, so that the loader can 2500 // load executables without any address adjustment. 2501 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { 2502 // The first section in a PT_LOAD has to have congruent offset and address 2503 // modulo the maximum page size. 2504 if (os->ptLoad && os->ptLoad->firstSec == os) 2505 return alignTo(off, os->ptLoad->p_align, os->addr); 2506 2507 // File offsets are not significant for .bss sections other than the first one 2508 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically 2509 // increasing rather than setting to zero. 2510 if (os->type == SHT_NOBITS && 2511 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) 2512 return off; 2513 2514 // If the section is not in a PT_LOAD, we just have to align it. 2515 if (!os->ptLoad) 2516 return alignTo(off, os->alignment); 2517 2518 // If two sections share the same PT_LOAD the file offset is calculated 2519 // using this formula: Off2 = Off1 + (VA2 - VA1). 2520 OutputSection *first = os->ptLoad->firstSec; 2521 return first->offset + os->addr - first->addr; 2522 } 2523 2524 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { 2525 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. 2526 auto needsOffset = [](OutputSection &sec) { 2527 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; 2528 }; 2529 uint64_t minAddr = UINT64_MAX; 2530 for (OutputSection *sec : outputSections) 2531 if (needsOffset(*sec)) { 2532 sec->offset = sec->getLMA(); 2533 minAddr = std::min(minAddr, sec->offset); 2534 } 2535 2536 // Sections are laid out at LMA minus minAddr. 2537 fileSize = 0; 2538 for (OutputSection *sec : outputSections) 2539 if (needsOffset(*sec)) { 2540 sec->offset -= minAddr; 2541 fileSize = std::max(fileSize, sec->offset + sec->size); 2542 } 2543 } 2544 2545 static std::string rangeToString(uint64_t addr, uint64_t len) { 2546 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; 2547 } 2548 2549 // Assign file offsets to output sections. 2550 template <class ELFT> void Writer<ELFT>::assignFileOffsets() { 2551 Out::programHeaders->offset = Out::elfHeader->size; 2552 uint64_t off = Out::elfHeader->size + Out::programHeaders->size; 2553 2554 PhdrEntry *lastRX = nullptr; 2555 for (Partition &part : partitions) 2556 for (PhdrEntry *p : part.phdrs) 2557 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2558 lastRX = p; 2559 2560 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC 2561 // will not occupy file offsets contained by a PT_LOAD. 2562 for (OutputSection *sec : outputSections) { 2563 if (!(sec->flags & SHF_ALLOC)) 2564 continue; 2565 off = computeFileOffset(sec, off); 2566 sec->offset = off; 2567 if (sec->type != SHT_NOBITS) 2568 off += sec->size; 2569 2570 // If this is a last section of the last executable segment and that 2571 // segment is the last loadable segment, align the offset of the 2572 // following section to avoid loading non-segments parts of the file. 2573 if (config->zSeparate != SeparateSegmentKind::None && lastRX && 2574 lastRX->lastSec == sec) 2575 off = alignTo(off, config->maxPageSize); 2576 } 2577 for (OutputSection *osec : outputSections) 2578 if (!(osec->flags & SHF_ALLOC)) { 2579 osec->offset = alignTo(off, osec->alignment); 2580 off = osec->offset + osec->size; 2581 } 2582 2583 sectionHeaderOff = alignTo(off, config->wordsize); 2584 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); 2585 2586 // Our logic assumes that sections have rising VA within the same segment. 2587 // With use of linker scripts it is possible to violate this rule and get file 2588 // offset overlaps or overflows. That should never happen with a valid script 2589 // which does not move the location counter backwards and usually scripts do 2590 // not do that. Unfortunately, there are apps in the wild, for example, Linux 2591 // kernel, which control segment distribution explicitly and move the counter 2592 // backwards, so we have to allow doing that to support linking them. We 2593 // perform non-critical checks for overlaps in checkSectionOverlap(), but here 2594 // we want to prevent file size overflows because it would crash the linker. 2595 for (OutputSection *sec : outputSections) { 2596 if (sec->type == SHT_NOBITS) 2597 continue; 2598 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) 2599 error("unable to place section " + sec->name + " at file offset " + 2600 rangeToString(sec->offset, sec->size) + 2601 "; check your linker script for overflows"); 2602 } 2603 } 2604 2605 // Finalize the program headers. We call this function after we assign 2606 // file offsets and VAs to all sections. 2607 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { 2608 for (PhdrEntry *p : part.phdrs) { 2609 OutputSection *first = p->firstSec; 2610 OutputSection *last = p->lastSec; 2611 2612 if (first) { 2613 p->p_filesz = last->offset - first->offset; 2614 if (last->type != SHT_NOBITS) 2615 p->p_filesz += last->size; 2616 2617 p->p_memsz = last->addr + last->size - first->addr; 2618 p->p_offset = first->offset; 2619 p->p_vaddr = first->addr; 2620 2621 // File offsets in partitions other than the main partition are relative 2622 // to the offset of the ELF headers. Perform that adjustment now. 2623 if (part.elfHeader) 2624 p->p_offset -= part.elfHeader->getParent()->offset; 2625 2626 if (!p->hasLMA) 2627 p->p_paddr = first->getLMA(); 2628 } 2629 2630 if (p->p_type == PT_GNU_RELRO) { 2631 p->p_align = 1; 2632 // musl/glibc ld.so rounds the size down, so we need to round up 2633 // to protect the last page. This is a no-op on FreeBSD which always 2634 // rounds up. 2635 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) - 2636 p->p_offset; 2637 } 2638 } 2639 } 2640 2641 // A helper struct for checkSectionOverlap. 2642 namespace { 2643 struct SectionOffset { 2644 OutputSection *sec; 2645 uint64_t offset; 2646 }; 2647 } // namespace 2648 2649 // Check whether sections overlap for a specific address range (file offsets, 2650 // load and virtual addresses). 2651 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, 2652 bool isVirtualAddr) { 2653 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { 2654 return a.offset < b.offset; 2655 }); 2656 2657 // Finding overlap is easy given a vector is sorted by start position. 2658 // If an element starts before the end of the previous element, they overlap. 2659 for (size_t i = 1, end = sections.size(); i < end; ++i) { 2660 SectionOffset a = sections[i - 1]; 2661 SectionOffset b = sections[i]; 2662 if (b.offset >= a.offset + a.sec->size) 2663 continue; 2664 2665 // If both sections are in OVERLAY we allow the overlapping of virtual 2666 // addresses, because it is what OVERLAY was designed for. 2667 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay) 2668 continue; 2669 2670 errorOrWarn("section " + a.sec->name + " " + name + 2671 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name + 2672 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " + 2673 b.sec->name + " range is " + 2674 rangeToString(b.offset, b.sec->size)); 2675 } 2676 } 2677 2678 // Check for overlapping sections and address overflows. 2679 // 2680 // In this function we check that none of the output sections have overlapping 2681 // file offsets. For SHF_ALLOC sections we also check that the load address 2682 // ranges and the virtual address ranges don't overlap 2683 template <class ELFT> void Writer<ELFT>::checkSections() { 2684 // First, check that section's VAs fit in available address space for target. 2685 for (OutputSection *os : outputSections) 2686 if ((os->addr + os->size < os->addr) || 2687 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX)) 2688 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) + 2689 " of size 0x" + utohexstr(os->size) + 2690 " exceeds available address space"); 2691 2692 // Check for overlapping file offsets. In this case we need to skip any 2693 // section marked as SHT_NOBITS. These sections don't actually occupy space in 2694 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat 2695 // binary is specified only add SHF_ALLOC sections are added to the output 2696 // file so we skip any non-allocated sections in that case. 2697 std::vector<SectionOffset> fileOffs; 2698 for (OutputSection *sec : outputSections) 2699 if (sec->size > 0 && sec->type != SHT_NOBITS && 2700 (!config->oFormatBinary || (sec->flags & SHF_ALLOC))) 2701 fileOffs.push_back({sec, sec->offset}); 2702 checkOverlap("file", fileOffs, false); 2703 2704 // When linking with -r there is no need to check for overlapping virtual/load 2705 // addresses since those addresses will only be assigned when the final 2706 // executable/shared object is created. 2707 if (config->relocatable) 2708 return; 2709 2710 // Checking for overlapping virtual and load addresses only needs to take 2711 // into account SHF_ALLOC sections since others will not be loaded. 2712 // Furthermore, we also need to skip SHF_TLS sections since these will be 2713 // mapped to other addresses at runtime and can therefore have overlapping 2714 // ranges in the file. 2715 std::vector<SectionOffset> vmas; 2716 for (OutputSection *sec : outputSections) 2717 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2718 vmas.push_back({sec, sec->addr}); 2719 checkOverlap("virtual address", vmas, true); 2720 2721 // Finally, check that the load addresses don't overlap. This will usually be 2722 // the same as the virtual addresses but can be different when using a linker 2723 // script with AT(). 2724 std::vector<SectionOffset> lmas; 2725 for (OutputSection *sec : outputSections) 2726 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS)) 2727 lmas.push_back({sec, sec->getLMA()}); 2728 checkOverlap("load address", lmas, false); 2729 } 2730 2731 // The entry point address is chosen in the following ways. 2732 // 2733 // 1. the '-e' entry command-line option; 2734 // 2. the ENTRY(symbol) command in a linker control script; 2735 // 3. the value of the symbol _start, if present; 2736 // 4. the number represented by the entry symbol, if it is a number; 2737 // 5. the address 0. 2738 static uint64_t getEntryAddr() { 2739 // Case 1, 2 or 3 2740 if (Symbol *b = symtab->find(config->entry)) 2741 return b->getVA(); 2742 2743 // Case 4 2744 uint64_t addr; 2745 if (to_integer(config->entry, addr)) 2746 return addr; 2747 2748 // Case 5 2749 if (config->warnMissingEntry) 2750 warn("cannot find entry symbol " + config->entry + 2751 "; not setting start address"); 2752 return 0; 2753 } 2754 2755 static uint16_t getELFType() { 2756 if (config->isPic) 2757 return ET_DYN; 2758 if (config->relocatable) 2759 return ET_REL; 2760 return ET_EXEC; 2761 } 2762 2763 template <class ELFT> void Writer<ELFT>::writeHeader() { 2764 writeEhdr<ELFT>(Out::bufferStart, *mainPart); 2765 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart); 2766 2767 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart); 2768 eHdr->e_type = getELFType(); 2769 eHdr->e_entry = getEntryAddr(); 2770 eHdr->e_shoff = sectionHeaderOff; 2771 2772 // Write the section header table. 2773 // 2774 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum 2775 // and e_shstrndx fields. When the value of one of these fields exceeds 2776 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and 2777 // use fields in the section header at index 0 to store 2778 // the value. The sentinel values and fields are: 2779 // e_shnum = 0, SHdrs[0].sh_size = number of sections. 2780 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index. 2781 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff); 2782 size_t num = outputSections.size() + 1; 2783 if (num >= SHN_LORESERVE) 2784 sHdrs->sh_size = num; 2785 else 2786 eHdr->e_shnum = num; 2787 2788 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex; 2789 if (strTabIndex >= SHN_LORESERVE) { 2790 sHdrs->sh_link = strTabIndex; 2791 eHdr->e_shstrndx = SHN_XINDEX; 2792 } else { 2793 eHdr->e_shstrndx = strTabIndex; 2794 } 2795 2796 for (OutputSection *sec : outputSections) 2797 sec->writeHeaderTo<ELFT>(++sHdrs); 2798 } 2799 2800 // Open a result file. 2801 template <class ELFT> void Writer<ELFT>::openFile() { 2802 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX; 2803 if (fileSize != size_t(fileSize) || maxSize < fileSize) { 2804 std::string msg; 2805 raw_string_ostream s(msg); 2806 s << "output file too large: " << Twine(fileSize) << " bytes\n" 2807 << "section sizes:\n"; 2808 for (OutputSection *os : outputSections) 2809 s << os->name << ' ' << os->size << "\n"; 2810 error(s.str()); 2811 return; 2812 } 2813 2814 unlinkAsync(config->outputFile); 2815 unsigned flags = 0; 2816 if (!config->relocatable) 2817 flags |= FileOutputBuffer::F_executable; 2818 if (!config->mmapOutputFile) 2819 flags |= FileOutputBuffer::F_no_mmap; 2820 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 2821 FileOutputBuffer::create(config->outputFile, fileSize, flags); 2822 2823 if (!bufferOrErr) { 2824 error("failed to open " + config->outputFile + ": " + 2825 llvm::toString(bufferOrErr.takeError())); 2826 return; 2827 } 2828 buffer = std::move(*bufferOrErr); 2829 Out::bufferStart = buffer->getBufferStart(); 2830 } 2831 2832 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { 2833 for (OutputSection *sec : outputSections) 2834 if (sec->flags & SHF_ALLOC) 2835 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2836 } 2837 2838 static void fillTrap(uint8_t *i, uint8_t *end) { 2839 for (; i + 4 <= end; i += 4) 2840 memcpy(i, &target->trapInstr, 4); 2841 } 2842 2843 // Fill the last page of executable segments with trap instructions 2844 // instead of leaving them as zero. Even though it is not required by any 2845 // standard, it is in general a good thing to do for security reasons. 2846 // 2847 // We'll leave other pages in segments as-is because the rest will be 2848 // overwritten by output sections. 2849 template <class ELFT> void Writer<ELFT>::writeTrapInstr() { 2850 for (Partition &part : partitions) { 2851 // Fill the last page. 2852 for (PhdrEntry *p : part.phdrs) 2853 if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) 2854 fillTrap(Out::bufferStart + 2855 alignDown(p->firstSec->offset + p->p_filesz, 4), 2856 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz, 2857 config->maxPageSize)); 2858 2859 // Round up the file size of the last segment to the page boundary iff it is 2860 // an executable segment to ensure that other tools don't accidentally 2861 // trim the instruction padding (e.g. when stripping the file). 2862 PhdrEntry *last = nullptr; 2863 for (PhdrEntry *p : part.phdrs) 2864 if (p->p_type == PT_LOAD) 2865 last = p; 2866 2867 if (last && (last->p_flags & PF_X)) 2868 last->p_memsz = last->p_filesz = 2869 alignTo(last->p_filesz, config->maxPageSize); 2870 } 2871 } 2872 2873 // Write section contents to a mmap'ed file. 2874 template <class ELFT> void Writer<ELFT>::writeSections() { 2875 llvm::TimeTraceScope timeScope("Write sections"); 2876 2877 // In -r or --emit-relocs mode, write the relocation sections first as in 2878 // ELf_Rel targets we might find out that we need to modify the relocated 2879 // section while doing it. 2880 for (OutputSection *sec : outputSections) 2881 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2882 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2883 2884 for (OutputSection *sec : outputSections) 2885 if (sec->type != SHT_REL && sec->type != SHT_RELA) 2886 sec->writeTo<ELFT>(Out::bufferStart + sec->offset); 2887 2888 // Finally, check that all dynamic relocation addends were written correctly. 2889 if (config->checkDynamicRelocs && config->writeAddends) { 2890 for (OutputSection *sec : outputSections) 2891 if (sec->type == SHT_REL || sec->type == SHT_RELA) 2892 sec->checkDynRelAddends(Out::bufferStart); 2893 } 2894 } 2895 2896 // Computes a hash value of Data using a given hash function. 2897 // In order to utilize multiple cores, we first split data into 1MB 2898 // chunks, compute a hash for each chunk, and then compute a hash value 2899 // of the hash values. 2900 static void 2901 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 2902 llvm::ArrayRef<uint8_t> data, 2903 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 2904 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 2905 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 2906 2907 // Compute hash values. 2908 parallelForEachN(0, chunks.size(), [&](size_t i) { 2909 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 2910 }); 2911 2912 // Write to the final output buffer. 2913 hashFn(hashBuf.data(), hashes); 2914 } 2915 2916 template <class ELFT> void Writer<ELFT>::writeBuildId() { 2917 if (!mainPart->buildId || !mainPart->buildId->getParent()) 2918 return; 2919 2920 if (config->buildId == BuildIdKind::Hexstring) { 2921 for (Partition &part : partitions) 2922 part.buildId->writeBuildId(config->buildIdVector); 2923 return; 2924 } 2925 2926 // Compute a hash of all sections of the output file. 2927 size_t hashSize = mainPart->buildId->hashSize; 2928 std::vector<uint8_t> buildId(hashSize); 2929 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)}; 2930 2931 switch (config->buildId) { 2932 case BuildIdKind::Fast: 2933 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 2934 write64le(dest, xxHash64(arr)); 2935 }); 2936 break; 2937 case BuildIdKind::Md5: 2938 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2939 memcpy(dest, MD5::hash(arr).data(), hashSize); 2940 }); 2941 break; 2942 case BuildIdKind::Sha1: 2943 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 2944 memcpy(dest, SHA1::hash(arr).data(), hashSize); 2945 }); 2946 break; 2947 case BuildIdKind::Uuid: 2948 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize)) 2949 error("entropy source failure: " + ec.message()); 2950 break; 2951 default: 2952 llvm_unreachable("unknown BuildIdKind"); 2953 } 2954 for (Partition &part : partitions) 2955 part.buildId->writeBuildId(buildId); 2956 } 2957 2958 template void elf::createSyntheticSections<ELF32LE>(); 2959 template void elf::createSyntheticSections<ELF32BE>(); 2960 template void elf::createSyntheticSections<ELF64LE>(); 2961 template void elf::createSyntheticSections<ELF64BE>(); 2962 2963 template void elf::writeResult<ELF32LE>(); 2964 template void elf::writeResult<ELF32BE>(); 2965 template void elf::writeResult<ELF64LE>(); 2966 template void elf::writeResult<ELF64BE>(); 2967